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“The lack of real contact between mathematics 
and biology is either a tragedy, a scandal or a 
challenge, it is hard to decide which.” 

– Gian-Carlo Rota, (1986, in Discrete thoughts)

“Unreasonable effectiveness of mathematics” in 
physics (1960).

– Eugene Paul Wigner
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First Notebook on Transmutation of 
Species, 1837.

Letter from Darwin to Lyell, 1860.
4Ernst Haeckel (1866) Olsen and Woese

(1993)
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The genetics era

1967 Walter Fitch and Emil Margoliash
constructed phylogenetic trees from 
cytochrome c sequences  from 
vertebrates that agreed well with the 
vertebrate fossil record.

Publications with “molecular” and 
“phylogenetic” in abstract 6

Phylogenetic trees

Applications:

•Evolutionary Biology

•Ecology

•Epidemiology

•Others (language, stemmatology etc)
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Phylogenetic trees
[Definition] A phylogenetic X-tree is a tree T=(V,E) 

with a set X of labelled leaves, and all other vertices 
unlabelled and of degree >3.

If all non-leaf vertices have degree 3 then T is binary
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Trees and splits
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Partial order:
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Quartet trees
• A quartet tree is a binary phylogenetic tree on 4 
leaves (say, x,y,w,z) written xy|wz.

• A phylogenetic X-tree displays xy|wz if there is an edge in 
T whose deletion separates {x,y} from {w,z}
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Compatibility

Example: Q={12|34, 13|45, 14|26}
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A set Q of quartets is compatible if there is a phylogenetic 
X-tree T that displays each quartet of Q

Complexity?
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Defining sets

If T is the only phylogenetic X-tree that displays
Q (and X= L(Q)) then we say Q defines T .

Let Q(T) be the set of all quartets displayed by (any) T. 
If T is binary, then Q(T) defines T.
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A necessary condition for Q to define T

Definition: For a binary phylogenetic tree T, a collection Q of 
induced quartet trees  distinguishes an interior edge {u,v} of T if 
there exists a quartet xy|wz in Q that looks like this:

Observation:   If Q defines T then T is binary and Q
distinguishes every interior edge of T (so |Q|>n-3).

vu

x

y

w

z
T



4

13

1 2

3

4

6

5

Warning:
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Q ={12|45, 56|23, 34|16} distinguishes each interior edge
of the tree:

and also                                         !
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Sufficient condition for Q to define T:

Suppose Q is compatible and distinguishes every interior edge of
a binary phylogenetic X-tree T.  

Proposition: If there is an element of X that is a leaf of 
every tree in Q then Q defines T.

Corollary:
There are subsets of Q(T) of size |X|-3 that define T. 

15

Reconstructing trees from characters

Types of “characters”
Morphology (eg. Wings vs no-Wings)
DNA sequences (….ACG….)
Genomic data (gene order, SINEs, RCGs)

A character on X SXf →:
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Definitions:

[Character] A character is any function

[Convexity] Given a character 
and a phylogenetic X-tree T=(V,E), we say f is convex on T
if f extends to                                    
so that
and                                      is connected for all s in S.

SXf →:
SXf →:

SVf →:'
fXf =|'

})(':{ svfVv =∈
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Convexity: example
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Biological significance of convexity

Lemma: A character χ is convex on a 
phylogenetic tree T if and only if χ 
could have evolved on T (from any 
root vertex) without any reversals or 
convergent evolution. 

No wings

wings

No wings

No wings

wings wings
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Homoplasy

h(f, T) = smallest number of reversals/convergent
events required to fit f on (rooting of) T.

• h(f, T) easily computed = l(f, T) – (|f(X)| – 1)
• For |f(X)|=2, h= -1+ max edge-disjoint proper path packing 
(by Menger’s theorem) [S90; extention to |f(X)|>2 by ES92]

• h(f, T) = min #SPR operations to transform T into a        

tree on which f is convex. [Bruen and Bryant 2005]. Applications
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Combinatorial aside 1.

Theorem [Bruen and Bryant 2006]

• h(T, f) = min #SPR operations to transform T into a        
tree on which f is convex. 

Let

Construct the partition intersection graph.
Theorem [Bruen and Bryant 2006]

h(f1, f2)  = #edges + #components – r1 -r2

)},(),({min:),( 2121 fThfThffh T +=
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Relevance to molecular biology

Large state space
Example: gene order rearrangements (n species, L genes, 
random inversion model)

Rare genomic characters (RGC’s): 
Examples, Retroposons, SINES, LINES, LTRs, gene 
content, etc 
(Model, 0->1->?)
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Recent example (Kreigs et al. PLoS biology, April 2006. 
Tree of placental mammals)
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Character compatibility

[Compatibility] Characters f1, f2,…,fk are 
compatible if there exists a phylogenetic
X-tree (a ‘perfect phylogeny’) on which they 
are all convex.

Complexity: NP-hard, but special cases are
solvable in polynomial time.
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A link to graph theory…

G is chordal if every cycle of length four or more 
has a chord

Example
Definition:

Given G = (V,E) and a partition 
a restricted chordal completion of G is any 
chordal graph 
satisfying

kVVVV ∪∪∪= L21

EEyxVyx i −∉⇒∈ '},{,
'),',( EEEVH ⊆=



7

25

Characterising compatability

Species 1 2 3 4 5
Characters

f1 A A B B X
f2 C E C B B
f3 U R R S U

{1,2}      {1,3} {1,5}

{3,4} {4,5} {2,3}

Theorem 
F is compatible if and only if int(F) has a restricted chordal completion. 

If F is compatible, then int(F) has tree-width at most k=|F|. 
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Equivalence of character and quartet 
compatibility

Lemma: Each character in C is convex on T if and only if 
T displays all the quartets in Q(C). 

[C is “compatible”, C “defines” T iff Q(C) does]
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New quartet trees from old ones
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Dyadic rules for quartet trees 
(Colonius and Schulze; Dekker)
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Dyadic quartet closure
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The closure of a set of quartets

• Rules of order <p (for any fixed p) do not suffice 
compute cl(Q). 

• There is a set Q that is incompatible but every strict subset Q’ is 
compatible and satisfies cl(Q’)=Q’
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Example 1:  qcl2
Definition: If Q distinguishes every interior edge of a binary 

phylogenetic tree T and we can order Q so that each quartet 
tree in the ordering introduces precisely one new leaf label, 
we say Q has a tight ordering for T.  

Example: {12|35, 13|56, 15|34}.

Proposition:
If Q has a tight ordering for T, then  qcl2(Q) = Q(T) 
In particular Q defines T.
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Application: How many characters are needed to define a 
binary phylogenetic X-tree?

For binary characters we need n-3 (n=|X|).
For r-state characters (r fixed) we need at least 

(n-3)/(r-1)
What if r is not fixed?

(it is not useful to make r too large!)
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I(χ) := - log(Pr[χ is convex on random T ]) 

Distribution of trees according to number of character 
states for 120 species
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Where do these numbers come from?

Carter et al. (1990); Erdös & Székely (1993).
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Edge-colouring a tree by Z2 x Z2

Theorem (Huber, Moulton, S, 2003)

For any tree these four characters defines T.

1
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R' R
{{1,3,4,6}, {2,5}, {7,8}}

Proof:  show Q(C) contains a subset with a tight ordering for T.
36

Application 2: “Short” quartets

Qshort(T)

Theorem (Erdös et al. 1997) 
Qshort(T) contains a subset that has a tight ordering for T
(and so qcl2(Qshort(T)) =Q(T)).

Application to show that trees can be reconstructed from ‘short’
sequences evolved under finite-state Markov process
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A further application involving qcl2:

We say Q is excess-free if |L(Q)|-3-|Q| = 0. 
(note: If Q defines a tree, then exc(Q) < 0).

Proposition: Suppose a subset Q of Q(T) contains an excess-free 
subset Q0 that defines T. Then qcl2(Q)=Q(T).

Why? Let us say a set Q of quartet trees is “good” if (i) Q defines 
a phylogenetic tree, and (ii) exc(Q)=0.   

Theorem [Bocker, Dress 1999] Any good set of (>2) quartets is the 
disjoint union of precisely two good sets. 
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Aside: Phylogenetic patchworks

If Q is ‘good’ then its good 
subsets for a ‘patchwork’, and 
it contains a maximal hierarchy.

New Theorem (2006; S. Grunewald).

Say Q is ‘thin’ if exc(Q’)>0 for all 
subsets of Q’ of Q. Then any thin set 
is compatible.
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Example 2: qcl1
Definition:  For a binary phylogenetic tree T, a collection Q of 
displayed quartet trees is a generous cover for T if for all pairs u,v
of interior vertices of T, we have a quartet xy|wz in Q that looks like 
this:
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Theorem (Dezulian + S, 2003): If Q is a generous cover for T, 
then qcl1(T) = Q (T). Thus Q defines T. 
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Application:  How many `evolved‘ characters are 
needed to reconstruct a tree?
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Theorem (Mossel +S, 2004)

[Assume probability of state change on each edge for each character is
Bounded between (a,b), 0<a<b<1/2 ]

The number k of indep. characters required to reconstruct T 
(correctly with probability>1-ε) is

n = #species, p =smallest substitution probability, c=c(ε,b)

The tree reconstruction algorithm is polynomial time (in n,k)

Proof relies on generous cover result.
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Combinatorial aside: computing P(σ)

Recursively
Mobius-inversion (Evans et al. 2004)
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Topological aside: tree space under Markov models
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Example

Orangutan Gorilla Chimpanzee Human

Adapted From the Tree of the Life Website,
University of Arizona

?
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Markov models (II)
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Markov models and tree reconstruction
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Example: Deep divergence in the Metazoan phylogeny

Fungi

Choanoflagellates

Arthropods

Nematodes

Deuterostomes

Platyhelminthes

Actinopter
MammaliaCnidaria

Monosiga ovata

Cryptococcus
Phanerochaete

Ustilago

Schizosaccharomyces

Saccharomyces

Candida

Paracooccidioides

Gibberella

Magnaporth
Neurospora

Glomus

Neocallimastix

Schistosoma mansoni
Schistosoma japonicum

FasciolaEchinococcus

Dugesia

Strongyloides

Caenorhabditis briggsae
Caenorhabditis elegans

Ancylostoma
Pristionchus

Brugia

Ascaris
Heterodera

Trichinella

Glossina

Drosophila
Anopheles

Monosiga brevicollis

Urochordata

Echinodermata

Ctenophora

Meloidogyne

Tardigrades

Chelicerata

HemipteraHymenoptera

Coleoptera

Siphonaptera
Lepidoptera

Crustacea
Annelida

MolluscaCephalochordata

From Huson and Bryant, 2006 48

The space of ‘phylogenetic oranges’
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Combinatorial aside (II) the Tuffley poset
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Chris Tuffley
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Theorem (2005)

TS(X) is a compact regular cell complex which is

contractible

homeomorphic to the geometric realization of 
the Tuffley poset on X
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Part 3: phylogenetic diversity and trees from distance data
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Modifications (I)
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Optimisation problem

Problem: Given a phylogenetic tree T on X
with edge weights.  

Find a subset Ymax of X given size k to 
maximise PD. 

Nee and May (Science 1997)

For rooted trees with a clock, and standard PD, 
the greedy algorithm solves this problem

General case? 54

A combinatorial property

Proposition: For any two subsets A, B of X with 
2<|B|<|A| there exists x in A - B so that

Corollary:  Ymax can always be found by using the 
‘greedy algorithm’ [Why?]

[The sets of maximal PD-score for their cardinality form a (strong) greedoid]
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Calculating PD

∑
∈

=
),;(

)(:),(
yxTpe
elyxd

∑==
e

elwTll )(:),(

),()( ),(
2
1

},{
yxdl yx

Xyx

∆

⊆
∑=

....)),(( 2116
1 += xxd

Theorem [Yves Pauplin 2000 
Molecular Biology and Evolution]
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Theorem (Semple+S 2004)
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Cyclic Permutation on X
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PD for tree reconstruction

Can be used as with δ in place of d as a tree 
reconstruction method (BME)

This method is consistent (Desper and Gascuel, 2004)

NJ selects the pair of leaves (at each step) to 
minimize the increase in BME score 
(Desper and Gascuel, 2004)

),(
)1)((

1
},{

),(

yxd
vd

l
yx

yxIv

∑ ∏
∈

−
=

59

The end
Further details
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