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Phylogenetic trees

[Definition] A phylogenetic X-tree is a tree T=(V,E)

with a set X of labelled leaves, and all other vertices
unlabelled and of degree >3.

If all non-leaf vertices have degree 3 then T is binary




(Quartet trees

» A quartet tree is a binary phylogenetic tree on 4
leaves (say, X,y,w,z) written xy|wz.

x>—<W
y Z

A phylogenetic X-tree displays xy|wz if there is an edge In
T whose deletion separates {x,y} from {w,z}




Compatibility

A set Q of quartets is compatible if there is a phylogenetic
X-tree T that displays each quartet of Q

Example: Q={12|34, 13|45, 14|26}
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Deﬁning sets

If T is the only phylogenetic X-tree that displays
Q (and X= L(Q)) then we say Q defines T .

Let Q(T) be the set of all quartets displayed by (any) T.
If T is binary, then Q(T) defines T.



A necessary condition for Q to define T

Definition: For a binary phylogenetic tree T, a collection Q of
Induced quartet trees distinguishes an interior edge {u,v} of T if
there exists a quartet xy|wz in Q that looks like this:
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Observation: If Q defines T then T is binary and Q
distinguishes every interior edge of T (so |Q[>n-3).



Warning:

Q ={12]45, 56|23, 34|16} distinguishes each interior edge
of the tree:



Sufficient condition for 0 to define T:

Suppose Q I1s compatible and distinguishes every
Interior edge of a binary phylogenetic X-tree T.

Proposition: If there is an element of X that is a leaf of
every tree in Q then Q defines T.

Corollary:
There are subsets of Q(T) that define T of size |X|-3.



Character data

Type States Transitions
Morphology W(ings),—W, —W W ->W — W
Sequences AC,G,T X<y

Gene order 0:9,959,95969, - 0:94959,95069, ---
Gene content G ={9,---,.0} +0; /-g;

SINEs ... o> ge o7

Oligonucleotides ..0,0,03...0,... =1 Otol(once),1to0
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Definitions:

[Character] A character is any function
f:X—>S

[Convexity] Given a character f: X — S
and a phylogenetic X-tree T=(V,E), we say f Is convex on T
If fextendsto f:V — S
sothat f'| X =1
and {veV:f'(v)=s} isconnected forallsinS.
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Convexity: example
4~
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Biological significance of convexity

Lemma: A character y is convex on a
phylogenetic tree T if and only if y
could have evolved on T (from any
root vertex) without any reversals or

convergent evolution.
No wings No wings

(

v

wings

j wings wings

No wings
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Relevance to genomics

Eg. gene order rearrangements (n species, L genes,
random inversion model)

9:949:9,95969. -+ —> 9:9,959,95969, -

2(2n-3)(n-1)
L(L-1)

P[h=0]>1—



Equivalence of character and quartet
compatibility
C —>Q(C)

Irs

o
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D

Lemma: Each character in C is convex on T if and only if
T displays all the quartets in Q(C).

[C is “compatible”, C “defines” T iff Q(C) does]
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‘ New quartet trees from old ones

o m
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Dyadic rules for quartet trees

(Colonius and Schulze; Dekker)

(Q1): {ab|cd,ablce} F ab|de

(Q2): {ablcd,ac|de} F ab|ce, ablde, be|de.

Any phylogenetic X—tree that displays the
quartet trees on the left of (Q1) or (Q2)
also displays the corresponding quartet
tree(s) on the right.
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Dyadic quartet closure

Q=01 CQ2C  C Qy=qcly(Q)

where Q;.1 consists of Q; together with all additional quartets that can be
obtained from a pair of quartets in Q; by applying the rule(s) allowed by #.

For 8 C {1, 2}, let the dyadic quartet closure under rule @, gcl,(Q), denote
the minimal set of quartet trees that contains @ and is closed under rule (Qi)

for each z € 0.
We denote these closures with: qcl; (@), qcl5(Q), qcl; 5(Q).
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Example 1: qcl,

Definition: If Q distinguishes every interior edge of a binary
phylogenetic tree T and we can order Q so that each quartet
tree in the ordering introduces precisely one new leaf label,
we say Q has a tight ordering for T.

Example: {12[35, 13|56, 15(34}. 6>I( 3

Proposition:
If Q has a tight ordering for T, then gcl,(Q) = Q(T)
In particular Q defines T.
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Application: How many characters are needed to define a
binary phylogenetic X-tree?

For binary characters we need n-3 (n=|X]).

For r-state characters (r fixed) we need at least
(n-3)/(r-1)

What if r is not fixed?

(it is not useful to make r too large!)
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‘ I(x) := - log(Pr[y is convex on random 7°])

-log(proportion of compatible trees)

Distribution of trees according to number of character
states for 120 species
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Where do these numbers come from?

Carter et al. (1990); Erdos & Székely (1993).

# binary phylogenetic trees with n leaves,  b(n)=1x3x---x(2n-5)

# of these on which y Is convex = b(n)ﬂb(ai +1)/
- b(h—r+2)
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Edge-colouring a tree by Z, x Z,

R—, {{1,3,4,6}, {2,5}, {7.8}}

Theorem (Huber, Moulton, S, 2003)
Q(C) contains a subset with a tight ordering for T.
Thus for any tree there is a set of just four characters that defines T.
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Distances or characters?

dc(1,J) = # characters in C on which i and j differ
If C is compatible is d tree-like?

C binary — yes.
C non-binary no.

Theorem [Huson and S, 2003]:

For any two trees T,, T, there is a set of multi-state characters C such that

C defines T, (i.e. C homoplasy-free only on T,) yet
dc Is tree-like (and ultrametric!), but only on T,.
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Application 2: “Short” quartets

Qshort(T) o

Theorem (Erdos et al. 1997)
Qqor(T) contains a subset that has a tight ordering for T

(and s0 qely(Qynon(T)) =Q(T)).

The number of characters required to reconstruct (wp >1-¢) a binary
phylogenetic tree with n leaves from binary characters generated under a finite

Markov process is (for almost all trees) at most d(p)
AC)

a
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A turther application involving qcl,:
We say Q Is excess-free if |L(Q)|-3-|Q| = 0.

Proposition: Suppose a subset Q of Q(T) contains an excess-free
subset Q, that defines T. Then qcl,(Q)=Q(T).

Why? Let us say a set Q of quartet trees is “good” if (i) Q defines
a phylogenetic tree, and (1) exc(Q)=0.

Theorem [Bocker, Dress 1999] Any good set of (>2) quartets Is the
disjoint union of precisely two good sets.
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Example 2: qcl,

Definition: For a binary phylogenetic tree T, a collection Q of
displayed quartet trees is a generous cover for T if for all pairs u,v
of interior vertices of T, we have a quartet xy|wz in Q that looks like

this:
X w

\/ /
yf iL \

Theorem (Dezulian + S, 2003): If Q Is a generous cover for T,
then gcl,(T) = Q (T). Thus Q defines T.

Y4
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Application: the random cluster model

Random process on a phylogenetic tree 7. Independently cutting edges with
probability p(e) generates , by connectivity, random characters on 7.

h
7 7

Cutting the marked edges yields the character {a|bk|cghi|d|ef|j}.
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Reconstructing T from £ independent characters
(bounds and phase transition)

Theorem (Mossel and S, 2003) For random cluster model, if

O< a<p(e) <p <0.5, every binary phylogenetic tree with n leaves can be
reconstructed with probability at least 1-¢ from k indep. characters if

> c, . log(n)
a

A fast (polynomial-time) algorithm to reconstruct T from the characters.
Proof uses generous cover result. Doesn’t require 1.1.d.
Lower bound: log(n) needed (not trivial) and polynomial (n) if p>0.5.
cf. finite-state (> cg(log(zn))d“’)

a
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Relevance to finite-state spacer

Corollary:

Random walk on group with generating set of size

d >c_n®log(n)

then T can be reconstructed w.p. > 1-¢ with a
®(log(n)) number of characters
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Application 3: qcly, qcl,, qcly

[Definition] A partial X-split A|B is a partition of a
subset into two non-empty sets, A,B. A|B is displayed
by T if we can remove an edge from T to separate A
from B.

Example: {a,i}|{d,e,h} is displayed by T.

b d

31



Meacham‘s dyadic rules for splits (1983)

(M1): If AynN Ay # (0 and By N By # () then

{A1|B1, Az|Bo} = A1NAo[B1UB2, A1UAL|B1NBo.

(M2): If AynNAs #= ) and By N By # (0 and
A1 N By #= () then

{A1|B1,A2|By} = As|By U By, A; U Ap|By.

Any phylogenetic X—tree that displays the
partial X—splits on the left of (M1) or
(M2) also displays the corresponding par-
tial X—splits on the right.

32



[lustration of (M2)
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Dyadic split closure

EzzngQQQZm:SpCIQ(Z)

where >; 1 consists of }; together with all additional splits that can be
obtained from a pair of splits in >; by applying the rule(s) allowed by 6.

For & C {1,2}, let the dyadic split closure under rule 6, spcl,y(>2), denote
the minimal set of splits that contains 3} and is closed under rule (IMi) for each
1€ 0.

We denote these closures with: spcl; (X), spely(X2), spely 5(2).
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The (almost) happy marriage
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The (almost) happy marriage

> _° . Q(>2)

Theorem 2.1. Let > be a collection of partial X —splits. Then,
qcly (Q(X)) = Q(spcly (X))

for 0 ={1} and 0 = {1,2}. For 0 = {2} we have
4ely(Q(%)) € Qspel, (%))

and containment can be strict.

Computational consequences
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The closure of a set of quartets
For a compatible set Q of quartet trees, the closure cl(Q) is defined as

(@)= (] T)

T Eco(Q)

where co(@) is the set of phylogenctic trees that display each of the trees in Q.
Thus cl(Q) consists of precisely those quartet trees that are displayed by
every phylogenetic tree that displays Q.

* Rules of order <p (for any fixed p) do not suffice
compute cl(Q).

» There is a set Q that is incompatible but every strict subset Q’ is
compatible and satisfies cl(Q’)=Q’
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Simulation study

Random cluster model for binary trees on
n=8 leaves.

Main guestion: How much of cl(Q) does
gcly(Q) provide? (for  6={1}, {2}, {1.2}).
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Simulations 1 (n=8, k=16,32): absolute quartet closure gains
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Simulations 2: Relative quartet closure gains
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Simulations 3: dyadic closure of splits and quartets comparison
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An application of spcl,

Networks can represent:
Reticulate evolution (eg. hybrid species)
Phylogenetic uncertainty (i.e. possible alternative trees)

Appl“OGChi Given T,,.., T, on overlapping sets of species,
let T =3(T,)uU---UZ(T,)

construct spcl,(X) and construct the

'splits graph’ of the resulting splits that are ‘full'.
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The end

Further details

A phase transition for a random cluster model on phylogenetic trees. E. Mossel and M.
Steel, Mathematical Biosciences, 187 (2004), 189-203.

 Phylogenetic closure operations, and homoplasy-free evolution, T. Dezulian and M. Steel
Proceedings of the International Federation of Classification Societies, Chicago, 2004.

*Four characters suffice to convexly define a phylogenetic tree. K. Huber, V. Moulton and
M. Steel (2003). Submitted.

*How much can evolved characters tell us about the tree that generated them? E. Mossel
and M. Steel, Book chapter (Oxford University Press).

*Phylogenetic super-networks from partial trees. D. H. Huson, T. Dezulian, T. Kloepper
and M. A. Steel, To appear in WABI 2004.
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