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Phylogenetic trees

Scientific American. Based on
Cann, Stoneking, Willson 1987 (Nature)

R N —

Co-phylogeny
study 2010

1915 1925 1935 1945 1955 1965 1975 1985 1995

Year

Further applications of phylogenetics
epidemiology, linguistics,
stemmatology,tumour-cell trees,
psychology, whisky

e
o
P
PO
~F N
Ny -
==

Stammbaum for Indo-Europena. From Die Darwinshce Theorie
und die Sprachwissenschaft (Schleicher’s 1863)

Fiwre 3. Cladogrom for 46 mamacripes of the Wife of Batk's Profogwe

1. Why phylogeny?

Systematic Biology

Epidemiology +
R / medicine
A
RN
) - Evolutionary
Phylogenehcs it - processes

la,
\ Phylogeography, Co-

phylogeny, Biodiversity

> @
238 @ 5 &
3%t & £ §, £
%2 3 o § 5&F% ¢
5% 3 3 § f5 &, ¢
% 3% 38 5 87 S8
S B B e 38 S &S
%, % % . Q& §\§& o
R Y g &S
% . A & &

g e%,% % ! \\Ni \ ~ &
Mg, N RN
4 \ \ SN
S N\ ‘ Z .\696
& e

& >
Wramiges g //f;; \Ga\\-ﬁormes
= =

4= Anseriformes
N

= O m— W _,\
ded = 06 22 75 259 897 3 =
- 0ago" / Million years g S
—

2014 “Tree of birds’ ~(10,000 species) with ages colour coded (and with distribution of
575 impelled species at tips (rep. 2.7 billions years of evolution) [Jetz. et al. 2014]

0




2. Why maths?

“Unreasonable
effectiveness of
mathematics” in physics
(1960).

— Eugene Paul Wigner

“The lack of real contact between mathematics
and biology is either a tragedy, a scandal or a
challenge, it is hard to decide which.”

— Gian-Carlo Rota, (1986, in Discrete thoughts)

Why maths? >

“I hope it arises from your being 10
fathoms deep in the Mathematics,
& if you are God help you, for so am I,
only with this difference: I stick fast in
the mud at the bottom and there I shall
= Developing better methods remain ”

— C. Darwin to W.D. Fox 29 July, 1828

= Analysing existing methods

= Help answer questions:
o Why do some methods lead to different estimated trees?
a How can we have confidence in a given tree? (or any tree?)
o What can trees tell us about evolutionary processes?
o How much data do we need to find a tree?

What sort of math?

= Discrete mathematics:
graph theory, posets, set systems, algorithms, computational complexity.

= Probability:
Markov processes, birth-death processes, coupling, martingale theory, MCMC.

= Others: algebra, dynamical systems:
linear algebra, algebraic geometry, discrete fourier analysis, differential
equation modelling

Graphs (and trees) E
/VQT’ ex

G=WE) edgt,
> deg(v) = 2|E|

veV

G connected = |V| < |E|+1

A tree is a connected graph with no cycles

®
G = (V, E) (connected) is a tree < |V| = |E|+1

“vertex” aka “node™; “edge” aka “branch”




Binary phylogenetic trees (rooted and unrooted)

cat mushroom daisy rice bacteria cat daisy rice

mushroom

Counting trees
4 - n

Arthur Cayley, 1889

b

T e RB(X ) X d Erwin Schroeder, 1870
, B(n) =B({{1,2,...,n}),b(n) = |B(n
re B D (0) = B({12,....n}),b() = |Blr)
T = (V,E) € B(n) = |E| = 2n— 3
b(n+1)="b(n) x (2n — 3)
T o e ; b(n)=1x3x---x (2n—5) = (2n — 5! «
Counting rooted trees An “algebraic’ proof
:Bn
$z) = 7“b(n)m
n>1
1 2
o(x) = 2+ Lol)

19

) «— B(X W {z})
rb(n) = |RB(X)\ =b(n+1)=(2n — 3)!

(2n — 2)!
matchings (n _ 1)'277,71

20




Counting trees by shape (via the ‘Orbit-Stablizer’ theorem)

\<>/ mushroom daisy rice bacteria
# trees in R(#) of this shape? # trees in R(#) of this shapcw

Gl nl
Stab(s)| — Stab(T)

O(s)] =

=nl27°

Quiz:  how many trees

— " have the same shape as
‘ the above?

5!
f—2 ? =5x3=15
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Counting trees II

n!/|Stab(T)|

A more interesting
type of counting:

How many binary phylogenetic trees can we construct in this way?

e b(::-|-2 H| ;><3><5><1><7

50,715 »

A first look at tree rearrangment operations (ININI)

What does the space of trees look like look like?
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NNI tree space is connected

NNI neighborhood: 2(7-3)
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Discrete tree space: interesting properties

) Diameter?

max{dyn(T,T")} = O(nlog(n))

Theorem [Gordon, Ford, St John, 2013]
For all 7, there exists a Hamiltonian path through the
n-leaf NINI tree-space.

Kevaughn Gordon*, Eric Ford, and Katherine St. John, Hamiltonian Walks of

Phylogenetic Treespaces, to appear, IEEE/ACM Transactions on Computational

24
Biology and Bioinformatics, 2013 Jul-Aug;10(4):1076-9




Other tree rearrangement operations

ORONG
SPR (Subtree prune and re-graft) N

Transformation ™

TBR (Tree bisection and teconnection,

Number of neighbors
SPR: 2(n —3)(2n — 7)
TBR: O(n?logn) — O(n?)

O(n)

Diameter?

IR
Tranformation | * J

Specialist topic:
Models for generating discrete random trees

Uniform model — select a tree from RB(%)
uniformly at random

Yule-Harding model — sclect a ranked rooted @ * ¢ 4 ¢ L
binary phylogenetic tree uniformly at random,

then forget the ranking,

(i I(n—1)!
# ranked trees on n leaves = H (Z) = M
i=2
Quiz: Do these two models produce same probability
distribution on RB(n)?

Why of interest?
2(n —3)2n -7 >b(n) =d>cn 2
. Yule-ﬂll’dh‘g
Discrete aspect of tree shape: Balance All roads lead to Rosas....
( ‘_. 4 :’/‘Y
\ i Evolutionary tree Reconstructed tree
'..\ ~ \ %
\ b= b(t, N),d = d(t,a, N)

V1I§$35333 37
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Proposition: [Aldous; Lambert and Stadler]

All such models lead to same distribution on the shape of the reconstructed
tree (ignoring branch lengths). This is precisely the Yule-Harding distribution.

28




Evolving ‘discrete’
Yule-Harding trees

Quiz: \)/

The exact probability of a tree under YH and U?

1
rb(n)

Py(T) =

2n—1

. . Py (T) = Wiy?
Grow a Yule-Harding tree till it YH ( ) n! H Y 4
N “Llvel(T) 7Y
has 101 leaves.
Which is more likely? Example
100 1 60 41 cat mushroom daisy rice bacteria 1 1 1
rb(5) 3x5x7 105
4
OR 2
Pyr(T) = - o=
Sl x4x3x1 90
1,23, 9 1
27374777100 100 29 30
? i . .
Why maths? (again)... Lecture 2: Properties of trees
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Outline

Part1:  Rooted phylogenetic trees, clusters, hierarchies
Part2:  Unrooted phyl. trees, splits

Part 3: Applications: RF metric, Consensus, Quartet
encodings

Rooted phylogenetic trees

Definition: A rooted phylogenetic X-tree is a rooted tree, with

* X = the set of leaves,

* Every non-root vertex has in-degree 1, g
* Every non-leaf vertex has out-degree >1.

= ic X- : &S W U
R(X) = set of rooted phylogenetic X-trees. \\\y
/

“Polytomy”

C(v) = {x € X : z is separated from the root by deleting v}

3 break “Clusters (or clades) of T”
T) = :
Part4:  Adams consensus C(T) = {c(v) : c € Vr} (aka ‘momophyletic group’)
33 34
Hierarchies Unrooted phylogenetic X-trees
A hierarchy on H on X is a collection o s \ e & y 4 Definition: A phylogenetic X-tree is a tree, with
of non-empty subsets of X satisfying: ’ i / w;v
A BeH= AnBe {A, B,0} - \ fj/ * X = the set of leaves;
X €H, and {z} e HVz € X 3 ) \ “ ;r (=) * Every non-leaf vertex has degree at least 3.
\'\"f‘s/x‘» 7 OS2 U(X) = set of phylogenetic X-trees
The clusters of any rooted phylogenetic X- U '
tree form a hierarchy on X M — G

Moreover, any hierarchy on X equals C(T)
for a unique rooted phylogenetic X-tree T.

Partial order: T<T «— C(T) C C(T')

What does this order mean? 35

“Polytomy”
“Isomorphism”

R(X) & UX W {z})

What cotresponds to clusters/clades?

36




Encoding unrooted trees via splits

3
1
e— Ac|B. 2
X(T)={A¢|B.:e € E}
5 4 = {13|2456, - - - }
6 Y(T') determines T

S(T)=S(T) & T2T

Partial order:

T<T < X(T)CX(T)

When does a set of splits come from a tree?

Two splits A, | B, and A, | B, of X are compatible,

if one of the following intersections is empty:
A1 N Ay, Ay N By, By N Ag, By N By

Two compatible splits

" The set of splits of a phylogenetic tree is pairwise compatible

Conversely....

If ¥ is a set of pairwise compatible splits, and
{z}|(X —{x}) e Eforall x € X

then ¥ = 3(T) for a (unique!) phylogenetic X-tree

Without the same applies with the
phylogenetic replaced by “X-tree”

Simple algorithm for reconstructing 7' from X(T) (‘tree popping’)

39

The link(s) between pc X-splits vs hierarchies

Obvious one: Select xg € X

A|B — the set (A or B) that does not contain z

3 is pc iff the induced set system is a hierarchy on X — {zo}
Example: X = {1|234, 2|134, 3|124, 4|123, 12|34}

More subtle...

A|B — smaller of A or B
Y is pc iff the induced set system is a hierarchy on X

Example: == {1|234,2[134,3|124, 4]123,12|34}

40




Applications of split encoding I: Tree metrics

Robinson-Foulds metric [1981]

3
%

Les Foulds

d(T,T") = |X(T)VX(T)) -

“symmetric difference”

Interpretation?

d(T,T’) is the minimum number of interior edges we need to collapse

in T and in 7" (combined) to arive at the same tree T*

41

Properties of RF metric on UB(n)

AT, T') = 2|S(T) — S(T")| = 2S(T") — (T)|
dis even!

OO
in {d(T, T} =2 <

dNN[(T,T,) = mln{k : Tg = T, s 7Tk = T/,d(TZ',TiJrl) = 2}

max{d(T,T")} =2n —6

42

Most big trees share only few (and tiny!) non-trivial splits

s(T,T") = # non-trivial splits that 7" and 7" share

Given T' € UB(n), and
T’ (random) from UB(n)

{
A

A |
AN ~ p— A7 T ‘
P(s(T.T") = k) ~e 757 Oy
# cherries in T'
A =
2n

43

How many cherries are there in a binary tree?

Tree model mean # cherries

Yule-Harding

- P
3 é
Uniform model ~ g

# cherries in T
Ap = ————
2n

Corollary: Two trees chosen uniformly at random share

a Poisson number of non-trivial splits with mean (1/8).
So 88% share no non-trivial splits.




An interesting combinatorial challenge:

Show that the number of trees in UB(#) that have
exactly ¢ cherries is:

k
k=n-—2c

(n).(Zc)! w (2c—4)! (= b)) ¥ (k+(26—3)—1>.k!

45

W

Applications of split encoding II: Consensus

A consensus method 1s a function that assigns to each
‘profile’ (sequence) of phylogenetic X-trees

P=(T1,Ts,...,T)
a single phylogenetic X-tree. Why interesting?

Strict
Example consensus

7 Pk e D
9 C A 5 £ AB:DE'
T

4 A8 _ D&~
4 Majority-rule
consensus

46

Strict and majority rule consensus

7): (T]_,TQ,...,Tk;)

Strict consensus:
Let Xy, be the splits that appear in all the trees.

Majority rule consensus:
Let 2,540, be the splits that appear in more than half the trees.

Proposition: X_s, is pairwise compatible (and so determines a
tree.

Proof: Applies the ‘pigeonhole principle’

A nice exercise:

Theorem [McMorris]: When 7 is odd, the Majority Rule
tree is the unique phylogenetic X-tree T that minimizes the
median RF-distance:

k

> (T, Ty)

=1

48




Quartet trees

* A quartet tree is a binary phylogenetic tree on four
leaves (say, x,),w,z) written xy|wz.

y z
* A phylogenetic X-tree displays xy|wz if there is an edge in

T whose deletion separates {x,y} from {w,z}

X

49

(Displayed) quartet trees encode any phylogenetic tree

Given a phylogenetic X-tree T, let Q(T) be the set of
quartets that T displays.

Then VT, T € U(X)

QT) = QT) & T =T
) Quiz: Why?
y’
Harder question: How many questions do we need to ask of the
form ‘what is T'| ¢’ for a quartet ¢ in order to reconstruct 1?

When is Q=Q(T) (for some T)?

*|Colonius and Schultze 1981]

Q = Q(T) for some T € U(X) iff the following hold
abled € Q = aclbd, ad|bc & Q

abled € QQ = ab|ce € Q or ae|cd € Q.

51

Another tree metric — the ‘quartet metric’

do(T,T") = |Q(T)VQ(T")
Less ‘sensitive’ than RF
1/n
Mean = easy to compute 3 ( 4)
Complexity?

The diameter is a difficult unsolved problem!
Conjecture:

max{dq(T,T") : T,T' € UB(n)} = <; + 0(1)) (Z)

(S. Grunewald seems to have a proof) 52




Analogous theory for rooted trees:

In place of quartet trees ab|¢d, one has rooted triples ab| ¢

cat mushroom daisy rice bacteria

Summary: Encoding trees

cat daisy rice

cat  mushroom daisy rice bacteria

mushroom

bacteria

Hierarchies on X (a subsets of X that do Collections of ‘X-splits’ that are pairwise
not ‘overlap’). compatible.

Collection of rooted 3-leaf phylogenetic Collection of unrooted 4-leaf trees that are
trees that are compatible compatible

Distance function on X that satisfies a Distance function on X that satisfy a 4-point
3-point condition (ultrametrics) condition

54

Maximum agreement subtree I:
Definition

T1,T5, ... Ty phylogenetic X-trees
MAST(T:[, TQ, ce ,Tk) =
max{|Y|: Y C X T1|Y =To|Y =---T,|Y}
Algorithms? Two trees

Three trees

k-trees, with >1 tree having no vertex of high degree

55

Maximum agreement subtree II: mathematical aspects

Randomized question
Given two trees generated ‘at random’ (uniform or Yule) what can we say
about the size of their max. agreement subtree? [see Katherine St John!]

Extremal question
* Any two trees on UB(6) have a max. agrement subtree of size at least 4.

* There are two trees in UB(#) that have max. agreement subtree of size
log,(7)

Conjecture: The max. agreement subtree of any two
trees in UB(n) has size at least clog(n) for
some constant c.

56




Specialist topic: Axiomatic aspects of
consensus methods

Three properties we’d expect any consensus method to have:

» Unanimity: P = (1,7,...,T) = ¢(P) =T

m Tree order invariance:

¢(T1a Ty, ..., Tk:) = ¢<Ta(1)a TU(2)7 <ot 7T0(k:)>

= Taxon permutation equivariance:

¢(Tf,T;, e 7T]g) = ¢(T17T2a e 7Tk)a

57

Another consensus method:
(Adams consensus) [E.N. Adams III, 1972, 1986]

Given partitions 7y, o, . .., T consider the product partition

T @ To - QT

Adams consensus tree for above two trees

Adams concensus and nestings

“A nests in B in T” means that the
MRCA of A is a strict descendant
of the MRCA of Bin T

[Ad1] If A nests in B for each tree in the profile, then A nests in B in the
Adams tree

[

[Ad2] If A, B are clusters of the Adams consensus tree,
and A nests in B then A nests in B in every tree in the
profile.

[Moreover, Adams consensus is the only tree satisfying these properties]
A » Note that [Ad1] implies: If all input trees display xy|z so
too does Adams tree

Can we do better than that?

If at least one input tree displays xy| g, and no input tree displays
xg|y ot yz| x then the consensus tree should display xy|

vd o o
oo RORORG

Output tree should display 1215, 23| 5, 34 |1 and 45| 1 — but there is no tree that does this!




What about Adams for unrooted trees?

If each tree in P displays ablcd then ¢ (P) does too

These trees each display

{1245, 34/16, 56/23}

They are the only trees that display these
quartets.

The cyclic permutation

(123456) interchanges the two trees in P

= THE END o

Revision

daisy rice

mushroom daisy rice  bacteria
mushroom

Quniz: W

If A is a cluster/clade of a rooted tree T, and we suppress
the root of T, is A|X-A4 a split of T?

If A|Bis a split of an unrooted tree T, and we root T
is A a cluster of T?

bacteria

62

Lecture 3: Character data

Mike Steel

from F. Delsuc and N. Lartillot y
ALLAN
WILSON

Winthrop lectures, 2014
ot @ ceENTRE

Outline of talk

Part 1:

Part 2:

Part 3:

Discrete characters and homoplasy

Perfect phylogeny

Parsimony

0 20x pushups

Part 4:

Specialist topic: The ‘joys of being mean’
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Tree reconstruction

cat mushroom daisy rice  bacteria

mushroom

A ‘character’. Any f: X — C
Discrete data: (f1, fo,..., fx)

Species Attribute 1 2 3 4

Kangaroo T R U E

Chimpanzee B R E T T “ch M

Human B R O E ypes of "characters” A

Gorilla C O E E = Morphology (eg. Wings vs no-Wings)
Hippopotamus cC A P O = DNA sequences (...ACG...)

Whale C A U P = Genomic data (gene order, SINEs, RCGs)
Lion D R A O

Tiger D R U G

65

Signal in data (and why it be misleading...)

“Homoplasy” = reversals and/or
convergent evolution

h(f,T) = minimal number of such events required to fit f to T o

Homoplasy-free:  h(f,T) =0

<= the minimal subtrees of T connecting the leaf sets f~1(c) and f=1(c)

are vertex-disjoint, for each ¢ # ¢/

Species Attribute | 1 | 2 3 1
Kangaroo TI R U E
Chimpanzee B/ R E 1
Human B/ R O E
Gorilla Cl O E E
Hippopotamus ClA P O
Whale C/lA U P
Lion DIR A O
Tiger DR U G

IR
T is a perfect phylogeny for (f1, fa,..., fi) if each character is homoplasy-free on T

67

Example of low-homoplasy data I (SINEs)
[Kreigs et al. PLoS biology, 2006. Tree of placental mammals]

PLACENTALIA

Sroboscisen

Burania

Xenartnea

MARSUPIALIA

WP, DMieipnemopie

68




Example of low homoplasy-data II

Gene order rearrangements (# species, L genes, random inversion model)

£18{8:8.84868, 1 "=  g,8,8,8,2:8:8, "

B 2(2n —3)(n —1)
(1) = 0) > 1 - 2029

Semple+S, Adv. Appl. Math. 2002 N=10, L=100, Prob>0.97 69

How many trees have A(f, T) = 0?

abc
> defg

I hi

jklmn

How many binary phylogenetic trees can we construct in this way?
(¢f lecture 1)

k
b(n) B(14)
= 1x7 =
b(n—k+2)i:1| 4 B(12)X3X5X X7 =50,715

ORI
So #T : h(T, f)=0is b —kt2) Hrb(ni)

70

Application (example)

Consider an r-state character fon 120 species, with 120/7 species
in each state. Select a tree T from UB(120) uniformly at random.

Distribution of trees according to number of character
states for 120 species

I3
&
3

Let
I(f) == —1log(P(h(f,T) = 0))

@
8
3

.
o
o

N
&
S

N
S
3

A good case for mathematics over simulations...

=]
3

-log(proportion of compatible trees)
@
g
* "‘-*.

o
S

Nice problem for a student: How does
Tax SYOW with 72

TS IBBHLINRS33S T

number of states
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When does a perfect phylogeny exist?

Definition: Characters f,, f,,. .../, are compatible if there exists a perfect
phylogeny for them.

Special case: Binary characters are compatible if and only if the

associated set of X-splits X is pairwise compatible.

X = {fi_1(0)|fi_1(1)§i =1,...,k}

0 Corollary: A set of binary characters are compatible iff each
pair is; and there is a unique minimal perfect phylogeny.

0 Both parts of this corollary fail for 3-state characters.

72




A link to graph theory...

G is chordal if every cycle of length four or more has a chord

Example

Definition:
Given G = (I/;E) and a partition V = V; U Vo U--- UV},
a restricted chordal completion of G is any chordal graph

SatiSinng H _ (‘/, E/) : E g E/

x7y€‘/i:>{x7y}€El_E

73

Characterising compatibility

Species 1 2 3 4 5

Characters

) A A B B X
£ C E C B B
£ U R R s U

Int({fla f27 f3})
L. Partition Intersection Graph (PIG)
Theorem

C=(f, -, ) is compatible if and only if int(C) has a restricted chordal completion. [why?]

If | C| =2, then Cis compatible if and only if int(C) has no cycles [why?]

74

How hard is the perfect phylogeny problem?

Given characters f,, f5,..., f what is the complexity
of deciding whether or not they are compatible?

* Hasy for binary characters
* Poly-time for r-state characters (» bounded)

* NP-hard in general (we’ll see why in the lecture 5!)

Special ‘easy’ case:
Characters f, g are strongly compatible if f~1(s) U g~1(s') = X for some s, s’

Theorem Suppose C = (fi,..., fr) is pairwise strongly compatible.

Then C is compatible, and has a unique minimal perfect phylogeny.

Dress, A.W.M., Moulton and S. 1997. 75

A curious result....

When = 2 or r =3, a set of r-state characters {f}, f5,..., f; } is
compatible if and only if every subset of 7 characters is
compatible'.

How does this generalize?

Theorem? For all » > 2 there is an incompatible set of

roo.r
L§J : [i] + 1 r-state characters with every r-subset compatible

iy Interesting unsolved problem:

® Is (quadratic) behaviour ‘as bad as it gets’?

2B. Shutters, S. Vakati, D. Fernandez-Baca, Incompatible quartets, triplets, and characters,

1 =3, recent result due to Dan Gusfield Mol. Biol. 8 (2013) 11. 76




Question: how many characters are needed so that T is the
only perfect phylogeny for this data?

T must be binary!
‘Binary characters”: f: X — C,|C| =2
If T is the only perfect phylogeny for (fi, ..., fx) then &k >n — 3

cat daisy rice

mushroom

r-state characters : k > (n —3)/(r — 1) = Q(n)
bacteria
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The “four is enough’ theorem

Every binary phylogenetic tree — on any number of species — is
a unique perfect phylogeny for at most four characters.

hhumaan cliimp  gonillla lion tijgar Higipoo

QROE

Attribute 1 2 3 4
1 ROt

B R

B R «

C O E

P

Cc A1

D R A O
D R 1 G
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Maximum parsimony (minimum evolution)

pS(f, T) The “parsimony score” of character fon T

= the minimum number of edges that need to have different
states assigned to their ends in order to extend f to all vertices of T.

PIC
Easy or hard?

Easy — by dynamic programming,

Moreover, the “Fitch-Hartigan algorithm’ is linear-time
algorithm (in # and 7) due to Walter-Fitch (formalized and
mathematically verified by John Hartigan).
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Homoplasy (again)

- W(f.T) =

events required to ‘evolve’ fon (any rooting of) T.

smallest number of reversals/convergent

* Easily computed: h(f, T) = pS(f, T) — [|f(X)| — 1]
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Homoplasy as measure of tree distortion from a perfect fit

SPR (Subtree prune and re-graft operation) @/

h(f,T) —h(f,T") € {0,£1} if T and T" are one SPR apart M

H

Theorem [Bruen and Bryant 2008]

h(f, T) = min #SPR operations to transform T into a

tree on which f is homoplasy-free.
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A curious (+useful) property for binary characters...

OCCAMS
, RAZOR, g
For binary characters: Parsimenioxs

ps(f,T) = max number of edge-disjoint paths in T, each of which
connects a leaf in one state to a leaf in a different state.

[Proof: by Menger’s theorem]|

Exercise

_ﬁ‘é Show if T € UB(2n) then #f : ps(f,T) = n is 2"

Generalization due to Peter Erdés and Laszlo Székely. s

‘ Maximum parsimony trees

k
C = (fl; e ,fk) ps(C) = mjianS(fi,T)

How hard is to compute this?
(and find an optimal ‘maximum parsimony tree’ T?)

For binary characters it’s already NP-hard

But there are some special cases that can be solved exactly;
and also bounds, for example:

Proposition [Foulds| The score of the MP tree for Cis at most twice the
score of a min cost spanning tree of X under Hamming distance 4

83

A way of thinking of the MP tree (from Bryant and Bruen’s result)

h(f,T) = min #SPR operations to transform T'into a

tree on which f is compatible

Trees compatible
with X3

‘H

Trees compatible
with Xp-1)

From Bruen and Bryant

2008 84




Further mathematical properties of the MP tree I

Proposition| Bruen and Bryant 2008]
For any two characters C = (f,, f;) the score of the MP tree is determined

by int(C).

ps(C) = # edges of int(C) — # components of int(C) + 2

Proposition| Bryant 2003]

If C consists of just binary characters, and one of them, say /, is
compatible with all others, then:

IO )

is a split of every MP tree for C.

An extension of this: H.J.- Bandelt’s result that all MP trees lie in the ‘median network’ for € 85

Counting: How many trees in UB(#) have parsimony score £ for
a binary character /?

a=f"HO)kb=[f(1)
N(a,b;k) =#T € UB(n) : ps(f,T) =k
Example: N(2,2,k)=?

David Penny’s remarkable conjecture:

k@2n—3k)  (2a—k) (2b—k)!  (n—k)!
(2a—k)20—k) (a—k)! (b—k) K(2n — 2k)!

a+b=mn;0<k <min(a,bd)

N(a,b; k)/b(n) = 2% .

Proof uses several ideas above (Menger’s theorem; counting trees that can be constructed by joining trees etc) plus some
new ideas.

The original proof involved generating functions and a computer-assisted use of the multivariate Lagrange inversion
formula 86

Maximum parsimony trees II1

If T is the unique perfect phylogeny on # leaves for £ characters then
we need £ to be at least #-3 (and this suffices for the right choicel)

But what if we want T to be the unique MP tree?
We can do this with fewer than #-3? Sublinear?

A primitive counting argument gives a lower bound of log(#).
Remarkably, this can be achieved...

Theorem [Chai and Housworth, 2011]

For every T € UB(n) there is a set of ©(logn) binary characters with 7" as the unique MP tree.
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Parsimony: Ancestral state reconstruction

cnidops. ciliary (Gt) opsins RGR / Go rhabdomcric (Gq) opsins

Plachetzki D C et al. Proc. R. Soc. B 2010;277:1963-1969

PROCEEDINGS]
o 1

e ROVASEG |

©2010 by The Royal Society SOCIETY




Maximum Parsimony vs Majority Rule

o= fn-1+ fr—2
f1=2,f2=3

fa/2" >0 | {mm fh~c<”2“5)

frn = min{# red tips : M P(root) = {red}}
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Specialist topic:
Random thoughts about parsimony

*

\

Binary tree with T leaves.

Sy = average value of ps(f, 7) over all 2" binary f.
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A curious recursion....

—3 1-8)2

1 . .
Sy=Sr 18, 4t 221 45T+ 4 3 (AR < (15545
X=0

X=0 T=0
T-B-2Y [

+ ¥ ((A;'_—,')x(42+10X+((T—2—2X—T)><(X+3))
I=1
T—4=2X-1

+ Y (X+3+4(Zx (X+4)))))>

<=2

712 [T-7-2X ) . R
+ Y ( Y () X (Sroaay QT = TH 242X+ 1) X (X 4+2)))
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where does it comes from?

:: 3 =] 1 1007
i c 10011

S 7 1000
HEEERN 1 o100!
ic 1 ooial
(] 1 00011

1 10000’
1 01000’
1 oot100!
1 gooi10!
1 000011
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Random thoughts...

0o ®

/ PS’ if x = y;

PS =
PS”+1 if 2 # .
EES::§ Ew91+1

5 T2 (34"
St *ST 1+ = (ST 2+ 1) = 9

Two solutions

3T—2—(—%)T
Sy

1-3 7-8)2 i
Sy=S8r+8; ,+2" 7421457 +3 Y i+ ¥ (774l5y) x (15X +53)

X=

o

712

T-7-2%
+ Y ( Y T X (S QT T4 242X+ 1) X (X +2))))
X=0 =0

T-8-2Y

+ ¥ ((-"*,';,')x(42+10X+((T—2—2X—r;.x(x+3);-
r=1

T—4=-2-1

+ Y (X43+(Xx (X+4)>1:',-)>

=2
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u Actually the recursion gives more....

_ 2n—3) n—k—1 ok
k k—1

for any T'in UB(#) (independent of shape), £>0, and this is

asymptotically normal as # grows.

THE END
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Outline

Part 1: Encoding trees by distances, 4PC, ultrametrics

Part 2: Reconstruction methods

Part 3:  Phylogenetic diversity and BME
o 20x pushups

Part4:  Specialist topic: Do we need all the distances?

The unified view

Figure 1 In this figure, we indicate the manifold relationships between vari-
ous combinatorial objects relevant in phylogenctic analysis that will be stud-
ied in this book.

From: Basic Phylogenetic Combinatorics

Edge-weighted trees and tree metrics

y
e — w(e)
d(T,w) ('Ia y) = § : w(e)
e€P(T;z,y)
If this holds for all pairs of leaves we that d is ‘tree metric’

with a ‘representation on 7’
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When can a distance (metric) on X be represented
on a phylogenetic X-tree?

n = 3, alwaysl!

n=4?

d(z,y) + d(w, z) < d(x,w) + d(y, z)
A, w) + d(y, 2) = d(z, 2) + d(y, w)

What does this tell us?

100




When about general 7?

For any four points x,y, w, z let

S1 =d(z,y) + d(w, z)
So =d(z,w) + d(y, 2)
S3 =d(z, z) + d(y, w)

If dis a tree metric then, for 7 =1,2,3

SZ' S maX{Sj, Sk}

This is called the four point condition (4PC)
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A classic result (1960s/early 70s)

Theorem
d is a tree metric if and only if it satisfies the 4PC

And the choice of T' and w > 0 to represent d is unique

Proof?
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Ultrametrics trees (aka. ‘equidistant tree’, ‘clock-like tree’)

Defintion: A rooted tree with edge
weighting (T,») is an ‘ultrametric tree’ if
the distance from the root to each leaf is
the same (rooted).

For an unrooted tree — it is ultrametric if it can
be rooted (at some point)so this holds).

Quiz: are these unrooted trees ultrametric trees

103

‘ Ultrametrics

Definition: D is an ultrametric on X if it satisfies the 3-point condition:
D(z,y) < max{D(z,z), D(y,2)}

The connection: D is an ultrametric on X if and only
if there is a tree 7 in R(X) on which D has ultrametric
branch lengths (and then 7, w unique)

Transforming an arbitrary tree metric into an
ultrametric (Farris/Gromov transform):

D(o.y) = {g(:x,y) ~dlem) —dun), 27 v
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Distances vs characters — the ‘darndest thing’!

Let d.(ij) = # characters in C on which 7 and ; differ (sequence dissimilarity).

QUIZ: If Tis a perfect phylogeny for C does d-a tree metric (on T)?
C binary characters — yes.

C non-binary characters — not necessarily.
r

Theorem [Fischer and Bandelt, H.-J. 2008; Huson and S, 2004]:

For any two trees T}, T, there is a set of 3-state characters C such that:
" T, is the unique perfect phylogeny for, yet

" d.is a tree metric (ultrametric!) represented only by 1.
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Distance-based tree reconstruction methods

d

(T7, w')

Desirable property: perturbing d slightly leads to same tree
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A simple approach

Select p € X
Let x,y maximize d(z,p) + d(y,p) — d(z,v)

\ J
!

Q(xvy)

Then z,y form a cherry of T’

Why?
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Neighbor-Joining

1886 2002 2008 2014

>36,000 citations: The neighbor-joining method: new method for reconstructing
phylogenetic trees. N Saitou, M Nei Molecular biology and evolution 4 (4), 406-425

1991
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Neighor-Joining

Q@w=ﬂ%w—;%i3Mw%7£32ﬁwm

Select (x,y) to minimize Q

(1) If d=d,, then (x;) selected by O is a cherry of T'
(2) (Q1is alinear function of 4

(3) If O selects (x,y) and O is a permutation of taxa, then Q@
applied to 4 will select (0(x), 0()).

Theorem [Bryant] If a selection criterion Q* satisfies
(1), (2) and (3) then O* makes the same selection as
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An inconvenient truth

Biological distances were not created by a mathematician!
9 Our best hope: If § is ‘close’ to d = d(p )| £ then NJ(0) =T

We say that a distance-based method M
has safety radius r if following holds: Vz,y € X '

‘5(~T’y) _ d(T,w)(w7y)‘ <r-w"= M((S) =T

w* =min{w(e) : e € Eine(T)} T € UB(n)

* No method allows 7> 7. (why?)
* But NJ has safety radius 72 [ K. Atteson]
(also there is an ‘edge safety radius’ result also)
* NJ exhibits discontinuity (when far from tree metric)
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Phylogenetic diversity (PD)

e€p(Tiz,y)

e—w(e) 5 PD(Y) = Z w(e)
eeT(Y)
L =PD(X)

PD({z1,22,y})
X2
Theorem [Yves Pauplin 2000
Molecular Biology and Evolution)

1 AT(w’y)
L=PD(X)= Y. (2) d(,y)
{zy}CX

_ <1)3d(x1,x2)+~-

Ar(z,y) = # int. vertices between x and y in T B
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Balanced minimum evolution (BME)

Given 4 (not necessatily a tree metric) select the phylogenetic
tree(s) 1" to minimizes L according to the Pauplin formula

L=PD(X)= > <;>AT(r’y)d(:c,y)

{z,y}CX

BME is ‘consistent’
(Desper and Gascuel, 2004)
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A way to view Pauplin’s formula

[original proof by induction]

h
g f

L= %[d(a. b) +d(b,c) +d(c,e) +d(e, f)+d(f,g)+ d(g,h) + d(h,a)]

Each ‘cyclic ordering’ of the leaves of T gives a different way of writing L
Each is an arbitrary choice, so let’s average over all of them —
what do we get?
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Cyclic Permutation on X

T = (X, X505 X,)

ZU(JZ ) = the splits (bipartitions of X)
induced by planar ‘cuts’.

[Definition] m is a cyclic ordering for 7 if
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Question: How many cyclic orderings does T have?

3

General

case
g f

# cyclic orderings for T is H (deg(v) — 1)!
vel(T)

For a binary tree this is 272 15

E§§ More counting

How many cyclic orderings for
T for with ...xy...?

Lemma: The proportion of co’s of T'with ...xy... equals

[ (deg(v)—1)~"

vel(z,y)
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Corollary:

Given a cyclic ordering 7T the # binary phylogenetic trees for
which 7T is a cyclic ordering is the Catalan number

1 2n-4
(n—l)(n—2 )

Back to Pauplin...

1
L=pan 2

(wl,...,CCn)EO(T)

S5 (e

1
3 Z d(wi, ¥it1)

(z,y)
= Z AT (fE, y)d(iﬁ, y)
\X/}lyD where {@y} X
_ Ar(x,y) = deg(v) — 1)L
#(T,0) :=b(n)2" 2 = (n—1)'Q r(z,y) Uegy)< g(v) — 1)
Summary: Phylogenetic diversity (again)  PD(Y)= ) w(e)

For any phylogenetic tree T the average of all the representations of L is:

L=PD(X)= Y Ap(zy)d(zy)

{zyrcX
Ae(ey)= ] (deg(o) 1)
vel(z,y)
Example
Pe o f =L a@py+Laaa)+..
3 6
b e
d Application: NJ selects the pair of leaves (at

each step) to maximizes the reduction in BME
score [Despef and Gascuel, 2004; Gascuel and S, 2006]
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Relevant for:

* Conservation biology

* Ensuring evolutionary
‘coverage’ in study designs

* Tree reconstruction

818, 1€




A nice combinatorial property of PD

= Problem: Find a subset Y, of X given size k to maximise PD.

# Theorem: Y, can always be found by using the ‘greedy
algorithm’.
[The sets of maximal PD-score for their cardinality form a

(strong) ‘greedoid’]
s Why?
If 1 < |Y1| < |Ys]| there exists y € Yo — Y7:
PD(Y1U{y}) + PD(Y2 — {y}) = PD(Y1) + PD(Y2).
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An alternative measure: “max-min”
Select set S of k leaves to maximise min{d(x,y) : z,y € S,x # y}

a)

Green non-suiphyy bacteria

Extroma thermophia A
m.mmrn@“gc -

FIGURE 1. Reproduction of Woeses (Woese, 1987) small-subunit ribosomal RNA tree showing the subtree subtended by three EUs chosen
by (a) minimizing PD and by (b) imi. the mini distance. We 4 this tree using small-subunit ribosomal RNA sequences.

Min-max selection on a tree is easy, but not via greedy Bordewich and Semple

What’s the connection?

Theorem [Bordewich and Semple (Syst. Biol. 2012)]

For clock-like branch lengths the optimal max-min
selection of 4 species is identical to the optimal PD

. selection.

Quiz: What happens to our distance and PD results
if the edges are weighted by an (Abelian) group?

Specialist topic: Do we need all of the distances?

Given £ C (5) and d = d(7,4)|L
Does d determine T'? (and/or w?)

Example:  “ >\" ‘/‘<C L= {ab, cd, ac, bd}
. “a

d|L determines T' but not w

L' = LU {ad} determines T" and w
L" ={ab, ac, ad, bc,bd} determines neither

Draw graph!
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How few distances do we need?

Classic result: [Yusmanov, 1984]

. . . X .
For any binary tree T with # leaves, there isa set £ C (2) of size 27-3 so
that the d(T,w) |[, determines both T and .

[Dress, Huber, S, (2014)]  If we just want to define T, we
can reduce the size of £ by 1 (but no more!)

(,Q%z'z If d (T, w’}?‘ L determines » on given T, does it also

determine
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Necessary conditions for /| L to determine 1" and its edge weights

(X, £) must be connected and contain an odd cycle

L= {ab, cd, ac, bd}
c d

If T is binary, each interior vertex must be ‘3-covered’

{ab,b'c,c'a’}y C L
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The ‘Triplet Cover’ conjecture

L is a triplet cover for T <= for each v € I(T):
da € A,,b € B,,ce C,:

{ab,ac,bc} C L

Conjecture: If L contains a
triplet cover for T then dj, | L
determines T (and so also »).

X O,
¢ THE END .




