

Outline

2. Why maths?

"Unreasonable effectiveness of mathematics" in physics (1960).

- Eugene Paul Wigner

"The lack of real contact between mathematics and biology is either a tragedy, a scandal or a challenge, it is hard to decide which."

- Gian-Carlo Rota, (1986, in Discrete thoughts)

13

15

What sort of math?

 Discrete mathematics: graph theory, posets, set systems, algorithms, computational complexity.

Probability:

Markov processes, birth-death processes, coupling, martingale theory, MCMC.

 Others: algebra, dynamical systems: linear algebra, algebraic geometry, discrete fourier analysis, differential equation modelling

Why maths?

"I hope it arises from your being 10

fathoms deep in the Mathematics,

remain "

& if you are God help you, for so am I, only with this difference: I stick fast in the mud at the bottom and there I shall

- C. Darwin to W.D. Fox 29 July, 1828

- Analysing existing methods
- Developing better methods
- Help answer questions:
 - Why do some methods lead to different estimated trees?
 - How can we have confidence in a given tree? (or any tree?)
 - What can trees tell us about evolutionary processes?
- How much data do we need to find a tree?

"vertex" aka "node"; "edge" aka "branch"

The exact probability of a tree under YH and U?

$$\mathbb{P}_{U}(T) = \frac{1}{rb(n)}$$
$$\mathbb{P}_{YH}(T) = \frac{2^{n-1}}{n! \prod_{v \in I(T)} \lambda_{v}} \qquad \text{Why?}$$

Example

Outline

- Part 1: Rooted phylogenetic trees, clusters, hierarchies
- Part 2: Unrooted phyl. trees, splits
- Part 3: Applications: RF metric, Consensus, Quartet encodings

□ break

Part 4: Adams consensus

Hierarchies

A *hierarchy* on H on X is a collection of non-empty subsets of X satisfying:

> • $A, B \in H \Rightarrow A \cap B \in \{A, B, \emptyset\}$ • $X \in H$, and $\{x\} \in H, \forall x \in X$

The clusters of any rooted phylogenetic X-tree form a hierarchy on X

Moreover, any hierarchy on X equals C(T) for a unique rooted phylogenetic X-tree T.

 $T \leq T' \iff C(T) \subseteq C(T')$ **Partial order:**

What does this order mean?

Rooted phylogenetic trees

Definition: A rooted phylogenetic X-tree is a rooted tree, with

- X = the set of leaves,
- Every non-root vertex has in-degree 1,
- Every non-leaf vertex has out-degree >1.
- R(X) = set of rooted phylogenetic X-trees. "Polytomy"

 $C(v) = \{x \in X : x \text{ is separated from the root by deleting } v\}$

 $C(T) = \{c(v) : c \in V_T\}$

"Clusters (or clades) of *T*" (aka 'momophyletic group')

Unrooted phylogenetic X-trees

Definition: A phylogenetic X-tree is a tree, with

- X = the set of leaves;
- Every non-leaf vertex has degree at least 3.

U(X) = set of phylogenetic X-trees.

"Polytomy" "Isomorphism" $R(X) \leftrightarrow U(X \uplus \{x\})$

35

33

An interesting combinatorial challenge:

Show that the number of trees in UB(n) that have exactly *c* cherries is:

$$\frac{n!(n-4)!}{(n-2c)!(c-2)!c!2^{2c-2}}$$

$$\binom{n}{2c} \cdot \frac{(2c)!}{c!2^c} \times \frac{(2c-4)!}{(c-2)!2^{c-2}} (= b(c)) \times \binom{k+(2c-3)-1}{k} \cdot k!$$

45

47

Strict and majority rule consensus

$$\mathcal{P} = (T_1, T_2, \dots, T_k)$$

Strict consensus: Let $\Sigma_{100\%}$ be the splits that appear in all the trees.

Majority rule consensus:

.

Let $\Sigma_{>50\%}$ be the splits that appear in more than half the trees.

Proposition: $\Sigma_{>50\%}$ is pairwise compatible (and so determines a tree.

Proof: Applies the 'pigeonhole principle'

Quartet trees

49

• A quartet tree is a binary phylogenetic tree on four leaves (say, x, y, w, z) written xy|wz.

• A phylogenetic X-tree **displays** xy|wz if there is an edge in *T* whose deletion separates $\{x, y\}$ from $\{w, z\}$

When is Q=Q(T) (for some T)?

•[Colonius and Schultze 1981]

Q = Q(T) for some $T \in U(X)$ iff the following hold

 $ab|cd \in Q \Rightarrow ac|bd, ad|bc \notin Q$

 $ab|cd \in Q \Rightarrow ab|ce \in Q \text{ or } ae|cd \in Q.$

(Displayed) quartet trees encode any phylogenetic tree

Given a phylogenetic X-tree T, let Q(T) be the set of quartets that T displays.

Then $\forall T, T' \in U(X)$

 $Q(T) = Q(T') \Leftrightarrow T \cong T'$

Quiz: Why?

Harder question: How many questions do we need to ask of the form 'what is T | q' for a quartet q in order to reconstruct T?

Another tree metric – the 'quartet metric'

$$d_Q(T,T') = |Q(T)\nabla Q(T')|$$

Less 'sensitive' than RF

Mean = easy to compute
$$\frac{1}{3}$$

Complexity?

The diameter is a difficult unsolved problem! **Conjecture:** $\max\{d_Q(T,T'): T, T' \in UB(n)\} = \left(\frac{1}{3} + o(1)\right) \binom{n}{4}$

(S. Grunewald seems to have a proof)

Analogous theory for rooted trees:

In place of quartet trees ab | cd, one has rooted triples ab | c

Maximum agreement subtree I:

Definition

 $T_1, T_2, \ldots T_k$ phylogenetic X-trees $MAST(T_1, T_2, \cdots, T_k) :=$ $\max\{|Y|: Y \subseteq X, T_1|Y = T_2|Y = \cdots T_k|Y\}$

Algorithms? Two trees

Three trees

k-trees, with >1 tree having no vertex of high degree

Summary: Encoding trees

Maximum agreement subtree II: mathematical aspects

Randomized question

Given two trees generated 'at random' (uniform or Yule) what can we say about the size of their max. agreement subtree? [see Katherine St John!]

Extremal question

- Any two trees on UB(6) have a max. agreent subtree of size at least 4.
- There are two trees in UB(*n*) that have max. agreement subtree of size $\log_2(n)$

Conjecture: The max. agreement subtree of any two trees in UB(n) has size at least clog(n) for some constant c.

55

Specialist topic: Axiomatic aspects of consensus methods

Three properties we'd expect any consensus method to have:

- Unanimity: $\mathcal{P} = (T, T, \dots, T) \Rightarrow \psi(\mathcal{P}) = T$
- Tree order invariance:

 $\psi(T_1, T_2, \dots, T_k) = \psi(T_{\sigma(1)}, T_{\sigma(2)}, \dots, T_{\sigma(k)})$

• Taxon permutation equivariance:

 $\psi(T_1^{\sigma}, T_2^{\sigma}, \cdots, T_k^{\sigma}) = \psi(T_1, T_2, \cdots, T_k)^{\sigma}$

Given partitions $\pi_1, \pi_2, \ldots, \pi_k$ consider the *product partition*

 $\pi_1\otimes\pi_2\cdots\otimes\pi_k$

Adams consensus tree for above two trees

Adams concensus and nestings

57

"A **nests in** B in T" means that the MRCA of A is a strict descendant of the MRCA of B in T

[Ad1] If A nests in B for each tree in the profile, then A nests in B in the Adams tree

[Ad2] If A, B are clusters of the Adams consensus tree, and A nests in B then A nests in B in every tree in the profile.

[Moreover, Adams consensus is the **only** tree satisfying these properties] Note that [Ad1] implies: If all input trees display xy | z so too does Adams tree

Can we do better than that?

If at least one input tree displays xy | z, and no input tree displays xz|y or yz|x then the consensus tree should display xy | z

Output tree should display 12 | 5, 23 | 5, 34 | 1 and 45 | 1 – but there is no tree that does this!

What about Adams for unrooted trees?

If each tree in \mathcal{P} displays ab|cd then $\psi(\mathcal{P})$ does too

These trees each display

 $\{12|45, 34|16, 56|23\}$ They are the **only** trees that display these quartets.

The cyclic permutation

(123456) interchanges the two trees in \mathcal{P}

61

THE END

- **Corollary:** A set of binary characters are compatible iff each pair is; and there is a unique minimal perfect phylogeny.
- □ Both parts of this corollary fail for 3-state characters.

A link to graph theory...

G is **chordal** if every cycle of length four or more has a chord Example

Definition:

• Given G = (V, E) and a partition $V = V_1 \cup V_2 \cup \cdots \cup V_k$ a **restricted chordal completion** of *G* is any chordal graph satisfying $(V E') E \subset E'$ тт

$$H = (V, E) : E \subseteq E$$
$$x, y \in V_i \Rightarrow \{x, y\} \notin E' - E$$

How hard is the perfect phylogeny problem?

Given characters $f_1, f_2, ..., f_k$ what is the complexity of deciding whether or not they are compatible?

- Easy for binary characters
- Poly-time for *r*-state characters (*r* bounded)
- NP-hard in general (we'll see why in the lecture 5!)

Special 'easy' case:

Characters f, g are strongly compatible if $f^{-1}(s) \cup g^{-1}(s') = X$ for some s, s'

Theorem Suppose $C = (f_1, \ldots, f_k)$ is pairwise strongly compatible. Then \mathcal{C} is compatible, and has a unique minimal perfect phylogeny.

Dress, A.W.M., Moulton and S. 1997.

73

75

Characterising compatibility

When r = 2 or r = 3, a set of r-state characters $\{f_1, f_2, \dots, f_k\}$ is compatible if and only if every subset of r characters is compatible¹.

How does this generalize?

For all $r \geq 2$ there is an incompatible set of $\lfloor \frac{i}{2} \rfloor \cdot \lceil \frac{i}{2} \rceil + 1$ r-state characters with every r-subset compatible

Interesting unsolved problem:

1 r=3, recent result due to Dan Gusfield

2B. Shutters, S. Vakati, D. Fernandez-Baca, Incompatible quartets, triplets, and characters, A Mol. Biol. 8 (2013) 11. 76

Further mathematical properties of the MP tree I

Proposition[Bruen and Bryant 2008] For any **two** characters $C = (f_1, f_2)$ the score of the MP tree is determined by int(*C*).

 $ps(\mathcal{C}) = \#$ edges of $int(\mathcal{C}) - \#$ components of $int(\mathcal{C}) + 2$

Proposition [Bryant 2003]

If C consists of just binary characters, and one of them, say f, is compatible with all others, then: $f^{-1}(0)|f^{-1}(1)$ is a split of *every* MP tree for C.

An extension of this: H.J.- Bandelt's result that all MP trees lie in the 'median network' for C 85

Maximum parsimony trees III

If T is the unique perfect phylogeny on n leaves for k characters then we need k to be at least n-3 (and this suffices for the right choice!)

But what if we want T to be the unique MP tree? We can do this with fewer than n-3? Sublinear?

A primitive counting argument gives a lower bound of log(n). Remarkably, this can be achieved...

Theorem [Chai and Housworth, 2011]

For every $T \in UB(n)$ there is a set of $\Theta(\log n)$ binary characters with T as the unique MP tree.

Counting: How many trees in UB(*n*) have parsimony score *k* for a binary character *f*?

$$= |f^{-1}(0)|; b = |f^{-1}(1)|$$

$$N(a, b; k) = \#T \in UB(n) : ps(f, T) = k$$
Example: $N(2, 2, k) = ?$

David Penny's remarkable conjecture:

a

$$N(a,b;k)/b(n) = 2^k \cdot \frac{k(2n-3k)}{(2a-k)(2b-k)} \cdot \frac{(2a-k)!}{(a-k)!} \cdot \frac{(2b-k)!}{(b-k)!} \cdot \frac{(n-k)!}{k!(2n-2k)!}$$
$$a+b=n; 0 \le k \le \min(a,b)$$

Proof uses several ideas above (Menger's theorem; counting trees that can be constructed by joining trees etc) plus some new ideas.

The original proof involved generating functions and a computer-assisted use of the multivariate Lagrange inversion formula 86

Parsimony: Ancestral state reconstruction

Plachetzki D C et al. Proc. R. Soc. B 2010;277:1963-1969

©2010 by The Royal Society

Outline

- Part 1: Encoding trees by distances, 4PC, ultrametrics
- Part 2: Reconstruction methods
- Part 3: Phylogenetic diversity and BME
 - \Box 20x pushups
- Part 4: Specialist topic: Do we need all the distances?

If this holds for all pairs of leaves we that *d* is '**tree metric**' with a '**representation on** *T*'

99

When about general *n*?

For any four points x, y, w, z let

$$S_{1} = d(x, y) + d(w, z)$$

$$S_{2} = d(x, w) + d(y, z)$$

$$S_{3} = d(x, z) + d(y, w)$$

If *d* is a tree metric then, for i = 1,2,3

$$S_i \le \max\{S_j, S_k\}$$

This is called the **four point condition (4PC)**

Ultrametrics trees (aka. 'equidistant tree', 'clock-like tree')

Definition: A rooted tree with edge weighting (T,w) is an 'ultrametric tree' if the distance from the root to each leaf is the same (rooted).

For an unrooted tree – it is ultrametric if it can be rooted (at some point)so this holds).

Quiz: are these unrooted trees ultrametric trees

101

103

A classic result (1960s/early 70s)

Theorem

d is a tree metric if and only if it satisfies the $4\mathrm{PC}$

And the choice of T and w > 0 to represent d is unique

Proof?

Ultrametrics

Definition: D is an **ultrametric** on *X* if it satisfies the 3-point condition:

$$D(x,y) \le \max\{D(x,z), D(y,z)\}$$

The connection: *D* is an ultrametric on X if and only if there is a tree T in R(X) on which *D* has ultrametric branch lengths (and then *T*, *w* unique)

Transforming an arbitrary tree metric into an ultrametric (Farris/Gromov transform):

$$D(x,y) = \begin{cases} d(x,y) - d(x,r) - d(y,r), & x \neq y; \\ 0, & x = y. \end{cases}$$

Neighor-Joining

$$Q(x,y) = d(x,y) - \frac{1}{n-2}\sum_{p} d(x,p) - \frac{1}{n-2}\sum_{p} d(y,p)$$

Select (*x*,*y*) to minimize Q

- (1) If $d = d_{(T,w)}$ then (x,y) selected by Q is a cherry of T
- (2) Q is a linear function of d

(3) If Q selects (x,y) and σ is a permutation of taxa, then Q applied to d^{σ} will select $(\sigma(x), \sigma(y))$.

109

Theorem [Bryant] If a selection criterion Q^* satisfies (1), (2) and (3) then Q^* makes the same selection as Q

An inconvenient truth

- Biological distances were not created by a mathematician!
 - Our best hope: If δ is 'close' to $d = d_{(T,w)} | \mathcal{L}$ then $NJ(\delta) = T$

We say that a distance-based method Mhas safety radius r if following holds: $\forall x, y \in X$

 $|\delta(x,y) - d_{(T,w)}(x,y)| < r \cdot w^* \Rightarrow M(\delta) = T$ $w^* = \min\{w(e) : e \in E_{int}(T)\} \quad T \in UB(n)$

- No method allows $r > \frac{1}{2}$. (why?)
- But NJ has safety radius ¹/₂ [K. Atteson] (also there is an 'edge safety radius' result also)
- NJ exhibits discontinuity (when far from tree metric)

Balanced minimum evolution (BME)

Given *d* (not necessarily a tree metric) select the phylogenetic tree(s) *T* to minimizes *L* according to the Pauplin formula

$$L = PD(X) = \sum_{\{x,y\}\subseteq X} \left(\frac{1}{2}\right)^{\Delta_T(x,y)} d(x,y)$$

BME is 'consistent' (Desper and Gascuel, 2004)

Corollary:

Given a cyclic ordering π the # binary phylogenetic trees for which π is a cyclic ordering is the Catalan number

$$\frac{1}{(n-1)}\binom{2n-4}{n-2}$$

Why?

$$#(T,o) := b(n)2^{n-2} = (n-1)!Q$$

Summary:

For any phylogenetic tree *T* the average of all the representations of *L* is:

$$L = PD(X) = \sum_{\{x,y\}\subseteq X} \lambda_T(x,y)d(x,y)$$
$$\lambda_T(x,y) = \prod_{v\in I(x,y)} (\deg(v) - 1)^{-1}$$

Example a b c d d f l= $\frac{1}{3}d(a,b) + \frac{1}{6}d(a,d) + ...$ Application: NJ selects the pair of leaves (at each step) to maximizes the reduction in BME score [Desper and Gascuel, 2004; Gascuel and S, 2006]

Back to Pauplin...

$$L = \frac{1}{|o(T)|} \sum_{(x_1, \dots, x_n) \in o(T)} \left(\frac{1}{2} \sum_i d(x_i, x_{i+1})\right)$$
$$= \frac{1}{2} \sum_{(x,y)} \left(\frac{n_T(x,y)}{|o(T)|}\right) d(x,y)$$
$$= \sum_{\{x,y\} \subseteq X} \lambda_T(x,y) d(x,y)$$
where
$$\lambda_T(x,y) = \prod_{v \in I(x,y)} (\deg(v) - 1)^{-1}.$$

$$M_T(x,y) = \prod_{v \in I(x,y)} (\deg(v) - 1)^{-1}.$$
Phylogenetic diversity (again)
$$PD(Y) = \sum_{e \in T(Y)} w(e)$$
Relevant for:
• Conservation biology
• Ensuring evolutionary
'coverage' in study designs
• Tree reconstruction

120

A nice combinatorial property of PD

- **Problem:** Find a subset Y_{max} of X given size k to maximise PD.
- **Theorem:** Y_{max} can always be found by using the 'greedy algorithm'.
- [The sets of maximal PD-score for their cardinality form a (strong) 'greedoid']
- Why?

If $1 < |Y_1| < |Y_2|$ there exists $y \in Y_2 - Y_1$: $PD(Y_1 \cup \{y\}) + PD(Y_2 - \{y\}) \ge PD(Y_1) + PD(Y_2).$

What's the connection?

Theorem [Bordewich and Semple (Syst. Biol. 2012)]

For clock-like branch lengths the optimal max-min selection of *k* species is **identical** to the optimal PD selection.

Quiz: What happens to our **distance** and **PD** results if the edges are weighted by an (Abelian) group?

121

An alternative measure: "max-min"

Select set S of k leaves to maximise $\min\{d(x, y) : x, y \in S, x \neq y\}$

Does d determine T? (and/or w?)

Example: "

$$\mathcal{L} = \{ab, cd, ac, bd\}$$

 $d|\mathcal{L}$ determines T but not w

 $\mathcal{L}' = \mathcal{L} \cup \{ad\} \text{ determines } T \text{ and } w$ $\mathcal{L}'' = \{ab, ac, ad, bc, bd\} \text{ determines } neither$

Draw graph!

How few distances do we need?

Classic result: [Yusmanov, 1984]

For any binary tree T with *n* leaves, there is a set $\mathcal{L} \subseteq \begin{pmatrix} X \\ 2 \end{pmatrix}$ of size 2*n*-3 so that the $d_{(T,w)} | \mathcal{L}$ determines both T and *w*.

[Dress, Huber, S, (2014)] If we just want to define T, we can reduce the size of \mathcal{L} by 1 (but no more!)

Quiz

If $d_{(T,w)}|\mathcal{L}$ determines w on given T, does it also determine T?

125

The 'Triplet Cover' conjecture

