Phylogenetic closure operations and homoplasy-free evolution

IFCS, Chicago, June 2004

Mike Steel
Allan Wilson Centre for Molecular Biology and Evolution
Biomathematics Research Centre
University of Canterbury, Christchurch, New Zealand

Joint work with...

Phylogenetic trees

-[Definition] A phylogenetic X-tree is a tree $T=(V, E)$
with a set X of labelled leaves, and all other vertices unlabelled and of degree ≥ 3.

■If all non-leaf vertices have degree 3 then T is binary

Quartet trees

- A quartet tree is a binary phylogenetic tree on 4 leaves (say, x, y, w, z) written $x y \mid w z$.

- A phylogenetic X-tree displays $x y \mid w z$ if there is an edge in T whose deletion separates $\{x, y\}$ from $\{w, z\}$

Compatibility

A set Q of quartets is compatible if there is a phylogenetic X-tree T that displays each quartet of Q

- Example: $Q=\{12|34,13| 45,14 \mid 26\}$

Defining sets

If T is the only phylogenetic X-tree that displays
Q (and $X=\mathrm{L}(Q)$) then we say Q defines T.

- Let $Q(T)$ be the set of all quartets displayed by (any) T. If T is binary, then $Q(T)$ defines T.

A necessary condition for Q to define T

- Definition: For a binary phylogenetic tree T, a collection Q of induced quartet trees distinguishes an interior edge $\{u, v\}$ of T if there exists a quartet $x y \mid w z$ in Q that looks like this:

Observation: If Q defines T then T is binary and Q distinguishes every interior edge of T (so $|Q| \geq n-3$).

Warning:

$Q=\{12|45,56| 23,34 \mid 16\}$ distinguishes each interior edge of the tree:

Sufficient condition for Q to define T :

- Suppose Q is compatible and distinguishes every interior edge of a binary phylogenetic X-tree T.

Proposition: If there is an element of X that is a leaf of every tree in Q then Q defines T.

Corollary:

There are subsets of $Q(T)$ that define T of size $|X|-3$.

Character data

- Type
- Morphology
- Sequences
- Gene order
- Gene content
- SINEs
- Oligonucleotides

States

$$
\begin{aligned}
& W(\text { ings }), \neg W,-W \\
& \text { A,C,G,T }
\end{aligned}
$$

$$
g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} g_{7} \ldots
$$

$$
G=\left\{g_{1}, \ldots, g_{k}\right\}
$$

...g...

$$
\ldots g_{1} g_{2} g_{3} \ldots g_{k} \ldots=1
$$

Transitions

$$
\begin{gathered}
\neg W \rightarrow W \rightarrow-W \\
x \leftrightarrow y
\end{gathered}
$$

$g_{1} g_{2} g_{5} g_{4} g_{3} g_{6} g_{7} \ldots$
$+g_{i} /-g_{i}$
$\ldots \rightarrow \ldots g \ldots \rightarrow \ldots$....
0 to 1 (once), 1 to 0

Definitions:

- [Character] A character is any function

$$
f: X \rightarrow S
$$

- [Convexity] Given a character $f: X \rightarrow S$
and a phylogenetic X-tree $T=(V, E)$, we say f is convex on T
if f extends to $f^{\prime}: V \rightarrow S$
so that $\quad f^{\prime} \mid X=f$
and $\quad\left\{v \in V: f^{\prime}(v)=s\right\}$ is connected for all s in S.

Convexity: example

\[

\]

Biological significance of convexity

- Lemma: A character χ is convex on a phylogenetic tree T if and only if χ could have evolved on T (from any root vertex) without any reversals or convergent evolution.

Relevance to genomics

- Eg. gene order rearrangements (n species, L genes, random inversion model)

$$
g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} g_{7} \cdots \quad 山 \quad g_{1} g_{2} g_{5} g_{4} g_{3} g_{6} g_{7} \cdots
$$

$$
P[h=0] \geq 1-\frac{2(2 n-3)(n-1)}{L(L-1)}
$$

Equivalence of character and quartet compatibility

$$
C \rightarrow Q(C)
$$

Lemma: Each character in C is convex on T if and only if T displays all the quartets in $Q(C)$.
[C is "compatible", C "defines" T iff $Q(C)$ does]

New quartet trees from old ones

Dyadic rules for quartet trees

(Colonius and Schulze; Dekker)
(Q1): $\{a b|c d, a b| c e\} \vdash a b \mid d e$
(Q2): $\{a b|c d, a c| d e\} \vdash a b|c e, a b| d e, b c \mid d e$.

Any phylogenetic X-tree that displays the quartet trees on the left of (Q1) or (Q2) also displays the corresponding quartet tree(s) on the right.

Dyadic quartet closure

$$
\mathcal{Q}=\mathcal{Q}_{1} \subseteq \mathcal{Q}_{2} \subseteq \cdots \subseteq \mathcal{Q}_{m}=\operatorname{qcl}_{\theta}(\mathcal{Q})
$$

where \mathcal{Q}_{i+1} consists of \mathcal{Q}_{i} together with all additional quartets that can be obtained from a pair of quartets in \mathcal{Q}_{i} by applying the rule(s) allowed by θ.

For $\theta \subseteq\{1,2\}$, let the dyadic quartet closure under rule $\theta, \operatorname{qcl}_{\theta}(\mathcal{Q})$, denote the minimal set of quartet trees that contains \mathcal{Q} and is closed under rule ($\mathbf{Q i}$) for each $i \in \theta$.
We denote these closures with: $\operatorname{qcl}_{1}(\mathcal{Q}), \operatorname{qcl}_{2}(\mathcal{Q}), \operatorname{qcl}_{1,2}(\mathcal{Q})$.

Example 1: qcl_{2}

Definition: If Q distinguishes every interior edge of a binary phylogenetic tree T and we can order Q so that each quartet tree in the ordering introduces precisely one new leaf label, we say Q has a tight ordering for \boldsymbol{T}.

Example: $\{12|35,13| 56,15 \mid 34\}$.

Proposition:

If Q has a tight ordering for T, then $\mathrm{qcl}_{2}(Q)=Q(T)$
In particular Q defines T.

Application: How many characters are needed to define a binary phylogenetic X-tree?

- For binary characters we need n-3 ($n=|X|$).
- For r-state characters (r fixed) we need at least

$$
(n-3) /(r-1)
$$

- What if r is not fixed?
(it is not useful to make r too large!)

$\mathrm{I}(\chi):=-\log (\operatorname{Pr}[\chi$ is convex on random $T])$

Where do these numbers come from?

Carter et al. (1990); Erdös \& Székely (1993).
\# binary phylogenetic trees with n leaves, $\quad b(n)=1 \times 3 \times \cdots \times(2 n-5)$
$\#$ of these on which χ is convex $=$

$$
b(n) \prod_{i=1}^{r} b\left(a_{i}+1\right) / b(n-r+2)
$$

Edge-colouring a tree by $Z_{2} \times Z_{2}$

Theorem (Huber, Moulton, s, 2003)
$Q(C)$ contains a subset with a tight ordering for T.
Thus for any tree there is a set of just four characters that defines T.

Distances or characters?

- $d_{C}(i, j)=\#$ characters in C on which i and j differ

If C is compatible is d_{C} tree-like?
C binary - yes.
C non-binary no.
Theorem [Huson and S, 2003]:

For any two trees T_{1}, T_{2} there is a set of multi-state characters C such that

- $\quad C$ defines T_{1} (i.e. C homoplasy-free only on T_{1}) yet
- $\quad d_{C}$ is tree-like (and ultrametric!), but only on T_{2}.

Application 2: "Short" quartets

- $Q_{\text {short }}(T)$

- Theorem (Erdös et al. 1997)
$Q_{\text {short }}(T)$ contains a subset that has a tight ordering for T (and so $\left.\mathrm{qcl}_{2}\left(Q_{\text {short }}(T)\right)=Q(T)\right)$.
- The number of characters required to reconstruct (wp $>1-\varepsilon$) a binary phylogenetic tree with n leaves from binary characters generated under a finite Markov process is (for almost all trees) at most

$$
k \geq \frac{c_{\varepsilon}(\log (n))^{d(p)}}{a^{2}}
$$

A further application involving qcl_{2} :

We say Q is excess-free if $|\mathrm{L}(Q)|-3-|Q|=0$.

- Proposition: Suppose a subset Q of $Q(T)$ contains an excess-free subset Q_{0} that defines T. Then $q_{1}(Q)=Q(T)$.
- Why? Let us say a set Q of quartet trees is "good" if (i) Q defines a phylogenetic tree, and (ii) $\operatorname{exc}(Q)=0$.

Theorem [Bocker, Dress 1999] Any good set of (≥ 2) quartets is the disjoint union of precisely two good sets.

Example 2: qcl $_{1}$

- Definition: For a binary phylogenetic tree T, a collection Q of displayed quartet trees is a generous cover for T if for all pairs u, v of interior vertices of T, we have a quartet $x y \mid w z$ in Q that looks like this:

Theorem (Dezulian +S , 2003): If Q is a generous cover for T, then $\mathrm{qcl}_{1}(T)=Q(T)$. Thus Q defines T .

Application: the random cluster model

Random process on a phylogenetic tree \mathcal{T}. Independently cutting edges with probability $p(e)$ generates, by connectivity, random characters on \mathcal{T}.

Cutting the marked edges yields the character $\{a|b k| c g h i|d| e f \mid j\}$.

Reconstructing T from k independent characters (bounds and phase transition)

- Theorem (Mossel and S, 2003) For random cluster model, if
- $0<a \leq p(e) \leq p<0.5$, every binary phylogenetic tree with n leaves can be reconstructed with probability at least $1-\varepsilon$ from k indep. characters if

$$
k \geq \frac{c_{p, \varepsilon} \log (n)}{a}
$$

- A fast (polynomial-time) algorithm to reconstruct T from the characters.
- Proof uses generous cover result. Doesn't require i.i.d.
- Lower bound: $\log (n)$ needed (not trivial) and polynomial (n) if $\mathrm{p}>0.5$.
- cf. finite-state

$$
k \geq \frac{c_{\varepsilon}(\log (n))^{d(p)}}{a^{2}}
$$

Relevance to finite-state space?

Corollary:

Random walk on group with generating set of size

$$
d \geq c_{\varepsilon} n^{2} \log (n)
$$

then T can be reconstructed w.p. > 1- ε with a
$\Theta(\log (\mathrm{n}))$ number of characters

Application 3: qcl_{1}, qcl $_{2}$, qcl $_{1,2}$

[Definition] A partial X-split $A \mid B$ is a partition of a subset into two non-empty sets, $A, B . A \mid B$ is displayed by T if we can remove an edge from T to separate A from B.
Example: $\{\mathrm{a}, \mathrm{i}\} \mid\{\mathrm{d}, \mathrm{e}, \mathrm{h}\}$ is displayed by T.

Meacham's dyadic rules for splits (1983)
(M1): If $A_{1} \cap A_{2} \neq \emptyset$ and $B_{1} \cap B_{2} \neq \emptyset$ then
$\left\{A_{1}\left|B_{1}, A_{2}\right| B_{2}\right\} \vdash A_{1} \cap A_{2}\left|B_{1} \cup B_{2}, A_{1} \cup A_{2}\right| B_{1} \cap B_{2}$.
(M2): If $A_{1} \cap A_{2} \neq \emptyset$ and $B_{1} \cap B_{2} \neq \emptyset$ and $A_{1} \cap B_{2} \neq \emptyset$ then

$$
\left\{A_{1}\left|B_{1}, A_{2}\right| B_{2}\right\} \vdash A_{2}\left|B_{1} \cup B_{2}, A_{1} \cup A_{2}\right| B_{1}
$$

Any phylogenetic X-tree that displays the partial X-splits on the left of (M1) or (M2) also displays the corresponding partial X-splits on the right.

Illustration of (M2)

Dyadic split closure

$$
\Sigma=\Sigma_{1} \subseteq \Sigma_{2} \subseteq \cdots \subseteq \Sigma_{m}=\operatorname{spcl}_{\theta}(\Sigma)
$$

where Σ_{i+1} consists of Σ_{i} together with all additional splits that can be obtained from a pair of splits in Σ_{i} by applying the rule(s) allowed by θ.

For $\theta \subseteq\{1,2\}$, let the dyadic split closure under rule $\theta, \operatorname{spcl}_{\theta}(\Sigma)$, denote the minimal set of splits that contains Σ and is closed under rule ($\mathbf{M i}$) for each $i \in \theta$.
We denote these closures with: $\operatorname{spcl}_{1}(\Sigma), \operatorname{spcl}_{2}(\Sigma), \operatorname{spcl}_{1,2}(\Sigma)$.

The (almost) happy marriage

?

The (almost) happy marriage

$$
\begin{array}{ccc}
\Sigma & \xrightarrow{\mathcal{Q}} & \mathcal{Q}(\Sigma) \\
\operatorname{spcl}_{\theta} \downarrow & & \text { qcl }_{\theta} \\
\operatorname{spcl}_{\theta}(\Sigma) \xrightarrow{\mathcal{Q}} & (*)
\end{array}
$$

Theorem 2.1. Let Σ be a collection of partial X-splits. Then,

$$
\operatorname{qcl}_{\theta}(\mathcal{Q}(\Sigma))=\mathcal{Q}\left(\operatorname{spcl}_{\theta}(\Sigma)\right)
$$

for $\theta=\{1\}$ and $\theta=\{1,2\}$. For $\theta=\{2\}$ we have

$$
\operatorname{qcl}_{\theta}(\mathcal{Q}(\Sigma)) \subseteq \mathcal{Q}\left(\operatorname{spcl}_{\theta}(\Sigma)\right)
$$

-and containment can be strict.

The closure of a set of quartets

For a compatible set \mathcal{Q} of quartet trees, the closure $\operatorname{cl}(\mathcal{Q})$ is defined as

$$
\operatorname{cl}(\mathcal{Q})=\bigcap_{\mathcal{T} \in \cos (\mathcal{Q})} \mathcal{Q}(\mathcal{T})
$$

where $\operatorname{co}(\mathcal{Q})$ is the set of phylogenetic trees that display each of the trees in \mathcal{Q}.
Thus $\operatorname{cl}(\mathcal{Q})$ consists of precisely those quartet trees that are displayed by every phylogenetic tree that displays \mathcal{Q}.

- Rules of order $<p$ (for any fixed p) do not suffice compute $\operatorname{cl}(Q)$.
- There is a set Q that is incompatible but every strict subset Q^{\prime} is compatible and satisfies $\operatorname{cl}\left(Q^{\prime}\right)=Q^{\prime}$

Simulation study

- Random cluster model for binary trees on $n=8$ leaves.
- Main question: How much of $\operatorname{cl}(Q)$ does $\mathrm{qcl}_{\theta}(Q)$ provide? (for $\theta=\{1\},\{2\},\{1,2\}$).

Simulations 1 ($\mathrm{n}=8, \mathrm{k}=16,32$): absolute quartet closure gains

(a) The case $k=16$.

(b) The case $k=32$.

$$
\frac{|\mathcal{Q}|}{\binom{n}{4}}, \frac{\left|\operatorname{qcl}_{1}(\mathcal{Q})\right|}{\binom{n}{4}}, \frac{\left|\operatorname{qcl}_{2}(\mathcal{Q})\right|}{\binom{n}{4}}, \frac{\left|\mathcal{Q}\left(\operatorname{spcl}_{2}(\mathcal{Q})\right)\right|}{\binom{n}{4}}, \frac{\left|\operatorname{qcl}_{1,2}(\mathcal{Q})\right|}{\binom{n}{4}}, \frac{\left|\operatorname{cl}^{2}(\mathcal{Q})\right|}{\binom{n}{4}}
$$

Simulations 2: Relative quartet closure gains

$-\frac{|\mathcal{Q}|}{|\operatorname{cl}(\mathcal{Q})|}, \frac{\left|\operatorname{qcl}_{1}(\mathcal{Q})\right|}{|\operatorname{cl}(\mathcal{Q})|}, \frac{\left|\operatorname{qcl}_{2}(\mathcal{Q})\right|}{|\operatorname{cl}(\mathcal{Q})|}, \frac{\left|\mathcal{Q}\left(\operatorname{spcl}_{2}(\mathcal{Q})\right)\right|}{|\operatorname{cl}(\mathcal{Q})|}, \frac{\left|\operatorname{qcl}_{1,2}(\mathcal{Q})\right|}{|\operatorname{cl}(\mathcal{Q})|}$

Simulations 3: dyadic closure of splits and quartets comparison

$\frac{\left|\operatorname{qcl}_{2}(\mathcal{Q})\right|}{\left|\mathcal{Q}\left(\operatorname{spcl}_{2}(\mathcal{Q})\right)\right|}$ graphed against $p(e)$

An application of spcl_{2}

Networks can represent:

- Reticulate evolution (eg. hybrid species)
- Phylogenetic uncertainty (i.e. possible alternative trees)

Approach: Given T_{1}, \ldots, T_{k} on overlapping sets of species, let $\Sigma=\Sigma\left(T_{1}\right) \cup \cdots \cup \Sigma\left(T_{k}\right)$ construct $\operatorname{spcl}_{2}(\Sigma)$ and construct the 'splits graph' of the resulting splits that are 'full'.

The end

Further details
-A phase transition for a random cluster model on phylogenetic trees. E. Mossel and M. Steel, Mathematical Biosciences, 187 (2004), 189-203.

- Phylogenetic closure operations, and homoplasy-free evolution, T. Dezulian and M. Steel Proceedings of the International Federation of Classification Societies, Chicago, 2004.
-Four characters suffice to convexly define a phylogenetic tree. K. Huber, V. Moulton and M. Steel (2003). Submitted.
-How much can evolved characters tell us about the tree that generated them? E. Mossel and M. Steel, Book chapter (Oxford University Press).
-Phylogenetic super-networks from partial trees. D. H. Huson, T. Dezulian, T. Kloepper and M. A. Steel, To appear in WABI 2004.

