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ABSTRACT Discrete Fourier transformations have re-
cently been developed to model the evolution of two-state
characters (the Cavender /Farris model). We report here the
extension of these transformations to provide invertible rela-
tionships between a phylogenetic tree T (with three probability
parameters of nucleotide substitution on each edge correspond-
ing to Kimura’s 3ST model) and the expected frequencies of the
nucleotide patterns in the sequences. We refer to these rela-
tionships as spectral analysis. In either model with independent
and identically distributed site substitutions, spectral analysis
allows a global correction for all multiple substitutions (second-
and higher-order interactions), independent of any particular
tree. From these corrected data we use a least-squares selection
procedure, the closest tree algorithm, to infer an evolutionary
tree. Other selection criteria such as parsimony or compati-
bility analysis could also be used; each of these criteria will be
statistically consistent for these models. The closest tree algo-
rithm selects a unique best-fit phylogenetic tree together with
independent edge length parameters for each edge. The method
is illustrated with an analysis of some primate hemoglobin
sequences.

Spectral analysis, by which Fourier transformations allow
invertible calculations between scientific models and their
predicted data, has many applications in science (1). As a
predictive tool it allows the generation of expected data from
amodel. As a deductive tool it both allows the parameters for
the model to be estimated from observed data and can test the
applicability of the model. We previously developed a spec-
tral analysis, using a Hadamard (discrete Fourier) transfor-
mation, to analyze the evolution of genetic sequences of
two-state characters under the Cavender/Farris model (2).
Recent results (3, 4) allow the extension of this analysis to
sequences of four-state characters evolving under Kimura’s
3ST (three-substitution-type) model (5) of DNA and RNA
evolution. Similar extensions to models of more character
states are possible.

These Hadamard spectral analyses are based on the in-
vertible relationship between a model of sequence evolution
encoded in a vector, the probability spectrum p(T) (see Fig.
1), and properties of the consequent set of sequences, the
expected sequence spectrum s(T). The model is a phyloge-
netic tree T with independent probabilities of nucleotide
substitutions on each edge. The relation between p(7) and
s(T) is described by vector functions called Hadamard con-
Jjugations (Eqs. 1 and 2). An intermediate vector is the edge
lengths spectrum q(T), whose positive values are additive
parameters on the edges of T. q(7) can be calculated either
from s(T) or from p(T), by applying the appropriate Hada-
mard conjugation (4).

As a deductive tool we express the sequence data D, as the
observed sequence spectrum s(D) (the relative frequencies of
character patterns), which we use as an estimate of s(T), for
an unknown tree T. Applying the inverse Hadamard conju-
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gation to s(D), we derive the conjugate spectrum y(D), which
is an estimate of q(7). This inversion globally corrects for all
multiple and parallel substitutions which are included in s(D).
y(D) converges to q(T) as the sequence lengths grow, hence
many selection procedures from y(D) will be statistically
consistent (6).

A selection criterion can be used to determine the tree T
with q(T) best approximating y(D); for example, a least-
squares criterion gives the closest tree (7). This identifies a
unique phylogenetic tree T and provides an estimate of the
edge length spectrum q(7). Fig. 1 summarizes the relation-
ships between the spectra. These spectra can be displayed as
histograms. In Fig. 2 we display some spectra derived from
a set of four primate hemoglobin pseudogene DNA se-
quences.

For two-state character sequences q(7) contains one pa-
rameter for each edge of T. For four-state character se-
quences q(7) contains three Kimura parameters (5) for each
edge, corresponding to Kimura’s 3ST model of evolutionary
distance between sequences, but not constrained by a mo-
lecular clock. q(7) also contains many zero values, which
relate to partitions which are not edge bipartitions of 7 and so
the corresponding components of y(D) have expected value
zero. Some of these are dependent on 7, and hence are
invariants as defined by Cavender and Felsenstein (9) and Fu
and Li (10), and some are independent of T, and hence are
invariants of the model. The remaining components of the
conjugate spectrum, other than v,, have positive expected
values, identifying the edges of T. Under a Poisson process
these values can be interpreted as expected numbers of
nucleotide substitutions on each edge. We refer to them as
edge lengths. From the positive values of q(7) we can
determine the probability spectrum p(7). The determination
of the probability spectrum p(T) from s(T) is independent of
the process of substitution with the edge lengths being
interpreted as additive parameters.

HADAMARD CONJUGATION

The main tools in relating the spectra are the Hadamard
conjugations (Egs. 1 and 2). (In mathematics conjugation is
the successive application of three transformations, with
the third being the inverse of the first.) For each power m
= 2t of 2, we define an m X m Hadamard matrix H = H,.
The conjugations relate two vectors x and y of m compo-
nents:

y = H (In(Hx)), 1]
provided Hx > 0, and its inverse
= H™Y(exp(Hy)). [2]

The natural logarithm (In) and the exponential (exp) functions
are applied to each component of the vectors x and y
separately. The Hadamard matrices are symmetric orthogo-
nal matrices with entries 1 and —1 so that H-1 = (1/m)H.
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Probability spectrum Edge length spectrum Expected sequence spectrum
(Evolutionary model) |« (Additive edge lengths) | (Predicted partition frequencies)
p(D) q(N) s(T)
T
(D) s(D)
Conjugate spectrum «>| Observed sequence spectrum
(Corrected partitionlfrequencies) (Observed partition frequencies)

Fic. 1. The interrelationships between the various spectra. The relationships represented by the double arrows are invertible Hadamard
conjugations. Thus the spectra on the same level are equivalent, as they represent the same information. Those on the upper row are dependent
ona tree 7, while those on the bottom are derived from a set of sequence data D. The mapping from s(D) to y(D) corrects for all parallel, multiple,
and higher-order substitutions. The data fit a model exactly if y(D) = g(T). The vertical arrow can represent any fitting algorithm. We advocate

a least-squares best fit, the closest tree algorithm, which selects the tree T for which the distance |¥(D) — q(T)| is minimal.

They can be defined recursively, using the Kronecker prod-
uct of matrices:

1 1 1 1
1 1 1 -1 1 -1

Hl= <1 _1)’ H2= H1®H1= 1 1 -1 —-1PF
1 -1 -1 1

H=H ®H ®H; ®...Q H; (tterms) =H; ® H,_;

_ (Ht—l Ht—l)
H,y, -H,y)’

In a data set D of n sequences, there are 47! possible
patterns of nucleotides at any position (site) relative to the
nth sequence. (In the appendix we describe their indexing.)
We refer to these patterns as quadripartitions. We con-
struct the observed sequence spectrum s(D) where the entry
sk is the proportion of sites in the sequence with quadri-
partition Q.

In Table 1, following Evans and Speed (3), we define a
binary coding of the four nucleotides by elements of the Klein
4-group. The code for a nucleotide substitution is then taken
as the difference (modulo 2) of the codes for the two nucle-
otides. This classifies the substitutions into three types, with
type I being the transitions, type II being the transversions A
< Cand G & T, and type III being the transversions A & T
and C & G.

The sequence evolution model is described by a tree T,
with three probability parameters for each edge. These
parameters are the probabilities of substitutions of types I, I,
and III, acting independently and identically on all sites. The
edges e; of a tree T are labeled so their corresponding edge
bipartition is B;. (The indexing conventions for edges, bipar-
titions, and quadripartitions are given in the appendix.) For
each edge e; of T, we specify three probabilities pi, p5, and
P35 [equivalent to Kimura’s (5) parameters P, Q, and R] of the
nucleotide substitutions of types I, II, and III, respectively,
along e;. Then pj = 1 — p}{ — p} — pl is the probability of no
substitution along e;. Provided the probabilities of substitu-
tion are not large (it is sufficient to require p} < 0.25, for j >
0), we can calculate expected sequence s(T) (4).

For each edge, e¢;, let p' = i 1. We calculate E! =

Ej
Ey
E}
E}

, Where

E' = H (In(Hp)) 31

with H = H». The entries E i are additive parameters, with Ej
= —(E} + Ej} + Ej%) the only negative value. Under a Poisson
process of substitution along edge e;, —FE} is the expected
total number of nucleotide substitutions, and E }, forj=1,2,
or 3, are the expected numbers of substitutions of type j. The
Hadamard conjugation (Eq. 3) is equivalent to the formulae
derived by Kimura (5). For example, if p} = 0.2, p} = p} =
0.05, we find E4 = 0.2908, E5 = E = 0.0558, which under a
Poisson model, would be the expected numbers of substitu-
tions along edge e;. We can invert Eq. 3 to recover p’,

p' = H }(exp(HE')). [4]

We form the edge length spectrum o(T) (Fig. 2) from these E!
parameters, where for each edge e; of T, q; = E}, g, = Eb,
gi+mi = E%, all the other components of q(T) are set to zero
except for go, which is set to —1 times the sum of the E: values
over all edges of T. q(7) contains all the information, as its
positive values identify the edges of T and from these the edge
substitution probabilities of each type can be determined. If
we apply the conjugation (Eq. 2) using the Hadamard matrix
H = Hj(,-y it can be shown (4) that the observed sequence
spectrum is

s(T) = H™ (exp(Hq(T))), [5]

with kth component; si, the expected frequency of the kth
quadripartition Ok occurring in the generated sequences. If
the sequence is of length c, then cs; will be the expected
number of sites with quadripartition Q. This can be used in
simulation studies to generate sample sequences (11).

APPLICATIONS

Inferring Trees from Sequence Data. Some phylogenetic
tree building methods, such as parsimony and compatibility
analysis, attempt to find a tree T whose edge bipartitions best
match these site-bipartitions. However, an exact match is not
usually possible, as some pairs of the site bipartitions are
incompatible, that is, they cannot exist together on the same
tree T. (For example, bipartition 3 which groups taxa 1 and
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Fic. 2. Histograms representing spectra for sequénces from four primate DNA sequences (8). (A) The observed sequence spectrum s(D)
(black) and the conjugate spectrum y(D) (white), from sequences of four primates. [The values of s(D) are given in Table 2.] These spectra have
been multiplied by the sequence length, ¢ = 9864. Their Oth entries, cso = 8988 and cyp = —926.9, are not displayed. The partition indices are
described in the appendix. The values of y(D) can be interpreted under a Poisson process as expected numbers of nucleotide substitutions of
each type. They are generally, but not always, greater than the observed numbers of substitutions. (B) For convenience we display y(D) as an
m X m array. The components of y(D) run in columns (top to bottom) beginning at y (replaced by 0), top left. Only the values which lie on
the leading row, column and diagonal (radiating from 1) relate to bipartitions; the remaining entries are model invariants with expected values
zero. (C) The leading row, column, and diagonal of y(D) (excluding y) are displayed as three rows. These values are the expected numbers
of transitions (type I) and the two types (II and III) of transversions. These are used to select the best fit tree T, when two corresponding entries
in the leading row, column, and diagonal are invariants for T with expected value zero. We show in Fig. 3 the tree T selected by the closest

tree algorithm.

2 together is incompatible with bipartition 6 which groups 2
and 3.) These methods penalize each T with some penalty for
each rejected bipartition, to select the phylogenetic tree with
smallest penalty. This approach can lead to the problem of
statistical inconsistency (12, 13). We can readily show that,
assuming a molecular clock, parsimony will always be con-
sistent for four taxa, but it can be inconsistent for five or more
taxa. However, if parsimony was applied to the ‘‘corrected”’
v(D) spectrum, parsimony would be consistent in all cases.

Table 1. Klein 4-group coding of the four nucleotides and the
nucleotide substitutions

Chemical
Nucleotide Code Substitutions Type nature
A ©,0) - —
G 1,00 AoG CeoeT 1 Transitions
C ©0,1) AoeC GeoT I Transversions
T 1,1) AeT CegG I Transversions

However, we prefer the closest tree criterion, which is faster
to calculate and generally produces a unique tree.

With a data set D of n sequences, we can estimate the
sequence spectrum s(D) by the relative frequencies of occur-
rence of each pattern, provided evolution at each site is
approximately independent and identically distributed. We
invert Eq. 5 to calculate the conjugate spectrum,

y(D) = H! In(Hs(D)). (6]

When the sites evolve at different rates according to some
known distribution across the sites this is no longer valid.
However, Eq. 6 can be modified to compensate for this, by
replacing the logarithm function by ¢, the functional inverse
of the moment-generating function for the distribution (14).

y(D) = H! p(Hs(D)). (71

The components corresponding to edges of the (unknown)
generating tree have expected positive values, while the
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Table 2. Frequencies of the quadripartitions from the 9879 sites
of four primate hemoglobin y-pseudogenes

0 8 16 24 32 40 48 56
0 8988 9 10 12 A4 90
1 41 9
2 45 13
3 54 14 3
4 94 20
5 1
6 2 2
7 356 1 1 75

The values of the observed sequence spectrum s(D) can be
obtained by dividing by 9879. The blank entries indicate that the
corresponding quadripartitions did not occur. Bold numbers indicate
the values of the bipartitions.

remaining components, other than vy, have expected value 0.
Under Kimura’s model, these v; represent the expected
number of nucleotide substitutions of each class along edge e;.

Analysis of Some Primate DNA Sequences. Hemoglobin
y-pseudogene DNA sequences (8) for the four primate spe-
cies human, chimpanzee, orangutan, and rhesus monkey of
length 9879 were analyzed. The relative frequencies of the
observed quadripartitions are given in Table 2. For the
convenience of presentation this and subsequent vectors of
64 components are displayed as 8 X 8 arrays. In Table 3 we
give the conjugate spectrum y(D), a vector of 64 entries,
derived by using Eq. 5 from s(D) of Table 2. Only 21 values
Yelwhere k =i, mi,and im + 1)i,i=1,2,. .., 7] canrelate
to edge bipartitions and so assist with the determination of the
underlying tree. Apart from v, the remaining 42 values are
‘“‘model invariants” with expected value 0. These range in
value from y3; = —0.00008 to yss = 0.00020, with mean
—0.00002 and standard deviation 0.00007. From these 21
values we need to select those which relate to a specific
tree—that is, select five consistent edge bipartitions. A
simple way of selecting a tree is the closest tree selection (7)
procedure, which finds, for each tree T, the point g(T) in the
set of possible tree spectra for T which is closest to y(D). The
distance A(D, T) from g(T) to y(D) is given as the relative
error of fit. With T; = (12)(34), A2(D, T3) = 5.1 X 1077, Tg =
(13)(24), AXD, Te) = 3.7 x 1075, Ts = (14)(23), AAD, Ts) =
3.8 x 1075, Hence the tree T; = (12)(34), as shown in Fig. 3,
fits D best. With this tree the optimal edge length parameters
are given by E} = v, — yr,, where for T3, yr, = 3.17 x 10-8
(hence for these values this correction is negligible), and k =
i,8/,and9iforj=1,2,and3,i=1,2,3,4,and 7. Under a
Poisson process these values represent the expected numbers
of nucleotide substitutions of each of the three types. In Fig.
4 we show the uniformity of the ratios of these numbers on
each edge of T.

Table 3. Scaled values of the conjugate spectrum y(D) obtained
from the observed sequence spectrum

0 8 16 24 32 40 48 56

-926.9 98 109 129 2.0 -0.1 -0.1 957
4.7 98 -01 -02 -0.2 00 -01 -04
492 -01 142 -01 -01 -0.1 00 -0.5
550 -01 -01 151 -1.2 0.0 0.0 1.9

1009 -0.1 -01 -09 21.6 0.0 00 -16
-24 -0.1 0.5 00 -01 =-o0.1 00 -04
=01 -04 -0.1 0.0 21 00 =01 -03
389.6 —-0.4 07 -09 -02 -0.1 -01 785

The values are multiplied by 9879, the number of sites, so are
comparable to those of Table 2. Those values which relate to
potential edge bipartitions, the entries of the left column, the top row
and the leading diagonal are shown in bold. They are y, where k =
i,8,9,i=1,2,...,17.
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389
95
78
55 101
13 26
15 21
44 49
10 11
10 14
Human Chimpanzee Orangutan Rhesus Monkey

Fi1G.3. Closest tree from the conjugate spectrum (Fig. 2) derived
from the hemoglobin y-pseudogene DNA sequences (8) for the four
primate species human, chimpanzee, orangutan, and rhesus monkey.
The three length parameters on each edge are the expected numbers
of substitutions of types I, II, and III. The tree has been arbitrarily
rooted on the edge e7, the pendant edge to rhesus monkey. This
analysis is carried out without a molecular clock assumption. The
sums of the expected numbers of substitutions on each edge as a
single edge length parameter fit the molecular clock hypothesis with
a x? value of 0.65 on 4 degrees of freedom, better than a 95%
confidence level.

For each additional taxon added, the number of compo-
nents in the spectrais increased by a factor of 4. When we add
the hemoglobin y~pseudogene sequence for gorilla to the set
of four primate sequences above, the spectra each have 256
components. However, the number of components relating
to bipartitions and hence influencing the choice of closest tree
increases only from 21 to 45 [= 3 x (27~1 — 1)]. The closest
tree from these data is given in Fig. 5, where the relative
numbers of substitutions on the edge e, to gorilla differ from
those of the other edges. This either suggests that a different
process of substitution occurs on this edge or points to a
possible error in the data. '

COMPUTATIONAL COMPLEXITY

The matrices involved in this spectral analysis are of expo-
nential order in the number of taxa n being analyzed. This
means that direct computations for all but small values of n
are impractical. For n = 10, the Hadamard matrix for the
4-state character analysis has 236 = 6.87 X 10! entries, and
the two matrix vector products would each require 236

~
o

Nucleotide substitutions, %
H
o

1 2 3 "4 -7 Mean

FIG. 4. Relative numbers of nucleotide substitutions of type I
(dark), type II (light), and type III (white) for each edge of the closest
tree T of Fig. 3 and the relative numbers overall. This illustrates that
the ratios are similar on each edge, with a maximum deviation of less
than 3% from the mean values, suggesting a common process for
nucleotide substitutions on all edges.
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53,10,16 101,27,22
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42,109 46,12,14 57.8,3
Human Chimpanzee Gorilla Orangutan Rhesus

Monkey

FiG.5. Closest tree for the hemoglobin y~pseudogene sequences
of five primates. This tree is only 17-20% closer than trees with the
edge to gorilla e4 joined to e; or ez or with a trichotomy. The expected
numbers of substitutions of each type are listed with each edge. The
relative numbers of substitutions on e4 (to gorilla) differ from those
on the other edges. This could result from a different process of
nucleotide substitution on this edge or from errors in the gorilla
sequence.

additions or subtractions. However, the fast Hadamard
transformation (7) reduces each multiplication from O(24"—4)
to O(n227-2), so for n = 10 they each require 5.2 x 105
additions or subtractions. For the conjugations (Egs. 5 and 6)
there are also 2272 evaluations of the exponential or loga-
rithm functions required. There are a number of further
means of reducing the complexity, such as quadratic approx-
imation of the conjugate spectrum (15), or by calculating only
those terms of the conjugate spectrum that discriminate
between the trees (unpublished results), reducing the com-
plexity to O(n2"~1). Using these approaches means that
computation of the conjugate spectrum for n = 20 or more
4-state character sequences is feasible on a personal com-
puter. In addition, the complexity of sampling may serve as
a means of estimating components of the conjugate spectrum
to predetermined accuracy. The application of the closest
tree algorithm potentially requires the examination of all the
binary trees that can link n taxa. The conjugation is computed
once, and then the fitting is done to the conjugate spectrum
for each potential binary tree. However, using a branch and
bound algorithm (16), the closest tree algorithm can generally
be computed in much less time than that for the conjugation.
The least-square fits are more discriminating than are linear
measures, such as those used for parsimony or compatibility
analyses, and as the data are already corrected for multiple
and parallel substitutions, the optimal fit may be obtained
more easily.

Conclusion. We have shown that spectral analysis devel-
oped for the Cavender/Farris model of the evolution of
two-state character sequences can be extended to Kimura’s
3ST model of four-state character sequences. The invertible
relationships for both models allow spectral analysis to be
used as either a deductive or a predictive tool, a feature
previously not available for any evolutionary model. Exten-
sions to more general models with the relaxation of some of
the assumptions of these models are now being developed
(see refs. 14 and 17, for example), although theoretical
barriers to such extensions are also being realized.
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APPENDIX: PARTITION INDICES

Suppose N is a set of n taxa. The components of the spectra
are identified by the different ways N can be slit into two
disjoint subsets. A split, or bipartition, of N is a pair of
disjoint subsets (A, B) of N, where each taxon of N belongs
either to A or to B. Each edge of the phylogenetic tree T for
the taxa of N defines a split, the monophyletic group (below
the edge) and its complement. If T were an unrooted tree
where the location of the ancestral root is not specified, the
subsets of taxa labeling the leaves at either side of an edge e
still define a bipartition, the edge bipartition of e. There are
m = 2"~ possible bipartitions, including the trivial pair {J,
N}. These bipartitions are identified by the subset not con-
taining » and are indexed as B; in ref. 1, where By = J, By
= {l}l,}Bz ={2},B3={1,2},B4={3},...,Bn-1={1,2,.. .,
n—1}

With nucleotide sequences there are four characters; the
set of nucleotides (characters) at one site defines a site
partition of up to four subsets of the taxa. We will refer to any
partition into four or fewer subsets as a quadripartition. To
apply the spectral analysis we now need to identify the
quadripartitions in a systematic way. Each quadripartition is
identified as a pair of bipartitions. This is done by coding each
nucleotide as a pair of binary digits as in Table 1, and then
identifying separately the bipartitions formed by the first
component and by the second component. This pair (B;, B))
of bipartitions corresponds to the quadripartition Q; ;.

For example, with n = 5 (m = 16), if the nucleotides at a
site are CACTT, then the corresponding codes are 00011 for
the first component and 10111 for the second; 00011 is
bipartition B; and 10111 is blpartltlon B,. (The index for the
bipartition B; is calculated as i = 2471 + 26-1 4 2¢71 4,
where taxa q, b, c, . . . have the component which differs
from that of taxon n.) Thus CACTT gives quadripartition Q3.
(39 = 7 + 2m.) The quadripartitions are relative patterns;
there are four patterns of characters for each. The site
patterns GTGAA, TGTCC, and ACAGG also give quadri-
partition Qss. The pattern of nucleotides at a site for a
particular quadripartition is completely specified once the
nucleotide of one taxon is given.
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