

Compatibility
A set Q of quartets is compatible if there is a phylogenetic X-tree T that displays each quartet of Q

- Example: $Q=\{12|34,13| 45,14 \mid 26\}$

Complexity
\qquad

- Definition: For a binary phylogenetic tree T, a collection Q of induced quartet trees distinguishes an interior edge $\{u, v\}$ of T if there exists a quartet $x y \mid w z$ in Q that looks like this:

Observation: If Q defines T then T is binary and Q distinguishes every interior edge of T (so $|Q| \geq n-3$).

Warning:
$Q=\{12|45,56| 23,34 \mid 16\}$ distinguishes each interior edge of the tree:

Sufficient condition for Q to define T :

- Suppose Q is compatible and distinguishes every interior edge of a binary phylogenetic X-tree T.

Proposition: If there is an element of X that is a leaf of every tree in Q then Q defines T.

Corollary:

There are subsets of $Q(T)$ of size |X|-3 that define T.
\qquad

Reconstructing trees from characters

Types of "characters"

- Morphology (eg. Wings vs no-Wings)
- DNA sequences (....ACG....)
- Genomic data (gene order, SINEs, RCGs)

A character on $X \quad f: X \rightarrow S$

Definitions:

- [Character] A character is any function

$$
f: X \rightarrow S
$$

- [Convexity] Given a character $f: X \rightarrow S$
and a phylogenetic X-tree $T=(V, E)$, we say f is convex on \boldsymbol{T}
if f extends to $f^{\prime}: V \rightarrow S$
so that $\quad f^{\prime} \mid X=f$
and $\quad\left\{v \in V: f^{\prime}(v)=s\right\}$ is connected for all s in S.
\qquad

Combinatorial aside 1.

- Theorem [Bruen and Bryant 2006]

Relevance to molecular biology

- Large state space

Example: gene order rearrangements (n species, L genes, random inversion model)

$$
g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} g_{7} \cdots \Longleftrightarrow g_{1} g_{2} g_{5} g_{4} g_{3} g_{6} g_{7} \cdots
$$

$$
P[h=0] \geq 1-\frac{2(2 n-3)(n-1)}{L(L-1)}
$$

- Rare genomic characters (RGC's):

Examples, Retroposons, SINES, LINES, LTRs, gene content, ètc
(Model, 0->1->?)
\qquad

Character compatibility

- [Compatibility] Characters $f_{1}, f_{2}, \ldots, f_{k}$ are compatible if there exists a phylogenetic X-tree (a 'perfect phylogeny') on which they are all convex.
- Complexity: NP-hard, but special cases are solvable in polynomial time.

A link to graph theory...

G is chordal if every cycle of length four or more has a chord
Example

Definition:

- Given $G=(V, E)$ and a partition $\quad V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ a restricted chordal completion of G is any chordal graph $H=\left(V, E^{\prime}\right), E \subseteq E^{\prime}$ satisfying $\quad x, y \in V_{i} \Rightarrow\{x, y\} \notin E^{\prime}-E$

Equivalence of character and quartet compatibility

	$C \rightarrow Q(C)$
\%2\%)	xy\|rs
	$x z \mid r s$
(-)	$x y \mid r t$

Lemma: Each character in C is convex on T if and only if T displays all the quartets in $Q(C)$.
\qquad

The closure of a set of quartets
For a compatible sel Q of quartet tres, the closure $\operatorname{cl}(\mathcal{Q})$ is definced as

$$
\mathrm{cl}(Q)-\bigcap_{\mathcal{T} F \operatorname{co}(\mathcal{Q})} Q(\mathcal{T})
$$

where co(O) is the sta of phylogenetic trex that display cach of the treas in \mathcal{Q}. Thus cl(Q) consists of precisely those quartet trees that are displayed by every phylogenctic tree that displays \mathcal{Q}.

- Rules of order $<p$ (for any fixed p) do not suffice compute $\mathrm{cl}(Q)$.
- There is a set Q that is incompatible but every strict subset Q^{\prime} is compatible and satisfies $\operatorname{cl}\left(Q^{\prime}\right)=Q^{\prime}$

Example 1: qcl_{2}
Definition: If Q distinguishes every interior edge of a binary phylogenetic tree T and we can order Q so that each quartet tree in the ordering introduces precisely one new leaf label, we say Q has a tight ordering for \boldsymbol{T}.

Example: $\{12|35,13| 56,15 \mid 34\}$.

Proposition:
If Q has a tight ordering for T, then $\mathrm{qcl}_{2}(Q)=Q(T)$ In particular Q defines T.

Application: How many characters are needed to define a binary phylogenetic X-tree?

- For binary characters we need $n-3(n=|X|)$.
- For r-state characters (r fixed) we need at least $(n-3) /(r-1)$
- What if r is not fixed?
(it is not useful to make r too large!)

Where do these numbers come from?

Carter et al. (1990); Erdös \& Székely (1993).
\# binary phylogenetic trees with n leaves, $\quad b(n)=1 \times 3 \times \cdots \times(2 n-5)$ \# of these on which χ is convex $=\quad b(n) \prod_{i=1}^{r} b\left(a_{i}+1\right)$

$$
b(n-r+2)
$$

Edge-colouring a tree by $Z_{2} \times Z_{2}$

Theorem (Huber, Moulton, S , 2003)
For any tree these four characters defines T.

Application 2: "Short" quartets

- $Q_{\text {short }}(T)$

- Theorem (Erdös et al. 1997)
$Q_{\text {short }}(T)$ contains a subset that has a tight ordering for T

- Application to show that trees can be reconstructed from 'short' sequences evolved under finite-state Markov process

A further application involving qCl_{2} :
We say Q is excess-free if $|\mathrm{L}(Q)|-3-|Q|=0$.
(note: If Q defines a tree, then $\operatorname{exc}(\mathrm{Q}) \leq 0$).

- Proposition: Suppose a subset Q of $Q(T)$ contains an excess-free subset Q_{0} that defines T. Then $\mathrm{qcl}_{2}(Q)=Q(T)$.
- Why? Let us say a set Q of quartet trees is "good" if (i) Q defines a phylogenetic tree, and (ii) $\operatorname{exc}(Q)=0$.

Theorem [Bocker, Dress 1999] Any good set of (≥ 2) quartets is the disjoint union of precisely two good sets.
\qquad

Application: How many 'evolved' characters are

 needed to reconstruct a tree?

Theorem (Dezulian +s , 2003): If Q is a generous cover for T, then $\mathrm{qcl}_{1}(T)=Q(T)$. Thus Q defines T .

Example 2: qcl_{1}

- Definition: For a binary phylogenetic tree T, a collection Q of displayed quartet trees is a generous cover for T if for all pairs u, v of interior vertices of T, we have a quartet $x y \mid w z$ in Q that looks like this:

Combinatorial aside: computing $P(\sigma)$

- Recursively
- Mobius-inversion (Evans etal. 2004)

Optimisation problem

- Problem: Given a phylogenetic tree T on X with edge weights.
- Find a subset $y_{\text {max }}$ of X given size k to maximise $P D$.

```
Nee and May (Science 1997)
```

Nee and May (Science 1997)
For rooted trees with a clock, and standard PD,
For rooted trees with a clock, and standard PD,
the greedy algorithm solves this problem

```
the greedy algorithm solves this problem
```

A combinatorial property

- Proposition: For any two subsets A, B of X with $2 \leq|B|<|\mathrm{A}|$ there exists x in $A-B$ so that
$P D(A-\{x\})+P D(B \cup\{x\}) \geq P D(A)+P D(B)$
- Corollary: $\mathrm{Y}_{\text {max }}$ can always be found by using the 'greedy algorithm' [Why?]

The sets of maximal PD-score for their cardinality form a (strong) greedoid]

Calculating PD

$$
d(x, y):=\sum_{e \in p(T x, y, y)} l(e)
$$

$$
l=l(T, w):=\sum_{e} l(e)
$$

Theorem [Yves Pauplin 2000
Molecular Biology and Evolution]

$$
l=\sum_{\{x, y\} \subseteq X}\left(\frac{1}{2}\right)^{\Delta(x, y)} d(x, y)
$$

$\left(=1 / 16 d\left(x_{1}, x_{2}\right)+\ldots.\right)$

Theorem (Semple+s 2004)

For any phylogenetic tree T

$$
l=\sum_{\{x, y\}} \frac{1}{\prod_{v \in I(x, y)}(d(v)-1)} d(x, y)
$$

CHICKEN SCRATCHINGS

PD for tree reconstruction

$$
l=\sum_{\mid x, y) \mid} \frac{1}{\prod_{v \in(x, y)}(d(v)-1)} d(x, y)
$$

- Can be used as with δ in place of d as a tree reconstruction method (BME)
- This method is consistent (Desper and Gascuel, 2004)
- NJ selects the pair of leaves (at each step) to minimize the increase in BME score (Desper and Gascuel, 2004)

