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Joint work with…
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Phylogenetic trees
[Definition] A phylogenetic X-tree is a tree T=(V,E) 

with a set X of labelled leaves, and all other vertices 
unlabelled and of degree >3.

If all non-leaf vertices have degree 3 then T is binary
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Quartet trees
• A quartet tree is a binary phylogenetic tree on 4 
leaves (say, x,y,w,z) written xy|wz.

• A phylogenetic X-tree displays xy|wz if there is an edge in 
T whose deletion separates {x,y} from {w,z}
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Compatibility

Example:  Q={12|34, 13|45, 14|26}
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A set Q of quartets is compatible if there is a phylogenetic
X-tree T that displays each quartet of Q



6

Defining sets

If T is the only phylogenetic X-tree that displays
Q (and X= L(Q)) then we say Q defines T .

Let Q(T) be the set of all quartets displayed by (any) T. 
If T is binary, then Q(T) defines T.
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A necessary condition for Q to define T

Definition: For a binary phylogenetic tree T, a collection Q of 
induced quartet trees  distinguishes an interior edge {u,v} of T if 
there exists a quartet xy|wz in Q that looks like this:

Observation:   If Q defines T then T is binary and Q
distinguishes every interior edge of T (so |Q|>n-3).
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Q ={12|45, 56|23, 34|16} distinguishes each interior edge
of the tree:

and also                                         !
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Sufficient condition for Q to define T:

Suppose Q is compatible and distinguishes every 
interior edge of a binary phylogenetic X-tree T.  

Proposition: If there is an element of X that is a leaf of 
every tree in Q then Q defines T.

Corollary:
There are subsets of Q(T) that define T of size |X|-3. 
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Character data

Type States Transitions

Morphology W(ings),      ,   
Sequences A,C,G,T 

Gene order 
Gene content            G = {g1,…,gk}                              +gi /–gi

SINEs
Oligonucleotides         …g1g2g3…gk…  = 1             0 to 1 (once), 1 to 0                        

W¬ W− WWW −→→¬
yx ↔

...
7654321 ggggggg ...

7634521 ggggggg

......g ...?............ →→ g
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Definitions:

[Character] A character is any function

[Convexity] Given a character 
and a phylogenetic X-tree T=(V,E), we say f is convex on T
if f extends to                                    
so that
and                                      is connected for all s in S.

SXf →:
SXf →:

SVf →:'
fXf =|'

})(':{ svfVv =∈
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Convexity: example

7
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Biological significance of convexity

Lemma: A character χ is convex on a 
phylogenetic tree T if and only if χ 
could have evolved on T (from any 
root vertex) without any reversals or 
convergent evolution. 
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Relevance to genomics

Eg. gene order rearrangements (n species, L genes, 
random inversion model) 
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Equivalence of character and quartet 
compatibility

Lemma: Each character in C is convex on T if and only if 
T displays all the quartets in Q(C). 

[C is “compatible”, C “defines” T iff Q(C) does]
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New quartet trees from old ones
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Dyadic rules for quartet trees 
(Colonius and Schulze; Dekker)
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Dyadic quartet closure
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Example 1:  qcl2
Definition: If Q distinguishes every interior edge of a binary 

phylogenetic tree T and we can order Q so that each quartet 
tree in the ordering introduces precisely one new leaf label, 
we say Q has a tight ordering for T.  

Example: {12|35, 13|56, 15|34}.

Proposition:
If Q has a tight ordering for T, then  qcl2(Q) = Q(T) 
In particular Q defines T.
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Application: How many characters are needed to define a 
binary phylogenetic X-tree?

For binary characters we need n-3 (n=|X|).
For r-state characters (r fixed) we need at least 

(n-3)/(r-1)
What if r is not fixed?

(it is not useful to make r too large!)
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I(χ) := - log(Pr[χ is convex on random T ]) 

Distribution of trees according to number of character 
states for 120 species
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Where do these numbers come from?

Carter et al. (1990); Erdös & Székely (1993).
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Edge-colouring a tree by Z2 x Z2

Theorem (Huber, Moulton, S, 2003)

Q(C) contains a subset with a tight ordering for T. 
Thus for any tree there is a set of just four characters that defines T.
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Distances or characters?

dC(i,j) = # characters in C on which i and j differ

If C is compatible is dC tree-like? 

C binary – yes. 
C non-binary no.

Theorem [Huson and S, 2003]:  

For any two trees T1, T2 there is a set of multi-state characters C such that 
C defines T1 (i.e. C homoplasy-free only on T1) yet
dC is tree-like (and ultrametric!), but only on T2.
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Application 2: “Short” quartets

Qshort(T)

Theorem (Erdös et al. 1997) 
Qshort(T) contains a subset that has a tight ordering for T
(and so qcl2(Qshort(T)) =Q(T)).

The number of characters required to reconstruct (wp >1-ε) a binary 
phylogenetic tree with n leaves from binary characters generated under a finite  
Markov process is (for almost all trees) at most
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A further application involving qcl2:

We say Q is excess-free if |L(Q)|-3-|Q| = 0.

Proposition: Suppose a subset Q of Q(T) contains an excess-free 
subset Q0 that defines T. Then qcl2(Q)=Q(T).

Why? Let us say a set Q of quartet trees is “good” if (i) Q defines 
a phylogenetic tree, and (ii) exc(Q)=0.   

Theorem [Bocker, Dress 1999] Any good set of (>2) quartets is the 
disjoint union of precisely two good sets. 
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Example 2: qcl1
Definition:  For a binary phylogenetic tree T, a collection Q of 
displayed quartet trees is a generous cover for T if for all pairs u,v
of interior vertices of T, we have a quartet xy|wz in Q that looks like 
this:
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Theorem (Dezulian + S, 2003): If Q is a generous cover for T, 
then qcl1(T) = Q (T). Thus Q defines T. 
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Application: the random cluster model
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Reconstructing T from k independent characters 
(bounds and phase transition)

Theorem (Mossel and S, 2003) For random cluster model, if 
0< a < p(e) <p <0.5, every binary phylogenetic tree with n leaves can be 
reconstructed with probability at least 1-ε from k indep. characters if

A fast (polynomial-time) algorithm to reconstruct T from the characters.   
Proof uses generous cover result. Doesn’t require i.i.d.
Lower bound: log(n) needed (not trivial) and polynomial (n) if p>0.5.
cf. finite-state
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Relevance to finite-state space?

Corollary:

Random walk on group with generating set of size

then T can be reconstructed w.p. > 1-ε with a 
Θ(log(n)) number of characters 

)log(2 nncd ε≥
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Application 3: qcl1, qcl2, qcl1,2

[Definition] A partial X-split A|B is a partition of a 
subset into two non-empty sets, A,B.  A|B is displayed 
by T if we can remove an edge from T to separate A
from B.  
Example: {a,i}|{d,e,h} is displayed by T.
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Meacham‘s dyadic rules for splits (1983)
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AA22

BB22

Illustration of (M2)
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Dyadic split closure
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The (almost) happy marriage

?
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The (almost) happy marriage

Computational consequences
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The closure of a set of quartets

• Rules of order <p (for any fixed p) do not suffice 
compute cl(Q). 

• There is a set Q that is incompatible but every strict subset Q’ is 
compatible and satisfies cl(Q’)=Q’
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Simulation study

Random cluster model for binary trees on 
n=8 leaves.

Main question: How much of cl(Q) does 
qclθ(Q) provide? (for    θ={1}, {2}, {1,2}).
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Simulations 1 (n=8, k=16,32): absolute quartet closure gains
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Simulations 2: Relative quartet closure gains
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Simulations 3: dyadic closure of splits and quartets comparison
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a

An application of spcl2

Networks can represent:
Reticulate evolution (eg. hybrid species) 
Phylogenetic uncertainty (i.e. possible alternative trees)

Approach: Given T1,…, Tk on overlapping sets of species, 
let  
construct spcl2(Σ) and construct the 
‘splits graph’ of the resulting splits that are ‘full’.

cb d a bc d a cb d

)()( 1 kTT Σ∪∪Σ=Σ L
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