

Quartet trees

• A **quartet tree** is a binary phylogenetic tree on 4 leaves (say, *x*, *y*, *w*, *z*) written *xy*|*wz*.

$$y$$
 y y y y

• A phylogenetic X-tree **displays** xy|wz if there is an edge in T whose deletion separates $\{x,y\}$ from $\{w,z\}$

Compatibility

A set Q of quartets is **compatible** if there is a phylogenetic X-tree T that displays each quartet of Q

Example: $Q = \{12|34, 13|45, 14|26\}$

Complexity?

Defining sets

If T is the only phylogenetic X-tree that displays Q (and X= L(Q)) then we say Q **defines** T.

•Let Q(T) be the set of **all** quartets displayed by (any) T. If T is binary, then Q(T) defines T.

A necessary condition for Q to define T

■ **Definition:** For a binary phylogenetic tree *T*, a collection *Q* of induced quartet trees *distinguishes* an interior edge {*u,v*} of *T* if there exists a quartet *xy*|*wz* in *Q* that looks like this:

Observation: If Q defines T then T is binary and Q distinguishes every interior edge of T (so $|Q| \ge n-3$).

Warning:

 $Q = \{12|45, 56|23, 34|16\}$ distinguishes each interior edge of the tree:

Sufficient condition for Q to define T:

 Suppose Q is compatible and distinguishes every interior edge of a binary phylogenetic X-tree T.

Proposition: If there is an element of X that is a leaf of every tree in Q then Q defines T.

Corollary:

There are subsets of Q(T) of size |X|-3 that define T.

. .

Reconstructing trees from characters

Types of "characters"

- Morphology (eg. Wings vs no-Wings)
- DNA sequences (....ACG....)
- Genomic data (gene order, SINEs, RCGs)

A character on $X \ f: X \to S$

Definitions:

■ [Character] A character is any function

$$f: X \to S$$

■ [Convexity] Given a character $f: X \to S$ and a phylogenetic X-tree T=(V,E), we say f is **convex on T**

if f extends to $f': V \to S$

so that f'|X = f

and $\{v \in V : f'(v) = s\}$ is connected for all s in S.

Homoplasy

• h(f, T) = smallest number of reversals/convergent events required to fit f on (rooting of) T.

- h(f, T) easily computed = l(f, T) (|f(X)| 1)
- For |f(X)|=2, h=-1+ max edge-disjoint proper path packing (by Menger's theorem) [590; extention to $|f(X)| \ge$ by E592]
- $\cdot h(f,T) = \min \# \text{SPR}$ operations to transform T into a tree on which f is convex. [Bruen and Bryant 2005]. Applications

Combinatorial aside 1.

- Theorem [Bruen and Bryant 2006]
- h(T,f) = min #SPR operations to transform T into a tree on which f is convex.

Let

$$h(f_1, f_2) := \min_{T} \{h(T, f_1) + h(T, f_2)\}$$

Construct the partition intersection graph.

Theorem [Bruen and Bryant 2006]

 $h(f_1, f_2)$ = #edges + #components - r_1 - r_2

Relevance to molecular biology

• Large state space Example: gene order rearrangements (n species, L genes, random inversion model) $g_1g_2[g_3g_4g_3]g_6g_5, \cdots \qquad g_1g_2g_3g_4g_3g_6g_5, \cdots$ $P[h=0] \geq 1 - \frac{2(2n-3)(n-1)}{L(L-1)}$ • Rare genomic characters (RGCs): Examples, Retroposons, SINES, LINES, LTRs, gene content, etc (Model, 0->1->2)

Character compatibility

- [Compatibility] Characters f₁, f₂,...,f_k are compatible if there exists a phylogenetic
 X-tree (a 'perfect phylogeny') on which they are all convex.
- Complexity: NP-hard, but special cases are solvable in polynomial time.

A link to graph theory...

G is **chordal** if every cycle of length four or more has a chord

Example

Definition:

■ Given G = (V,E) and a partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ a **restricted chordal completion** of G is any chordal graph $H = (V,E'), E \subseteq E'$ satisfying $x,y \in V_i \Rightarrow \{x,y\} \notin E' - E$

Dyadic quartet closure

$$Q = Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_m = \operatorname{qcl}_{\theta}(Q)$$

where Q_{i+1} consists of Q_i together with all additional quartets that can be obtained from a pair of quartets in Q_i by applying the rule(s) allowed by θ .

For $\theta \subseteq \{1, 2\}$, let the dyadic quartet closure under rule θ , $\operatorname{qcl}_{\theta}(\mathcal{Q})$, denote the minimal set of quartet trees that contains \mathcal{Q} and is closed under rule (Qi) for each $i \in \theta$.

We denote these closures with: $\operatorname{qcl}_1(\mathcal{Q}), \operatorname{qcl}_2(\mathcal{Q}), \operatorname{qcl}_{1,2}(\mathcal{Q}).$

29

The closure of a set of quartets

For a compatible set $\mathcal Q$ of quartet trees, the $\operatorname{closure}\,\operatorname{cl}(\mathcal Q)$ is defined as

$$\operatorname{cl}(\mathcal{Q}) = \bigcap_{\mathcal{T} \in \operatorname{co}(\mathcal{Q})} \mathcal{Q}(\mathcal{T})$$

where $\operatorname{co}(\mathcal{Q})$ is the set of phylogenetic trees that display each of the trees in \mathcal{Q} . Thus $\operatorname{cl}(\mathcal{Q})$ consists of precisely those quartet trees that are displayed by every phylogenetic tree that displays \mathcal{Q} .

Application: How many characters are needed to define a

• For binary characters we need n-3 (n=|X|).

• For r-state characters (r fixed) we need at least

- Rules of order compute cl(O).
- There is a set Q that is incompatible but every strict subset Q' is compatible and satisfies cl(Q')=Q'

30

Example 1: qcl₂

Definition: If Q distinguishes every interior edge of a binary phylogenetic tree T and we can order Q so that each quartet tree in the ordering introduces precisely one new leaf label, we say Q has a **tight ordering** for T.

Example: $\{12|35, 13|56, 15|34\}$.

Proposition:

If Q has a tight ordering for T, then $qcl_2(Q) = Q(T)$ In particular Q defines T. • What if *r* is not fixed?

(n-3)/(r-1)

binary phylogenetic X-tree?

(it is not useful to make r too large!)

A further application involving qcl₂:

We say Q is **excess-free** if |L(Q)|-3-|Q|=0. (note: If Q defines a tree, then $exc(Q) \leq 0$).

- **Proposition:** Suppose a subset Q of Q(T) contains an excess-free subset Q_0 that defines T. Then $qcl_2(Q)=Q(T)$.
- Why? Let us say a set *Q* of quartet trees is "good" if (i) *Q* defines a phylogenetic tree, and (ii) exc(*Q*)=0.

Theorem [Bocker, Dress 1999] Any good set of (≥ 2) quartets is the disjoint union of precisely two good sets.

37

Example 2: qcl₁

Definition: For a binary phylogenetic tree T, a collection Q of displayed quartet trees is a generous cover for T if for all pairs u,v of interior vertices of T, we have a quartet xy|wz in Q that looks like this:

Theorem (Dezulian + S, 2003): If Q is a generous cover for T, then $\operatorname{qcl}_1(T) = Q(T)$. Thus Q defines T.

Application: How many 'evolved' characters are needed to reconstruct a tree?

Theorem (Mossel +5, 2004)

[Assume probability of state change on each edge for each character Bounded between $(a,b),0\!<\!a\!<\!b<^l\!/_2$]

The number k of indep. characters required to reconstruct T (correctly with probability 21 - ϵ) is

 $k = c \cdot \frac{\log(n)}{p}$

- n = #species, p =smallest substitution probability, $c = c(\varepsilon, b)$
- The tree reconstruction algorithm is polynomial time (in n,k)

Proof relies on generous cover result.

41

43

Combinatorial aside: computing P(σ)

- Recursively
- Mobius-inversion (Evans et al. 2004)

$$\prod_{e \in T(\pi)} (1 - p(e)) = \sum_{\pi \le \sigma} P(\sigma)$$

$$O(\pi)$$

$$P(\pi) = \sum_{\pi \le \sigma} \mu(\pi, \sigma) Q(\sigma)$$

42

Infinite state Markov process $k \propto \frac{1}{\mathcal{E}}$ $k \propto \frac{1}{\mathcal{E}}$ Finite state Markov process $k \propto \frac{1}{\mathcal{E}^2}$

Topological aside: tree space under Markov models

Optimisation problem

- Problem: Given a phylogenetic tree Ton X with edge weights.
- Find a subset Y_{max} of X given size k to maximise PD.

Nee and May (Science 1997)

For rooted trees with a clock, and standard PD, the greedy algorithm solves this problem

General case?

A combinatorial property

• Proposition: For any two subsets A, B of X with $2 \le |B| < |A|$ there exists x in A - B so that

$$PD(A - \{x\}) + PD(B \cup \{x\}) \ge PD(A) + PD(B)$$

 Corollary: Y_{max} can always be found by using the 'greedy algorithm' [Why?]

[The sets of maximal PD-score for their cardinality form a (strong) greedoid]

Calculating PD $d(x,y) \coloneqq \sum_{e \in p(T;x,y)} l(e)$ $l = l(T,w) \coloneqq \sum_{e} l(e)$ Theorem [Yves Pauplin 2000 Molecular Biology and Evolution] $l = \sum_{\{x,y\} \subseteq X} (\frac{1}{2})^{\Delta(x,y)} d(x,y)$ $= \frac{1}{2} \int_{16}^{16} d(x_1,x_2) +$

Cyclic Permutation on X

$$\pi = (x_1, x_2, ..., x_n)$$

 $\Sigma^{^{o}}(\pi) \coloneqq \ \ \text{the splits (bipartitions of X)} \\ \text{induced by planar 'cuts'}.$

[**Definition**] π is a cyclic ordering for T if $\Sigma(T) \subseteq \Sigma^o(\pi)$

 $l = \frac{1}{2} \sum_{i=1}^{n} d(x_i, x_i)$

57

PD for tree reconstruction

$$l = \sum_{\{x,y\}} \frac{1}{\prod_{v \in I(x,y)} (d(v) - 1)} d(x,y)$$

- Can be used as with δ in place of d as a tree reconstruction method (BME)
 - □ This method is consistent (Desper and Gascuel, 2004)
 - NJ selects the pair of leaves (at each step) to minimize the increase in BME score (Desper and Gascuel, 2004)

...

The end

Further details

- ·E. Mossel and M. Steel, A phase transition for a random cluster model on phylogenetic trees. *Mathematical Biosciences*, 187 (2004), 189-203.
- ·C. Semple and M. Steel (2004) Cyclic permutations and evolutionary trees. *Advances in Applied Mathematics* 32(4): 669-680.
- V. Moulton and M. Steel (2004). Peeling phylogenetic 'oranges'. Advances in Applied Mathematics 33(4): 710-727.
- ·K. Huber, V. Moulton and M. Steel (2005). Four characters suffice to convexly define a phylogenetic tree. *SIAM Journal on Discrete Mathematics* 18(4): 835-843.
- -M. Steel (2005). Phylogenetic diversity and the greedy algorithm. Systematic Biology 54(4): 527-529.