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Preface

The organization of this thesis is as follows: Chapter 1 is an introduction on modern constructive

mathematics, in which we concentrate mainly on Bishop’s constructive analysis, with a very brief

discussion on the different philosophies of mathematics, namely Brouwer’s intuitionism, the Russian

constructive mathematics, and classical methematics which is the usual mathematics practiced by

most mathematicians.

In Chapter 2 we analyse, from a constructive point of view, the classical variational approaches

to the weak solvability of Dirichlet problem.

In the study of the constructive aspect of the theory of the Dirichlet problem, various properties

of the domain concerned must be proved constructively, and these are collected in Chapter 3.

In Chapter 4 we present two proofs for the existence of the so called cutoff function which plays

an important role in the theory of partial differential equations.

The results of our constructive study on weak solutions of the Dirichlet problem is collected in

Chapter 5. These include: The constructive existence of weak solutions of the Dirichlet problem,

the uniform continuity of the weak solutions with respect to the parameters: continuous dependence

on the boundary data and on the domain, and a weak maximum principle for weak solutions.

In Chapter 6, we investigate conditions under which each point near the boundary ∂Ω has a

unique closest point on the boundary, which facilitates the constructive proof of a property of

functions in the space H1
0 (Ω) which we have used in previoue chapters.

Finally, we summarise some notations frequently used throughout this thesis:

Bold faced capital letters are used to denote sets of numbers:

R : the set of real numbers

RN : the Cartesian product R×R× · · · ×R︸ ︷︷ ︸
N

N : the set of natural numbers

Z : the set of integers

A◦ : interior of the set A
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A : closure of the set A

∼ A : the complement of the set A

−A : metric complement of the located set A

A
∨
B for the union of complemented sets A and B, and

∨n
i=1Ai is the union of the comple-

mented sets A1, A2, · · ·, An

¬P : negation of the statement P

Vectors are denoted by bold faced lowercase letters w, v, · · ·

〈·, ·〉X denotes the inner product on the space X

‖·‖X denotes the norm on the space X

The end of each proof is marked by a ‘�’
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Chapter 1

Introduction

This chapter introduces constructive mathematics, compares it with its classical counterpart, and

briefly sets the scene for our later work on the Dirichlet Problem.

1.1 What is Constructive Mathematics?

Constructive mathematics differs from classical mathematics in its strict interpretation of the phrase

‘there exists’ and its perception of what constitutes a proof of existence.

Classically, a mathematical object exists if its non-existence is impossible—that is, contradic-

tory. Constructively, to prove the existence of an object is to find a finite routine for computing

the object to within any desired degree of precision.

Classically, to assert that there exists x such that P (x), it suffices to show that ¬( ∀x¬P (x))

is contradictory. Constructively, we must describe, at least implicitly, both a finite procedure for

constructing a certain object ξ and one that shows that P (ξ) holds.

Classically, the disjunction P
∨
Q holds if it can be shown that P and Q cannot both be false.

Constructively, we must have a finite procedure that will decide which of the two alternatives holds,

before we are entitled to say that the proposition P
∨
Q is true.

Classical mathematics is carried out in the context of classical logic, in which the law of excluded

middle

P ∨ ¬P

is accepted without question and is widely used. This law is the main source of nonconstructivity
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in classical mathematics. Constructive mathematics, on the other hand, is carried out in the

context of intuitionistic logic, in which the law of excluded middle is not accepted. By removing

the law of excluded middle, constructive mathematics can be viewed as a generalization of classical

mathematics, since it uses fewer assumptions about the logic. But, more significantly, a constructive

study of a mathematical question may provide more information than a classical one.

The law of excluded middle equates a statement P with its contrapositive ¬¬P . But the

distinction between a statement and its contrapositive is clear and worthy of preservation. For

example, in constructive mathematics the statement ‘r > 0’ means ‘we can compute a positive

integer n such that 1
n lies between 0 and r’—in other words, ‘we can compute a positive integer n

such that r > 1
n ’. The contrapositive means ‘it is not true that r ≤ 1

n for every integer n ’. The

latter statement does not facilitate the computation of an n such that r > 1
n .

To illustrate the differences between the working principles of constructive mathematics and

those of classical mathematics (CLASS), we consider certain omniscience principles which, al-

though trivially true in CLASS, are rejected in constructive mathematics:

• The Limited Principle of Omniscience (LPO): For each binary sequence (an), either there

exists n such that an = 1 or else an = 0 for all n.

• The Lesser Limited Principle of Omniscience (LLPO): For each binary sequence (an) with

at most one term equal to 1, either an = 0 for all odd n or else an = 0 for all even n.

• The Weak Limited Principle of Omniscience ( WLPO): For each binary sequence (an), either

∀n (an = 0) or ¬∀n (an = 0) .

• Markov’s Principle (MP): For each binary sequence (an) such that ¬∀n (an = 0) , there exists

n such that an = 1.

All these omniscience principles are trivially provable using classical logic. But constructively

interpreted, these statements are much stronger than they appear at first sight. For example, a

constructive proof of LPO must provide a finite routine which either shows that an = 0 for all n or

else computes a positive integer n such that an = 1. It is the essence of constructive mathematics

to recognize that, in principle and in practice, we possess no power big enough to carry out the task

of examining an entire infinite entity in finite steps. Thus we cannot expect to find a constructive
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proof of LPO. Further evidence for this comes from the observation that a constructive proof of

LPO would provide a highly improbable finite decision procedure for a vast number of unsolved

problems in mathematics, as we now explain.

Frequently there are finite procedures which determine one of two alternatives on the basis of

a finite amount of information. We can indicate the results of the decision procedure by 0 and 1.

Also, the finite information may by increased step by step, providing more information on a given

problem and producing an infinite sequence of 0’s and 1’s, which may be regarded as containing

the solution. Many unsolved problems in mathematics may be reduced in this way to statements

about binary sequences. For example, to reduce Goldbach’s conjecture, we set

an :=


0 if 2k is a sum of two primes for each positive integer k ≤ n

1 if we can find k ≤ n such that 2k is not the sum of any two primes.

(1.1)

For simplicity, we denote by a an arbitrary binary sequence (an), and by P (a) the statement:

there exists n such that an = 1. In particular, if a is the binary sequence defined in (1.1), then

a constructive proof of P (a)
∨
¬P (a) would give a method for deciding Goldbach’s conjecture by

providing a construction that either establishes the conjecture or produces an explicit counterex-

ample to it. Unless we have such a construction, we are not entitled to claim P (a)
∨
¬P (a) as a

constructive theorem.

Note that the binary sequence given by (1.1) is constructively well defined because for any

positive integer n we can determine, by a finite test, whether or not 2k is a sum of two primes for

each positive integer k ≤ n. The use of Goldbach’s conjecture in the above example is not essential.

If Goldbach’s conjecture were resolved tomorrow, we could assert P (a)
∨
¬P (a) for this very a; but

by referring to other open problems, such as the Riemann hypothesis, we could always construct

other binary sequences a for which we could not establish P (a)
∨
¬P (a).

The name Brouwerian counterexample to P is given to a demonstration which shows construc-

tively that the proposition P implies one of the foregoing omniscience principles, and hence that

we cannot expect to prove P constructively.

The law of excluded middle implies LPO. This confirms the necessity of excluding the law of
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excluded middle from constructive mathematics. Note also that LPO implies both WLPO and

LLPO.

The status of Markov’s principle is rather less clear. Although it is rejected by most constructive

mathematicians, since it embodies an unbounded search, some workers in the Russian school of

recursive constructive mathematics (of which more later) accept it, often reluctantly. It can be

viewed as a special case of a logical principle that, in full generality, does not hold in intuitionistic

logic. To make this remark more precise, let us call a statement Q simply existential if we can

construct a binary sequence (an) such that Q holds if and only if there exists n such that an = 1.

Then Markov’s principle is equivalent, by pure logic, to the following proposition: for any simply

existential statement Q, Q⇔ ¬¬Q.

There are many important results of classical mathematics for which a constructive proof could

be transformed into one of LPO, LLPO, WLPO, or MP, and which are therefore unacceptable in

our constructive mathematics. Among the more elementary results of this type are the following:

• The decidability of equality on R: For any real number r, either r = 0 or else r 6= 0 (in the

sense that |r| > 0).

• The least-upper-bound principle for increasing sequences: To each increasing sequence (an)

of real numbers that is bounded above there corresponds a number s such that

an ≤ s for all n and

for each r > 0, there exists n such that an > s− r.

• The sequential compactness of the closed interval [0, 1]: Each sequence in [0, 1] contains a

convergent subsequence.

In order to discuss the constructive failure of these three classical propositions, we need the

following apartness property, which is a constructive substitute for the decidability of real numbers:

If a < b, then for all real numbers x either a < x or x < b. (1.2)

The proof of this property is an elementary estimation using rational approximations to x, y, and

z; see page 26 of [BB]
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For each given real number r and each positive integer n there exists a rational number rn such

that |r − rn| < 1/n. If |rn| ≤ 1/n, set an = 0; if |rn| > 1/n, set an = 1. (Note that for rational

numbers r, s we can decide that either r = s or r 6= s.) The resulting binary sequence (an) has the

following property:

(|r| > 0⇔ ∃n (an = 1)) ∧ (r = 0⇔ ∀n (an = 0)) (1.3)

Clearly, LPO implies that we can decide whether r = 0 or not. Conversely, to each binary sequence

(an) there corresponds a real number r =
∑∞

n=1 2−nan such that (1.3) holds. Thus the decidability

of the real numbers implies LPO.

Now assume the least-upper-bound principle, and let a = (an) be an arbitrary binary sequence.

Then for each n,

cn := sup {ai : 1 ≤ i ≤ n}

exists. It is clear that (cn) is a bounded increasing sequence of real numbers, so s := supn≥1 cn

exists. Either s < 1, and therefore an = 0 for all n, or else s > 1/2; in the latter case there exists

n such that an > 0 and therefore an = 1. Thus LPO holds.

Finally, assume the sequential compactness of the interval [0, 1], and let (an), (cn) be as in

the last paragraph. Then the increasing binary sequence (cn) contains a convergent subsequence

(cnk)∞k=1. Let

t = lim
k→∞

cnk .

Then either t > 0, and hence there exists nk such that ank = 1, or else t < 1. In the latter case,

an = 0 for all n. Therefore the sequential compactness of [0, 1] implies LPO.

A constructively unacceptable classical result may have a very good constructive substitute,

or even, sometimes, more than one. For example, although the decidability of equality of real

numbers is equivalent to LPO, the foregoing apartness property (1.3) provides a good constructive

substitute.

There is also a very useful constructive substitute for the classical least-upper-bound principle,

the constructive least-upper-bound principle:

If A is an inhabited1 set of real numbers that is bounded above, then supA exists if and

1We use the word inhabited, rather than the more common nonempty or nonvoid, to indicate that we can construct
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only if for all real numbers x, y with x < y, either y is an upper bound of A or else

there exists a ∈ A with x < a ([BB], Ch. 2, (4.3)).

1.2 Modern Constructive Mathematics

Modern constructive mathematics originated in the early years of this century, when mathemati-

cians began to pay serious attention to the foundations of mathematics. L.E.J. Brouwer was the

leading critic of the unrestricted use of the law of excluded middle and advocated a constructive

philosophy of mathematics known as intuitionism ([?], [BC]). But Brouwer and his followers failed

to convince the mathematical community that abandoning the use of the idealistic principles such

as the law of excluded middle would not be too big a sacrifice for the development of mathematics.

They were more successful in their criticism of classical mathematics than in their efforts to replace

it with something better, something positive. It was widely believed that constructive mathematics

was too weak, that the mathematics established by traditional methods would have been greatly

truncated if mathematicians had only been allowed constructive methods. By the middle of the

century constructive mathematics had become almost irrelevant to the mathematical community.

However, it experienced a dramatic revival after the publication of Errett Bishop’s monograph

Foundations of Constructive Analysis [?] in 1967, since when a great deal has been achieved in

‘constructivizing’ many of the major branches of mathematics. (See also [BB] and [?].)

One conspicuous exception has been the theory of partial differential equations (PDEs). Beeson

([BE], Chapter 1) has remarked that all the serious difficulties in constructive analysis seem to

be existence theorems which are proved classically by applying sequential compactness in certain

function spaces. This is especially so in the case of PDE theory and the calculus of variations.

A good starting point for constructivizing the theory of PDEs is the potential equation (Poisson’s

equation)

4u(x) = f(x),

which reduces to Laplace’s equation when f(x) ≡ 0. The classical Dirichlet Problem is to find a

a member of the set.
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twice differentiable function u such that

4u(x) = 0 for all x ∈ Ω,

u(x) = ϕ(x) for all x ∈ ∂Ω,

(1.4)

where Ω is a bounded open subset of RN , ∂Ω denotes the boundary of Ω, and ϕ is a given

uniformly continuous function on ∂Ω. The solution to this problem is also the minimum point for

the functional

J(u) =

∫
Ω
|u(x)|2 dx

defined on the set of all functions that are twice differentiable on Ω and satisfy the boundary

condition of (1.4).

There are two lines along which the theory of elliptic equations are developed. In the first of

these, one proves the existence of solutions directly; in the second, one first proves the existence of

so-called ‘weak solutions’ and then proves their regularity—that is, that weak solutions are indeed

strong solutions. A rough description follows.

In the first approach, the Dirichlet problem for Poisson’s equation is reduced to that of Laplace’s

equation using the Newtonian potential. The solution of the Dirichlet problem for Laplace’s equa-

tion is then proved to exist using Perron’s process, in which one first obtains the least upper bound

u of the set of all subharmonic functions subject to the prescribed boundary condition, and then

shows that u is actually harmonic and satisfies the boundary condition. Constructively, there is a

serious problem with the first part of this process, in which there is an inadmissible application of

the classical least-upper-bound principle.

In the second approach the existence of weak solutions can be established by several different

methods. Hilbert’s technique, the direct method of calculus of variations, is based on Dirichlet’s

principle: the (strong) solution is also the minimizer of the associated integral functional J ; see

[JO] (3rd. edn, page 131). It first uses the least-upper-bound principle to establish the existence of

the infimum of a certain functional whose stationary point solves the Dirichlet problem, and then

invokes the weak sequential compactness of the set of admissible functions to ‘find’ the point where

the infimum is attained. Neither the least-upper-bound principle nor weak sequential compactness

is justifiable within constructive mathematics. Another approach, based on the Ritz-Galerkin
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method, also makes use of the least-upper-bound principle to obtain the convergence of a certain

series. Finally, the Hilbert space approach, based on the Riesz Representation Theorem for linear

functionals, expresses a certain linear functional, defined by the function f in Poisson’s equation, as

the inner product induced by an element in a Hilbert space; this element is then the weak solution

to the Dirichlet problem. But a bounded linear functional is constructively representable in this

way only if its norm can be computed, which may not be possible. We shall return to analyze the

classical ‘constructions’ of weak solutions more carefully in Chapter 2; and in Chapter 5 we shall

recover what we can from the Hilbert space approach.

Virtually nothing has been done in the study of the theory of PDEs within Bishop’s constructive

mathematics. An exception is found in the work of Y.K.Chan [CH], who developed a method for

the construction of Green’s functions using a sweeping process, based on the harmonic lift of

subharmonic functions, when the domain concerned is either a union of finitely many balls with

distinctive centres or else a set of the form {x ∈ R : f(x) > a} with a ∈ R and f a continuous

function. Chan’s results enable us to solve the Dirichlet problem for Poisson’s equation over such

domains.

1.3 Varieties of Constructive Mathematics

Before we conclude this introduction, let us take a very sketchy look at the three main varieties

of modern constructive mathematics: Brouwer’s intuitionistic mathematics (INT), the recursive

constructive mathematics of the Russian school of Markov (RUSS), and Bishop’s constructive

mathematics (BISH).

As we indicated in Section 1.1, a constructive proof of a theorem of the type ∃xP (x) comprises

two algorithms: the first of these will compute (arbitrarily close approximations to) an object ξ,

and the second will then demonstrate that P (ξ) holds. But what is an algorithm? Normally, one

thinks of an algorithm as a specification of a step-by-step computation, the passage from one step

to another being deterministic. In BISH, ‘algorithm’ is considered to be a primitive notion, not

depending on any formalism. Moreover, BISH does not use any fancy philosophical principles, such

as those found in INT. In consequence, BISH is consistent with classical mathematics; so every

proof of a theorem within BISH is also a proof of that theorem in classical mathematics.
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Essential to Brouwer’s intuitionistic mathematics is the notion of a free choice sequence. Brouwer

did not think that every infinite sequence of integers could necessarily be generated by a rule or law.

This led him to consider sequences generated step by step—which he called infinitely proceeding

sequences, or free choice sequences—such as an infinite binary sequence generated by flipping a

coin successively, or one generated by our free will, exercising which we decide at each stage what

the next number in the sequence will be. Basing his work on informal intuitionistic logic, Brouwer

used such free choice sequences to develop principles that led to results apparently inconsistent

with CLASS and RUSS; see Chapter 5 of [BR].

Russian constructive mathematics can be characterized as recursive mathematics with intuition-

istic logic. The foundation of recursive mathematics is the Church-Markov-Turing thesis, which

states that all recursive objects can be effectively reduced to natural numbers. By adopting Church-

Markov-Turing thesis, RUSS operates within a fixed (universal) programming language, and an

algorithm is a sequence of symbols in that language. Natural numbers are taken to be primitive,

and everything else can be reduced recursively to numbers or the computation of numbers. An

important result in RUSS is the existence of an increasing sequence in [0, 1] that is bounded away

from any given recursive real number. Even more significant is the Singular Covering Theorem,

which leads to the denial of the Heine-Borel theorem in RUSS (see chapter 3 of [BR]):

There exists a sequence (In) of open subintervals of [0, 1] such that

[0, 1] ⊂
∞⋃
n=1

In

and for each N the measure of
⋃N
n=1 In is less than 1/2.

Now BISH, which we may regard as the constructive core of mathematics, is consistent with

CLASS, RUSS and INT, in the sense that proofs in BISH serve as proofs in CLASS and translate

into proofs in RUSS and INT. Each of CLASS, RUSS and INT, which can be regarded as models of

BISH, uses principles and obtains results incompatible with those of the other two. Such a result

must be independent of BISH, in the sense that it can neither be proved nor be disproved in BISH

(just as the continuum hypothesis can neither be proved nor refuted in Zermelo-Fraenkel set theory

with the axiom of choice). For example, the proposition
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Every function f : [0, 1]→ R is pointwise continuous

is provable in both INT and RUSS, but is clearly false in CLASS , so we can neither prove nor

disprove it within BISH; see Chapter 6 of [BR].

The Heine-Borel Theorem in classical mathematics states that if A is a set of open sets whose

union contains [0, 1], then there exists a finite subset of A whose union also contains [0, 1]. In

contrast, the Singular Covering Theorem shows that in RUSS there is a sequence of open intervals

in R such that no finite set of those intervals covers [0, 1]. Thus we cannot expect to find a proof

of the Heine-Borel theorem in BISH. Since that theorem is true in both CLASS and INT, nor can

we expect to disprove it in BISH.

The following uniform continuity principle is true in both CLASS and INT:

Every function from a compact metric space into a separable metric space is uniformly

continuous.

In RUSS there is an example of a pointwise continuous function defined on [0, 1] that maps subin-

tervals of arbitrarily small length onto intervals of length bigger than 1/2. It follows that the above

proposition cannot be proved or disproved in BISH. On the other hand, since all the familiar func-

tions encountered in daily mathematical activities are uniformly continuous on compact subsets of

their domains, in BISH we concentrate our attention on functions that are uniformly continuous

on compact subsets.

Finally, we mention axioms of choice. Goodman and Myhill [GM] showed that the axiom of

choice, in its usual full version, entails the law of excluded middle. This result confirms our intuition

that the axiom of choice is essentially nonconstructive. However, constructive mathematicians

normally adopt, and make considerable use of, the following two special cases of that axiom:

• The Principle of Countable Choice: If S ⊂ N+×A, and for each positive integer n there exists

x ∈ A such that (n, x) ∈ S, then there exists a function f : N+ → A such that (n, f(n)) ∈ S

for each n ∈ N+.

• The Principle of Dependent Choice: If S ⊂ A×A, and for each x ∈ A there exists y ∈ A such

that (x, y) ∈ S, then for each a ∈ A there exists a function f : N+ → A such that f(1) = a

and (n, f(n)) ∈ S for each n ∈ N+.
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Note that in topos theory, where intuitionistic logic plays a natural and most important role, it

is better to avoid even the Principle of Dependent Choice, since that fails to hold in some topos

models; see [?].
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Chapter 2

The Classical Dirichlet Problem

In this chapter we examine various classical methods for proving the existence of weak solutions of

the Dirichlet Problem, with a view to showing why those methods do not immediately translate

into viable constructive ones. In particular, we discuss the equivalence of the existence of weak

solutions of the Dirichlet Problem and the existence of minimizers for certain associated integral

functionals. Our analysis pinpoints exactly what is needed to find weak solutions of the Dirichlet

Problem: namely, the computation of either the norm of a linear functional on a certain Hilbert

space or, equivalently, the infimum of an associated integral functional.

2.1 Preliminaries

A subset S of a metric space (X, ρ) is said to be located if for each point x of X the distance from

x to S,

ρ (x, S) ≡ inf {ρ(x, s) : s ∈ S} ,

exists. Thus S is located if and only if we can compute a nonnegative number r ≡ ρ(x, S) with the

following properties:

1. r ≤ ρ(x, s) for all s ∈ S;

2. for each ε > 0 there exists y ∈ S such that ρ(x, y) < r + ε.
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A subset A is well contained in a subset B in a metric space (X, ρ) if there exists a positive

number r such that Ar ⊂ T, where

Ar ≡ {x ∈ X : ∃y ∈ A (ρ(x, y) ≤ r)} .

In that case we write A ⊂⊂ B.

Let Ω be a bounded located open set in the Euclidean space RN , and ∂Ω the boundary of Ω.

For each positive integer n let

• Cn(Ω) be the space of real-valued functions that are n times uniformly differentiable on

compact subset of Ω,

• Cn(Ω) be the space of real-valued functions that are uniformly differentiable and have uniform

continuous derivatives of up to nth order on Ω, and

• Cn0 (Ω) be the space consisting of those elements of Cn(Ω) that have compact support well

contained in Ω.

We say that u ∈ L2(Ω) is weakly differentiable if there exist elements v1, . . . , vN of L2(Ω), called

the weak partial derivatives of u, such that

∫
Ω
u
∂ϕ

∂xk
dx = −

∫
Ω
ϕvk dx (k = 1, . . . , N)

for all ϕ ∈ C1
0 (Ω). We denote by H1(Ω) the subspace of L2(Ω) consisting of all functions that are

weakly differentiable and whose weak derivatives are also members of L2(Ω). We use the usual

notations of differentiation to denote the weak derivatives, denoting the kth partial derivative vk

by ∂u
∂xk

and the (weak or strong) gradient of u by

∇u ≡
(
∂u

∂x1
, · · ·, ∂u

∂xN

)
.

When u is differentiable, its weak derivatives coincide with its usual derivatives.

Equipped with the inner product

〈u, v〉H1(Ω) ≡ 〈u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω)
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and the corresponding norm

‖u‖H1(Ω) ≡
(
||u||2L2(Ω) + ||∇u||2L2(Ω)

)1/2
,

H1(Ω) becomes a Hilbert space. The completion H1
0 (Ω) of C1

0 (Ω) in H1(Ω) is a separable Hilbert

space. The norms ‖u‖H1(Ω) and ‖u‖H1
0 (Ω) are abbreviated as ‖u‖H , and ||u||L2(Ω) as ||u||2, when it

is clear from the context that no confusion can arise; similarly, we write 〈u, v〉H instead of either

〈u, v〉H1(Ω) or 〈u, v〉H1
0 (Ω) .

We introduce the following important inequality due to Poincaré, which will be proved in

Chapter 5.

Lemma 1 (Poincaré’s inequality) There exists a constant γ > 0 such that for all v ∈ H1
0 (Ω),

∫
Ω
v2 dx ≤ γ2

∫
Ω
‖∇v‖2 dx.

It follows from Poincaré’s inequality that on H1
0 (Ω) the norm

‖u‖H1
0 (Ω) ≡ ‖∇u‖L2(Ω)

associated with the inner product

〈u, v〉H1
0 (Ω) ≡ 〈∇u,∇v〉L2(Ω)

=

∫
Ω
∇u · ∇v dx

is equivalent to the norm ‖u‖H1(Ω) . When the context is clear, we also write ‖u‖H for ‖u‖H1
0 (Ω) .

Now let ∆ be the Laplace operator :

∆u ≡
N∑
k=1

∂2u

∂x2
k

.

The original form of the Dirichlet Problem is as the following:

Let Ω be a bounded open Lebesgue integrable subset of RN with boundary ∂Ω, and f a con-

tinuous real-valued function on ∂Ω. Find a function u that is twice continuously differentiable
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in Ω, is continuous on Ω, and satisfies

∆u = 0 on Ω, u = f on ∂Ω. (2.1)

For technical reasons, we will instead consider the following form of the Dirichlet Problem:

Let Ω be a bounded open Lebesgue integrable subset of RN with boundary ∂Ω, and f an ele-

ment of L2(Ω). Find a function u that is twice continuously differentiable in Ω, is continuous

on Ω, and satisfies

∆u = f on Ω, u = 0 on ∂Ω. (2.2)

When f satisfies appropriate continuity conditions, these two versions of the Dirichlet Problem are

equivalent, in the sense that from solutions of either one we can always construct solutions of the

other; for details see ([JO], page 131).

In the remainder of this thesis when we use the phrase “Dirichlet Problem”, we shall mean

version (2.2) of that problem.

We shall assume from now on that Ω is a bounded open Lebesgue integrable subset of RN , and

that the divergence theorem holds for Ω. So for any vector field w in C(Ω) ∩ C1(Ω) we have

∫
Ω

div w dx =

∫
∂Ω

w · n dS,

where n denotes the unit outward normal to ∂Ω, dS indicates the (n− 1)-dimensional area element

in ∂Ω, and

div w ≡
N∑
i=1

∂wi
∂xi

is the divergence of the vector field w ≡ (w1, . . . , wN ) . In particular, if u ∈ C1(Ω) ∩ C2(Ω), then

taking w =∇u in the divergence theorem, we obtain

∫
Ω

∆udx =

∫
∂Ω
∇u · n dS.

(See [GT], page 13)
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By a weak solution of the Dirichlet Problem (2.2) we mean a function u ∈ H1
0 (Ω) such that

〈u, v〉H = −
∫

Ω
∇u · ∇v dx =

∫
Ω
fv (2.3)

for all v ∈ C1
0 (Ω). An approximation argument shows that u ∈ H1

0 (Ω) is a weak solution if and

only if (2.3) holds for all v ∈ H1
0 (Ω).

Associated with the weak solvability of the Dirichlet Problem is the following minimization

problem:

Find u ∈ H1
0 (Ω) such that

∫
Ω

(
‖∇u‖2 + 2uf

)
dx ≤

∫
Ω

(
‖∇w‖2 + 2wf

)
dx

for all w ∈ H1
0 (Ω).

For convenience we write

J(w) =

∫
Ω

(
‖∇w‖2 + 2wf

)
dx.

We include the following result for completeness; its classical proof is essentially constructive and

is found in [RA].

Proposition 2 The following are equivalent conditions on u ∈ H1
0 (Ω).

(i) J(u) ≤ J(v) for all v ∈ H1
0 (Ω).

(ii) −
∫

Ω∇u · ∇v dx =
∫

Ω fv for all v ∈ H1
0 (Ω).

Thus to solve the Dirichlet Problem (2.2) weakly, we have the alternative of trying to prove (i) of

this proposition. Unfortunately, the classical approaches to proving (i) or (ii) all use constructively

unacceptable principles, as we shall now show.

2.2 Why Do the Classical Approaches Fail?

The classical approach to (i) includes these key steps.
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Step 1: The infimum of J(w) always exists by the least-upper-bound principle, because

J is bounded from below. In fact, by the inequalities of Hölder, Poincaré and Young,

2

∣∣∣∣∫
Ω
wfdx

∣∣∣∣ ≤ 2

(∫
Ω
|w|2 dx

) 1
2
(∫

Ω
|f |2 dx

) 1
2

≤ 2γ

(∫
Ω
‖∇w‖2 dx

) 1
2
(∫

Ω
|f |2 dx

) 1
2

≤ 1
2

∫
Ω
‖∇w‖2 dx+ 2γ2

∫
Ω
|f |2 dx,

and therefore

J (w) ≥
∫

Ω
‖∇w‖2 dx− 1

2

∫
Ω
‖∇w‖2 dx− 2γ2

∫
Ω
|f |2 dx

≥ 1
2

∫
Ω
‖∇w‖2 dx− 2γ2

∫
Ω
|f |2 dx

≥ −2γ2

∫
Ω
|f |2 dx.

Note, incidentally, that

‖w‖2H ≤ 2J (w) + 4γ2 ‖f‖2L2(Ω) . (2.4)

This inequality will be used more than once below.

Step 2: Construct a minimizing sequence (un)∞n=1 for J : that is, a sequence (un)∞n=1

such that J(un) → inf J. Choose N so large that J (un) ≤ inf J (w) + 1 for all n ≥ N.

Then for all n, using inequality (2.4), we have

‖un‖2H ≤ max
{
‖un‖2H : 1 ≤ n ≤ N

}
+ 2 (inf J (w) + 1) + 4γ2 ‖f‖2L2(Ω) .

So the sequence (un) is uniformly bounded in H1
0 (Ω).

Step 3: Using the weak sequential compactness of bounded sets in H1
0 (Ω), extract a

weakly convergent subsequence of (un).Then the weak limit u of this subsequence, still

an element of H1
0 (Ω), minimizes J.
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The problem with this approach rests in Steps 1 and 3: neither the classical least-upper-bound

principle nor the sequential compactness argument are acceptable in constructive mathematics.

The classical approach to part (ii) of Proposition 2 includes the following steps.

Step 1: Define a linear functional ϕ on H1
0 (Ω) by

ϕ (v) := −
∫

Ω
vf dx.

It is easy to show that ϕ is bounded: by the inequalities of Hölder and Poincaré,

|ϕ (v)| ≤
∫

Ω
|v| |f | dx

≤
(∫

Ω
|v|2 dx

) 1
2
(∫

Ω
|f |2 dx

) 1
2

≤ γ
(∫

Ω
‖∇v‖2 dx

) 1
2
(∫

Ω
|f |2 dx

) 1
2

= γ ‖f‖L2 ‖v‖H .

Step 2: Apply the classical Riesz Representation Theorem to find an element u of

H1
0 (Ω) such that

ϕ (v) = 〈u, v〉H

for all v ∈ H1
0 (Ω). Then u is the desired weak solution of the Dirichlet Problem.

The problem with this approach occurs at Step 2. Constructively, a bounded linear functional

ϕ is representable if and only if it is normable, in the sense that the norm

‖ϕ‖ ≡ sup
{
|ϕ(v)| : v ∈ H1

0 (Ω)
}

exists (is computable); see [BB], Ch. 8, Proposition (2.3). There is no guarantee that the functional

in Step 2 is normable; indeed, its normability is equivalent to the existence of the desired weak

solution of (2.2).

A method used by numerical analysts to solve the Dirichlet Problem approximately is the Ritz-

Galerkin method, in which solutions to the Dirichlet Problem in finite-dimensional subspaces of
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are constructed as approximations to the solution of the general problem. We now look at this

approach.

Select an orthonormal basis (vn)∞n=1 of H1
0 (Ω), and let Hn be the n-dimensional subspace of

H1
0 (Ω) generated by {v1, . . . , vn} :

Hn := span{v1, . . . , vn}.

Since ϕ is uniformly continuous on the unit ball Bn of Hn, and Sn is totally bounded (as is any ball

in a finite dimensional normed space),

sup {|ϕ (v)| : v ∈ Sn}

exists ([BB], Ch. 4, (4.3)). In other words, the bounded linear functional ϕ, restricted to Hn, is

normable. By the constructive Riesz Representation Theorem ([BB], Ch. 8, (2.3)), there exists

un ∈ Hn such that

ϕ (v) = −〈v, un〉 (v ∈ Hn)

—that is,

−
∫

Ω
∇un · ∇v dx =

∫
Ω
vf dx (v ∈ Hn).

If the Dirichlet Problem (2.2) has a weak solution u, then (un) will converge to u. To see this, let

u =
∑∞

i=1 αivi, and let Pnu =
∑n

i=1 αivi be the projection of u in Hn. For all v ∈ Hn we have

−
∫

Ω
∇ (Pnu) · ∇v dx = −

∫
Ω
∇u · ∇v dx =

∫
Ω
vf dx

and therefore ∫
Ω
∇ (Pnu− un) · ∇v dx = 0.

Taking v = Pnu− un, we obtain

∫
Ω
‖∇ (Pnu− un)‖ dx = 0.
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So Pnu = un, and therefore

‖un − u‖H = ‖Pnu− u‖H → 0 as n→∞.

Classically, the weak solution u always exists, and we can therefore use the approximations un

to solve the Dirichlet Problem numerically. But constructively, to justify such a numerical approach

we would have to be able to construct—in other words, compute in principle—the exact solution

u in advance. This leads us back to the problem of the normability of the functional ϕ.

2.3 Minimizing Sequences

In this section we see what happens if the infimum of the functional J exists and we can therefore

construct a minimizing sequence for J . We first show that any such minimizing sequence is weakly

Cauchy relative to the inner product on H1
0 (Ω). Our proof is a modification of the one on pages

131-137 of [?].

Proposition 3 Suppose that

L := − inf
w∈H1

0 (Ω)
J(w)

exists, and let (un) be a minimizing sequence for J in H1
0 (Ω) :

lim
n→∞

J(un) = −L.

Then

lim
n→∞

∫
Ω
∇un · ∇v dx+

∫
Ω
vf dx = 0.

Proof. For convenience write

D(u, v) =

∫
Ω
∇u · ∇v dx,

Mn =

∫
Ω
∇un · ∇v dx+

∫
Ω
vf dx.
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If v ∈ H1
0 (Ω) and ε ∈ R, then un + εv ∈ H1

0 (Ω) and so

−L ≤ J(un + εv) = J(un) + ε2D(v, v) + 2εMn.

Thus

−ε2D(v, v)− 2εMn ≤ J(un) + L,

so that

(J(un) + L)D(v, v) ≥ −
(
ε2D(v, v)2 + 2εMnD(v, v) +M2

n −M2
n

)
= −

(
(εD(v, v) +Mn)2 −M2

n

)
Taking v as a nonconstant function and

ε = − Mn

D(v, v)
,

we see that

M2
n ≤ (J(un) + L)D(v, v)

and therefore

|Mn| ≤
√

(J(un) + L)D(v, v).

Since J(un)→ −L as n→∞, it follows that Mn → 0 as n→∞. �

Corollary 4 Under the conditions of Proposition 3,

∫
Ω

(∇un −∇um) · ∇v dx→ 0 as n,m→∞

and therefore (un) is a weakly Cauchy sequence in H1
0 (Ω). �

We now define a linear functional ϕ on H1
0 (Ω) by

ϕf (v) := −
∫

Ω
vf dx.
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Note that if L exists and (un) is a minimizing sequence for J, then by Proposition 3,

ϕf (v) = lim
n→∞

∫
Ω
∇un · ∇v dx.

Classically, as H1
0 (Ω) is weakly complete, there is an element u ∈ H1

0 (Ω) such that un converges to

u weakly in H1
0 (Ω). This function u minimizes J , and is therefore the desired weak solution of the

Dirichlet Problem. Constructively, to be weakly Cauchy is not enough to guarantee the existence of

a weak limit: to prove the existence of such a weak limit, we need to show that the linear functional

ϕf is not just bounded but normable.

Proposition 5 Suppose that

L := − inf
w∈H1

0 (Ω)
J(w)

exists, and let (un) be a minimizing sequence for J in H1
0 (Ω). If (un) converges weakly to u ∈ H1

0 (Ω),

then the linear functional ϕf is normable,
∥∥ϕf∥∥ =

√
L, and u is a weak solution of the Dirichlet

Problem.

Proof. Taking v = u in Proposition 3, we see that

∫
Ω
‖∇u‖2 dx+

∫
Ω
uf dx = lim

n→∞

(∫
Ω
∇un · ∇udx+

∫
Ω
uf dx

)
= 0.

Then

ϕf (u) = −
∫
uf dx =

∫
Ω
‖∇u‖2 dx = ‖u‖2H = 〈u, u〉H .

It follows that u is a weak solution of the Dirichlet Problem, ϕf is normable, and
∥∥ϕf∥∥2

= ‖u‖H =

−L. Proposition 2 now shows that J(u) = −L. �

We have the following converse of Proposition 5.

Proposition 6 Suppose that ϕf is normable, and let u be the resulting weak solution of the Dirich-

let Problem. Then

L := − inf
w∈H1

0 (Ω)
J(w)

exists, and any minimizing sequence for J converges weakly to u.
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Proof. It follows from Proposition 2 that L exists and J(u) = −L. If (un) is any minimizing

sequence for J, then by Proposition 3, for all v ∈ H1
0 (Ω) we have

〈un − u, v〉 = 〈un, v〉 − ϕf (v)→ −
∫

Ω
vf +

∫
Ω
vf = 0

as n→∞. So (un) converges weakly to u. �

Now, it is tempting to believe that we can strengthen Proposition 5 by removing the hypothesis

that there exist a weakly convergent minimizing sequence for J : for, in order to find a weak solution

of the Dirichlet Problem, will it not suffice to show that the infimum of J exists, just as it suffices

to show that the norm (a supremum) of ϕf exists? To see that this is unlikely, we need only note

that although the Riesz Representation Theorem guarantees that if the norm of ϕf is computable,

then there is an associated vector v whose norm equals that of ϕf , we have no a priori guarantee

that if inf J is computable, then there exists a vector v such that inf J = J(v). (In order to produce

such a vector v, the classical mathematician resorts to an application of the nonconstructive result

that a bounded, weakly convergent sequence contains a convergent subsequence.)

We end the chapter with some more comments on the Ritz-Galerkin method, using the notation

from page 22.

A proof similar to that of Proposition 2 shows that the function un satisfying

−
∫

Ω
∇un · ∇v dx =

∫
Ω
vf dx (v ∈ Hn). (2.5)

minimizes J on Hn. We shall show that if infv∈H1
0 (Ω) J(v) exists, then (un) is a minimizing sequence

for J, even when we do not know that the Dirichlet Problem has a weak solution. We need one more

lemma to prove this.

Lemma 7 For each R > 0 there exists a positive constant c (depending only on Ω, f, and R) such

that if u, v ∈ H1
0 (Ω), ‖u‖H ≤ R, and ‖v‖H ≤ R, then

|J(u)− J(v)| ≤ c ‖u− v‖H .
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Proof. Using the Hölder and Poincaré inequalities, for all u, v ∈ H1
0 (Ω) we have

|J(u)− J(v)| ≤
∣∣∣∣∫

Ω

(
‖∇u‖2 − ‖∇v‖2

)
dx

∣∣∣∣+ 2

∫
Ω
|f | |u− v| dx

≤
∣∣∣‖u‖2H − ‖v‖2H ∣∣∣+ 2

(∫
Ω

∣∣f2
∣∣)1/2(∫

Ω
|u− v|2

)1/2

≤ (‖u‖H + ‖v‖H) |‖u‖H − ‖v‖H |+ 2γ

(∫
Ω

∣∣f2
∣∣)1/2

‖u− v‖H

≤ 2R ‖u− v‖H + 2γ ‖f‖L2(Ω) ‖u− v‖H ,

so we can take

c := 2
(
R+ γ ‖f‖L2(Ω)

)
. �

We now return to the sequence (un), where for each n, un satisfies (2.5). If the Dirichlet

Problem (2.2) has a weak solution u, then the work on page 23 shows that ‖un − u‖ → 0; whence,

by Lemma 7, J(un)→ J(u). In the general case, when we do not know if there is a weak solution

to the Dirichlet Problem, take

R =
√

2L+ 1 + 4γ2 ‖f‖2L2(Ω)

in Lemma 7, to obtain the corresponding positive constant c. Fix ε with 0 < ε < 1/3, and let

δ := min
{
R−

√
R2 − ε, c−1ε

}
.

Choose v ∈ H1
0 (Ω) such that J(v) < −L+ ε, and then N such that ‖v − PNv‖H < δ, where PN is

the projection on HN . By inequality (2.4),

‖v‖2H ≤ 2J(v) + 4γ2 ‖f‖2L2(Ω)

< 2L+ 2ε+ 4γ2 ‖f‖2L2(Ω) < R2 − ε

27



and therefore

‖PNv‖2H ≤ (‖v‖H + δ)2

<
(√

R2 − ε+ δ
)2
≤ R2.

Hence, by our choice of c,

|J(v)− J(PN (v))| ≤ c ‖v − PNv‖H < cδ ≤ ε.

For all n ≥ N, since Hn ⊂ HN and uN minimizes J over HN , we now have

−L ≤ J(un) ≤ J(uN ) ≤ J(PNv) ≤ J(v) + ε < −L+ 2ε.

Hence (un) is a minimizing sequence for J.

Of course, the foregoing argument depends on the existence of the infimum of J, which is implied

by the normability of the linear functional ϕf . We will examine the normability problem further in

Chapter 5.
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Chapter 3

Geometric properties of the Domain

This chapter1 deals with the geometric properties of domains which are directly or indirectly related

to the study of the Dirichlet problem. For example, the relationship between locatedness of a

bounded open set and that of its boundary, the construction of a sequence of compact sets that

approximates a given open set from within, etc. Classically, these results are either trivial or

very easy to prove. But to establish these results using only the method of Bishop’s constructive

mathematics turns out to be a tricky business. Other important concepts introduced in this chapter

are that of coherent and strongly coherent sets. The law of excluded middle in classical logic

allows classical mathematics to overlook these interesting properties that can be discovered only

in constructive mathematics. We also constructed various Brouwerian examples to justify our

constructive work.

If A is a subset of a metric space (X, ρ) , then its complement ∼ A is defined by

∼ A ≡ {x ∈ X : x 6= y for all y in A} ,

If A is located in X, we define its metric complement −A by

−A ≡ {x ∈ X : ρ (x,A) > 0} .
1An improved and extended version of this chapter will appear as “???” in Proc. Royal Dutch Academy of

Sciences. I have not put that version of the material in this chapter since the paper to be published was joint work
by myself, Douglas Bridges, and Fred Richman.
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3.1 Coherence

We say that a subset of a metric space is edge coherent if x ∈ Ω for each point x of Ω that is

bounded away from ∂Ω.

A simple consequence of coherence is that if ∂Ω is located, then the set

K ≡
{
x ∈ Ω : ρ (x, ∂Ω) ≥ r

}
,

which is compact for almost all r ∈ R+, is well contained in Ω. If Ω is closed, then Ω = Ω. Closed

sets are trivially edge coherent.

Brouwerian Example 1 A located open subset of R that is not edge coherent.

Let (an) be a binary sequence such that ¬∀n (an = 0) , and for each n define

Ωn :=



(
1

n+1 ,
1
n

)
if an = 0

(0, 1) if an = 1.

Then Ω ≡
⋃∞
n=1 Ωn is a located open subset of R. If there exists x ∈ ∂Ω such that

∣∣x− 1
2

∣∣ < 1
2 ,

then an = 0 for all n, a contradiction. Hence
∣∣x− 1

2

∣∣ ≥ 1
2 for each z ∈ ∂Ω. Now suppose that Ω is

edge coherent. Since 1
2 ∈ Ω, we have 1

2 ∈ Ω, so there exists n such that 1
2 ∈ Ωn. Then ak = 1 for

some k ≤ n.

So if every located open subset of R is edge coherent, then we can prove Markov’s Principle.

�

We say that a subset Ω of a metric space X is coherent if x ∈ Ω whenever x is bounded away

from ∼ Ω.

Lemma 8 Let Ω be located. Then Ω is edge coherent if and only if it is coherent.

Proof. Suppose that Ω is edge coherent, and let x be bounded away from ∼ Ω. If ρ (x,Ω) > 0

then x ∈∼ Ω, which is contradictory; so ρ (x,Ω) = 0 and therefore x ∈ Ω. Since x is bounded away
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from ∼ Ω, it is also bounded away from ∂Ω. The edge coherence of Ω ensures that x ∈ Ω. Hence Ω

is coherent.

The proof of the other implication depends on a stronger form of the Boundary Crossing Lemma

which will be discussed in the next section, so we postpone it until then. �

Without locatedness, edge coherence and coherence are independent of each other, as is shown

below.

Brouwerian Example 2 An edge coherent subset of R that is not coherent.

Let (an) be a binary sequence such that ¬∀n (an = 0) , and let (qn) be an enumeration of the

rational points of [0, 1]. Define

Ω ≡ {anqn : n ≥ 1}.

Note that if an = 0 for all n, then Ω = {0}; whereas if an = 1 for some n, then Ω = [0, 1].

If there exists x ∈∼ Ω such that
∣∣∣ 1√

2
− x
∣∣∣ < 1 − 1√

2
, then [0, 1] ∩ Ω is inhabited, so an = 0 for

all n —a contradiction. Hence 1√
2

is bounded away from ∼ Ω. But if 1√
2
∈ Ω, then choosing N

such that
∣∣∣ 1√

2
− aNqN

∣∣∣ < 1− 1√
2
, we see that aN = 1.

On the other hand, since Ω is closed, it is trivially edge coherent. �

Brouwerian Example 2 in [BRW, BRW] shows that coherence does not imply edge coherence.

Brouwerian Example 3 A nonempty coherent bounded open subset of R that has finite boundary

and is not edge coherent.

The construction is based on the following result of [BRW, BRW] (Proposition 3):

If u and v are real numbers, then there exists a nonempty open subset J of (u, v) such

that ∂J and ∂(−J) are empty.

Thus we can construct, for each positive integer n, a nonempty open subset In of (1/(n+ 1), 1/n)

with empty boundary. Let (an) be a binary sequence with at most one term equal to 1. Then

Ω := (−1, 1)−
⋃
{In : an = 1} ,

being a metric complement, is coherent and open. It is also nonempty. If an = 1, then Ω =
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(−1, 1) − In and ∂Ω = {−1, 1} ; so if there exists x ∈ ∂Ω − {−1, 1} , then an = 0 for all n,

Ω = (−1, 1), and therefore ∂Ω = {−1, 1} , a contradiction. Hence ∂Ω = {−1, 1} .

Now suppose that Ω is edge coherent. Then 0 is in Ω because (−1, 0) ⊂ Ω, and 0 is bounded

away from ∂Ω = {−1, 1} , so 0 ∈ Ω. Choose a positive integer N such that (−1/N, 1/N) ⊂ Ω. If

an = 0 for all n ≤ N, then an = 0 for all n. So

∀n (an = 0) or ∃n ( an = 1).

Note that in this example, Ω is not located. �

3.2 Crossing the Boundary

In classical mathematics there is never any doubt about our ability to “find” a point in the inter-

section of the boundary of a set Ω and a straight line path that crosses ∂Ω. But, as Brouwerian

Example 4 (below) shows, we cannot expect to do this in constructive mathematics. What we can

do is find, for each ε > 0, a point on the boundary that is at most ε away from the path.

Lemma 9 Let Ω be a located subset of a Banach space X, x0 ∈ Ω, y0 ∈ −Ω, and ε > 0. Then

there exists z ∈ ∂Ω such that ρ(z, [x0, y0]) ≤ ε.

Proof. For each n ∈ N let

Pn :=
{
x ∈ RN : ρ (x,Ω) < 2−2nε

}
Qn :=

{
x ∈ RN : ρ (x,Ω) > 0

}
.

Then x0 ∈ P0, y0 ∈ Q0, and for each x ∈ [x0, y0] either x ∈ P1 or x ∈ Q1. Suppose we have found

points x0, . . . , xn of Ω and points y0, . . . , yn of −Ω such that for each n ≥ 1,

1. ||xn − yn|| < 2−2nε,

2. ρ (xn, [x0, y0]) < 2−2nε+
∑n−1

k=1 2−kε, and

3. ‖xn+1 − xn‖ < 2−2n−2ε+ 2−2nε .
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Then xn ∈ Pn, yn ∈ Qn, and for each x ∈ [xn, yn] either x ∈ Pn+1 or x ∈ Qn+1. By Lemma 5 of [?],

there exist x′n+1, y
′
n+1 ∈ [xn, yn] such that x′n+1 ∈ Pn+1, y

′
n+1 ∈ −Ω, and ||xn+1−yn+1|| < 2−2n−2ε.

Choosing xn+1 in Ω such that ||xn+1 − x′n+1|| < 2−2n−2ε, we see that if n = 0, then

ρ (xn+1, [x0, y0]) = ρ (x1, [x0, y0]) < 2−2ε;

whereas if n ≥ 1, then

||xn+1 − xn|| ≤ ||xn+1 − x′n+1||+ ||x′n+1 − xn||

< 2−2n−2ε+ ||xn − yn||

< 2−2n−2ε+ 2−2nε

and therefore

ρ (xn+1, [x0, y0]) ≤ ||xn+1 − xn||+ ρ (xn, [x0, y0])

< 2−2n−2ε+ 2−2nε+

(
2−2nε+

n−1∑
k=1

2−kε

)

< 2−2n−2ε+
n∑
k=1

2−kε.

This completes the inductive construction of sequences (xn)∞n=1 in Ω and (yn)∞n=1 in −Ω with

properties (i)-(iii). It follows from (iii) that (xn) is a Cauchy sequence in Ω and therefore (since X

is complete) converges to a point x∞ ∈ Ω. By (i), ( yn) also converges to x∞; whence x∞ ∈ −Ω

and therefore x∞ ∈ ∂Ω. On the other hand, letting n tend to infinity in (ii), we obtain

ρ (x∞, [x0, y0]) ≤
∞∑
k=1

2−kε = ε. (�)

Corollary 10 Let Ω be a located subset of a Banach space X, x0 ∈ Ω, y0 ∈∼ Ω, and ε > 0. If −Ω

is dense in ∼ Ω, then there exists z ∈ ∂Ω such that ρ(z, [x0, y0]) < ε. �

From now on we will refer to the preceding lemma or, on occasion, to its corollary as the

boundary crossing lemma.
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We include, without proof, the following stronger form of the boundary crossing lemma, which

is proved in [BRW, BRW].

Lemma 11 Let U and V be subsets of a Banach space such that U ∪ V is dense.

(i) If u0 ∈ U and v0 ∈ V, then ρ([u0, v0], U ∩ V ) = 0.

(ii) ρ(x, U ∩ V ) = max {ρ(x, U), ρ(x, U)} . �

Now we can prove the remaining part of Lemma 1. Suppose that Ω is coherent, and let x be a

point of Ω such that ρ(x, ∂Ω) ≥ r. Since Ω is located, Ω∪ ∼ Ω is dense. By Lemma ?, it would be

contradictory if ρ(x,∼ Ω) < r. So ρ(x,∼ Ω) ≥ r. The coherence of Ω now implies that x ∈ Ω.

As a special case of our Boundary crossing Lemma, we look at the Intermediate Value Theorem.

One form of the classical Intermediate Value Theorem states that if f is a uniformly continuous

function on [0, 1], and f(0) < 0 < f(1), then there exists c in [0, 1] such that f(c) = 0. The

intermediate value theorem is constructively equivalent to Bishop’s omniscience principle LLPO

(see Chapter 1 of this thesis, or Chapter 1 of [?]). Thus we cannot, in general, expect to find c such

that f(c) = 0; but we can find c such that f(c) is arbitrarily close to 0 ([?], Ch. 2, (4.8)); that is,

we can show that ρ (c, f([a, b])) = 0.

Thus if a statement implies the intermediate value theorem, it implies LLPO.

Brouwerian Example 4 A located open set Ω ⊂ R2 with located boundary such that A ∈ Ω, B ∈

−Ω, but if [A,B] ∩ ∂Ω is inhabited, then we can prove the intermediate value theorem.

Let f : [0, 1]→ R be uniformly continuous, f(0) < 0 < f(1), and sup f < β.Then

Ω :=
{

(x, y) ∈ R2 : 0 < x < 1 and f(x) < y < β
}

is open and totally bounded (and therefore located), (0, 0) ∈ Ω, and (1, 0) ∈ −Ω. If (x, 0) is on

the segment joining (0, 0) and (1, 0), and also in ∂Ω, then f(x) = 0. In fact, if 0 < x′ < 1, then

(x′, y) ∈ Ω if and only if f(x′) < y, and (x′, y) ∈ −Ω if and only if f(x′) > y. So if (x, 0) ∈ ∂Ω, then

f(x) = 0. �

It is a trivial classical result that if x belongs to a subset Ω of a normed linear space, and if y

is a closest point to x on ∂Ω, then tx+ (1− t)y ∈ Ω for 0 < t ≤ 1. Constructively, we have to put
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some additional hypothesis on Ω.

Brouwerian Example 5 A subset Ω of R that contains 0 and is such that 1 is a closest point

to 0 on ∂Ω, but [0, 1) is not contained in Ω.

Let P be any constructively meaningful proposition, and define

Ω := {−1, 0, 1} ∪ {x : −1 < x < 1 and P ∨ ¬P} .

If [0, 1) ⊂ Ω, then P ∨ ¬P holds. �

Proposition 12 Let Ω be a edge coherent located subset of a Banach space such that the boundary

∂Ω is located, and let x ∈ Ω. Let 0 < 3ε < ρ(x, ∂Ω), and

s :=
3ε

ρ(x, ∂Ω)
.

Then tx+ (1− t) y ∈ Ω whenever s ≤ t ≤ 1, y ∈ ∂Ω, and ||x− y|| < ρ(x, ∂Ω) + ε.

Proof. Fix y in ∂Ω such that ||x− y|| < ρ(x, ∂Ω) + ε. For each t ∈ R write

xt := tx+ (1− t) y

and suppose that

2ε > d := inf {ρ(xt, ∂Ω) : s ≤ t ≤ 1} .
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(Note that the infimum exists as the function t→ ρ(xt, ∂Ω) is uniformly continuous on the compact

set [s, 1].) Choose t ∈ [s, 1] such that ρ(xt, ∂Ω) < 2ε. Then

ρ(x, ∂Ω) ≤ ||x− xt||+ ρ(xt, ∂Ω)

< (1− t) ||x− y||+ 2ε

≤ (1− s) (ρ(x, ∂Ω) + ε) + 2ε

= ρ(x, ∂Ω) + (3− s) ε− sρ(x, ∂Ω)

≤ ρ(x, ∂Ω) + 3ε− 3ε

= ρ(x, ∂Ω),

which is absurd. Hence d ≥ 2ε, and therefore ||xt − y|| ≥ 2ε for all t ∈ [s, 1].

Given t ∈ [s, 1], suppose there exists ζ ∈ B (xt, ε)− Ω. By Lemma 2, there exists z ∈ ∂Ω with

ρ (z, (x, ζ)) < ε− ||xt − ζ||,

so

ρ(x, ∂Ω) ≤ ||x− z||

≤ ||x− ζ||+ ρ (z, (x, ζ))

≤ ||x− ζ||+ ε− ||xt − ζ||

≤ ||x− xt||+ ε

= (||x− y|| − ||xt − y||) + ε

< (ρ(x, ∂Ω) + ε− 2ε) + ε

= ρ(x, ∂Ω).

This contradiction ensures that ||xt − ζ|| ≥ ε for all ζ ∈ −Ω. Hence ρ(xt, ∂Ω) = 0, xt ∈ Ω, and

therefore xt ∈ Ω, by the edge coherence of Ω. �

Proposition 17 of [BRW] contains a sharper estimate for the lower bound s of the numbers t

such that xt ∈ Ω whenever s ≤ t ≤ 1.
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If Ω is an open subset of Rn, then classically we can find a point y ∈ ∂Ω such that ρ(x, y) =

ρ (x, ∂Ω) and therefore

Ω ⊃ [x, y) := {tx+ (1− t)y : 0 < t ≤ 1}

[x, y) ⊂ Ω. Constructively, since we cannot always find a point y that is minimal for the uniformly

continuous function ρ (x, ·) defined on the compact set ∂Ω, we cannot expect to construct y ∈ ∂Ω

such that [x, y) ⊂ Ω.

The following result will be used in Chapter 5.

Proposition 13 Let Ω be as in Proposition 1, and let u : Ω → R be a uniformly differentiable

function that vanishes on ∂Ω. If |∇u(x)| ≤M for all x ∈ Ω, then

|u(x)| ≤Mρ(x, ∂Ω) (x ∈ Ω)

Proof. Since ∂Ω is bounded, closed, and located, it is compact. Given x ∈ Ω and α > 0, choose

ε > 0 with

0 < ε < min
{
α
M ,

1
3ρ(x, ∂Ω)

}
such that |u(z)− u(y)| ≤ α whenever y, z ∈ Ω and ||y − z|| ≤ 4ε. Choose y ∈ ∂Ω such that

||x− y|| < ρ(x, ∂Ω) + ε.

By Proposition 1, if

s =
3ε

ρ(x, ∂Ω)

and s ≤ t ≤ 1, then tx+ (1− t) y ∈ Ω.
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Let z := sx+ (1− s) y, and assume without loss of generality that x− z is parallel to the N th

coordinate axis. Then

|u (x)− u (z)| =
∣∣∣∣∫ xN

zN

∂

∂ξ
u (x1, · · ·, xN−1, ξ) dξ

∣∣∣∣
≤
∫ xN

zN

∣∣∣∣ ∂∂ξu (x1, · · ·, xN−1, ξ)

∣∣∣∣ dξ
≤M |xN − zN |

≤M ‖x− z‖ .

On the other hand, since

‖y − z‖ = s ‖x− y‖

< s (ρ(x, ∂Ω) + ε)

= s(3εs−1 + ε)

= (3 + s) ε

< 4ε

and u(y) = 0,

|u (z)| = |u (z)− u(y)| ≤ α.

Hence

|u (x)| ≤M ‖x− z‖+ α

< M ‖x− y‖+ α

< M (ρ(x, ∂Ω) + ε) + α

= Mρ(x, ∂Ω) + 2α.

Since α is arbitrary, we have |u (x)| ≤ Mρ(x, ∂Ω). This inequality also holds for x ∈ Ω by the

continuity of u. �
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As another application of Proposition 1, we give an estimate of the bound for functions in the

space H1
0 (Ω) when Ω ⊂ R.

Proposition 14 Let Ω be a bounded, edge coherent, and located open subset of R, and let u ∈

C1
0 (Ω) . Then

sup {|u (x)| : x ∈ Ω} ≤ (diam Ω)1/2 ‖u‖H1
0 (Ω) .

Proof. Let x ∈ Ω, and choose δ ∈
(
0, 1

3ρ(x, ∂Ω)
)

such that |u(y)− u(z)| < ε whenever y, z ∈ Ω

and ‖y − z‖ < 4δ. Choose ξ ∈ ∂Ω such that ‖x− ξ‖ < ρ(x, ∂Ω) + δ, and let

s :=
3δ

ρ(x, ∂Ω)
.

By Proposition 1,

{tx+ (1− t) ξ : s ≤ t ≤ 1} ⊂ Ω.

Write z := sx+ (1− s) ξ. By Hölder’s inequality,

|u(x)− u(z)| =
∣∣∣∣∫ x

z
u′(t) dt

∣∣∣∣
≤
(∫ x

z
u′(t)2 dt

)1/2(∫ x

z
dt

)1/2

≤ (diam Ω)1/2 ‖u‖H1
0 (Ω) .

But

‖ξ − z‖ = s ‖x− ξ‖

≤ s (ρ(x, ∂Ω) + δ)

= s(3δs−1 + δ)

= (3 + s) δ

< 4δ,

so

|u(z)| = |u(y)− u(z)| < ε.
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and therefore

|u(x)| ≤ (diam Ω)1/2 ‖u‖H1
0 (Ω) + ε.

Since ε is arbitrary, we conclude that |u(x)| ≤ (diam Ω)1/2 ‖u‖H1
0 (Ω) . �

Proposition 15 Let Ω be an edge coherent subset of a Banach space, with inhabited interior and

located boundary, and suppose that −Ω is dense in ∼ Ω. Then for each x0 ∈ Ω, ρ(x0,∼ Ω) exists

and equals ρ(x0, ∂Ω).

Proof. Since ∂Ω ⊂ ∼ Ω, for each ε > 0 there exists y0 in ∼ Ω such that

‖x0 − y0‖ < ρ (x0, ∂Ω) + ε.

It follows that if ρ(x0,∼ Ω) exists, then ρ(x0,∼ Ω) ≤ ρ (x0, ∂Ω) . It will therefore suffice to prove

that ||x0 − y0|| ≥ ρ(x0, ∂Ω) for each y0 ∈ ∼ Ω.

Given y0 ∈∼ Ω, suppose that ||x0 − y0|| < ρ(x0, ∂Ω). By the boundary crossing lemma, there

exists x ∈ ∂Ω such that

ρ (x, [x0, y0]) < ρ (x0, ∂Ω)− ||x0 − y0||.

So

ρ (x0, ∂Ω) ≤ ‖x0 − x‖

≤ ‖x0 − y0‖+ ρ (x, [x0, y0])

< ρ (x0, ∂Ω) ,

a contradiction. Hence ||x0 − y0|| ≥ ρ (x0, ∂Ω). �

The next result is a simple consequence of the boundary crossing lemma, so we omit its proof.

Proposition 16 Let Ω be a located subset of a Banach space, and x0 ∈ −Ω. Then ρ (x0, ∂Ω) exists:

in fact, ρ (x0, ∂Ω) = ρ (x0,Ω) . �

Proposition 17 Let Ω be an inhabited colocated open subset of RN , with located boundary. Suppose

that Ω is both edge coherent and coherent. Then Ω is located.
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Proof. Fix R > 0 such that B(0, R) ∼ Ω is totally bounded. Given ε ∈ (0, 1), we may assume that

K :=
{
x ∈ B(0, R) : ρ(x,−Ω) ≥ ε

2

}
is compact and, since ∂Ω is located, that ∂Ω∩B(0, R+ 1) is compact. The coherence of Ω ensures

that K ⊂⊂ Ω. Let {x1, . . . , xn} be an ε-approximation to K, and {y1, . . . , ym} an ε-approximation

to ∂Ω ∩ B(0, R + 1). For each j (1 ≤ j ≤ m) choose zj ∈ Ω such that ‖yj − zj‖ < ε. Given

x ∈ Ω ∩ B(0, R), we have either ρ(x,−Ω) > ε/2 or ρ(x,−Ω) < ε. In the first case, x ∈ K and

therefore there exists i such that ‖x− xi‖ < ε. In the second case, there exists y ∈ −Ω such that

ρ(x, y) < ε. Since Ω is open, x ∈ −(−Ω) and since −Ω is located, we can apply the boundary

crossing lemma to produce z ∈ ∂Ω such that ‖x− z‖ < ε. Then z ∈ ∂Ω ∩ B(0, R + 1), so there

exists j such that ‖z − yj‖ < ε. Hence

‖z − zj‖ ≤ ‖z − yj‖+ ‖yj − zj‖ < 2ε

and therefore

‖x− zj‖ ≤ ‖x− z‖+ ‖z − zj‖ < 3ε.

Thus {x1, . . . , xn}∪{z1, . . . , zm} is a 3ε-approximation to Ω∩B(0, R). Since ε is arbitrary, Ω∩B(0, R)

is totally bounded; whence Ω is locally totally bounded and therefore located, by Theorem (4.11)

of Chapter 2 in [BB]. �

3.3 Approximation by Compact Sets

Classically, a bounded open set in RN can always been approximated from within by compact

subsets. The failure of the Heine-Borel Theorem in the recursive model (RUSS) of BISH suggests

that we cannot expect to carry out such an approximation constructively.

In what follows we try to find conditions on Ω under which we can construct a sequence (Kn)∞n=1

of nonempty compact sets such that Kn ⊂⊂ Kn+1 ⊂⊂ Ω for each n, and Ω =
⋃∞
n=1Kn. Such a

sequence has been used in the classical theory of partial differential equations—for example, in the

study of functions with compact support, or that of Sobolev spaces (see chapter 7 of [GT]).
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Our results will show that we can always approximate Ω in terms of the metric. But even

when Ω is integrable, we may not be able to approximate Ω in measure by well contained compact

sets: in [BRW] there is a recursive example of an integrable open set Ω with positive measure

can be approximated in measure by compact sets that are well contained in it, but Ω cannot be

approximated in measure by compact sets that are well contained in it.

We say that a subset Ω of a metric space (X, ρ) is approximated internally by compact sets if

for each ε > 0 there exists a compact set K ⊂⊂ Ω such that if x ∈ Ω − K, then ρ(x, y) < ε for

some y ∈ ∂Ω.

Proposition 18 Let (X, ρ) be a metric space, and Ω a subset of X that is approximated internally

by compact sets. Then Ω is totally bounded if and only if ∂Ω is totally bounded.

Proof. Given ε > 0, choose a compact set K ⊂⊂ Ω such that if x ∈ Ω −K, then ρ(x, y) < ε
2 for

some y ∈ ∂Ω. Then choose r ∈
(
0, ε3
)

such that K3r ⊂ Ω.

Assuming first that Ω is totally bounded, let {x1, . . . , xn} be an r-approximation to Ω, and

partition {1, . . . ,m} into subsets A,B such that ρ (xi,K) < r if i ∈ A, and ρ (xi,K) > r
2 if i ∈ B.

For each i ∈ B choose yi ∈ ∂Ω such that ρ(xi, yi) <
ε
2 . Given y ∈ ∂Ω, choose x ∈ Ω such that

ρ(x, y) < r
2 , and then i such that ρ (x, xi) < r. If i ∈ A, then for all z ∈ B(y, r2),

ρ (z,K) ≤ r

2
+ ρ(y,K)

≤ r

2
+ ρ(y, x) + ρ (x, xi) + ρ (xi,K)

<
r

2
+
r

2
+ r + r

= 3r,

so z ∈ K3r ⊂ Ω. Thus B(y, r2) ⊂ Ω and so y ∈ Ω◦, which is absurd. Hence i ∈ B. Moreover,

ρ(y, yi) ≤ ρ(y, x) + ρ (x, xi) + ρ(xi, yi)

<
r

2
+ r +

ε

2

< ε.

Therefore {yi : i ∈ B} is an ε-approximation to ∂Ω.
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Now suppose that ∂Ω is totally bounded, let {y1, . . . , ym} be a finite ε-approximation to ∂Ω,

and for each i choose zi ∈ Ω such that ρ(yi, zi) < ε. With K as above, let {x1, . . . , xn} be an

ε-approximation to K. It is easy to show that {x1, . . . , xn} ∪ {z1, . . . , zm} is a 3ε-approximation to

Ω. �

Proposition 19 If a subset of a metric space is internally approximated by compact sets, then it

is edge coherent.

Proof. Let Ω be approximated internally by compact sets, let r > 0, and let

S ≡
{
x ∈ Ω : ρ(x, y) ≥ r for all y ∈ ∂Ω

}
.

To prove the edge coherence of Ω, it suffices to prove that S is contained in Ω. Let K be a compact

set well contained in Ω such that if x ∈ Ω−K, then ρ(x, y) < r/2 for some y ∈ ∂Ω. Let x ∈ S, and

suppose that ρ (x,K) > 0. As x ∈ Ω, we can choose x′ ∈ Ω such that

ρ
(
x′, x

)
< 1

4 min {ρ (x,K) , r} .

Then

ρ
(
x′,K

)
≥ ρ (x,K)− ρ

(
x′, x

)
> 3

4ρ (x,K)

> 0,

and for all y ∈ ∂Ω we have

ρ(x′, y) ≥ ρ(x, y)− ρ
(
x′, x

)
≥ 3

4r.

Since this contradicts our choice of K, we have ρ (x,K) = 0 and therefore x ∈ K ⊂ Ω. Thus S ⊂ Ω.

�

Proposition 20 If Ω is a edge coherent totally bounded subset of a metric space that has totally

bounded boundary, then Ω is approximated internally by compact sets.
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Proof. Given ε > 0, choose r ∈ (0, ε) such that

K ≡
{
x ∈ Ω : ρ (x, ∂Ω) ≥ r

}
is compact ([BB], Chapter 4, (4.9)). Since Ω is edge coherent, Kr/2 ⊂ Ω, so K ⊂⊂ Ω. On the other

hand, if x ∈ Ω−K, then ρ (x, ∂Ω) ≤ r < ε. �

A compact set K is said to be strongly integrable if there exists c > 0 such that for each ε > 0,

there exists δ > 0 such that
∣∣∫ f − c∣∣ < ε whenever f ∈ C0(RN ), 0 ≤ f ≤ 1, f(x) = 1 for all x in

K, and f(x) = 0 for all x with ρ(x,K) ≥ δ. In that case, by Proposition (6.2) in Chapter 6 of [BB],

K is integrable and µ(K) = c.

Theorem (6.7) in Chapter 6 of [BB] states that if Ω is integrable and has positive measure, then

for each ε > 0 there exists a strongly integrable set K (which is compact, by definition) such that

K ⊂ Ω and µ (Ω−K) < ε. We have already pointed out that, without additional conditions, we

will not be able to approximate Ω in measure by well contained compact sets. The result below

provides one condition that enables us to approximate Ω both in measure and in metric by compact

sets well contained in Ω.

Proposition 21 Let Ω be a bounded subset of a metric space with strongly integrable boundary ∂Ω.

If Ω can be approximated internally by compact sets, then for each ε > 0 there exists a compact set

K ⊂⊂ Ω such that

(i) ρ (x,K) < ε for all x ∈ Ω and

(ii) µ (Ω−K) < ε.

Proof. Since ∂Ω is strongly integrable, there exists t > 0 such that

St :=
{
x ∈ RN : ρ(x, ∂Ω) ≤ t

}
is an integrable set and µ (St − ∂Ω) < ε. Construct a compact set K ⊂⊂ Ω such that ρ (x,K) < t/3

for all x ∈ Ω. Replacing K by a set of the form

{
x ∈ RN : ρ(x,K) ≤ δ

}
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if necessary, we may assume that K is integrable; see [BB], Chapter 6, (4.11). Now consider any

x ∈ Ω−K. Since Ω is open, x ∈ −∂Ω. Suppose that ρ(x, ∂Ω) > 2t/3. Then for each y ∈ K,

ρ(x, y) ≥ ρ(x, ∂Ω)− ρ(y, ∂Ω) > ρ(x, ∂Ω)− t
3 ;

so

ρ(x,K) ≥ ρ(x, ∂Ω)− t
3 >

t
3 .

Since this contradicts our choice of K, we have ρ(x, ∂Ω) < t and therefore x ∈ St. It follows that

Ω−K ⊂ St − ∂Ω, so

µ (Ω−K) ≤ µ (St − ∂Ω) < ε. �

We now introduce the exterior cone condition for an open subset Ω of RN :

There exist positive numbers r, θ such that for each x ∈ ∂Ω there exists a right circular

cone C with vertex x, vertex angle θ, and height r such that C ∩ Ω = {x}.

This condition rules out cusps pointing into Ω from its boundary, and has been used to guarantee

the solvability of boundary value problems on totally bounded open sets in RN ; see [GT], pages 26-

27. Note that when ∂Ω is compact, the classical version of the exterior cone condition allows r

and θ to vary with the point x ∈ ∂Ω; a simple (but constructively inadmissible) application of

sequential compactness shows that r and θ can then be made independent of x.

Proposition 22 If Ω is a edge coherent totally bounded subset of RN that satisfies the exterior

cone condition, then Ω is approximated internally by compact sets.

Proof. ChooseR > 0 such that if ρ(y,Ω) ≤ 1, then y ∈ B (0, R) .Given ε > 0, choose r ≤ min {ε, 1}

and θ as in the exterior cone condition, and let

δ := r sin
θ

2
.

We may assume that

T ≡
{
y ∈ B(0, R) : ρ(y,Ω) ≥ δ

}
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and

K ≡
{
y ∈ Ω : ρ(y, T ) ≥ 2ε

}
are compact ([BB], Chapter 4, (4.9)). We will prove that K is well contained in Ω and that if

x ∈ Ω−K, then ρ(x, y) < 4ε for some y ∈ −Ω.

Let x ∈ ∂Ω, and choose a right circular cone C with vertex x, vertex angle θ, and height r such

that C ∩Ω = {x}. Let y be the point on the axis of C that is at a distance r away from x. We note

that y ∈ B(0, R) and ρ(y,Ω) ≥ δ, so y ∈ T. If there exists z ∈ K such that ‖x− z‖ < ε, then

‖y − z‖ ≤ ‖y − x‖+ ‖x− z‖

< r + ε

≤ 2ε,

so ρ(z, T ) < 2ε, a contradiction. Thus ρ(x,K) ≥ ε for all x ∈ ∂Ω. Now let ρ(ζ,K) < ε/2. Then for

all x ∈ ∂Ω,

‖ς − x‖ ≥ ρ(x,K)− ρ(ζ,K) > ε/2

Since K ⊂ Ω, there exists ξ ∈ Ω such that ‖ξ − ζ‖ < ε/2 and ρ(ξ,K) < ε/4. If ρ(ζ,Ω) > 0, then

by the boundary crossing lemma, there exists z ∈ ∂Ω such that ρ(z, [ξ, ζ]) < ε/4; since, for all

t ∈ [0, 1],

‖z − ξ‖ ≤ ‖ξ − (tξ + (1− t)ζ)‖+ ‖ζ − (tξ + (1− t)ζ)‖

≤ ‖ξ − ζ‖+ ‖ζ − (tξ + (1− t)ζ)‖ ,

we have

ρ (z,K) ≤ ‖z − ξ‖+ ρ(ξ,K)

≤ ‖ξ − ζ‖+ ρ(z, [ξ, ζ]) + ρ(ξ,K)

<
ε

2
+
ε

4
+
ε

4

= ε,
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a contradiction. Thus ρ(ζ,Ω) = 0 and therefore ζ ∈ Ω. Since Ω is edge coherent, it follows that

ζ ∈ Ω. Hence K ⊂⊂ Ω.

Finally, if x ∈ Ω − K, then ρ (x, T ) ≤ 2ε, and so there exists z ∈ T such that ‖x− z‖ ≤ 3ε.

Then z ∈ −Ω, so, by the boundary crossing lemma, there exists y ∈ ∂Ω such that ρ(y, [x, z]) < ε.

Hence

‖x− y‖ ≤ ‖x− z‖+ ρ(y, [x, z]) < 4ε. (�)

It is shown in [BRW] that the exterior cone condition in this proposition can be relaxed to the

exterior poi condition :

If x ∈ Ω and ε > 0, then there exists δ > 0 and a δ-ball contained in ∼ Ω that is within

ε of Ω.

Combining Propositions 7 and 11, we obtain

Corollary 23 If Ω is a edge coherent totally bounded subset of RN that satisfies the exterior cone

condition, then ∂Ω is located. �

Lemma 24 Let Ω be a located subset of a Banach space X, and suppose that 0 < d ≤ ρ(ξ, y) for

all y ∈ ∂Ω.

(i) If −Ω intersects B(ξ, d), then B(ξ, d) ⊂ −Ω;

(ii) If Ω is edge coherent and intersects B(ξ, d), then B(ξ, d) ⊂ Ω.

Proof. If B(ξ, d) contains points y ∈ Ω and y′ ∈ −Ω, then it intersects ∂Ω (by the boundary

crossing lemma), which is absurd. Hence if −Ω intersects B(ξ, d), then ‖ξ − x‖ ≥ d for all x ∈ Ω,

and therefore B(ξ, d) ⊂ −Ω. On the other hand, if Ω is edge coherent and located and if Ω intersects

B(ξ, d), then ‖ξ − x‖ ≥ d for all x ∈ −Ω.

Suppose that ρ(y,Ω) > 0 for some y ∈ B(ξ, d). Then y ∈ −Ω and ‖ξ − y‖ ≥ d, which contradicts

the foregoing. So for all y ∈ B(ξ, d) we have ρ(y,Ω) = 0 and therefore y ∈ Ω. The edge coherence

of Ω now ensures that if Ω intersects B(ξ, d), then B(ξ, d) ⊂ Ω. �

The conclusion of the preceding lemma is trivial to establish if ∂Ω is located.
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Lemma 25 Let Ω be a located subset of RN that satisfies the exterior cone condition and has

located boundary. Then −Ω is dense in ∼ Ω.

Proof. Let r, θ be as in the exterior cone condition, and fix ξ ∈∼ Ω. Given ε ∈ (0, r), we will find

y in −Ω such that ‖ξ − y‖ < 2ε. Either ρ(ξ,Ω) > 0 or ρ(ξ,Ω) < ε/2. In the first case, ξ ∈ −Ω and

there is nothing to prove. Consider the second case: since Ω is located, Ω∪ ∼ Ω is dense in RN .

By Proposition 7 of [BRW],

ρ(ξ, ∂Ω) = ρ(ξ,Ω ∪ ∼ Ω)

= max
{
ρ(ξ,Ω), ρ(ξ,∼ Ω)

}
= ρ(ξ,Ω) ≤ ε/2.

Thus there exists x ∈ ∂Ω such that ‖ξ − x‖ < ε . Construct a right circular cone C with vertex x,

vertex angle θ, and height r such that C ∩ Ω = {x}. Let y be the point on the axis of C that is ε

away from x. Then ρ(y,Ω) ≥ ε sin θ, so y ∈ −Ω. Also,

‖ξ − y‖ ≤ ‖ξ − x‖+ ‖x− y‖ < 2ε.

Since ε is arbitrary, the result follows. �

Brouwerian Example 6 An edge coherent, coherent set that has located boundary but is not

itself located.

Let X ≡ (−1, 1) , and let P be a simply existential statement (See Chapter 1). Let

Ω := (0, 1) ∪ {x ∈ (−1, 0) : ¬P} .

Then ∂Ω = {0} ⊂∼ Ω. If x ∈ X is bounded away from either ∂Ω or ∼ Ω, then either x > 0 or

x < 0. In the first case, x clearly belongs to Ω. In the second, if P holds, then Ω = (0, 1) and

x ∈ −Ω, a contradiction. So ¬P must hold. It follows that Ω = (−1, 0) ∪ (0, 1) and x ∈ Ω. So in

both cases, x ∈ Ω. Thus Ω is both edge coherent and coherent.

Now suppose that Ω is located. Either ρ(−1
2 ,Ω) > 0 or ρ(−1

2 ,Ω) < 1
2 . If ρ(−1

2 ,Ω) > 0, then

Ω = (0, 1) and ¬P cannot be true , so ¬¬P. If ρ(−1
2 ,Ω) < 1

2 , then P cannot hold, so ¬P holds.
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Thus the locatedness of Ω implies the weak limited principle of omniscience: ¬P ∨ ¬¬P. �

Having considered the exterior cone condition on a subset Ω of RN , we naturally think of a

counterpart known as the interior cone condition:

There exist r, θ > 0 such that for each x ∈ ∂Ω there exists a right circular cone C with

vertex x, vertex angle θ, and height r such that C − {x} ⊂ Ω.

Proposition 26 Let Ω be a totally bounded open set in RN with located boundary. Suppose that

Ω satisfies the interior cone condition. that, for all but countably many R > 0,

{
x ∈ Ω : ρ(x, ∂Ω) ≥ R

}
is either empty or else compact and well contained in Ω. Then Ω is approximated internally by

compact sets.

Proof. Let ε > 0 be arbitrary. Choose θ, r as in the interior cone condition, and let δ := r
2 sin θ.

We may assume without loss of generality that

δ

(
1

sin θ
+ 1

)
=
r

2
(1 + sin θ) < ε

and that

K ≡
{
x ∈ Ω : ρ (x, ∂Ω) ≥ δ

2

}
is either empty or else compact and well contained in Ω ([BB], Ch. 4, (4.9)). We will prove that

ρ (x,K) < ε for all x ∈ Ω.

For each x ∈ Ω either ρ (x, ∂Ω) > δ
2 and therefore x ∈ K, or else ρ (x, ∂Ω) < δ. In the latter

case, choosing y ∈ ∂Ω with ||x− y|| < δ, let C ⊂ Ω be an interior cone with vertex y, vertex angle

θ, and height r such that C ∩ ∂Ω = {y}. Then the midpoint z of the axis of C is in K, and

ρ(y,K) ≤ ‖y − z‖ =
r

2
=

δ

sin θ
.

Hence

ρ(x,K) ≤ ρ(x, y) + ρ(y,K) < δ

(
1 +

1

sin θ

)
< ε. �
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Corollary 27 If Ω satisfies the assumptions of Proposition 12, then it is edge coherent.

Proof. This follows immediately from the preceding proposition and Proposition 8. �

The following Brouwerian example shows that the interior cone condition alone does not guar-

antee edge coherence.

Brouwerian Example 7 An open set in R2 that satisfies the interior cone condition but is not

edge coherent.

Let a be a nonnegative number such that ¬ (a = 0) , and consider the open subset

Ω ≡ ((−1, 0) ∪ (0, 1) ∪ {x ∈ (−1, 1) : a > 0})× (0, 1)

of R2. Since ¬ (a = 0) ,

∂Ω = {−1, 1} × (0, 1) ∪ (−1, 1)× {0, 1},

and it is easy to see that Ω satisfies the interior cone condition. But if Ω is edge coherent, then

(0, 1
2) ∈ Ω, so

0 ∈ {x ∈ (−1, 1) : a > 0}

and therefore a > 0. Thus if any open set satisfying the interior cone condition is edge coherent,

then

∀x ∈ R (¬ (x = 0)⇒ x 6= 0) ,

which is equivalent to Markov’s principle. �

We conclude this chapter with some comments on the possible connection between its results

and the Dirichlet Problem.

Classically, if a bounded open subset Ω of RN satisfies the exterior cone condition, then for

each uniformly continuous function f : ∂Ω→ R the Dirichlet problem

4u = 0 in Ω,

u = f on ∂Ω
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has a continuous solution u : Ω → R that is uniformly twice differentiable on each compact set

well contained in Ω [GT]. In that case we say that the Dirichlet problem has a strong solution.

This suggests that the exterior cone condition, plus the strong solvability of the Dirichlet problem,

might be connected with the locatedness of a bounded open set Ω in RN . The following examples

show, however, that this is not the case.

For our next example, we need a result from recursive mathematics, Specker’s Theorem (see

page 60 of [BR]):

There exists an increasing sequence of rational numbers in the interval (0, 1) that is

eventually bounded away from any given real number.

Note that, since BISH is consistent with recursive mathematics, a recursive counterexample is

also a counterexample for BISH.

Recursive Counterexample 1 A coherent, edge coherent bounded open set Ω of RN with empty

boundary, such that Ω is not located.

Let (rn) be a strictly decreasing Specker sequence in (0,1), and define

A :=
{
x ∈ RN : ‖x‖ > rn for some n

}
,

Ω :=
{
x ∈ RN : ‖x‖ < rn for all n

}
.

Then Ω is bounded. It is open and coherent because it is a metric complement. It is edge coherent

because it is closed, and the boundary is empty. If it were located, then it would be totally bounded,

so

lim
n→∞

rn = inf
n≥1

rn

would exist, which is impossible as every real number is eventually bounded away from (rn). �

Note that in the last example, since the boundary ∂Ω of Ω is empty, there is only one uniformly

continuous function—the empty function—on that boundary; so the Dirichlet problem has infinitely

many solutions: namely, all the harmonic functions.

Brouwerian Example 8 An inhabited, edge coherent, bounded open subset Ω of R2 that satisfies

the exterior cone condition, such that ∂Ω is compact and the Dirichlet Problem has a unique solution
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for each uniformly continuous f : ∂Ω→ R, but Ω is not located.

Let P be any proposition such that ¬¬P, and let (rn) be an increasing Specker sequence in
(

1
2 , 1
)
.

Define open subsets by

A :=
{
x ∈ RN : rn < ‖x‖ < 1 for all n

}
,

B :=
{
x ∈ RN : P and ‖x‖ < 1

}
,

Ω := A ∪B.

It is easy to show that

∼ Ω =
{
x ∈ RN : ‖x‖ ≥ 1

}
and

∂Ω =
{
x ∈ RN : ‖x‖ = 1

}
.

So ∂Ω is located and Ω satisfies the exterior cone condition. Given a point x of Ω that is bounded

away from ∂Ω, and noting that ‖x‖ < 1, choose δ > 0 and ν such that |‖x‖ − rn| ≥ δ for all n ≥ ν.

Then choose ξ ∈ Ω such that ‖x− ξ‖ < δ. If ξ ∈ A, then

‖x‖ ≥ ‖ξ‖ − ‖x− ξ‖ > rn − δ

for all n, so ‖x‖ ≥ rn + δ for all n ≥ ν and therefore x ∈ A ⊂ Ω; if ξ ∈ B, then x ∈ Ω = B(0, 1).

Hence Ω is edge coherent.

For a given uniformly continuous function f : ∂Ω → R, the restriction to Ω of the solution of

the Dirichlet Problem

4u = 0 on B(0, 1),

u(x) = f(x) if ‖x‖ = 1

certainly solves the original Dirichlet Problem on Ω. This solution is given explicitly by the formula

u(x) =
1− ‖x‖2

N$N

∫
‖ξ‖=1

f(ξ)

‖x− ξ‖N
dS,

where dS denotes the element of surface on the boundary of the unit ball, and $N is the hyper-
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volume of that ball ([GT], Theorem 2.6). Now suppose that the Dirichlet Problem

4u = 0 on Ω,

u = f on ∂Ω

has a solution u that is nonzero at some point of Ω. If P holds, then Ω = B(0, 1) and the preceding

problem has the unique solution 0, a contradiction; so ¬P holds, which is absurd. Hence the

preceding problem has the unique solution 0, and therefore the original Dirichlet Problem on Ω has

a unique solution.

However, if Ω is located, then either ρ(0,Ω) > 0 or ρ(0,Ω) < r1. The former case is ruled out,

as −Ω = −B(0, 1). Hence ρ(0,Ω) < r1, so B is nonempty and therefore P holds. �
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Chapter 4

Constructing the Cutoff Function

Cut-off functions are an important tool in the theory of elliptic equations. In this chapter we

present two constructions of a cutoff function.

In the first construction we prove a version of the cutoff theorem requiring a constructive notion

of connectedness due to Mines and Richman: a metric space X is connected if, when it is written as a

union of open subsets, the intersection of those subsets contains at least one point. (For alternative

constructive approaches to connectedness see Section 14 of [?].) Our proof of the theorem is based

on a simple lemma (Lemma ) restricting the spread of finite approximations to an enlargement of a

connected compact set.. Like all Bishop-style constructive proofs, it is a valid classical proof; from

a classical point of view, the connectedness requirement can be removed by working with connected

components, but this will not work constructively since there is a recursive example of two disjoint

compact sets in R2 that are not a positive distance apart; see Chapter 6 of [BR].

A classical proof of the cutoff theorem without the requirement that K be connected is given

by Lang on pages 202-203 of [?]; that proof is not constructive as it stands, but, as we show in the

second part of the chapter, Lang’s arguments can be adapted to become constructive.

We begin with the statement of the first version of the cutoff theorem.

Theorem 28 There exists a positive constant c such that if K ⊂ RN is a connected compact set,

and ε a positive number, then there exists a C∞ function η : RN → [0, 1] such that

(i) η(x) = 1 for all x ∈ K,

(ii) η(x) = 0 whenever ρ (x,K) ≥ ε, and
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(iii) ‖∇η (x)‖ ≤ c
ε for all x ∈ RN .

To prove this theorem, we need a few technical lemmas.

Lemma 29 If K is a located connected subset of RN , then for each R > 0,

KR := {x ∈ RN : ρ(x,K) ≤ R}

is connected.

Proof. If ρ (x,K) < R, y ∈ K, and ‖x− y‖ < R, then ρ (z,K) < R for each z in the segment

[x, y] := {tx+ (1− t) y : 0 ≤ t ≤ 1} .

Since this segment is connected and intersects K, [x, y]∪K is connected. Since each set of the form

[x, y] ∪K with y ∈ K and ‖x− y‖ < R is connected and contains K,

⋃
{[x, y] ∪K : y ∈ K and ‖x− y‖ < R}

is connected; but this set is just

{
x ∈ RN : ρ (x,K) < R

}
,

which is easily seen to be dense in KR. Hence KR is connected. �

Lemma 30 Let X be a totally bounded metric space, and let 0 < r′ < r. Then there exists a finite

r-approximation F to X such that ρ (x, y) > r′ for all distinct x, y in F.

Proof. Choose a finite 1
2 (r − r′)-approximation {x1, . . . , xm} toX.We construct subsets F1, F2, . . . , Fm

of {x1, . . . , xm} inductively as follows. Define F1 = {x1}. With 1 ≤ k ≤ m − 1, assume that we

have already constructed Fk. Now consider xk+1 : either ρ (xk+1, Fk) > r′, in which case we set

Fk+1 = Fk ∪ {xk+1} ; or else ρ (xk+1, Fk) < 1
2 (r + r′) and we set Fk+1 = Fk. It is clear that

ρ (x, y) ≥ r′ for any two distinct elements x, y of Fm.
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Given x ∈ X, now choose i such that ρ (x, xi) <
1
2 (r − r′) . It follows from the construction of

Fm that if xi /∈ Fm, then ρ (xi, Fm) < 1
2 (r + r′) and therefore

ρ (x, Fm) ≤ ρ (x, xi) + ρ (xi, Fm)

< 1
2

(
r − r′

)
+ 1

2

(
r + r′

)
= r.

Hence we need only take F = Fm. �

Lemma 31 Let R, ε be positive numbers, and x1, . . . , xn points in a ball of radius R in RN such

that ρ (xi, xj) ≥ ε whenever i 6= j. Then n ≤
(

2R+ε
ε

)N
.

Proof. The balls with centres xi and radius ε
2 are non-overlapping and contained in a ball B of

radius R+ ε
2 ; Comparing the total volume of these balls with that of B we see that

nεN ≤
(

2R+ ε

2

)N
,

from which the result follows immediately. �

Lemma 32 Let K be a connected compact subset of RN , r a positive number, and {x1, . . . , xn} a

finite r-approximation to K5r. Then for each i there exists j 6= i such that 3r
2 < ‖xi − xj‖ < 6r.

Proof. Fix i with 1 ≤ i ≤ n, and partition {1, . . . , n} into two disjoint subsets P,Q such that

if j ∈ P, then ‖xi − xj‖ < 2r, and if j ∈ Q, then ‖xi − xj‖ > 3r
2 . If j ∈ P for each j, then

K5r ⊂ B (xi, 3r) , so diam(K5r) < 6r; this is absurd, as diam(K5r) is certainly at least 10r. Hence

there exists j ∈ Q. Now partition Q into two disjoint subsets Q1, Q2 such that if j ∈ Q1, then

‖xi − xj‖ > 5r, and if j ∈ Q2, then ‖xi − xj‖ < 6r. We will prove that Q2 contains at least one

element. Suppose that Q2 is empty. Given x ∈ K5r, choose j such that ‖x− xj‖ < r. Then either

j ∈ P, in which case

‖x− xi‖ ≤ ‖x− xj‖+ ‖xj − xi‖ < r + 2r = 3r;

or else j ∈ Q1 and therefore

‖x− xi‖ ≥ ‖xi − xj‖ − ‖x− xj‖ > 5r − r = 4r.
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Hence K5r is the union of the disjoint nonempty relatively open subsets

{x ∈ K5r : ‖x− xj‖ < 3r}

and

{x ∈ K5r : ‖x− xj‖ > 4r} .

Since this contradicts Lemma 1, there exists j ∈ Q2, and the proof is complete. �

By a C∞ function on RN we mean a function from RN to R that is infinitely uniformly

differentiable on any closed ball in RN .

Results similar to the following seem to be part of the folklore of the subject. We include a

proof for the sake of completeness.

Lemma 33 If 0 < a < b, then there exists a C∞ function f : R→ R such that f (t) = t if t < a,

f (t) = 0 if t > b, and ∣∣f ′ (t)∣∣ ≤ 7a+ 5b

2 (b− a)

for all t.

Proof. Let

q1 (t) = −c1

(
t− a− 1

3
(b− a)

)2

+ t

q2 (t) = c2

(
t− a− 2

3
(b− a)

)2

where

c1 =
3

2

5a+ 7b

a2 − 2ab+ b2
, c2 =

3

2

7a+ 5b

a2 − 2ab+ b2
.
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Then

ϕ (t) =



t if t < a+ 1
3 (b− a)

q1 (t) if a+ 1
3 (b− a) < t < 1

2 (a+ b)

q2 (t) if 1
2 (a+ b) < t < a+ 2

3 (b− a)

0 if t > a+ 2
3 (b− a)

defines a C∞ function on RN such that |ϕ′ (t)| ≤ 7a+5b
2(b−a) for all t. Let ρ : R→ R be the unique C∞

function (called a mollifier) such that

ρ (t) =


c exp

(
1

t2−1

)
if |t| < 1

0 otherwise,

where c is chosen so that
∫
R ρ = 1. For each ε > 0 define

ϕε (t) =
1

ε

∫
R
ρ

(
t− s
ε

)
ϕ (s) ds.

Then (see [GT, GT], pages 140-142) ϕε is a C∞ function,

ϕε (t) =

∫
|s|≤1

ρ (s)ϕ (t− εs) ds,

ϕ′ε (t) =

∫
|s|≤1

ρ (s)ϕ′ (t− εs) ds,

and ϕε → ϕ uniformly on R as ε→ 0. If t < a and ε < 1
3 (b− a) , then

t− εs < a+ 1
3 (b− a) (−1 ≤ s ≤ 1) .

(Note that
∫ 1
−1 sρ (s) ds = 0 as sρ (s) is an odd function.) So

ϕε (t) =

∫
|s|≤1

ρ (s)ϕ (t− εs) ds = t− ε
∫ 1

−1
sρ (s) ds = t.
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If t > b and ε < 1
3 (b− a) , then

t− εs > a+ 2
3 (b− a) (−1 ≤ s ≤ 1) ,

so

ϕε (t) =

∫
|s|≤1

ρ (s) 0 ds = 0.

On the other hand, ∣∣ϕ′ (t)∣∣ ≤ 7a+ 5b

2 (b− a)

∫
|s|≤1

ρ (s) ds =
7a+ 5b

2 (b− a)

for all t ∈ R. Thus, for all positive ε < 1
3 (b− a), the function f = ϕε has the required properties.

�

We now give the proof of Theorem 1. First construct an infinitely differentiable function g :

R→ [0, 1] as in Lemma 6. Choosing a positive number r < ε
13 , use Lemma 2 to construct a finite

r-approximation {x1, . . . , xn} to K5r such that ‖xi − xj‖ ≥ r/2 whenever i 6= j. Using Lemma 5 to

construct an infinitely differentiable function h : R→ R such that

h(t) =


t if t < 49r

0 if t > 64r

and |h′(t)| < 221
10 , define

ϕj (x) = h
(
‖x− xj‖2

)
(1 ≤ j ≤ n)

and

ϕ :=
n∑
j=1

ϕj .

Then

ϕj (x) =


‖x− xj‖2 if ‖x− xj‖ < 7r

0 if ‖x− xj‖ > 8r

and ϕj is infinitely differentiable on RN . Note that if ϕj (x) 6= 0, then ‖x− xj‖ < 8r (by the conti-

nuity of ϕ) and therefore ρ (x,K) < 13r. It follows from Lemma 3 that the number of nonvanishing
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terms ϕj (x) in the sum defining ϕ (x) is at most

(
16r + r

2

r/2

)N
≤ 33N .

Also, for all x,

∇ϕj (x) = 2h′
(
‖x− xj‖2

)
(x− xj) ,

so ∥∥∇ϕj (x)
∥∥ ≤ 2× 221

10
× 8r =

1768r

5

and therefore ϕ (which is infinitely differentiable on RN ) satisfies

‖∇ϕ (x)‖ ≤ 33N × 1768r

5
.

Now, if ρ (x,K) ≥ ε, then ρ (x,K) > 13r and therefore ϕ (x) = 0. If x ∈ K, then, choosing i such

that ‖x− xi‖ < r, we see from Lemma 4 that there exists j 6= i such that 3r
2 < ‖xi − xj‖ < 6r; so

‖x− xj‖ < 7r and therefore

ϕj (x) = ‖x− xj‖2

≥ (‖xi − xj‖ − ‖x− xi‖)2

≥ r2

4 .

Setting

η (x) := g

(
8ϕ(x)

r2
− 1

)
,

we see that η is a C∞ function on RN , that η(x) = 1 if x ∈ K, and that η (x) = 0 if ρ (x,K) ≥ ε.

Moreover,

‖∇η‖ ≤ 8

r2

∥∥g′∥∥ ‖∇ϕ(x)‖

≤ 8

r2

∥∥g′∥∥× 33N × 1768r

5

=
c

r
,
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where

c :=
14144

5

∥∥g′∥∥× 33N

is independent of K. �

We now examine Lang’s proof of the following version of the cutoff theorem.

Theorem 34 There exists a positive constant c such that if K is a compact subset of RN and ε is

a positive number, then there exists a C∞ function η : RN → [0, 1] such that

(i) η(x) = 1 for all x ∈ K,

(ii) η(x) = 0 whenever ρ (x,K) ≥ ε, and

(iii) ‖∇η (x)‖ ≤ c
ε for all x ∈ RN .

Proof. It will suffice to prove that for each positive integer k we can construct a C∞ function gk

on RN that satisfies the following properties:

0 ≤ gk ≤ 1,

gk (x) = 0 if x ∈ K3ε, gk (x) = 1 if x ∈ RN∼K3ε, and∣∣∣∣∂gk (x)

∂xi

∣∣∣∣ ≤ ck ≤ c
ε for i = 1, . . . , N, where c is a constant depending only on N.

For in that case we need only choose k > 1/ε and then set f = 1− g to obtain the desired function

f.

Using a construction like that in the proof of Lemma 6, we first obtain a C∞ function ϕ : RN →

R such that

0 ≤ ϕ ≤ 1,

ϕ (x) = 0 if ‖x‖ < 1
2 ,

ϕ (x) = 1 if ‖x‖ > 1, and

‖∇ (x)‖ ≤ c for all x ∈ RN ,

61



where λ is a constant that depends only on N. For each integer k and each x ∈ RN define

ϕk(x) := ϕ(kx).

Then

‖∇ϕk (x)‖ ≤ k ‖∇ϕ (x)‖ ≤ λk.

Let L be the lattice of integral points of RN . For each l ∈ L,

ϕk
(
x− l

2k

)
=


0 if

∣∣x− l
2k

∣∣ < 1
2k

1 if
∣∣x− l

2k

∣∣ > 1
k .

For each k, write L = P ∪Q where

l ∈ P ⇒ ρ
(
l

2k ,K
)
< 2

k ,

l ∈ Q⇒ ρ
(
l

2k ,K
)
> 1

k .

Define

gk (x) :=
∏
l∈P

ϕk
(
x− l

2k

)
.

Note that the subset P of L is finite, since K is compact; so the infinite product on the right

reduces to a finite one. For each x ∈ RN , there exists l ∈ L such that

ρ
(
x, l

2k

)
≤ 1

2
√

2k
< 1

2k .

Hence if ρ (x,K) < 1
4k , then, picking l such that

∥∥x− l
2k

∥∥ < 1
2k , we obtain

ρ
(
l

2k ,K
)
≤ ρ (x,K) +

∥∥x− l
2k

∥∥
< 1

2k + 1
4k

< 1
k .
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Hence if l ∈ P and
∥∥x− l

2k

∥∥ < 1
2k , then ϕk

(
x− l

2k

)
= 0. In turn, this implies that gk (x) = 0.

When ρ (x,K) > 3
k , for all l ∈ P we have

∥∥x− l
2k

∥∥ ≥ ρ (x,K)− ρ
(
l

2k ,K
)

> 3
k −

2
k

= 1
k .

So ϕk
(
x− l

2k

)
= 1 for all l ∈ P, and therefore gk (x) = 1.

To get the estimate for ‖∇gk (x)‖, we first show that for each x, the number of integral points

l ∈ P such that ∇ϕk
(
x− l

2k

)
6= 0 is bounded by 9N . In fact, if ∇ϕk

(
x0 − l0

2k

)
6= 0 for some x0,

then ϕ
(
x− l0

2k

)
is not identically equal to 1 for all x in a neighbourhood of x0. By our construction

of ϕ, this implies that
∣∣∣x0 − l0

2k

∣∣∣ ≤ 1
k . Therefore any l ∈ L that satisfies ∇ϕk

(
x0 − l

2k

)
6= 0 will

satisfy

∥∥∥ l02k − l
2k

∥∥∥ ≤ ∥∥∥x− l0
2k

∥∥∥+
∥∥x− l

2k

∥∥
≤ 1

k + 1
k

= 2
k .

Thus ‖l − l0‖ ≤ 4. In a ball of radius 4 around an integral point l0 in RN , there are at most 9N

distinct integral points l ∈ L. Therefore

‖∇gk (x)‖ ≤ 9N
∥∥∇ϕk (x− l

2k

)∥∥
≤ 9Nλk

<
c

ε
,

where c = 9Nλ. �
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Chapter 5

Weak Solutions:

Existence, Stability, and Maximality

The discussion in Chapter 2 exhibited the lack of constructive validity of all the classical approaches

to the existence of weak solutions for the Dirichlet problem DP. The analysis in that chapter,

however, pointed to a seemingly viable route to a constructive solution to this problem: proving

the (constructive) existence of the norm of the bounded linear functional ϕf defined on H1
0 (Ω) by

ϕf (v) ≡ −
∫

Ω
v(x)f(x) dx.

The first part of this chapter gathers the results of our exploration in this direction.

It is quite often the case that constructive proofs of the existence of classically unique objects

embody information about their continuity in parameters, from which uniqueness follows immedi-

ately. The second part of the chapter deals with the continuous dependence of weak solutions on

the data f and Ω.

An important feature of the Dirichlet problem is that its solution satisfies a maximum principle,

a property that is widely studied and applied in the classical theory of partial differential equations,

and is characteristic of equations of elliptic type (of which the Dirichlet problem is but one very

special case). See [PW]. In the last part of the main chapter we prove a weak maximum principle

for weak solutions of the Dirichlet problem. There then follows an appendix, in which we show

how a promising attempt at constructing weak solutions, although ultimately doomed to failure,
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nevertheless produced some interesting results as a by-product.

5.1 The Existence of Weak Solutions

Throughout the chapter, Ω will be an open, totally bounded, Lebesgue measurable subset of RN ,

and Stokes’s Theorem will apply to Ω and ∂Ω.

We begin by collecting together some basic definitions and results.

The Fourier transform v̂ of a function v ∈ L2 (Ω) is defined by

v̂(ξ) ≡ (2π)−N/2
∫
RN

e−iξ·xv(x) dx,

where ξ ·x denotes the scalar product of ξ and x in RN . The Fourier transform is norm-preserving,

in the sense that ‖v̂‖2 = ‖v‖2 for all v ∈ L2(Ω). In what follows we will write $ ≡ (2π)−N/2.

Let (vn) be a dense sequence in H1
0 (Ω). The corresponding double norm on the dual H1

0 (Ω)∗ of

H1
0 (Ω) is defined by

|||λ||| ≡
∞∑
n=1

2−n
|λ(vn)|

1 + ‖vn‖H
.

The following fundamental results about dual spaces and the double norm are proved in Chapter

7 of [BB]. Double norms arising from different dense sequences in H1
0 (Ω) give rise to equivalent

metrics on the unit ball

B∗ ≡ {λ ∈ H1
0 (Ω)∗ : ∀v ∈ H1

0 (Ω) (|λ(v)| ≤ ‖v‖H)}

of H1
0 (Ω)∗. (It is for this reason that we refer, loosely, to “the” double norm on B∗). Moreover, B∗

is totally bounded relative to any double norm. For each u ∈ H1
0 (Ω) the mapping λ 7→ λ(u) is

uniformly continuous with respect to the double norm on B∗. We denote by λv the bounded linear

functional u 7→ 〈u, v〉 on H1
0 (Ω); the normable elements of H1

0 (Ω)∗ are precisely elements of the

form λv, and ‖λv‖ = ‖v‖H . If S is a dense subset of the unit ball B of H1
0 (Ω), then the elements

λv with v ∈ S form a dense subset of B∗.

Of crucial importance to us is the following result, Poincaré’s Lemma.

Do we need to restrict the domain Ω in this lemma? Rauch does.

65



Lemma 35 Let Ω be a bounded open domain in RN . Then there exists a constant γ > 0 such that

‖v‖2 ≤ γ ‖v‖H —that is, ∫
Ω
v2 dx ≤ γ

(∫
Ω
‖∇v‖2 dx

)
—for each v ∈ H1

0 (Ω).

Proof. The proof of this lemma in [RA] is essentially constructive. �

Lemma 36 If R > 0 and v ∈ C1
0 (Ω), then

∫
‖ξ‖>R

|v̂(ξ)|2 dξ ≤ (1 +R2)−1(γ2 + 1) ‖v‖2H .

Proof. Let ∂k denote partial differentiation with respect to the kth variable. Then ∂̂kv(ξ) = iξkv̂(ξ);

so by the norm-preserving property of the Fourier transform,

∫
RN

ξ2
k |v̂(ξ)|2 dξ =

∫
RN

∣∣∣∂̂kv(ξ)
∣∣∣2 dξ =

∫
RN

|∂kv(ξ)|2 dξ

and therefore

∫
RN

‖ξ‖2 |v̂(ξ)|2 dξ =
N∑
k=1

∫
RN

ξ2
k |v̂(ξ)|2 dξ

=

N∑
k=1

∫ 2

RN

|∂kv(ξ)|2 dξ

=

∫
RN

‖∇v‖2 dx.
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Again by the norm preserving property of the Fourier transform,

∫
|ξ|>R

|v̂(ξ)|2 dξ =

∫
|ξ|>R

(
1 + ‖ξ‖2

)(
1 + ‖ξ‖2

)−1
|v̂(ξ)|2 dξ

≤ (1 +R2)−1

∫
RN

(
1 + ‖ξ‖2

)
|v̂(ξ)|2 dξ

= (1 +R2)−1

(∫
RN

|v̂(ξ)|2 dξ +

∫
RN

‖ξ‖2 |v̂(ξ)|2 dx

)
= (1 +R2)−1

(∫
RN

|v̂(ξ)|2 dξ +

∫
RN

‖∇v‖2 dx

)
= (1 +R2)−1

(
‖v‖22 + ‖v‖2H

)
≤ (1 +R2)−1

(
1 + γ2

)
‖v‖2H ,

where we have used Poincaré’s inequality in the last inequality. �

Let

S := {v ∈ C1
0 (Ω) : ‖v‖H ≤ 1}

and

S∗ := {λv : v ∈ S}.

We now arrive at the main result of this chapter. Note that if f is a complex-valued square-

integrable function on Ω, then by a weak solution of the Dirichlet Problem (2.2) we mean an element

u of

H1
0 (Ω,C) := H1

0 (Ω)+iH1
0 (Ω)

such that

4Reu = Re f on Ω,

4 Imu = Im f on Ω, and

u = 0 on ∂Ω.

Theorem 37 The following conditions are equivalent.

(i) For each ξ ∈ RN the special Dirichlet Problem

4u (x) = −eix·ξ if x ∈ Ω,

u = 0 on ∂Ω
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has a weak solution u.

(ii) The mapping λv 7→ v̂(ξ) from S∗ to R is uniformly continuous in the double norm.

(iii) S is totally bounded in L2(Ω).

(iv) The Dirichlet Problem

4u = f on Ω,

u = 0 on ∂Ω

has a weak solution for each f ∈ L2(Ω).

(v) There exists u ∈ H1
0 (Ω) such that J(u) ≤ J(v) for all v ∈ H1

0 (Ω), where

J(v) :=

∫
Ω

(
‖∇v‖2 + 2vf

)
.

Proof. Assuming (i), let ξ ∈ RN and let u be the weak solution of the special Dirichlet Problem.

Then for each v in C1
0 (Ω) ,

v̂∗(ξ) = $

∫
Ω
e−iξ·xv∗(x) dx

= −〈v∗, $u∗〉

= −〈$u, v〉

= −λv($u).

Statement (ii) now follows since the mapping λ 7→ λ($u) is uniformly continuous on B∗ with

respect to the double norm.

Next assume (ii). By the inequalities of Hölder and Poincaré, for each v ∈ C1
0 (Ω) and all
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ξ, ξ′ ∈ RN we have

∣∣v̂(ξ)− v̂(ξ′)
∣∣ = $

(∫
RN

e−iξ·xv(x) dx−
∫
RN

e−iξ′·xv(x) dx

)
≤ $

∫
RN

∣∣∣e−iξ·x − e−iξ′·x
∣∣∣ |v(x) | dx

≤ $
(∫

Ω

∣∣∣e−iξ·x − e−iξ′·x
∣∣∣2 dx

)1/2(∫
Ω
v2 dx

)1/2

≤ $γ
(∫

Ω

∣∣∣e−iξ·x − e−iξ′·x
∣∣∣2 dx

)1/2(∫
Ω
‖∇v‖2 dx

)1/2

,

where γ is the constant in Poincaré’s inequality. Given ε > 0, choose R > 0 such that

(
1 +R2

)−1 (
1 + γ2

)
<
ε2

2

and Ω ⊂ B (0, R) . For convenience set B ≡ B(0, 2R) and

α :=
ε

2γ$
√

2µ(Ω)µ(B)
.

Choose t > 0 such that if |z| < t, then |ez − 1| < α, and let F ≡ {ξ1, . . . , ξn} be a finite R−1t-

approximation to the totally bounded set B. For each ξ ∈ B choose ξk ∈ F such that ‖ξ − ξk‖ <

R−1t. If x ∈ Ω, then

|x · (ξ − ξk)| ≤ ‖x‖ ‖ξ − ξk‖ < RR−1t = t,

and so ∣∣∣e−ix·ξ − e−ix·ξk
∣∣∣ =

∣∣∣e−ix·(ξ−ξk) − 1
∣∣∣ < α.

It follows that

(∫
Ω

∣∣∣e−iξ·x − e−iξk·x
∣∣∣2 dx

)1/2

< α (µ(Ω))1/2 <
ε

2$γ
√

2µ(B)
.

By our assumption (ii), there exists δ > 0 such that if

v ∈ C1
0 (Ω) , ||v||H ≤ 1, and |||λv||| < δ, (5.1)
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then ∣∣v̂(ξj)
∣∣ < ε

2
√

2µ(B)
(1 ≤ k ≤ n).

Given ξ ∈ Ω, choose ξk ∈ F such that ‖ξ − ξk‖ < R−1t. If v satisfies (5.1), then

|v̂(ξ)| ≤ |v̂(ξ)− v̂(ξk)|+ |v̂(ξk)|

≤ $γ
(∫

Ω

∣∣∣e−iξ·x − e−iξk·x
∣∣∣2 dx

)1/2(∫
Ω
‖∇v‖2 dx

)1/2

+
ε

2
√

2µ(B)

< $γ
ε

2$γ
√

2µ(B)
+

ε

2
√

2µ(B)

=
ε√

2µ(B)
.

Recalling the norm preserving property of the Fourier transform and taking into account Lemma

2, we now have

‖v‖22 =

∫
RN

|v̂(ξ)|2 dξ

≤
∫
B
|v̂(ξ)|2 dξ +

∫
‖ξ‖>R

|v̂(ξ)|2 dξ

<
ε2

2µ(B)
µ(B) + (1 +R2)−1(1 + γ2) ‖v‖2H

≤ ε2

2
+
ε2

2
= ε2.

Thus λv 7→ v is a uniformly continuous mapping from S∗ onto S relative to the double norm on

S∗. But S∗ is dense in B∗, and is therefore totally bounded relative to the double norm; so S is

totally bounded in the L2 norm. Thus (ii) implies (iii).

Now let f ∈ L2(Ω), and assume (iii). The inequality

∣∣∣∣∫
Ω
vf

∣∣∣∣ ≤ (∫
Ω
v2

)1/2(∫
Ω
f2

)1/2

shows that the mapping v 7→
∫

Ω vf is uniformly continuous on C1
0 (Ω) with respect to the L2 norm.

We see from this and the assumption that S is totally bounded in L2 that the real number

sup

{∣∣∣∣∫
Ω
vf

∣∣∣∣ : v ∈ C1
0 (Ω), ||v||H ≤ 1

}
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exists. Hence, as the unit ball of the subspace C1
0 (Ω) is dense in that of H1

0 (Ω), the linear functional

v 7→
∫

Ω vf on C1
0 (Ω) extends to a normable linear functional on H1

0 (Ω). Applying the Riesz

Representation Theorem ([BB], Ch. 8, (2.3)), we then obtain u ∈ H1
0 (Ω) such that

∫
Ω
vf = −〈v, u∗〉

(
v ∈ H1

0 (Ω)
)
.

Hence u is a weak solution of the Dirichlet Problem, and (iii) implies (iv).

We discussed the equivalence of (iv) and (v) in Chapter 2 (see, in particular, Proposition 2 of

that Chapter). Finally, (iv) implies (i) trivially. �

Property (ii) of the preceding theorem holds classically as a special case of the Rellich Com-

pactness Theorem. The proof of that theorem, as found, for example, in [RA], is not constructive

as it uses sequential compactness.

Extending each u ∈ H1
0 (Ω) to equal 0 outside Ω,we can regard H1

0 (Ω) as a subset of the space

H1
0 (BR) for any ball

BR := B(0, R) ∈ RN

such that Ω ⊂⊂ BR. Classically H1
0 (Ω) is a subspace of H1

0 (BR) since H1
0 (Ω) is a closed linear

subset of H1
0 (BR); but constructively a subspace must be a located subset. It turns out that

locating the subset H1
0 (Ω) in the space H1

0 (BR) is equivalent to solving the Dirichlet Problem on

Ω.

Theorem 38 The following conditions are equivalent.

(i) The Dirichlet Problem

4u = f on Ω,

u = 0 on ∂Ω

has a weak solution for each f ∈ L2(Ω).

(ii) H1
0 (Ω) is located in H1

0 (BR) for each R > 0 such that Ω ⊂⊂ BR.

Proof. First assume (i), and choose R > 0 such that Ω ⊂⊂ BR. Since C∞0 (BR) is dense in H1
0 (BR),
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it is enough to prove that for all w ∈ C∞0 (BR) , the distance

ρ(w,H1
0 (Ω)) ≡ inf

{
‖u− w‖H1

0 (BR) : u ∈ H1
0 (Ω)

}

exists. Accordingly, let u ∈ H1
0 (Ω) be the weak solution to the Dirichlet Problem for f = 4w; so

−
∫

Ω
∇u · ∇v dx =

∫
Ω
v4w dx

(
∀v ∈ H1

0 (Ω)
)
.

Applying the Divergence Theorem, for all v ∈ C1
0 (Ω) we have

−
∫

Ω
∇u · ∇v dx =

∫
Ω
v4w dx

=

∫
Ω
∇ (v∇w) dx−

∫
Ω
∇v · ∇w dx

=

∫
∂Ω
v∇w · n dS −

∫
Ω
∇v · ∇w dx

= −
∫

Ω
∇v · ∇w dx.

Hence ∫
Ω
∇ (u− w) · ∇v dx = 0. (5.2)

An approximation argument shows that (5.2) holds for all v ∈ H1
0 (Ω). Note that the function

h := u−w belongs to the space H1 (Ω) , and that h+w = u belongs to H1
0 (Ω). Define a subset S

of H1(Ω) by

S :=
{
g ∈ H1(Ω) : g + w ∈ H1

0 (Ω)
}
,

and define a functional J : S → R by

J(g) :=

∫
Ω
‖∇g‖2 dx.

Since H1
0 (Ω) is closed in H1(Ω), so is S. Moreover if g ∈ S, then g + εv ∈ S for any ε ∈ R and any

v ∈ H1
0 (Ω). On the other hand, since −w ∈ H1(Ω) and −w+w = 0 ∈ H1

0 (Ω), we see that −w ∈ S;

so each member ϕ of S has the decomposition ϕ = g + εv with g ∈ S, ε ∈ R and v ∈ H1
0 (Ω) where

g = −w, ε = 1 and v = (ϕ+ w) ∈ H1
0 (Ω).
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If J has an infimum, then

inf
{
||u− w||H(B) : u ∈ H1

0 (Ω)
}

exists and

inf
{
||u− w||H(B) : u ∈ H1

0 (Ω)
}

= inf {J(g) : g ∈ S} .

So

ρ(w,H1
0 (Ω)) = inf {J(g) : g ∈ S} .

Now,

J(h+ εv) =

∫
Ω
‖∇h‖2 + 2ε

∫
Ω
∇h · ∇v + ε2

∫
Ω
‖∇v‖2

so that, by (5.2),

d

dε
J(h+ εv)

∣∣∣∣
ε=0

=

(
2

∫
Ω
∇h · ∇v + 2ε

∫
Ω
‖∇v‖2

)∣∣∣∣
ε=0

= 2

∫
Ω
∇h · ∇v dx

= 0.

Thus h is a critical point of J . Moreover, J is convex, as

d2

dε2
J(h+ εv) = 2

∫
Ω
‖∇v‖2 ≥ 0.

So J attains its minimum at h (Explain why!!!), and therefore ρ(w,H1
0 (Ω)) exists and is equal

to J(h). Since C∞0 (BR) is dense in H1
0 (BR) , it follows that H1

0 (Ω) is located in H1
0 (BR).

Now suppose that H1
0 (Ω) is located in H1

0 (BR), where Ω ⊂⊂ BR. Then the projection P from

H1
0 (BR) to H1

0 (Ω) exists. Let uB be the solution to the Dirichlet Problem on the ball BR, which

is given by the standard Poisson integral formula [?]. Then for each f ∈ L2(Ω) we have

∫
BR

vf dx = −〈uB, v〉

for all v ∈ H1
0 (BR) . In particular, this holds for all v ∈ H1

0 (Ω) , since H1
0 (Ω) is a subspace of
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H1
0 (BR). Hence for all such v we get

∫
BR

vf dx = −〈uB, v〉

= −〈uB, Pv〉

= −〈PuB, v〉 .

In other words, the function PuB ∈ H1
0 (Ω) solves the Dirichlet Problem on Ω. �

5.2 Stability of Weak Solutions

Experience shows that constructive proofs of the existence of classically unique objects embody

information about their continuity in parameters, from which uniqueness follows immediately. In

this section we shall discuss the continuous dependence of the weak solutions of the Dirichlet

Problem

4u = f on Ω,

u = 0 on ∂Ω

on the parameters f and Ω.

We first note that, for a given f ∈ L2(Ω), if the Dirichlet Problem has a weak solution, then

that solution is unique1: for then the weak solution is the unique element of H1
0 (Ω) representing

the normable linear functional ϕf .

In view of the equivalence (under reasonable conditions) of this form of the Dirichlet Problem

and the form

4u = 0 on Ω,

u = F on ∂Ω,

1There are other ways in which the uniqueness of solutions of the Dirichlet Problem might be expressed. For
example, we may ask the following questions?

1. If u, v are distinct elements of C2(Ω) such that 4u = f = 4v throughout Ω, can we find ξ ∈ ∂Ω such that
either u(ξ) 6= 0 or v(ξ) 6= 0?

2. If we allow u, v to belong to H1(Ω), then can we find a set S ⊂ ∂Ω of positive Lebesgue measure (in one
dimension) such that u 6= v throughout S?

3. If u, v are distinct elements of C2
0 (Ω), and there exists ξ ∈ Ω such that u(ξ) 6= v(ξ), can we find ζ ∈ Ω such

that 4u(ζ) 6= 4v(ζ)?

We shall not pursue these questions in this thesis.
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we may regard the following result as an expression of the continuity of weak solutions with respect

to the boundary data.

Theorem 39 For each L2 function f : Ω → F denote by uf the weak solution of the Dirichlet

Problem. Then for all L2 functions f, g : Ω→ F,

‖uf − ug‖H ≤ γ ‖f − g‖2 ,

where γ is the constant in Poincaré’s inequality.

Proof. An approximation argument shows that

∫
Ω
v (f − g) = −〈v, (uf − ug)∗〉

for all v ∈ H1
0 (Ω) . Taking v = uf − ug and using Poincaré’s inequality, we obtain

‖uf − ug‖2H =

∣∣∣∣∫
Ω

(uf − ug) (f − g)

∣∣∣∣
≤ ‖uf − ug‖2 ‖f − g‖2

≤ γ ‖uf − ug‖H ‖f − g‖2 ,

from which the desired inequality follows. �

Corollary 40 The Dirichlet Problem has at most one weak solution for a given f ∈ L2(Ω). �

In order to discuss the continuity of weak solutions relative to the parameter Ω, we require some

definitions and a lemma.

We measure the closeness of totally bounded subsets A,B of FN by the Hausdorff distance

ρ (A,B) := max {m (A,B) , m (B,A)} ,

where

m (A,B) := sup {ρ (x,B) : x ∈ A} .
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Lemma 41 Let S, S′ be totally bounded subsets of RN with totally bounded boundaries, and let δ

be a positive number such that

max
{
ρ
(
S, S′

)
, ρ
(
∂S, ∂S′

)}
< δ.

Then

ρ(x, ∼S) = ρ (x, ∂S) ≤ 2δ

for each x ∈ S ∼ S′.

Proof. Given x ∈ S ∼ S′ and ε > 0, choose x′ ∈ S′ such that ‖x− x′‖ < ρ (x, S′) + ε. Since S′,

and therefore S′, is located, S′ ∪ ∼S′ is dense in RN ; it follows from Lemma 2 of Chapter 3 that

there exists z ∈ ∂S′ such that ρ (z, [x, x′]) < ε. Then

ρ(x, ∂S) ≤ ρ(x, ∂S′) + δ

≤ ‖x− z‖+ δ

≤
∥∥x− x′∥∥+ ρ

(
z,
[
x, x′

])
+ δ

< ρ
(
x, S′

)
+ ε+ ε+ δ

≤ 2δ + 2ε.

Since ε is arbitrary, we conclude that ρ(x, ∂S) ≤ 2δ. �

For convenience, we call an open subset Ω of RN admissible if

(i) Ω is totally bounded and Lebesgue integrable,

(ii) ∂Ω is totally bounded and has Lebesgue measure 0, and

(iii) the Dirichlet Problem (3) has a weak solution for each L2 function f : Ω→ F.

Note that if Ω is admissible, then Ω ∪ ∼Ω is dense, so, by Lemma ??, ∼ Ω is located. Also, we

could have weakened the total boundedness of Ω to mere boundedness in property (i), since, as is

shown in [BRW], if a bounded Lebesgue measurable subset of RN has located boundary, then the

subset itself is located and therefore totally bounded.
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With this definition we are equipped, at last, to deal with the continuous dependence of weak

solutions on the domain of the Dirichlet Problem.

Theorem 42 Let Ω be an admissible open subset of RN , and f an element of L2(Ω) such that the

corresponding Dirichlet Problem has a weak solution u. Assume also that

(a) for each ε > 0 there exists an integrable compact set K ⊂⊂ Ω such that µ (Ω−K) < ε, and

(b) there exists a constant c0 > 0 such that if

∂Ωr ≡
{
x ∈ RN : ρ (x, ∂Ω) ≤ r

}
,

is integrable, then ∫
∂Ωr

|u|2 ≤ c0r
2

∫
∂Ωr

‖∇u‖2

for all u ∈ H1
0

(
Ω
)
.

Then for each ε > 0 there exists δ > 0 with the following property:

If Ω′ is an edge coherent admissible open set well contained in Ω such that

max
{
ρ
(
Ω,Ω′

)
, ρ
(
∂Ω, ∂Ω′

)}
< δ,

and such that the Dirichlet Problem

∆u′ = f on Ω′,

u′ = 0 on ∂Ω′,

has a weak solution u′, then ‖u− u′‖H1
0 (Ω) < ε, where u′ is extended to equal 0 outside Ω′.

Proof. Let κ be as in Theorem 7 of Chapter 4, and let ε > 0. Choose t > 0 such that if S is an

integrable set and µ (Ω− S) < t, then

∫
Ω−S
‖∇u‖2 < 2ε2

9 (1 + 25c0κ2)
.
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By hypothesis (a), there exists a compact integrable set S ⊂⊂ Ω such that µ (Ω− S) < t. Choose

δ such that

0 < δ < 1
5 inf {‖x− y‖ : x ∈ S, y ∈ ∂Ω} ,

and

K ≡
{
x ∈ Ω : ρ (x, ∼Ω) ≥ 5δ

}
is compact and integrable ([BB], Ch. 6, (6.3)). (Note that ρ(x,∼ Ω) exists for each x ∈ Ω, by

Proposition 4 of Chapter 3.) Clearly, if ρ(x,K) < 5δ, then ρ(x,Ω) = 0; since

{
x ∈ RN : ρ(x,K) < 5δ

}
is dense in K5δ, it follows that K5δ ⊂ Ω. On the other hand, if x ∈ S and ρ(x,K) > 0, then

ρ(x,∼ Ω) ≤ 5δ < ρ(x, ∂Ω),

which contradicts Proposition 4 of Chapter 3. Hence S ⊂ K = K and therefore µ (Ω−K) < t.

Let Ω′ ⊂⊂ Ω be a coherent admissible open set such that

max
{
ρ
(
Ω′,Ω

)
, ρ
(
∂Ω′, ∂Ω

)}
< δ.

We show that Kδ ⊂⊂ Ω′. To this end, consider x ∈ K2δ and note that B(x, δ) ⊂ K3δ ⊂ Ω. If there

exists y ∈ B(x, δ) ∼ Ω′, then

ρ(y,∼Ω) = ρ(y, ∂Ω) ≤ 2δ,

once again by Proposition 4 of Chapter 3, and therefore ρ(x,∼Ω) < 3δ; choosing z ∈ K such that

‖x− z‖ < 2δ + (3δ − ρ(x,∼Ω)),

we find that

ρ(z,∼Ω) ≤ ‖x− z‖+ ρ(x,∼Ω) < 5δ,

contradicting our definition of K. It follows that ρ(x, ∼Ω′) ≥ δ, x ∈ − (∼Ω′) , and therefore, by the
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coherence of Ω′, x ∈ Ω′. Thus K2δ ⊂ Ω′ and therefore Kδ ⊂⊂ Ω′.

Using Theorem 7 of Chapter 4, now construct a C∞ function α : R→ [0, 1] such that α (x) = 0

if x ∈ K, α (x) = 1 if x ∈ −Kδ, and ‖∇α (x)‖ ≤ κ/δ for all x ∈ RN . Let u′ ∈ H1
0 (Ω′) be the weak

solution of the Dirichlet Problem

∆u′ = f on Ω′,

u′ = 0 on ∂Ω′.

Approximation arguments show that
∫

Ω∇u ·∇v = −
∫

Ω v
∗f for all v ∈ H1

0 (Ω) , that
∫

Ω′ ∇u′ ·∇v =

−
∫

Ω′ v
∗f for all v ∈ H1

0 (Ω′) , and hence that

∫
Ω′

(
∇u−∇u′

)
· ∇v = 0

(
v ∈ H1

0

(
Ω′
))
.

Now define a function w ≡ u−u′. Let (un) be a sequence in C1
0 (Ω) converging to u in ‖·‖H1

0 (Ω) , and

(u′n) a sequence in C1
0 (Ω′) converging to u in ‖·‖H1

0 (Ω′) . Then (1− α)un−u′n belongs to C1
0 (Ω′) , so

∫
Ω′
∇w · ∇

(
(1− α)un − u′n

)
= 0.

and therefore, in the limit as n tends to ∞,

∫
Ω′
∇w · ∇ (w − αu) = 0.

Noting that

2ab ≤ sa2 +
b2

s
(a, b ∈ R, s > 0) ,

we now obtain

2

∫
Ω′
‖∇w‖2 = 2

∫
Ω′
α∇w · ∇u+ 2

∫
Ω′
u∇w · ∇α

≤ 1
3

∫
Ω′
‖∇w‖2 + 3

∫
Ω′
α2 ‖∇u‖2

+ 1
3

∫
Ω′
‖∇w‖2 + 3

∫
Ω′
‖∇α‖2 |u|2 .
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It follows from this and our choice of α that

4

∫
Ω′
‖∇w‖2 ≤ 9

∫
Ω−K

‖∇u‖2 +
9κ2

δ2

∫
Ω−K

|u|2 .

Now, yet another application of Proposition 4 of Chapter 3 shows that Ω −K ⊂ Ω ∩ ∂Ω5δ; since

the reverse inclusion is trivial, we therefore have

Ω−K ⊂ Ω ∩ ∂Ω5δ.

Since µ(∂Ω) = 0 and u = 0 on −Ω, we see from hypothesis (b) that

∫
Ω−K

|u|2 =

∫
∂Ω5δ

|u|2

≤ c0 (5δ)2
∫
∂Ω5δ

‖∇u‖2

= 25c0δ
2

∫
Ω−K

‖∇u‖2 .

So

4

∫
Ω′

∥∥∇u−∇u′∥∥2
= 4

∫
Ω′
‖∇w‖2 ≤ 9

(
1 + 25c0κ

2
) ∫

Ω−K
‖∇u‖2 .

Since µ(Ω−K) < t, it follows that

∫
Ω′

∥∥∇u−∇u′∥∥2
< ε2

2 .

Since K ⊂ Ω′, we also have µ(Ω− Ω′) < t, so that

∫
Ω

∥∥∇u−∇u′∥∥2
=

∫
Ω−Ω′

‖∇u‖2 +

∫
Ω′

∥∥∇u−∇u′∥∥2

<
ε2

2
+
ε2

2

= ε2

and therefore ‖u− u′‖H1
0 (Ω) ≤ ε. �
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In connection with hypothesis (a) of the preceding theorem, see Proposition 9 of Chapter 3.

Hypothesis (b), and property (ii) of an admissible open set, hold classically when ∂Ω is a smooth

embedded compact manifold of dimension N − 1 in RN ; for in that case the following holds:

There exists a constant r > 0 such that for each x ∈ RN with ρ(x, ∂Ω) < r, there exists

y0 ∈ ∂Ω such that ρ(x, y0) < ρ(x, y) for all y ∈ ∂Ω− {y0} .

(See [RA], Chapter 5, Theorem 6.). Since there is, as yet, no well developed constructive theory

of manifolds, we prefer to adopt hypothesis (b) here, rather than follow diverting paths that lead

into manifold theory. However, in Chapter 7 we shall return to the property quoted above, which

we shall prove in the special case when N = 2 and the manifold is a Jordan curve with certain

curvature restrictions.

The only classical results related to Theorem 8 that we have found are one dealing with the

dependence of Green’s functions on the domain ([CO], page 291), and a consequent one on the

continuity of strong solutions of the Dirichlet Problem when the domain satisfies certain strong

uniform boundary conditions [?].

5.3 The Maximum Principle

Given u ∈ H1(Ω), we say that u (x) ≤ k on ∂Ω if (u (x) − k)+ ∈ H1
0 (Ω). We aim to prove

the following theorem, giving a maximum principle for the weak solution (when it exists) of the

Dirichlet Problem.

Theorem 43 Suppose that hypothesis (b) of Theorem 8 holds, and let u ∈ H1(Ω). Suppose also

that ∫
Ω
∇u · ∇ϕdx = 0

for all ϕ ∈ H1
0 (Ω), and that there exists a constant k > 0 such that u (x) ≤ k for all x ∈ ∂Ω. Then

u (x) ≤ k for all x ∈ Ω.

Corollary 44 Under the hypotheses of the preceding theorem, if u ∈ C(Ω) is a weak solution of

the Dirichlet problem, then

sup {u(x) : x ∈ Ω} = sup {u(x) : x ∈ ∂Ω} . �
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An integrable function u on Ω is said to be weakly differentiable if its distributional derivative

is identifiable with an integrable function(see Chapter 2). In that case, if Du denotes the weak

derivative of u, then there exists a sequence (um) of smooth functions (um) such that for each

compact integrable set Ω′ ⊂⊂ Ω,

(i) um → u in L1 (Ω′) as m→∞,

(ii) Dum → Du in L1 (Ω′) as m→∞.

The classical proof of this result, as found on pages 142-143 of [GT], is essentially constructive; we

omit the details.

We shall assume the hypotheses of Theorem 8 in the rest of this section.

Lemma 45 If f ∈ C1(R) has bounded derivative and u is weakly differentiable, then f ◦u is weakly

differentiable and

D (f ◦ u) = f ′ ·Du.

Proof. Let Ω′ ⊂⊂ Ω be an integrable set, and (um) be a sequence in C1(Ω) such that um → u and

Dum → Du in L1(Ω′). By Theorem (8.16) of [BB], some subsequence (umk) of (um) converges to

u almost everywhere in Ω′; we may therefore assume that (um) converges to u almost everywhere

in Ω′. Since f ′ is bounded and continuous, f ′ (uk (x)) converges to f ′ (u (x)) almost everywhere in

Ω′. If b > 0 is a bound for |f ′| , then the inequality

∣∣f ′ (uk (x))− f ′ (u (x))
∣∣ |Du (x)| ≤ b |Du (x)| ∈ L1

(
Ω′
)

implies that |f ′ (uk)− f ′ (u)| |Du| is in L1 (Ω′) . Hence |f ′ (uk)− f ′ (u)| |Du| → 0 in L1 (Ω′). There-

fore ∫
Ω′
|f (uk)− f (u)| dx ≤ b

∫
Ω′
|uk − u| dx→ 0,
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which tends to 0 as k →∞. Now

∫
Ω′

∣∣f ′ (uk)Duk − f ′ (u)Du
∣∣ dx ≤

∫
Ω′

∣∣f ′ (uk)Duk − f ′ (uk)Du∣∣ dx

+

∫
Ω′

∣∣f ′ (uk)Du− f ′ (u)Du
∣∣ dx

≤ b
∫

Ω′
|Duk −Du| dx

+

∫
Ω′
|Du|

∣∣f ′ (uk)− f ′ (u)
∣∣ dx

→ 0 as k →∞.

From these inequalities we conclude that

f (uk)→ f (u) in L1(Ω′), and

D (f ◦ uk) = f ′ (uk)Duk → f ′ (u)Du in L1(Ω′).

Thus D (f ◦ u) = f ′ (u)Du on Ω′. Since Ω′ ⊂⊂ Ω is arbitrary, the equality extends to Ω. �

If u is integrable, then for all but countably many real numbers k, the set

Ak (u) := {x ∈ Ω : u (x) > k}

is integrable Theorem 4.11, chapter 6, [BB]). For such k we define

u+
k (x) := sup {u (x)− k, 0} .

We write u+ for u+
0 .

A measurable set is called a full set if it is the domain of an integrable function.

Lemma 46 If u is weakly differentiable, k > 0, and Ak(u) is integrable, then u+
k is weakly differ-
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entiable and

Du+
k (x) =

 Du(x) if u(x) > k

0 otherwise

Proof. Without loss of generality, we prove the result for k = 0. For each ε > 0 the function

fε : (−∞, 0] ∪ (0,∞)→ R+ defined by

fε(ξ) =


(
ξ2 + ε2

)1/2 − ε if ξ > 0

0 if ξ ≤ 0

extends to a continuously differentiable function fε of ξ ∈ R, and fε(ξ)→ ξ+ ≡ ξ ∨ 0 pointwise as

ε → 0. By Proposition (6.7.9) of [BB], fε ◦ u is measurable. Since fε ◦ u converges to u+ almost

everywhere, u+ is measurable, by Theorem (6.8.2) of [BB]. Then by Theorem (6.7.11) of [BB],

u+(x) is integrable, since u+(x) ≤ |u(x)| on a full set. So u+ ∈ L1(Ω).

By Lemma 11, if u is weakly differentiable, then so is fε ◦ u and

D (fε ◦ u) =
(
f ′ε ◦ u

)
Du(x) =



uDu

(u2 + ε2)1/2
if u(x) > 0

0 otherwise.

For all ϕ ∈ C1
0 (Ω) we have

∫
Ω
fε (u) ·Dϕ = −

∫
Ω
ϕ ·D (fε (u))

= −
∫
A0(u)

ϕ
uDu

(u2 + ε2)1/2
.

By Theorem (6.8.8) of [BB], letting ε→ 0, we get

∫
Ω
u+Dϕ = −

∫
u>0

ϕDu,

since

uDu

(u2 + ε2)1/2
→ Du (x ∈ A0(u)) .
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In other words, ∫
Ω
u+(x)Dϕ(x) dx = −

∫
Ω
ϕ(x)v(x) dx

where v is the integrable function defined on a full set by

v(x) =


Du(x) if u(x) > 0

0 if u(x) ≤ 0.

So Du+ = v almost everywhere in Ω. This completes the proof. �

Lemma 47 If u ∈ H1(Ω) and if Ak (u) is integrable, then (u− k)+ ∈ H1(Ω).

Proof. We have
∣∣(u− k)+

∣∣ ≤ |u| and
∣∣D (u− k)+

∣∣ ≤ |Du| almost everywhere on Ω. But u and Du

belong to L2(Ω). Thus (u− k)+ and D (u− k)+ belong to L2(Ω). �

Proposition 48 If u ∈ H1(Ω), u ≤ k < l, and (u− l)+ is integrable, then u ≤ l.

Proof. Clearly, (u− l)+ ≤ (u− k)+ and
∣∣D (u− l)+

∣∣ ≤ ∣∣D (u− k)+
∣∣ throughout Ω. Thus

∫
K

∣∣D (u− l)+
∣∣2 ≤ ∫

K

∣∣D (u− k)+
∣∣2 (5.3)

for any measurable set K inside Ω. Let α ∈ C1
0 (Ω) be a cut-off function such that α(x) = 1 on some

K ⊂⊂ Ω with ρ (K, ∂Ω) ≤ δ, where δ will be specified more exactly later on. Now by Lemma 13,

(u− l)+ ∈ H1(Ω), so α (u− l)+ ∈ H1
0 (Ω). It is trivial that α (u− l)+ → (u− l)+ in L2(Ω) as

K → Ω. We need to show that the convergence also holds with respect to the H1 norm. With the

aid of (5.3) we have

∫
Ω

∣∣D (α (u− l)+)−D (u− l)+
∣∣2

=

∫
Ω

∣∣(1− α)D (u− l)+ + (u− l)+Dα
∣∣2

≤ 2

∫
Ω−K

∣∣D (u− l)+
∣∣2 + 2

∫
Ω−K

κ2

δ2

∣∣(u− l)+
∣∣2

≤ 2

∫
Ω−K

∣∣D (u− k)+
∣∣2 + 2

∫
Ω−K

κ2

δ2

∣∣(u− k)+
∣∣2 .
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By hypothesis (b) of Theorem 8 (remember, we are assuming that hypothesis here),

∫
Ω−K

∣∣(u− k)+
∣∣2 ≤ cδ2

∫
Ω−K

∣∣D (u− k)+
∣∣2 .

Thus

∫
Ω
D
∣∣(α (u− l)+)−D (u− l)+

∣∣2
≤ 2

∫
Ω−K

∣∣D (u− k)+
∣∣2 + 2

κ2

δ2 cδ
2

∫
Ω−K

∣∣D (u− k)+
∣∣2

≤ 2
(
1 + cκ2

) ∫
Ω−K

∣∣D (u− k)+
∣∣2 .

By the absolute continuity of the function A 7→
∫
A

∣∣D (u− k)+
∣∣2 , the last integral in the above

estimates tends to zero as K tends to Ω. Thus α (u− l)+ → (u− l)+ in H1
0 (Ω). So (u− l)+ ∈ H1

0 (Ω)

and therefore u ≤ l. �

Lemma 49 If u ∈ H1
0 (Ω) and Du(x) = 0 almost everywhere in Ω, then u(x) = 0 almost everywhere

in Ω.

Proof. First extend u to be 0 throughout RN − Ω. If u ∈ C1
0 (Ω), then

u(x) =

∫ xi

−∞

∂u(ξ1, . . . , ξN )

∂ξi
dξi ≤

∫ xi

−∞
|Du| dξi = 0

and

−u(x) =

∫ xi

−∞

(
−∂u(ξ1, . . . , ξN )

∂ξi

)
dξi ≤

∫ xi

−∞
|Du| dξi = 0

Hence u(x) = 0 for all x ∈ Ω.

If u ∈ H1
0 (Ω), consider the mollification

uε(x) :=
1

ε

∫
RN

ρ

(
x− y
ε

)
u (y) dy

of u(x) defined in the usual way (see Chapter 4). Clearly uε belongs to C1
0 (Ω′) for some domain

Ω′ ⊃⊃ Ω, and Duε = (Du)ε = 0. The above argument for the case u ∈ C1
0 (Ω) shows that uε = 0

in Ω′. The result now follows since uε → u in H1
0 (Ω). �
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We now give the proof of Theorem 9. If u ≤ k, then (u− k)+ ∈ H1
0 (Ω). Taking ϕ = (u− k)+,

we obtain

0 =

∫
Ω
∇u · ∇ (u− k)+ dx =

∫
Ak

∇u · ∇ (u− k)+ dx =

∫
Ak

‖∇u‖2 dx.

Now by Lemma 15, (u− k)+ ≤ 0 almost everywhere in Ω, and therefore u ≤ k almost everywhere

in Ω. �

What about the proof of Corollary 10???
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Appendix

In this appendix we present an attempt to construct a weak solution of the Dirichlet Problem by

a method suggested by the proof of the normability of the convolution operator in [BB] (Ch. 8,

(2.4)). Although, for reasons that we shall indicate, this attempt did not ultimately succeed, it led

to a number of results that are of some interest.

Here is a sketch of the principal idea. We try to prove that the mapping λv 7→ ϕf (v) is uniformly

continuous on the dense subset

Γ :=
{
λv : v ∈ C1

0 (Ω), ‖v‖H ≤ 1
}

of the unit ball B∗ of H1
0 (Ω)∗ relative to the double norm. If this can be done, then since B∗ is

compact with respect to the double norm and Γ is dense in B∗, the number

sup
{∣∣ϕf (v)

∣∣ : λv ∈ Γ
}

exists. It follows that the functional ϕf is normable, with

∥∥ϕf∥∥ = sup
{∣∣ϕf (v)

∣∣ : λv ∈ Γ
}
.

Now, as the mapping λ 7→ λ(h) is uniformly continuous on B∗ relative to the double norm,

for each ε > 0 there exists δ > 0 such that |〈v, h〉| = |λv(h)| < ε
2 whenever |||λv||| < δ. What we

need in order to obtain the uniform continuity of the mapping λv 7→ ϕf (v) is to prove that for

each ε > 0 there exists h ∈ C1
0 (Ω) such that |〈v, h〉 − v(ξ)| < ε

2 . For then, if |||λv||| < δ, we would

have |v(ξ)| < ε, and we could apply Theorem 3 to conclude that the Dirichlet Problem is weakly

solvable.

To explore these ideas in more detail, we introduce a mapping G : RN ×RN → R as follows:

G(x, ξ) :=


1

2π log ‖x− ξ‖ if N = 2

1
N(2−N)ω ‖x− ξ‖

2−N if N ≥ 3.
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For each ξ, the function x 7→ G(x, ξ) satisfies Laplace’s equation on RN − {ξ} and is called the

fundamental solution of Laplace’s equation with singular point ξ. Under our assumptions on Ω, we

have ∫
Ω
∇v(x) · ∇xG(x, ξ) dx = −v(ξ)

for any v ∈ C1
0 (Ω); This can be easily proved using the method on pages 17-19 of [GT].

Lemma 50 There exists c > 0 such that for each r > 0 and each ξ ∈ RN ,

∫
B(ξ,r)

‖∇xG(x, ξ)‖ dx ≤ cr

and ∫
B(ξ,r)

‖x− ξ‖2−N dx ≤ cr2.

Proof. The proof is a routine computation using spherical coordinates (see pages 53-55, and the

estimate (2.14) on page 17, of [GT]). �

.

If K ⊂⊂ Ω is a compact set, and M > 0 a constant, we define

ΓK :=

{
v ∈ C1

0 (Ω) :

∫
Ω
‖∇v(x)‖2 dx ≤ 1, and v = 0 throughout Ω−K

}
,

ΓMK :=
{
v ∈ C1

0 (Ω) : ‖∇v‖ ≤M , and v = 0 throughout Ω−K
}
,(

ΓMK
)∗

:=
{
λv : v ∈ ΓMK

}
.

Lemma 51 Let K be a compact set well contained in Ω. Then for each ξ ∈ K and each ε > 0

there exists δ > 0 such that |v(ξ)| < ε whenever v ∈ ΓMK and |||λv||| < δ.

Proof. Let κ be as in Theorem 7 of Chapter 4, and c as in the preceding lemma. Fix ξ ∈ K and

ε > 0. We first construct h ∈ C1
0 (Ω) such that |〈v, h〉 − v(ξ)| < ε

2 whenever v ∈ ΓMK . To this end,

choose r with

0 < r <
ε

2Mc (1 + 2κ)

such that {
x ∈ RN : ρ (x,K) ≤ r

}
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is compact and well contained in Ω. Using Theorem 7 of Chapter 4, construct a C∞ function

α : RN → [0, 1] such that α (x) = 1 if ρ (x,K) ≤ r, and α(x) = 0 for all x ∈ ∂Ω. Using the same

result, construct a C∞ function β from RN to [0, 1] such that β(x) = 0 if ||x−ξ|| < r/2, β(x) = 1 if

||x− ξ|| ≥ r, and ‖∇β‖ ≤ 2κ/r. Then

h(x) := − α(x)β(x)G (x, ξ)

defines an element h of C∞0 (Ω). If v ∈ ΓMK , then

|〈v, h〉 − v(ξ)| =
∣∣∣∣∫

Ω
∇v(x) · ∇x (h(x) +G(x, ξ)) dx

∣∣∣∣
=

∣∣∣∣∫
K
∇v(x) · ∇x (h(x) +G(x, ξ)) dx

∣∣∣∣
≤

∣∣∣∣∣
∫
B(ξ,r)

∇v(x) · ∇x ((1− β(x))G(x, ξ)) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(ξ,r)

∇v(x) ((1− β(x))∇xG(x, ξ)−G(x, ξ)∇β(x)) dx

∣∣∣∣∣
≤M

(∫
B(ξ,r)

‖∇xG(x, ξ)‖ dx+

∫
B(ξ,r)

G(x, ξ) ‖∇β(x)‖ dx

)

≤M
(
cr +

2κ

r

∫
Ω
G(x, ξ) dx

)
≤M

(
cr +

2κ

r
cr2

)
= Mc (1 + 2κ) r

<
ε

2
.

This completes the proof that h has the desired properties. Applying [BB] (Ch.7, (6.3)), we now

obtain δ > 0 such that if v ∈ ΓK , ‖v‖H ≤ 1, and |||λv||| < δ, then |〈v, h〉| < ε/2 and therefore

|v(ξ)| < ε. �

Lemma 52 For each f ∈ C(Ω), the mapping λv 7→ ϕf (v) is uniformly continuous on
(
ΓMK
)∗
.

Proof. As Ω is totally bounded and f is uniformly continuous on Ω,

‖f‖ ≡ sup {|f(x)| : x ∈ Ω}
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exists. For each ε > 0, choose a finite ε-approximation {x1, . . . , xn} to K. Define disjoint integrable

subsets Bi of Ω as follows:

B1 := B(x1, ε),

Bi := B(xi, ε)−
i−1∨
j=1

Bj (2 ≤ i ≤ n) .

Here we have adopted the notation
∨

for the union of complemented sets; see [BB], page 73 for a

fuller account of such sets. Thus for each integrable function w on Ω,

∫
K
|w(x)| dx ≤

n∑
i=1

∫
Bi

|w(x)| dx.

If x ∈ B(xi, ε) and v ∈ ΓMK , then

‖v(x)− v(xi)‖ ≤M ‖x− xi‖ ,

by Proposition 2 of Chapter 3. By the last lemma, there exists δ > 0 such that
∑n

i=1 |v (xi)| < ε

whenever v ∈ ΓMK and |||λv||| < δ. For such v we have

∣∣∣∣∫
Ω
vf dx

∣∣∣∣ ≤ ∫
Ω
|vf | dx

≤
n∑
i=1

∫
Bi

|v(x)− v(xi)| |f(x)| dx+

n∑
i=1

∫
Bi

|v(xi)| |f(x)| dx

≤
n∑
i=1

∫
Bi

M ‖x− xi‖ |f(x)| dx+ ‖f‖
n∑
i=1

|v(xi)|
∫
Bi

dx

≤M ‖f‖
n∑
i=1

εdx+ ‖f‖µ(Ω)

n∑
i=1

|v(xi)|

≤M ‖f‖
n∑
i=1

µ(Bi)ε+ ‖f‖µ(Ω)ε

≤ (M + 1) ‖f‖µ(Ω)ε.

The desired result follows since ε > 0 is arbitrary. �
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Proposition 53 For each f ∈ C(Ω) and each M > 0,

σMK := sup

{∣∣∣∣∫
Ω
vf dx

∣∣∣∣ : v ∈ ΓMK

}

exists.

Proof. In view of the preceding lemma, it will suffice to prove that
(
ΓMK
)∗

is totally bounded

relative to the double norm on H∗.

Here is a major gap: How do we do this???

We had hoped to prove the uniform continuity of the mapping λv 7→ ϕf (v) on B∗ by means of

the following steps.

(a) Prove that for each x ∈ Ω the mapping λv 7→ v(x) is uniformly continuous.

(b) Evaluate the integral ϕf (v) as follows

∫
Ω
vf dx =

n∑
i=1

∫
D(xi,r)

vf dx

=

n∑
i=1

∫
D(xi,r)

(v(x)− v(xi)) f(x) dx+

n∑
i=1

∫
D(xi,r)

v(xi)f(x) dx,

where {x1, . . . , xn} is a finite r-approximation to Ω, and the sets D(xi, r) are pairwise disjoint

subsets of Ω such that xi ∈ D(xi, r), diam (D(xi, r) ) < r, and
⋃n
i=1D(xi, r) = Ω. Using the

continuity of v, choose r such that |v(x)− v(xi)| < 1
2ε ‖f‖µ(Ω) whenever |x− xi| < r, where ‖f‖

is the supremum of f over Ω. Then use (a) to get δ such that |v(xi)| < 1
2ε ‖f‖µ(Ω) whenever

|||λv||| < δ.

There are, however, two problems with this idea. First, the estimate for |v(x)− v(xi)| is not

uniform in x; and secondly, (a) is simply not true, as is shown below:

Suppose that (a) holds. Since the set

Γ :=
{
λv : v ∈ C1

0 (Ω), ‖v‖H ≤ 1
}

is totally bounded with respect to the double norm onH1
0 (Ω)∗, for each x ∈ Ω the uniform continuity
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of the mapping: λv 7→ v(x) implies the existence of

sup {|v(x)| : λv ∈ Γ} .

It follows that the linear functional mapping v to v(x) is normable on H1
0 (Ω). By the constructive

Riesz Representation Theorem, there exists u ∈ H1
0 (Ω) such that

v(x) = −〈v, u〉
(
v ∈ H1

0 (Ω)
)

—that is,

v(x) = −
∫

Ω
∇u · ∇v dx.

But

v(x) =

∫
Ω
G(x, y) ∆v(y)dy

= −
∫

Ω
∇G(x, y) · ∇v(y)dy,

so ∫
Ω

(∇G(x, y)−∇u(y)) · ∇v(y) dy = 0

for all v ∈ H1
0 (Ω). This is absurd, since the fundamental solution does not belong to H1(Ω).
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Chapter 6

Best Approximations on a Jordan

Curve

The motive of this chapter is hypothesis (b) of Theorem 8 in Chapter 5, whose classical proof can

be found in [RA]. That proof can be made constructive if it can be proved that for each point in

RN there exists a unique closest point on the boundary ∂Ω of the domain Ω in question. In what

follows we give conditions under which such a unique closest point on ∂Ω exists. The result here

deals only with domains in R2.

The reader may be surprised to find that the proofs leading to the solution of this seemingly

simple problem can be so tricky even in R2. Note that, for a given point u of the plane, it is a serious

constructive problem to establish even the existence of a point v on a bounded curve J such that

|u− v| = ρ(u, J) : for there is a recursive example showing that the classical result that a continuous,

real-valued function on a compact set attains its minimum is essentially nonconstructive; see [BR],

Chapter 6. The corresponding problem in higher dimensional space appears to be much more

complicated.

Statement of The Problem

By the plane we mean either C or R2, which we identify with each other in the usual way. We

denote by B(a, r) (respectively, B(a, r)) the open (respectively, closed) ball with centre a and radius

r in the plane. We now make the notion precise:
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By a Jordan curve we mean a one-one, uniformly continuous mapping f : T → R2 with

uniformly continuous inverse, where T is the unit circle in R2. We then identify f with its range J

in the plane and with the mapping θ 7→ f(eiθ) of [0, 2π) onto J. We give J the orientation in which

z1 = f(eiθ1) precedes z2 = f(eiθ2) on J if θ1 ≤ θ2, and we say that f(eiθ) is between z1 and z2 if

θ1 < θ < θ2. We write

J(z1, z2) :=
{
f(eiθ) : θ1 ≤ θ ≤ θ2

}
,

which we denote by J(θ1, θ2) when the connection between zk and θk is clear from the context.

The Jordan curve theorem states, roughly, that the set of points u such that ρ(u, J) > 0 is the

union of two components, the inside and the outside of J. If u belongs to the inside of J and v to

the outside, we say that u and v are on opposite sides of J. For details of the Jordan curve theorem

and its proof see [BJ].

It seems intuitively clear that if J is a Jordan curve whose curvature is bounded away from

zero, then there is a neighbourhood of J within which any point has a unique closest point on the

curve. In what follows we justify that intuition using only the methods of Bishop’s constructive

mathematics. For other work on constructive approximation theory, see [DB2, DB2] and [DB3,

DB3].]

Our aim in this chapter is to prove the following approximation theorem.

Theorem 54 Let J be a Jordan curve that satisfies the twin tangent ball condition:

There exists R > 0 such that for each z ∈ J there exist points az, bz on opposite sides of J, such

that

B(az, R) ∩ J = {z} = B(bz, R) ∩ J.

Then there exists r0 > 0 such that any point u of the plane that lies within r0 of J has a unique

closest point on J ; more precisely, if ρ(u, J) < r0, then there exists v ∈ J such that |u− v| < |u− z|

for all z ∈ J∼{v} .

If J has continuous curvature, then the twin tangent ball condition implies that the radius of

curvature of J at any point is at most R. To prove this, let P be a point on J. Suppose that the

curvature of J at P is bigger than 1
R . Let C be the circle that is tangent to J at P and has radius

R. After reparametrisation, we may assume that J and C are represented, locally, by y = f(x) and
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y = C(x) respectively, and that P = f (x0) = C (x0) . Then we have

|f ′′ (x0)|(
1 + f ′ (x0)2

) 3
2

>
1

R
=

|C ′′ (x0)|(
1 + C ′ (x0)2

) 3
2

Since J and C are tangent at P , we can also arrange the coordinate system so that f ′ (x0) =

C ′ (x0) = 0. Thus we get |f ′′ (x0)| > |C ′′ (x0)| . We may suppose that the circle C (x) is the one

that is below J, that is that C(x) < J(x) for x close to x0. so that C ′′ (x) < 0 in a neighbourhood

of x0. Then either f ′′ (x0) > −C ′′ (x0) or f ′′ (x0) < C ′′ (x0) . Since f (x0) = C (x0) = P, we now see

that f (x) < C (x) for all x 6= x0 in some neighbourhood of x0. This contradicts the assumption

that C is below J around x0. Thus the curvature of J at P is no bigger than 1
R .

The proof of our theorem depends on a long series of lemmas, which we develop in the next

section. The key steps are Lemma 5 and Lemma 9. Lemma 5 guarantees that if a point w is close

to J, then the set

S (w, δ) :=
{
θ :
∥∥∥w − f (eiθ

)∥∥∥ ≤ δ}
is a compact interval [θ1, θ2 ] for almost all δ for which S (w, δ) is inhabited. Intuitively this means

that the curve does not enter the circle B (w, δ) twice. In other words, the part of the curve that is

inside the circle B (w, δ) is path connected. The constructive uniqueness result of Lemma 9 allows

us to construct a convergent minimizing sequence by an interval halving technique. Our work is

based on ideas used in [DB3, DB3]; see also [BB, BB], Chapter 7.

Preliminary Results

Throughout this section, J is a Jordan curve satisfying the hypotheses of our theorem.

We begin with two elementary, though nontrivial, lemmas in plane Euclidean geometry. We

denote by z1z2 the line joining the two distinct points z1, z2 of the plane. By the inclination of two

intersecting lines we mean the smallest angle between those lines.

Lemma 55 For i = 0, 1, 2 let ci, c
′
i be points in the plane such that |ci − c′i| = 2R > 0, and let

zi = 1
2(ci + c′i). There exists t > 0 such that if

• min {|zi − c0| , |zi − c′0|} > R for i ∈ {1, 2} ,
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• z1 6= z2,

• z1z2 is parallel to c0c′0, and

• max {|z1 − z0| , |z2 − z0|} < t,

then there exist distinct i, j such that

either B(ci, R) intersects both B(cj , R) and B(c′j , R)

or else B(c′i, R) intersects both B(cj , R) and B(c′j , R).

Proof. Write zk = (xk, yk). We begin with two elementary geometric observations.

(a) If z0 = z1 = 0, c0c′0 is the imaginary axis, 0 < θ < π
2 , and the inclination of c1c′1 to the

imaginary axis is θ, then

max
{
|c1 − c0| ,

∣∣c1 − c′0
∣∣} < 2R cos θ2 and

max
{∣∣c′1 − c0

∣∣ , ∣∣c′1 − c′0∣∣} < 2R cos θ2 .

(b) If z1 = 0, x2 = 0, |y2| < 3R/2, and the inclinations of c1c′1 and c1c′1 to the imaginary axis are

at most

α := cos−1
(

3
4

)
,

then either B(c1, R) intersects both B(c2, R) and B(c′2, R) or B(c′1, R) intersects both B(c2, R)

and B(c′2, R).

By observation (a), if z1 = z0 = 0 and the inclination of c1c′1 to the imaginary axis is greater than

α
2 , then

max
{
|c1 − c0| ,

∣∣c1 − c′0
∣∣} < 2R− ε, (6.1)

max
{∣∣c′1 − c0

∣∣ , ∣∣c′1 − c′0∣∣} < 2R− ε, (6.2)

where ε = 2R
(
1− cos α4

)
. By continuity, there exists t > 0 such that if z0 = 0, |z1| < t, and∣∣θ − π

2

∣∣ > α
2 , then (6.1) and (6.2) hold.
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Now consider points zk satisfying the bulleted conditions of the statement of the lemma. For

convenience, we may assume that z0 = 0, c0 = R, and c′0 = −R, so that x1 = x2. Either the

inclinations of c1c′1 and c2c′2 to the imaginary axis are less than α, or else the inclination of one of

these two lines, say c1c′1, is greater than α
2 . In the first case, it follows from observation (b) that

either B(c1, R) intersects both B(c2, R) and B(c′2, R) or else B(c′1, R) intersects both B(c2, R) and

B(c′2, R). In the second case, (6.1) holds and so B(c1, R) intersects both B(c0, R) and B(c′0, R). �

Lemma 56 Let B1, B2 be two closed balls of radius R that are tangent at z. Let ζ, ζ ′ be points of

the plane that lie outside B1 and B2, and on opposite sides of the line joining the centres of B1 and

B2, such that

max
{
|ζ − z| ,

∣∣ζ ′ − z∣∣} < R. (6.3)

If 0 < r < R, then z lies in the interior of any circle of radius r that passes through both ζ and ζ ′,

and hence in the interior of any ball of radius r that contains ζ and ζ ′.

Proof. We begin with another elementary geometrical observation..

If A,B,C are vertices of a nondegenerate triangle such that the sum θ of the angles

AB̂C and AĈB is less than π
2 (radians), then the radius of the unique circle that passes

through A,B,C is |BC|2 sin θ .

To prove the lemma, we may assume that z = 0 and that the centres of B1, B2 are (0,−R), (0, R)

respectively. Let w be the unique point in which the imaginary axis meets the segment
[
ζ, ζ ′

]
,

let 0 < r < R, and let ζ, ζ ′ lie on the circle with centre ζ0 and radius r. Choose δ > 0 such that

B(w, δ) ⊂ B(ζ0, r). Either |w| < δ, in which case 0 ∈ B(w, δ) ⊂ B(ζ0, r), or else |w| > 0. In the

latter case, take, for example, Imw < 0. In view of (6.3), we see that −R < Imw < 0 and that the

interior of the segment
[
ζ, ζ ′

]
meets the boundary of B1 in two points ζ1, ζ

′
1, where ζ1 is between

ζ and ζ ′1. Let A = (0, a) and B = (0, b) be the two points in which the boundary of B(ζ0, r) meets

the imaginary axis, where a > Imw > b. Let θ be the sum of the angles Aζ̂ζ ′ and Aζ̂ ′ζ; and φ

the sum of the angles 0ζ̂1ζ
′
1 and 0ζ̂ ′1ζ1. Noting that

∣∣ζ1 − ζ ′1
∣∣ < ∣∣ζ − ζ ′∣∣ , choose ε > 0 such that if

Imw < a < ε, then θ ≤ φ so that

sin θ

sinφ
≤ 1 <

∣∣ζ − ζ ′∣∣∣∣ζ1 − ζ ′1
∣∣ .
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Since, by the observation at the beginning of the proof,

∣∣ζ − ζ ′∣∣
2 sin θ

= r < R =

∣∣ζ1 − ζ ′1
∣∣

2 sinφ
,

we must have a ≥ ε. Thus 0 is in the interior of the segment [a, b] and is therefore in B(ζ0, r). �

Before applying these lemmas, we note that, although the full intermediate value theorem does

not hold constructively (see page 8 of [BB]), there are several useful constructive versions of that

classical theorem, including the following one:

IVT Let f : [0, 1] → R be a continuous function with f(0) < f(1). There exists a

sequence (yn) in [f(0), f(1)] such that if f(0) ≤ y ≤ f(1) and y 6= yn for each n, then

there exists x ∈ [0, 1] with f(x) = y ([BB], page 63, Exercise 14).

Lemma 57 Let x, y, z be points of J such that z lies between x and y on J , and suppose that [x, y]

is bounded away from the line joining az and bz. Then |J(x, y)| ≥ diam(J(x, y)) > R
2 .

Proof. It is clear that |J(x, y)| ≥ diam(J(x, y)). We may assume that z = 0, az = −R, and

bz = R. Since

0 < s := inf {|ξ − ζ| : ξ ∈ [x, y] , Re(ζ) = 0} ,

we may further assume that [x, y] lies in the region Re(ζ) > 0. Either max {|x| , |y|} > R/2 and

therefore diam(J(x, y)) > R
2 , or else max {|x| , |y|} < R. In the latter case, suppose that J(x, y)

does not intersect the region

D := {ζ : Im(ζ) > R} ∪ {ζ : Im(ζ) < −R} .

With t as in Lemma 2, we now use IVT to find λ ∈ (0, t) such that there exists z1 = (x1, y1)

between x and z on J with |z1| < t and y1 = λ, and there exists z2 = (x2, y2) between z and

y on J such that |z2| < t and y2 = λ. Taking z0 = 0 in Lemma 2, we see that one of the balls

B(azi , R), B(bzi , R) intersects both the balls B(azj , R), B(bzj , R) and therefore intersects both the

inside and the outside of J. Since this is absurd, we conclude that J(x, y) intersects the region

{ζ : Im(ζ) > R/2} ∪ {ζ : Im(ζ) < −R/2}
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and hence that diam(J(x, y)) > R
2 . �

Lemma 58 For each α ∈ [0, π) there exists β with 0 < β < R such that if 0 < r ≤ β, w ∈ R2, α ≤

θ1 ≤ θ2 ≤ 2π − α, and
∣∣f(eiθk)− w

∣∣ ≤ r (k = 1, 2), then
∣∣f(eiθ)− w

∣∣ < r for all θ in the open

interval (θ1, θ2) .

Proof. We first observe that f(eiθ) 7→ θ is a uniformly continuous mapping of f([α, 2π − α]) onto

[α, 2π − α]. As J is differentiable, it follows that there exists β such that if α ≤ θ ≤ θ′ < 2π − α

and
∣∣∣f(eiθ)− f(eiθ′)

∣∣∣ < 2β, then
∣∣θ′ − θ∣∣ = θ′ − θ is small enough and therefore

∣∣∣J(eiθ, eiθ′)
∣∣∣ =

∫ θ′

θ

(
1 + f ′2

) 1
2 dθ < R/2.

Let w, r, θ0, θ1, θ2 be as in the hypotheses, and write zk = f(eiθk). Let θ1 < θ < θ2 and z = f(eiθ);

then z 6= z1, z2. Define

s := inf {|ξ − ζ| : ξ ∈ [z1, z2] , ζ ∈M} ,

where M is the line joining az and bz. Then

|z1 − z2| ≤ |z1 − w|+ |z2 − w| ≤ 2r ≤ 2β,

so |J(z1, z2)| < R/2, by our choice of β, and it follows from Lemma 4 that s = 0. Moreover,

|z1 − z| ≤ |J(z1, z)| ≤ |J(z1, z2)| < R/2,

so as z1 is distinct from z and lies outside the balls B(az, R) and B(bz, R), it is a positive distance

from M. Similarly, |z2 − z| < R/2 and z2 is a positive distance from M. Since s = 0, z1 and z2 lie

on opposite sides of M ; it follows from Lemma 3 that |z − w| < r. �

Let ω be the modulus of continuity for the mapping θ 7→ f(eiθ) on R; so for each ε > 0, if∣∣∣f(eiθ)− f(eiθ′)
∣∣∣ > ε, then

∣∣θ − θ′∣∣ ≥ ω(ε). In the remainder of this paper, r0 will be the positive

number β corresponding to α = ω(R/8) in Lemma 5.
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Lemma 59 If ρ(u, J) < min {r0, R/8} and |u− f(1)| > R
4 , then for all but countably many r with

ρ(u, J) < r < min {r0, R/8} (6.4)

there exist θ1, θ2 such that 0 < θ1 < θ2 < 2π and

{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r} = [θ1, θ2] .

Proof. If θ ∈ [0, 2π) and ∣∣∣f(eiθ)− u
∣∣∣ ≤ R

8 ,

then ∣∣∣f(eiθ)− f(1)
∣∣∣ ≥ |u− f(1)| −

∣∣∣f(eiθ)− u
∣∣∣ > R

8

and therefore α ≤ θ ≤ 2π − α, where α = ω(R/8). Since f is uniformly continuous on [α, 2π − α],

for all but countably many r with

ρ(u, J) < r < min {r0, R/8} ,

the set

Sr :=
{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r}

=
{
θ ∈ [α, 2π − α] :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r}

is compact. For such r, let θ1 = inf Sr and θ2 = supSr. In view of (6.5) and IVT, we can find

θ, θ′ ∈ [0, 2π) such that ∣∣∣f(eiθ)− u
∣∣∣ < ∣∣∣f(eiθ′)− u

∣∣∣ < r;

so θ1 < θ2. Using Lemma 5, we now see that Sr = [θ1, θ2]. �

If a, b are two distinct points of the plane, then the ray from a towards b is the set

−→
ab := {(1− t)a+ tb : t ≥ 0} .
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The proofs of the following two lemmas are simple exercises in geometry and trigonometry, and

are omitted.

Lemma 60 Let z1, z2 be distinct points on the circle with centre w and radius r0 > 0, let z be the

midpoint of the minor arc joining z1 and z2, and let t > 0. Then there exists ε > 0 such that if

v ∈ −→zw and |v − z| > r0 + t, then |v − z1| > r0 + ε. �

Lemma 61 If C,C ′ are two circles of radius r that intersect in distinct points z1, z2 with |z1 − z2| <
4
5r, and if the line joining the centres of the circles cuts C at z and C ′ at z′, then |z − z′| <
1
2 |z1 − z2|. �

Lemma 62 Let r0 be as in Lemma 6, and t as in Lemma 7. Let z1, z2 be distinct points of J such

that

γ := max
k=1,2

|u− zk| < 2
5r0.

Then γ > ρ(u, J).

Proof. Let zk = f(eiθk), where θk ∈ [0, 2π), and assume without loss of generality that θ1 < θ2.

Choose points w,w′ on opposite sides of the line joining z1 and z2, such that

|w − zk| =
∣∣w′ − zk∣∣ = r0 (k = 1, 2).

Denote by C,C ′ the circles bounding B(w, r0) and B(w′, r0) respectively. It follows from our choice

of r0 and Lemma 5 that for all θ ∈ (θ1, θ2),

max
{∣∣∣f(eiθ)− w

∣∣∣ , ∣∣∣f(eiθ)− w′
∣∣∣} < r0.

Let z be the point in which [w,w′] intersects C. Since z is bounded away from z1 and z2, and, by

(1), it is distinct from each point of f((θ1, θ2)), it follows by continuity that z is distinct from each

point of f([θ1, θ2]). Now, this set is compact, since the mapping θ 7→ f(θ) is uniformly continuous

on R and the mapping f(θ) 7→ θ is uniformly continuous on f([θ1, θ2]). It follows from ([BB], Ch.

4, Lemma (3.8)) that z is bounded away from f([θ1, θ2]). Similarly, the point z′ in which [w,w′]
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intersects C ′ is bounded away from f([θ1, θ2]). Hence

0 < t := 1
6 min

{
γ, ρ(z, f([θ1, θ2]) ), ρ(z′, f([θ1, θ2]) )

}
.

Let L be the line joining w and w′. By IVT, there exist θ ∈ (θ1, θ2) and ζ ∈ L such that
∣∣f(eiθ)− ζ

∣∣ <
t. Then

|ζ − z| ≥
∣∣∣z − f(eiθ)

∣∣∣− ∣∣∣f(eiθ)− ζ
∣∣∣ > 5t, (6.5)

so either ζ ∈ −→aw or ζ ∈
−→
bw′, where

a = z + 5t(w − z),

b = z + 5t(w′ − z).

But if ζ ∈
−→
bw′, then B(ζ, t) is disjoint from B(w, r0) ∩ B(w′, r0), which is absurd since f(θ) ∈

B(w, r0)∩B(w′, r0). Hence ζ ∈ −→aw ⊂ −→zw. A similar argument shows that |ζ − z′| > 5t and ζ ∈
−−→
z′w′.

Now,

|z1 − z2| ≤ |u− z1|+ |u− z2| < 4
5r0,

so, by Lemma 8,

0 < s := 1
2

(
1
2 |z1 − z2| −

∣∣z − z′∣∣) .
Hence there exists ε as in Lemma 7 such that

0 < ε < min {t, s} .

Either ρ(u, L) > 0, in which case |u− z1| 6= |u− z2| and the desired conclusion readily follows, or

else ρ(u, L) < ε. In the latter case we show that |u− ζ| < |u− z1| . To this end, choose v ∈ L such

that |u− v| < ε. Then either v ∈ −→zw or else v ∈
−−→
z′w′. Suppose the first alternative obtains. Note

that, in view of (2) and the fact that w,w′ are on opposite sides of z1z2, z is on the minor arc of
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C joining z1 and z2. Thus if |v − z| > r0 + t, then

|u− z1| ≥ |v − z1| − |u− v|

> r0 + ε− ε

= r0,

a contradiction. Hence |v − z| ≤ r0 + t. Now, either |v − z| > r0− 2t or |v − z| < r0− t. In the first

case we have |v − w| < 2t,

|u− z1| ≥ |v − z1| − |u− v|

≥ |w − z1| − |v − w| − ε

> r0 − 2t− t

= r0 − 3t.

Hence

|u− ζ| ≤ |v − ζ|+ |u− v|

< |v − z| − |z − ζ|+ ε

< r0 + t− 5t+ t (by (6.6))

= r0 − 3t

< |u− z1| .

In the case |v − z| < r0 − t, either |v − ζ| < γ − 2t and therefore

|u− ζ| < γ − 2t+ ε < γ,

or else, as we may assume, v 6= ζ. We now have two subcases to consider.
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Subcase 1: v lies strictly between ζ and w on the ray −→zw. Then

|v − z1| ≥ |w − z1| − |w − v|

= r0 − (|w − z| − |z − ζ| − |ζ − v|)

= |z − ζ|+ |ζ − v|

> 5t+ |ζ − v| ,

and therefore

|u− ζ| < |v − ζ|+ ε

< |v − z1| − 5t+ t

< |u− z1|+ ε− 4t

< |u− z1| − 3t.

Subcase 2: v lies strictly between z and ζ on the ray −→zw. Then v, ζ lie on the interior of the

segment [z, z′] and, by elementary geometry, |v − z1| ≥ 1
2 |z1 − z2| ; whence

|u− ζ| < |v − ζ|+ ε

≤
∣∣z − z′∣∣+ s

= 1
2 |z1 − z2| − s

≤ |v − z1| − s

< |u− z1|+ ε− s

< |u− z1| .

This completes the proof when v ∈ −→zw. The proof when v ∈
−−→
z′w′ is similar. �
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Proof of the Main Theorem

We are now able to prove our main theorem. To this end, assume that the hypotheses of the

theorem are satisfied, let r0 be as in Lemma 6. Consider u ∈ R2 such that

ρ(u, J) < r := min
{

2
5r0,

R
8

}
.

Since, by Lemma 4, diam(J) > R/2, there exists φ ∈ [0, 2π) such that
∣∣u− f(eiφ)

∣∣ > R/4; replacing

f by the mapping θ 7→ f(ei(φ−θ)), we may assume that |u− f(1)| > R/4. Using Lemma 6, choose

θ1, θ
′
1, and r1 such that

0 < θ1 < θ′1 < 2π,

ρ(u, J) < r1 < min
{

2
5r0,

R
8 , ρ(u, J) + 1

}
,

and

S1 :=
{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r1

}
=
[
θ1, θ

′
1

]
.

Suppose that, for some n ≥ 1, we have constructed θn, θ
′
n, and rn such that

1. 0 < θn < θ′n < 2π,

2. ρ(u, J) < rn < min
{

2
5r0, rn−1, ρ(u, J) + 1

n

}
,

3. Sn :=
{
θ ∈ [0, 2π) :

∣∣f(eiθ)− u
∣∣ ≤ rn} =

[
θn, θ

′
n

]
, and

4. θ′n − θn ≤
(

2
3

)n−1 (
θ′1 − θ1

)
.

Let

z1 = f

(
e

i
(

1
3 θn+

2
3 θ

′
n

))
,

z2 = f

(
e

i
(

2
3 θn+

1
3 θ

′
n

))

Writing

γ := max {|u− z1| , |u− z2|} ,
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we see from properties 2 and 3 that γ ≤ rn < 2
5r0; whence, by Lemma 9, ρ(u, J) < γ. Using

Lemma 6 again, we can now find rn+1, θn+1, and θ′n+1 such that 0 < θn+1 < θ′n+1 < 2π,

ρ(u, J) < rn+1 < min
{
rn, γ, ρ(u, J) + 1

n+1

}

and

Sn+1 :=
{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ rn+1

}
=
[
θn+1, θ

′
n+1

]
.

This completes the inductive construction of sequences (θn), (θn) and (rn) satisfying properties 1-4.

Now, (Sn) is a descending sequence of compact intervals, and, by property 4, the length of

Sn converges to 0. Hence
⋂∞
n=1 Sn consists of a single point θ∞. It follows from properties 2 and

3 that |u− v| = ρ(u, J), where v = f(eiθ∞). If z ∈ J∼{v} , then either |u− z| > ρ(u, J) or else

|u− z| < 2
5r0; in the latter case we see from Lemma 9 that

max {|u− v| , |u− z|} > ρ(u, J)

and therefore that |u− z| > ρ(u, J). �
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Chapter 7

Best Approximations on a Jordan

Curve

The constructive proof of Theorem 1 in Chapter 6 requires that for each point sufficiently close to

the boundary ∂Ω of the domain Ω there exists a unique closest point on ∂Ω. In this chapter, we

give conditions under which such a unique closest point on ∂Ω exists. The result here deals with

domains in R2 only.

The reader may be surprised to find that the proofs leading to the solution of this seemingly

simple problem can be so tricky even in R2. Note that, for a given point u of the plane, it is a

serious constructive problem to establish the existence of a point v on a compact curve J such that

‖u− v‖ = ρ(u, J) : for there is a recursive example showing that the classical result that a con-

tinuous, real-valued function on a compact set attains its minimum is essentially nonconstructive;

see [BR], Chapter 6. The corresponding problem in higher dimensional space appears to be much

more complicated.

Statement of The Problem

By the plane we mean either C or R2, which we identify with each other in the usual way. We

denote by B(a, r) (respectively, B(a, r)) the open (respectively, closed) ball with centre a and radius

r in the plane.

By a Jordan curve we mean a one-one, uniformly continuous mapping f : T→ R2 with uni-
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formly continuous inverse, where T is the unit circle in R2. We then identify f with its range J in

the plane and with the mapping θ 7→ f(eiθ) of [0, 2π) onto J. We give J the orientation in which

z1 ≡ f(eiθ1) precedes z2 ≡ f(eiθ2) on J if θ1 ≤ θ2, and we say that f(eiθ) is between z1 and z2 if

θ1 < θ < θ2. We write

J(z1, z2) ≡
{
f(eiθ) : θ1 ≤ θ ≤ θ2

}
,

which we denote by J(θ1, θ2) when the connection between zk and θk is clear from the context.

The Jordan curve theorem states, roughly, that the set of points u such that ρ(u, J) > 0 is the

union of two components, the inside and the outside of J. If u belongs to the inside of J and v to

the outside, we say that u and v are on opposite sides of J. For details of the Jordan curve theorem

and its proof see [BJ].

It seems intuitively clear that if J is a Jordan curve whose curvature is bounded away from

zero, then there is a neighbourhood of J within which any point has a unique closest point on

the curve. In what follows we justify that intuition constructively. For other work on constructive

approximation theory, see [DB2, DB2] and [DB3, DB3].]

Our aim in this chapter is to prove the following approximation theorem.

Theorem. Let J be a Jordan curve that satisfies the twin tangent ball condition:

There exists R > 0 such that for each z ∈ J there exist points az, bz on opposite sides

of J, such that

B(az, R) ∩ J = {z} = B(bz, R) ∩ J.

Then there exists r0 > 0 such that any point u of the plane that lies within r0 of J has a unique

closest point on J ; more precisely, if ρ(u, J) < r0, then there exists v ∈ J such that |u− v| < |u− z|

for all z ∈ J∼{v} .

If J has continuous curvature, then the twin tangent ball condition implies that the radius of

curvature of J at any point is at most R. To prove this, let P be a point on J. Suppose that the

curvature of J at P is bigger than 1
R . Let C be the circle that is tangent to J at P and has radius

R. After reparametrization, we may assume that J and C are represented, locally, by y = f(x) and
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y = C(x) respectively, and that P = f(x0) = C(x0). Then we have

|f ′′ (x0)|(
1 + f ′ (x0)2

)3/2
>

1

R
=

|C ′′ (x0)|(
1 + C ′ (x0)2

)3/2

Since J and C are tangent at P , we can also arrange the coordinate system so that f ′ (x0) =

C ′ (x0) = 0. Thus we get |f ′′ (x0)| > |C ′′ (x0)| . We may suppose that the circle C (x) is the one that

is below J—that is, that C(x) < J(x) for x close to x0—so that C ′′ (x) < 0 in a neighbourhood of

x0. Then either f ′′ (x0) > −C ′′ (x0) or f ′′ (x0) < C ′′ (x0) . Since f (x0) = C (x0) = P, we now see

that f (x) < C (x) for all x 6= x0 in some neighbourhood of x0. This contradicts the assumption

that C is below J around x0. Thus the curvature of J at P is no bigger than 1
R .

The proof of our theorem depends on a long series of lemmas, which we develop in the next

section. The key steps are Lemma 5 and Lemma 9. Lemma 5 guarantees that if a point w is close

to J, then the set

S (w, δ) ≡
{
θ :
∥∥∥w − f (eiθ

)∥∥∥ ≤ δ}
is a compact interval [θ1, θ2 ] for almost all δ for which S (w, δ) is inhabited. Intuitively this means

that the curve does not enter the circle B (w, δ) twice. In other words, the part of the curve that is

inside the circle B (w, δ) is path connected. The constructive uniqueness result of Lemma 9 allows

us to construct a convergent minimizing sequence by an approximate interval halving technique.

Our work is based on ideas used in [DB3, DB3]; see also [BB, BB], Chapter 7.

Preliminary Results

Throughout this section, J is a Jordan curve satisfying the hypotheses of our theorem.

We begin with two elementary, though nontrivial, lemmas in plane Euclidean geometry. We

denote by z1z2 the line joining the two distinct points z1, z2 of the plane. By the inclination of two

intersecting lines we mean the smallest angle between those lines.

Lemma 1. For i = 0, 1, 2 let ci, c
′
i be points in the plane such that |ci − c′i| = 2R > 0, and let

zi = 1
2(ci + c′i). There exists t > 0 such that if

• min {|zi − c0| , |zi − c′0|} > R for i ∈ {1, 2} ,
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• z1 6= z2,

• z1z2 is parallel to c0c′0, and

• max {|z1 − z0| , |z2 − z0|} < t,

then there exist distinct i, j such that

either B(ci, R) intersects both B(cj , R) and B(c′j , R)

or else B(c′i, R) intersects both B(cj , R) and B(c′j , R).

Proof. Write zk = (xk, yk). We begin with two elementary geometric observations.

(a) If z0 = z1 = 0, c0c′0 is the imaginary axis, 0 < θ < π
2 , and the inclination of c1c′1 to the

imaginary axis is θ, then

max
{
|c1 − c0| ,

∣∣c1 − c′0
∣∣} < 2R cos θ2 and

max
{∣∣c′1 − c0

∣∣ , ∣∣c′1 − c′0∣∣} < 2R cos θ2 .

(b) If z1 = 0, x2 = 0, |y2| < 3R/2, and the inclinations of c1c′1 and c1c′1 to the imaginary axis are

at most

α ≡ cos−1
(

3
4

)
,

then either B(c1, R) intersects both B(c2, R) and B(c′2, R) or B(c′1, R) intersects both B(c2, R)

and B(c′2, R).

By observation (a), if z1 = z0 = 0 and the inclination of c1c′1 to the imaginary axis is greater than

α
2 , then

max
{
|c1 − c0| ,

∣∣c1 − c′0
∣∣} < 2R− ε, (7.1)

max
{∣∣c′1 − c0

∣∣ , ∣∣c′1 − c′0∣∣} < 2R− ε, (7.2)

where ε = 2R
(
1− cos α4

)
. By continuity, there exists t > 0 such that if z0 = 0, |z1| < t, and∣∣θ − π

2

∣∣ > α
2 , then (6.1) and (6.2) hold.
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Now consider points zk satisfying the bulleted conditions of the statement of the lemma. For

convenience, we may assume that z0 = 0, c0 = R, and c′0 = −R, so that x1 = x2. Either the

inclinations of c1c′1 and c2c′2 to the imaginary axis are less than α, or else the inclination of one of

these two lines, say c1c′1, is greater than α
2 . In the first case, it follows from observation (b) that

either B(c1, R) intersects both B(c2, R) and B(c′2, R) or else B(c′1, R) intersects both B(c2, R) and

B(c′2, R). In the second case, (6.1) holds and so B(c1, R) intersects both B(c0, R) and B(c′0, R). �

Lemma 2. Let B1, B2 be two closed balls of radius R that are tangent at z. Let ζ, ζ ′ be points of

the plane that lie outside B1 and B2, and on opposite sides of the line joining the centres of B1

and B2, such that

max
{
|ζ − z| ,

∣∣ζ ′ − z∣∣} < R. (*)

If 0 < r < R, then z lies in the interior of any circle of radius r that passes through both ζ and

ζ ′, and hence in the interior of any ball of radius r that contains ζ and ζ ′.

Proof. We begin with another elementary geometrical observation..

If A,B,C are vertices of a nondegenerate triangle such that the sum θ of the angles

AB̂C and AĈB is less than π
2 (radians), then the radius of the unique circle that passes

through A,B,C is |BC|2 sin θ .

To prove the lemma, we may assume that z = 0 and that the centres of B1, B2 are (0,−R), (0, R)

respectively. Let w be the unique point in which the imaginary axis meets the segment
[
ζ, ζ ′

]
,

let 0 < r < R, and let ζ, ζ ′ lie on the circle with centre ζ0 and radius r. Choose δ > 0 such that

B(w, δ) ⊂ B(ζ0, r). Either |w| < δ, in which case 0 ∈ B(w, δ) ⊂ B(ζ0, r), or else |w| > 0. In the

latter case, take, for example, Imw < 0. In view of (*), we see that −R < Imw < 0 and that the

interior of the segment
[
ζ, ζ ′

]
meets the boundary of B1 in two points ζ1, ζ

′
1, where ζ1 is between

ζ and ζ ′1. Let A ≡ (0, a) and B ≡ (0, b) be the two points in which the boundary of B(ζ0, r) meets

the imaginary axis, where a > Imw > b. Let θ be the sum of the angles Aζ̂ζ ′ and Aζ̂ ′ζ; and φ

the sum of the angles 0ζ̂1ζ
′
1 and 0ζ̂ ′1ζ1. Noting that

∣∣ζ1 − ζ ′1
∣∣ < ∣∣ζ − ζ ′∣∣ , choose ε > 0 such that if

Imw < a < ε, then θ ≤ φ so that

sin θ

sinφ
≤ 1 <

∣∣ζ − ζ ′∣∣∣∣ζ1 − ζ ′1
∣∣ .
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Since, by the observation at the beginning of the proof,

∣∣ζ − ζ ′∣∣
2 sin θ

= r < R =

∣∣ζ1 − ζ ′1
∣∣

2 sinφ
,

we must have a ≥ ε. Thus 0 is in the interior of the segment [a, b] and is therefore in B(ζ0, r). �

Before applying Lemma 1, we note that, although the full intermediate value theorem does

not hold constructively (see page 8 of [BB]), there are several useful constructive versions of that

classical theorem, including the following one:

IVT Let f : [0, 1] → R be a continuous function with f(0) < f(1). There exists a

sequence (yn) in [f(0), f(1)] such that if f(0) ≤ y ≤ f(1) and y 6= yn for each n, then

there exists x ∈ [0, 1] with f(x) = y ([BB], page 63, Exercise 14).

Lemma 3. Let x, y, z be points of J such that z lies between x and y on J , and suppose that

[x, y] is bounded away from the line joining az and bz. Then |J(x, y)| ≥ diam(J(x, y)) > R
2 .

Proof. It is clear that |J(x, y)| ≥ diam(J(x, y)). We may assume that z = 0, az = −R, and

bz = R. Since

0 < s ≡ inf {|ξ − ζ| : ξ ∈ [x, y] , Re(ζ) = 0} ,

we may further assume that [x, y] lies in the region Re(ζ) > 0. Either max {|x| , |y|} > R/2 and

therefore diam(J(x, y)) > R
2 , or else max {|x| , |y|} < R. In the latter case, suppose that J(x, y)

does not intersect the region

D ≡ {ζ : Im(ζ) > R} ∪ {ζ : Im(ζ) < −R} .

With t as in Lemma 1, we now use IVT to find λ ∈ (0, t) such that there exists z1 = (x1, y1)

between x and z on J with |z1| < t and y1 = λ, and there exists z2 = (x2, y2) between z and

y on J such that |z2| < t and y2 = λ. Taking z0 = 0 in Lemma 1, we see that one of the balls

B(azi , R), B(bzi , R) intersects both the balls B(azj , R), B(bzj , R) and therefore intersects both the

inside and the outside of J. Since this is absurd, we conclude that J(x, y) intersects the region

{ζ : Im(ζ) > R/2} ∪ {ζ : Im(ζ) < −R/2}
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and hence that diam(J(x, y)) > R
2 . �

Lemma 4. For each α ∈ [0, π) there exists β with 0 < β < R such that if 0 < r ≤ β, w ∈

R2, α ≤ θ1 ≤ θ2 ≤ 2π − α, and
∣∣f(eiθk)− w

∣∣ ≤ r (k = 1, 2), then
∣∣f(eiθ)− w

∣∣ < r for all θ in the

open interval (θ1, θ2) .

Proof. We first observe that f(eiθ) 7→ θ is a uniformly continuous mapping of f([α, 2π−α]) onto

[α, 2π − α]. As J is differentiable, it follows that there exists β such that if α ≤ θ ≤ θ′ < 2π − α

and
∣∣∣f(eiθ)− f(eiθ′)

∣∣∣ < 2β, then
∣∣θ′ − θ∣∣ = θ′ − θ is small enough and therefore

∣∣∣J(eiθ, eiθ′)
∣∣∣ =

∫ θ′

θ

(
1 + f ′2

) 1
2 dθ < R/2.

Let w, r, θ0, θ1, θ2 be as in the hypotheses, and write zk ≡ f(eiθk). Let θ1 < θ < θ2 and z = f(eiθ);

then z 6= z1, z2. Define

s ≡ inf {|ξ − ζ| : ξ ∈ [z1, z2] , ζ ∈M} ,

where M is the line joining az and bz. Then

|z1 − z2| ≤ |z1 − w|+ |z2 − w| ≤ 2r ≤ 2β,

so |J(z1, z2)| < R/2, by our choice of β, and it follows from Lemma 3 that s = 0. Moreover,

|z1 − z| ≤ |J(z1, z)| ≤ |J(z1, z2)| < R/2,

so as z1 is distinct from z and lies outside the balls B(az, R) and B(bz, R), it is a positive distance

from M. Similarly, |z2 − z| < R/2 and z2 is a positive distance from M. Since s = 0, z1 and z2 lie

on opposite sides of M ; it follows from Lemma 2 that |z − w| < r. �

Let ω be the modulus of continuity for the mapping θ 7→ f(eiθ) on R; so for each ε > 0, if∣∣∣f(eiθ)− f(eiθ′)
∣∣∣ > ε, then

∣∣θ − θ′∣∣ ≥ ω(ε). In the remainder of this paper, r0 will be the positive

number β corresponding to α = ω(R/8) in Lemma 4.

Lemma 5. If ρ(u, J) < min {r0, R/8} and |u− f(1)| > R
4 , then for all but countably many r
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with

ρ(u, J) < r < min {r0, R/8} (1)

there exist θ1, θ2 such that 0 < θ1 < θ2 < 2π and

{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r} = [θ1, θ2] .

Proof. If θ ∈ [0, 2π) and ∣∣∣f(eiθ)− u
∣∣∣ ≤ R

8 , (2)

then ∣∣∣f(eiθ)− f(1)
∣∣∣ ≥ |u− f(1)| −

∣∣∣f(eiθ)− u
∣∣∣ > R

8

and therefore α ≤ θ ≤ 2π − α, where α = ω(R/8). Since f is uniformly continuous on [α, 2π − α],

for all but countably many r with

ρ(u, J) < r < min {r0, R/8} ,

the set

Sr ≡
{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r}

=
{
θ ∈ [α, 2π − α] :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r}

is compact. For such r, let θ1 ≡ inf Sr and θ2 ≡ supSr. In view of (1) and IVT, we can find

θ, θ′ ∈ [0, 2π) such that ∣∣∣f(eiθ)− u
∣∣∣ < ∣∣∣f(eiθ′)− u

∣∣∣ < r;

so θ1 < θ2. Using Lemma 4, we now see that Sr = [θ1, θ2]. �

If a, b are two distinct points of the plane, then the ray from a towards b is the set

−→
ab ≡ {(1− t)a+ tb : t ≥ 0} .

The proofs of the following two lemmas are simple exercises in geometry and trigonometry, and
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are omitted.

Lemma 6. Let z1, z2 be distinct points on the circle with centre w and radius r0 > 0, let z be

the midpoint of the minor arc joining z1 and z2, and let t > 0. Then there exists ε > 0 such that

if v ∈ −→zw and |v − z| > r0 + t, then |v − z1| > r0 + ε. �

Lemma 7. If C,C ′ are two circles of radius r that intersect in distinct points z1, z2 with

|z1 − z2| < 4
5r, and if the line joining the centres of the circles cuts C at z and C ′ at z′, then

|z − z′| < 1
2 |z1 − z2|. �

Lemma 8. Let r0 be as in Lemma 5, and t as in Lemma 6. Let z1, z2 be distinct points of J

such that

γ ≡ max
k=1,2

|u− zk| < 2
5r0.

Then γ > ρ(u, J).

Proof. Let zk = f(eiθk), where θk ∈ [0, 2π), and assume without loss of generality that θ1 < θ2.

Choose points w,w′ on opposite sides of the line joining z1 and z2, such that

|w − zk| =
∣∣w′ − zk∣∣ = r0 (k = 1, 2).

Denote by C,C ′ the circles bounding B(w, r0) and B(w′, r0) respectively. It follows from our choice

of r0 and Lemma 4 that for all θ ∈ (θ1, θ2),

max
{∣∣∣f(eiθ)− w

∣∣∣ , ∣∣∣f(eiθ)− w′
∣∣∣} < r0.

Let z be the point in which [w,w′] intersects C. Since z is bounded away from z1 and z2, and, by

(1), it is distinct from each point of f((θ1, θ2)), it follows by continuity that z is distinct from each

point of f([θ1, θ2]). Now, this set is compact, since the mapping θ 7→ f(θ) is uniformly continuous

on R and the mapping f(θ) 7→ θ is uniformly continuous on f([θ1, θ2]). It follows from ([BB], Ch.

4, Lemma (3.8)) that z is bounded away from f([θ1, θ2]). Similarly, the point z′ in which [w,w′]

intersects C ′ is bounded away from f([θ1, θ2]). Hence

0 < t ≡ 1
6 min

{
γ, ρ(z, f([θ1, θ2]) ), ρ(z′, f([θ1, θ2]) )

}
.
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Let L be the line joining w and w′. By IVT, there exist θ ∈ (θ1, θ2) and ζ ∈ L such that
∣∣f(eiθ)− ζ

∣∣ <
t. Then

|ζ − z| ≥
∣∣∣z − f(eiθ)

∣∣∣− ∣∣∣f(eiθ)− ζ
∣∣∣ > 5t, (2)

so either ζ ∈ −→aw or ζ ∈
−→
bw′, where

a = z + 5t(w − z),

b = z + 5t(w′ − z).

But if ζ ∈
−→
bw′, then B(ζ, t) is disjoint from B(w, r0) ∩ B(w′, r0), which is absurd since f(θ) ∈

B(w, r0)∩B(w′, r0). Hence ζ ∈ −→aw ⊂ −→zw. A similar argument shows that |ζ − z′| > 5t and ζ ∈
−−→
z′w′.

Now,

|z1 − z2| ≤ |u− z1|+ |u− z2| < 4
5r0,

so, by Lemma 7,

0 < s ≡ 1
2

(
1
2 |z1 − z2| −

∣∣z − z′∣∣) .
Hence there exists ε as in Lemma 6 such that

0 < ε < min {t, s} .

Either ρ(u, L) > 0, in which case |u− z1| 6= |u− z2| and the desired conclusion readily follows, or

else ρ(u, L) < ε. In the latter case we show that |u− ζ| < |u− z1| . To this end, choose v ∈ L such

that |u− v| < ε. Then either v ∈ −→zw or else v ∈
−−→
z′w′. Suppose the first alternative obtains. Note

that, in view of (2) and the fact that w,w′ are on opposite sides of z1z2, z is on the minor arc of

C joining z1 and z2. Thus if |v − z| > r0 + t, then

|u− z1| ≥ |v − z1| − |u− v|

> r0 + ε− ε

= r0,

a contradiction. Hence |v − z| ≤ r0 + t. Now, either |v − z| > r0− 2t or |v − z| < r0− t. In the first
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case we have |v − w| < 2t,

|u− z1| ≥ |v − z1| − |u− v|

≥ |w − z1| − |v − w| − ε

> r0 − 2t− t

= r0 − 3t.

Hence

|u− ζ| ≤ |v − ζ|+ |u− v|

< |v − z| − |z − ζ|+ ε

< r0 + t− 5t+ t (by (2))

= r0 − 3t

< |u− z1| .

In the case |v − z| < r0 − t, either |v − ζ| < γ − 2t and therefore

|u− ζ| < γ − 2t+ ε < γ,

or else, as we may assume, v 6= ζ. We now have two subcases to consider.

Subcase 1: v lies strictly between ζ and w on the ray −→zw. Then

|v − z1| ≥ |w − z1| − |w − v|

= r0 − (|w − z| − |z − ζ| − |ζ − v|)

= |z − ζ|+ |ζ − v|

> 5t+ |ζ − v| ,
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and therefore

|u− ζ| < |v − ζ|+ ε

< |v − z1| − 5t+ t

< |u− z1|+ ε− 4t

< |u− z1| − 3t.

Subcase 2: v lies strictly between z and ζ on the ray −→zw. Then v, ζ lie on the interior of the

segment [z, z′] and, by elementary geometry, |v − z1| ≥ 1
2 |z1 − z2| ; whence

|u− ζ| < |v − ζ|+ ε

≤
∣∣z − z′∣∣+ s

= 1
2 |z1 − z2| − s

≤ |v − z1| − s

< |u− z1|+ ε− s

< |u− z1| .

This completes the proof when v ∈ −→zw. The proof when v ∈
−−→
z′w′ is similar. �

Proof of the Main Theorem

We are now able to prove our main theorem. To this end, assume that the hypotheses of the

theorem are satisfied, let r0 be as in Lemma 5. Consider u ∈ R2 such that

ρ(u, J) < r ≡ min
{

2
5r0,

R
8

}
.

Since, by Lemma 3, diam(J) > R/2, there exists φ ∈ [0, 2π) such that
∣∣u− f(eiφ)

∣∣ > R/4; replacing

f by the mapping θ 7→ f(ei(φ−θ)), we may assume that |u− f(1)| > R/4. Using Lemma 5, choose

θ1, θ
′
1, and r1 such that

0 < θ1 < θ′1 < 2π,
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ρ(u, J) < r1 < min
{

2
5r0,

R
8 , ρ(u, J) + 1

}
,

and

S1 ≡
{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ r1

}
=
[
θ1, θ

′
1

]
.

Suppose that, for some n ≥ 1, we have constructed θn, θ
′
n, and rn such that

1. 0 < θn < θ′n < 2π,

2. ρ(u, J) < rn < min
{

2
5r0, rn−1, ρ(u, J) + 1

n

}
,

3. Sn ≡
{
θ ∈ [0, 2π) :

∣∣f(eiθ)− u
∣∣ ≤ rn} =

[
θn, θ

′
n

]
, and

4. θ′n − θn ≤
(

2
3

)n−1 (
θ′1 − θ1

)
.

Let

z1 = f

(
e

i
(

1
3 θn+

2
3 θ

′
n

))
,

z2 = f

(
e

i
(

2
3 θn+

1
3 θ

′
n

))

Writing

γ ≡ max {|u− z1| , |u− z2|} ,

we see from properties 2 and 3 that γ ≤ rn < 2
5r0; whence, by Lemma 8, ρ(u, J) < γ. Using Lemma

5 again, we can now find rn+1, θn+1, and θ′n+1 such that 0 < θn+1 < θ′n+1 < 2π,

ρ(u, J) < rn+1 < min
{
rn, γ, ρ(u, J) + 1

n+1

}

and

Sn+1 ≡
{
θ ∈ [0, 2π) :

∣∣∣f(eiθ)− u
∣∣∣ ≤ rn+1

}
=
[
θn+1, θ

′
n+1

]
.

This completes the inductive construction of sequences (θn), (θn) and (rn) satisfying properties 1-4.

Now, (Sn) is a descending sequence of compact intervals, and, by property 4, the length of

Sn converges to 0. Hence
⋂∞
n=1 Sn consists of a single point θ∞. It follows from properties 2 and

3 that |u− v| = ρ(u, J), where v = f(eiθ∞). If z ∈ J∼{v} , then either |u− z| > ρ(u, J) or else
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|u− z| < 2
5r0; in the latter case we see from Lemma 8 that

max {|u− v| , |u− z|} > ρ(u, J)

and therefore that |u− z| > ρ(u, J). �
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