EXTERIOR - A MAPLE 10/11/12 library for computations in exterior calculus

Mark Hickman
Department of Mathematics \& Statistics
University of Canterbury
M.Hickman@math.canterbury.ac.nz

$7^{\text {th }}$ Australia - New Zealand Mathematics Convention Christchurch
December 2008

Introduction

Problem

When are two curves the same?

Introduction

Problem

When are two curves the same?

- What do we mean by the same?

InTRODUCTION

Problem

When are two curves the same?

- What do we mean by the same?
- Is the second curve the image of the first curve but viewed from a different position?

MATHEMATICAL FORMULATION

- Group of allowed transformations, G.

MATHEMATICAL FORMULATION

- Group of allowed transformations, G.
- Action of G on \mathbf{R}^{2} (in this case) $G \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$

$$
(g, x) \mapsto g \cdot x
$$

MATHEMATICAL FORMULATION

- Group of allowed transformations, G.
- Action of G on \mathbf{R}^{2} (in this case) $G \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$

$$
(g, x) \mapsto g \cdot x
$$

- Two curves C and \tilde{C} are equivalent (under G) if there exists $g \in G$ such that

$$
\mathrm{g} \cdot \mathrm{C}=\tilde{\mathrm{C}}
$$

MATHEMATICAL FORMULATION

- Group of allowed transformations, G.
- Action of G on \mathbf{R}^{2} (in this case) $G \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$

$$
(g, x) \mapsto g \cdot x
$$

- Two curves C and \tilde{C} are equivalent (under G) if there exists $g \in G$ such that

$$
\mathrm{g} \cdot \mathrm{C}=\tilde{\mathrm{C}}
$$

- For image recognition applications, G is the (Lie) group of projective transformations (or a subgroup of this group). The action on \mathbf{R}^{2} is given by

$$
(x, u) \mapsto\left(\frac{\alpha x+\beta u+\gamma}{\rho x+\sigma u+\tau}, \frac{\lambda x+\mu u+v}{\rho x+\sigma u+\tau}\right)
$$

with

$$
\operatorname{det}\left[\begin{array}{lll}
\alpha & \beta & \gamma \\
\lambda & \mu & \nu \\
\rho & \sigma & \tau
\end{array}\right]=1
$$

MATHEMATICAL SOLUTION IN A NUTSHELL

- É. Cartan's method of equivalence (1922).

MATHEMATICAL SOLUTION IN A NUTSHELL

- É. Cartan's method of equivalence (1922).
- Construct a lifted moving coframe.

MATHEMATICAL SOLUTION IN A NUTSHELL

- É. Cartan's method of equivalence (1922).
- Construct a lifted moving coframe.
- Prolongation and absorption of this coframe to obtain an involutive coframe.

MATHEMATICAL SOLUTION IN A NUTSHELL

- É. Cartan's method of equivalence (1922).
- Construct a lifted moving coframe.
- Prolongation and absorption of this coframe to obtain an involutive coframe.
- Normalize to remove remaining group parameters.

MATHEMATICAL SOLUTION IN A NUTSHELL

- É. Cartan's method of equivalence (1922).
- Construct a lifted moving coframe.
- Prolongation and absorption of this coframe to obtain an involutive coframe.
- Normalize to remove remaining group parameters.
- Obtain (eventually!) the differential invariants.

MATHEMATICAL SOLUTION IN A NUTSHELL

- É. Cartan's method of equivalence (1922).
- Construct a lifted moving coframe.
- Prolongation and absorption of this coframe to obtain an involutive coframe.
- Normalize to remove remaining group parameters.
- Obtain (eventually!) the differential invariants.
- Two curves are equivalent if (and only if) their differential invariants agree.

BUT

- Why not?
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- The differential invariants may be of little use in practice.
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- The differential invariants may be of little use in practice.
- For the projective group, the invariants depend on derivatives up to order 7 .
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- The differential invariants may be of little use in practice.
- For the projective group, the invariants depend on derivatives up to order 7 .
- Resolution
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- The differential invariants may be of little use in practice.
- For the projective group, the invariants depend on derivatives up to order 7 .
- Resolution
- Use a algebraic computing package (MAPLE in this case).
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- The differential invariants may be of little use in practice.
- For the projective group, the invariants depend on derivatives up to order 7 .
- Resolution
- Use a algebraic computing package (MAPLE in this case).
- The computations are challenging for computer algebra packages due to term explosion (far more severe than in "standard" point symmetry computations) and branching.
- Why not?
- Computing differential invariants by hand is not for the faint hearted.
- The differential invariants may be of little use in practice.
- For the projective group, the invariants depend on derivatives up to order 7 .
- Resolution
- Use a algebraic computing package (MAPLE in this case).
- The computations are challenging for computer algebra packages due to term explosion (far more severe than in "standard" point symmetry computations) and branching.
- One can reformulate the equivalence problem to yield invariants less sensitive to noise.

EXTERIOR

- Exterior is a package that runs under Maple 10, 11 or 12 that is design for computations in the exterior bundle of jet spaces.

EXTERIOR

- Exterior is a package that runs under Maple 10, 11 or 12 that is design for computations in the exterior bundle of jet spaces.
- Input and output from EXTERIOR matches "hand computations" as much as possible.

EXTERIOR

- Exterior is a package that runs under Maple 10, 11 or 12 that is design for computations in the exterior bundle of jet spaces.
- Input and output from EXTERIOR matches "hand computations" as much as possible.
- EXTERIOR is ideal for equivalence type computations (as well as Lie symmetries, Cauchy characteristics, computations).

EXTERIOR

- Exterior is a package that runs under Maple 10, 11 or 12 that is design for computations in the exterior bundle of jet spaces.
- Input and output from EXTERIOR matches "hand computations" as much as possible.
- EXTERIOR is ideal for equivalence type computations (as well as Lie symmetries, Cauchy characteristics, computations).
- EXTERIOR is not restricted to polynomial dependencies.

An EXAMPLE

Problem

Equivalence of second order ODEs

$$
u_{x x}=F\left(x, u, u_{x}\right)
$$

under fibre preserving transformations

$$
(x, u) \mapsto(f(x), g(x, u)) .
$$

- This problem illustrates the features finding the invariants of the projective group.

An Example

Problem

Equivalence of second order ODEs

$$
u_{x x}=F\left(x, u, u_{x}\right)
$$

under fibre preserving transformations

$$
(x, u) \mapsto(f(x), g(x, u))
$$

- This problem illustrates the features finding the invariants of the projective group.
- Hopefully(!) we can do this computation live in the allocated time frame.

AN EXAMPLE

- Coframe:

$$
\omega=\left[\begin{array}{c}
d u-u_{x} d x \\
d u_{x}-F d x \\
d x
\end{array}\right]
$$

AN EXAMPLE

- Coframe:

$$
\omega=\left[\begin{array}{c}
d u-u_{x} d x \\
d u_{x}-F d x \\
d x
\end{array}\right]
$$

- Group action:

$$
G=\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
0 & 0 & a_{4}
\end{array}\right]
$$

An EXAMPLE

- Coframe:

$$
\omega=\left[\begin{array}{c}
d u-u_{x} d x \\
d u_{x}-F d x \\
d x
\end{array}\right]
$$

- Group action:

$$
G=\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} & a_{3} & 0 \\
0 & 0 & a_{4}
\end{array}\right]
$$

- Lifted coframe:

$$
\theta=G \cdot \omega=\left[\begin{array}{c}
a_{1} d u-a_{1} u_{x} d x \\
a_{2} d u+a_{3} d u_{x}-\left(a_{2} u_{x}+a_{3} F\right) d x \\
a_{4} d x
\end{array}\right]
$$

An EXAMPLE

- "Absorbed" form:

$$
\mathrm{d} \theta=\left[\begin{array}{c}
\Phi_{1} \wedge \theta_{1}+\mathrm{T} \theta_{2} \wedge \theta_{3} \\
\Phi_{2} \wedge \theta_{1}+\Phi_{3} \wedge \theta_{2} \\
\Phi_{4} \wedge \theta_{3}
\end{array}\right]
$$

with

$$
\Phi=\left[\begin{array}{c}
\frac{d a_{1}}{a_{1}}-\frac{a_{2} d x}{a_{3}} \\
\frac{d a_{2}}{a_{1}}-\frac{a_{2} d a_{3}+\left(a_{2}^{2}-a_{2} a_{3} F_{u_{x}}-a_{3}^{2} F_{u}\right) d x}{a_{1} a_{3}} \\
\frac{d a_{3}}{a_{3}}+\left(\frac{a_{2}}{a_{3}}+F_{u_{x}}\right) d x \\
\frac{d a_{4}}{a_{4}}
\end{array}\right]
$$

and

$$
\mathrm{T}=-\frac{\mathrm{a}_{1}}{\mathrm{a}_{3} \mathrm{a}_{4}} .
$$

AN EXAMPLE

- Freedom in absorbed form:

$$
\Phi \rightarrow \Phi+\left[\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
x_{2,1} & x_{2,2} & 0 \\
x_{2,2} & x_{3,2} & 0 \\
0 & 0 & x_{4,3}
\end{array}\right] \theta
$$

An EXAMPLE

- Freedom in absorbed form:

$$
\Phi \rightarrow \Phi+\left[\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
x_{2,1} & x_{2,2} & 0 \\
x_{2,2} & x_{3,2} & 0 \\
0 & 0 & x_{4,3}
\end{array}\right] \theta
$$

- Normalize non-constant torsion:

$$
\mathrm{T}=-1
$$

that is,

$$
a_{3}=\frac{a_{1}}{a_{4}}
$$

An EXAMPLE

- Recompute absorbed form:

$$
\mathrm{d} \theta=\left[\begin{array}{c}
\Phi_{1} \wedge \theta_{1}-\theta_{2} \wedge \theta_{3} \\
\Phi_{2} \wedge \theta_{1}+\left(\Phi_{1}-\Phi_{3}\right) \wedge \theta_{2} \\
\Phi_{3} \wedge \theta_{3}
\end{array}\right]
$$

with

$$
\Phi=\left[\begin{array}{c}
\frac{d a_{1}}{a_{1}}-\frac{a_{2} a_{4} d x}{a_{1}} \\
\frac{1}{a_{1}^{2} a_{4}}\left(a_{1} a_{4} d a_{2}-a_{2} a_{4} d a_{1}+a_{1} a_{2} d a_{4}\right. \\
\left.-\left(a_{2}^{2} a_{4}^{2}+a_{1} a_{2} a_{4} F_{u_{x}}-a_{1}^{2} F_{u}\right) d x\right) \\
\frac{d a_{4}}{a_{4}}-\left(\frac{2 a_{2} a_{4}}{a_{1}}+F_{u_{x}}\right) d x
\end{array}\right] .
$$

AN EXAMPLE

- Reduced Cartan characters:

$$
s^{\prime}=\left[\begin{array}{lll}
3 & 0 & 0
\end{array}\right]
$$

AN EXAMPLE

- Reduced Cartan characters:

$$
s^{\prime}=\left[\begin{array}{lll}
3 & 0 & 0
\end{array}\right]
$$

- Cartan test:

System is not involutive.

An EXAMPLE

- Reduced Cartan characters:

$$
s^{\prime}=\left[\begin{array}{lll}
3 & 0 & 0
\end{array}\right]
$$

- Cartan test:

System is not involutive.

- Freedom:

$$
\Phi \rightarrow \Phi+\left[\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
x_{2,1} & x_{1,1} & 0 \\
0 & 0 & 0
\end{array}\right] \theta=\Phi+Z \theta
$$

An Example - Prolongation

- Prolonged coframe:

$$
\theta^{(1)}=\left[\begin{array}{c}
\theta \\
\Phi
\end{array}\right]
$$

An Example - Prolongation

- Prolonged coframe:

$$
\theta^{(1)}=\left[\begin{array}{c}
\theta \\
\Phi
\end{array}\right]
$$

- Prolonged action:

$$
\mathrm{G}^{(1)}=\left[\begin{array}{ll}
I & 0 \\
Z & 1
\end{array}\right]
$$

An Example - Prolongation

- Prolonged coframe:

$$
\theta^{(1)}=\left[\begin{array}{c}
\theta \\
\Phi
\end{array}\right]
$$

- Prolonged action:

$$
\mathrm{G}^{(1)}=\left[\begin{array}{ll}
1 & 0 \\
Z & 1
\end{array}\right]
$$

- Normalize non-constant torsion.

An Example - Prolongation

- Prolonged coframe:

$$
\theta^{(1)}=\left[\begin{array}{c}
\theta \\
\Phi
\end{array}\right]
$$

- Prolonged action:

$$
\mathrm{G}^{(1)}=\left[\begin{array}{ll}
1 & 0 \\
Z & 1
\end{array}\right]
$$

- Normalize non-constant torsion.
- This prolonged coframe is involutive.

AN EXAMPLE - INVARIANT COFRAME

- We have

$$
\mathrm{d} \theta^{(1)}=\left[\begin{array}{c}
\Phi_{1} \wedge \theta_{1}-\theta_{2} \wedge \theta_{3} \\
\Phi_{2} \wedge \theta_{1}+\left(\Phi_{1}-\Phi_{3}\right) \wedge \theta_{2} \\
\Phi_{3} \wedge \theta_{3} \\
\pi_{1} \wedge \theta_{1}-\Phi_{2} \wedge \theta_{3} \\
\pi_{2} \wedge \theta_{1}+\pi_{1} \wedge \theta_{2}+\Phi_{2} \wedge \Phi_{3} \\
-2 \Phi_{2} \wedge \theta_{3}
\end{array}\right]
$$

with

$$
\begin{aligned}
& \pi_{1}=\mathrm{J}_{1} \theta_{2}+\mathrm{J}_{2} \theta_{3} \\
& \pi_{2}=\mathrm{J}_{3} \theta_{3}
\end{aligned}
$$

AN EXAMPLE

- Normalize invariant structure functions to remove group parameters.

AN EXAMPLE

- Normalize invariant structure functions to remove group parameters.
- The coefficients of $\theta_{a} \wedge \theta_{b}$ on the equations for $d \theta_{c}$ are the structure invariants.

An EXAMPLE

- Normalize invariant structure functions to remove group parameters.
- The coefficients of $\theta_{a} \wedge \theta_{b}$ on the equations for $d \theta_{c}$ are the structure invariants.
- However they are not necessarily independent or in "optimal" form.

