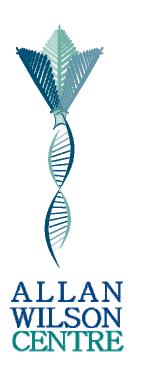
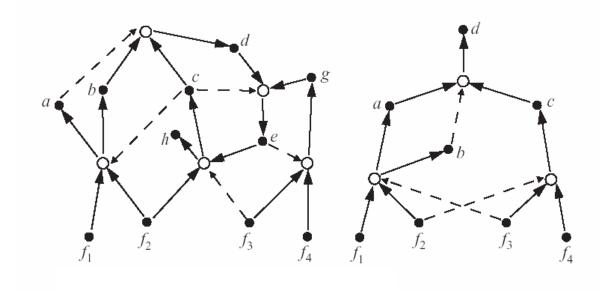
Random autocatalytic networks





Mike Steel

Allan Wilson Centre for Molecular Ecology and Evolution Biomathematics Research Centre University of Canterbury, Christchurch, New Zealand

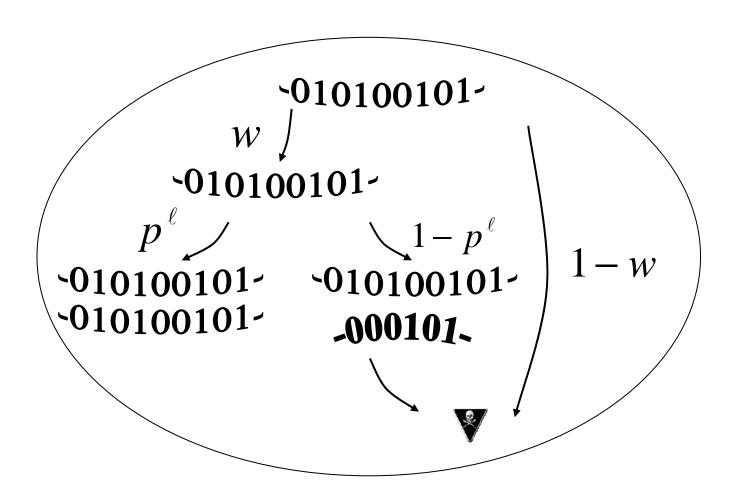
Random autocatalytic networks

·Origin of Life

many theories
(Oparin, Haldane, Eigen, Schuster,
Maynard-Smith, Dyson, Kauffman, du
Duvre, Wachtershauser, Morowitz,
Deamer, Lancet, Lindhal, Russel, Dyson,
Kauffman, Lifson, Joyce, Scheuring,
Szathmary, Poole, Penny ...) - problems
with most of them

Metabolism-first (protein/enzyme) vsgenetics-replication (RNA)-first

Sequence length vs error-correction

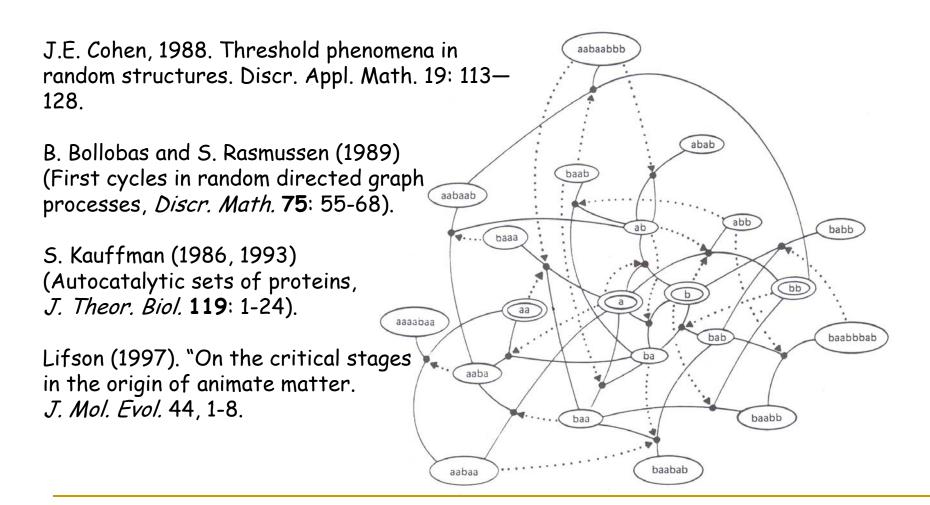


L~ c/_{1-p}

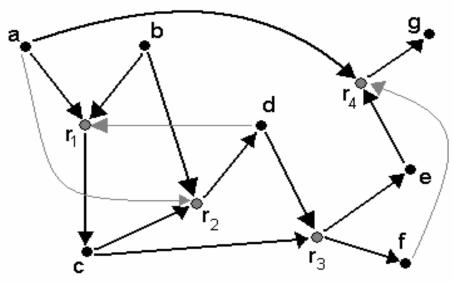
Rates of spontaneous mutation in DNA-based microbes

			Mutation rate	
Organism	Genome size (bp)	Target	Per bp ($\mu_{ m bp}$)	Per genome ($\mu_{\rm g}$)
Bacteriophage M13 Bacteriophage λ Bacteriophage T2 Bacteriophage T4 Escherichia coli	6.41×10^{3} 4.85×10^{4} 1.60×10^{5} 1.66×10^{5} 4.70×10^{6}	lacZ $lpha$ cl rll rll lacl	7.2×10^{-7} 7.7×10^{-8} 2.7×10^{-8} 2.0×10^{-8} 4.1×10^{-10} 6.9×10^{-10}	0.0046 0.0038 0.0043 0.0033 0.0019 0.0033
Saccharomyces cerevisiae Neurospora crassa	1.38×10^{7} 4.19×10^{7}	his GDCBHAFE URA3 SUP4 CANI ad-3AB mtr	5.1×10^{-10} 2.8×10^{-10} (7.9×10^{-9}) 1.7×10^{-10} 4.5×10^{-11} (4.6×10^{-10}) 1.0×10^{-10}	0.0024 0.0038 (0.11) 0.0024 0.0019 (0.019) 0.0042

Random molecular networks



Catalytic Reaction Graphs



$$X = \{a, b, c, d, e, f, g\}$$

$$R = \{r_1, r_2, r_3, r_4\}$$

$$C = \{(d, r_1), (a, r_2), (f, r_4)\}$$

$$F = \{a, b\}$$

$$r_{1}: a+b \xrightarrow{a} c$$

$$r_{2}: b+c \xrightarrow{a} d$$

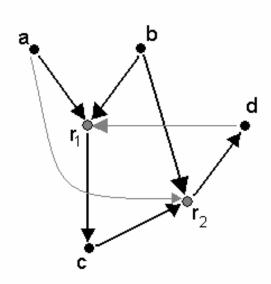
$$r_{3}: c+d \xrightarrow{b} e+f$$

$$r_{4}: a+e \xrightarrow{f} g$$

Definition of a RAF (semi-formal)

- Given a set of reactions R, a subset R' is an RAF if
 - (RA) Each reaction in R' is catalysed by at least one molecule that is involved in R'
 - (F-connected) Each molecule involved in R' can be constructed from F by repeated application of reactions in R'

Example of RAF Set



$$F = \{a,b\}$$

Observation and questions

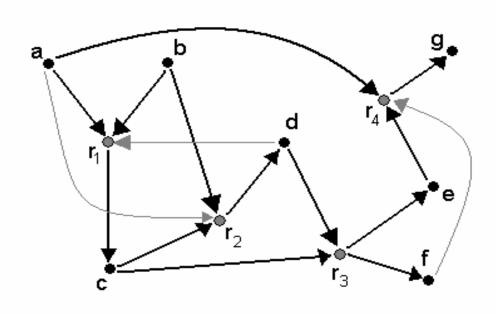
'Contain an RAF' is a monotone property

How much catalysis is needed? Without high catalysis is the existence of an RAF rare (require 'fine tuning') or expected?

Properties of RAF Sets

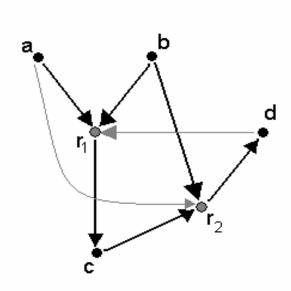
- Let Q = (X, R, C) be a CRS
 - \blacksquare If $R_1, R_2 \subseteq R$ are RAF, then $R_1 \cup R_2$ is RAF
 - □ If Q has an RAF set, then it has a maximal RAF set: $\bigcup (R': R' \subseteq R \text{ is RAF})$
 - □ "Irreducible RAF set": no proper subset is RAF

Finding an RAF set

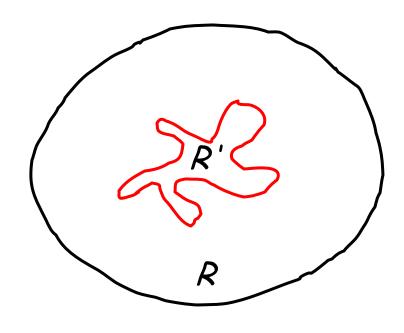


$$F = \{a, b\}$$

Unique irreducible RAF Set



Finding RAFs



Theorem (Hordijk and 5, 2004):

There is an algorithm for determining if R contains a RAF and if so constructing an irreducible one in polynomial time in |R|, |X|.

Random catalytic sets of sequences

- Molecules: $X(n) = \{0,1,...,\kappa-1\}^{\leq n}$
- Reactions: $R(n) = R_{+}(n) \cup R_{-}(n)$
 - $\neg R_{\downarrow}(n)$ forward (ligation): $a+b \rightarrow ab$
 - $\neg R_{\underline{}}(n)$ backward (cleavage): $ab \rightarrow a + b$

Example
$$0 + 10 \rightarrow 010$$

$$100 \rightarrow 1 + 00$$

- Food set $F = \{0,1,...,\kappa\}^{\leq t}$
- Assumptions:
 - \square (R1)The events `x catalyses r' are independent
 - \square (R2) Pr[x catalyses r] depends only on x
- Note: R is given, the catalysis is random!

Quantities of interest:

$$P_n = \Pr[\text{system has a RAF}], \qquad P_\infty = \lim_{n \to \infty} P_n$$

 $\mu_n(x) :=$ average # (forward) reactions molecule x catalyses

$$\mu_n(x) = \Pr[x \text{ catalyses } r] \cdot |R_+(n)|$$

A criticism (?)

$$\mu_n(x) \propto 2^n \implies P_{\infty} = 1$$

Lifson:

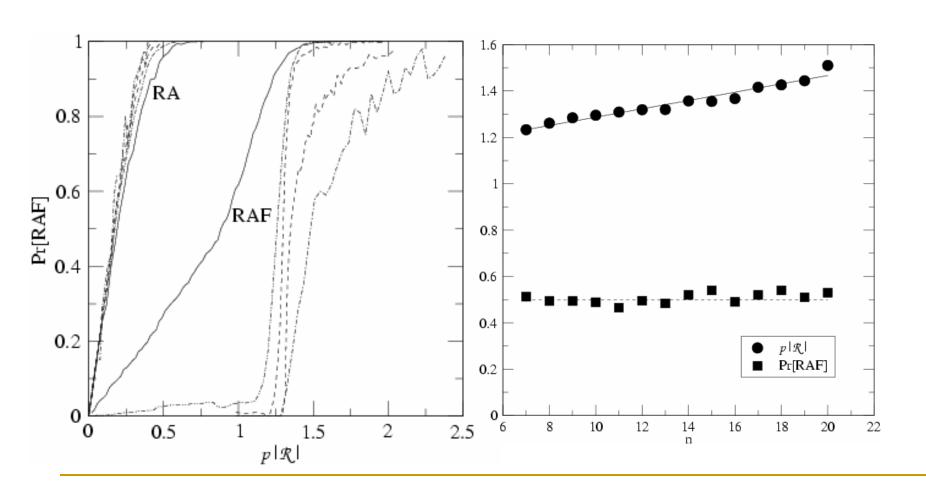
$$\mu_n(x) = c \implies P_{\infty} = 1$$

Theorem (S, 2000):

$$\mu_n(x) < \frac{1}{3}e^{-1} \Rightarrow P_{\infty} = 0$$

$$\mu_n(x) \ge cn^2 \implies P_\infty = 1$$

Simulations



Proposition (2005, Mossel + S, J. Theor. Biol.)

$$\max_{x \in X(n)} \frac{\mu_n(x)}{n} \to 0 \Rightarrow P_{\infty} = 0$$

$$\min_{x \in X(n)} \frac{\mu_n(x)}{n} \to \infty \Rightarrow P_{\infty} = 1$$

$$\min_{x \in X(n)} \frac{\mu_n(x)}{n} \to \infty \Longrightarrow P_\infty = 1$$

Can replace
$$\frac{\mu_n(x)}{n}$$
 by $\frac{\mu_n(x)}{|x|}$

Two further conditions on an RAF R'

Products of R' are not all in F.

 $\begin{tabular}{ll} \hline & Given $\Omega \subseteq 2^{X-F}$ possible minimal requirements for 'life' \\ \end{tabular}$

If $\Omega \neq \emptyset$ then there is some ω in Ω all of whose molecules is produced by R'.

Theorem (2005, Mossel + S, J. Theor. Biol.)

$$\mu_{n}(x) \leq \lambda n \Rightarrow P_{n}(\Omega) \leq 1 - \exp(-2\lambda c(t)^{2} (1 + O(\frac{1}{n})))$$

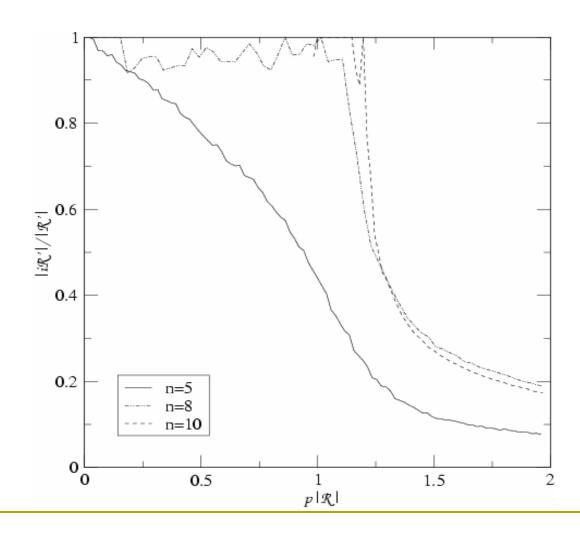
$$\mu_{n}(x) \geq \lambda n \Rightarrow P_{n}(\Omega) \geq 1 - \frac{\kappa(\kappa e^{-\lambda c(t)})^{t}}{1 - \kappa e^{-\lambda c(t)}}$$

$$\mu_n(x) \ge \lambda n \Rightarrow P_n(\Omega) \ge 1 - \frac{\kappa(\kappa e^{-\lambda c(t)})^t}{1 - \kappa e^{-\lambda c(t)}}$$

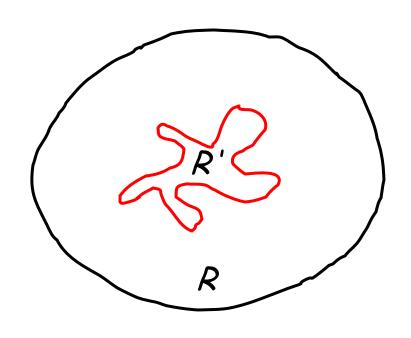
$$c(t) = \kappa + \kappa^2 + ... + \kappa^t$$

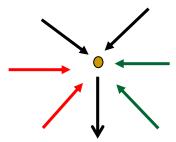
Example: $\kappa = 2$, t = 2, $\lambda = 4$, $P_n(\Omega) > 0.99$

Irreducible RAF Sets



Extension (I) Inhibition

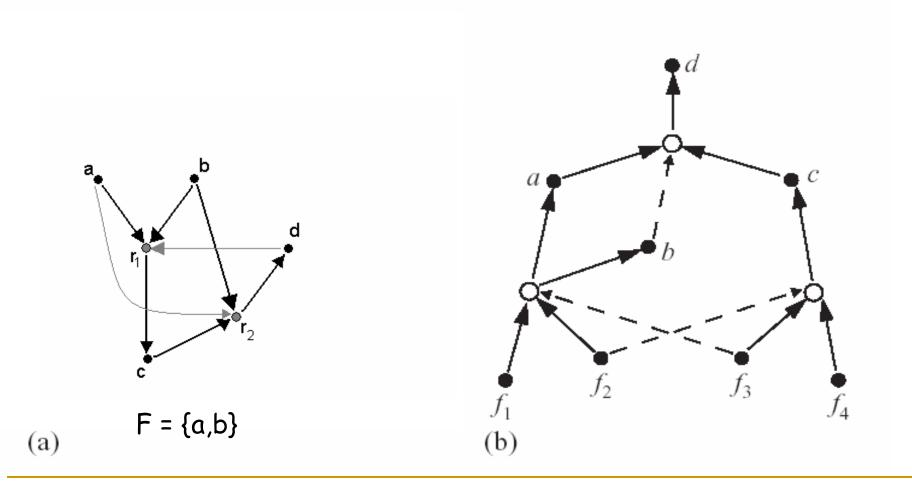




Theorem (Mossel and 5, 2005):

Determining whether R contains an RAF is NP-complete

Extension (II): RAFs vs CAFs



Theorem (2005, Mossel + S, J. Theor. Biol.)

$$\mu_n(x) \le \lambda \cdot r_n \Longrightarrow P_n^{CAF}(\Omega) \le 2\lambda c(t)^2$$

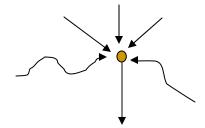
$$\mu_n(x) \ge \lambda \cdot r_n \Rightarrow P_n^{CAF}(\Omega) \ge 1 - \frac{\kappa (\kappa e^{-\lambda c(t)})^t}{1 - \kappa e^{-\lambda c(t)}}$$

Extensions

- Inhibition, concentration
- Other molecular networks

Other applications?

- Spontaneous combustion?
- Random neural networks?



Further details

E. Mossel and M. Steel. Random biochemical networks and the probability of self-sustaining autocatalysis. *Journal of Theoretical Biology* 233(3), 327--336.

W. Hordijk, and M. Steel. Detecting autocatalyctic, self-sustaining sets in chemical reaction systems. *Journal of Theoretical Biology* 227(4): 451--461, 2004.

Steel, M. The emergence of a self-catalysing structure in abstract origin-of-life models, *Applied Mathematics Letters* 3: 91-95 (2000).