

2. Why maths?

What sort of math?

- Discrete mathematics:

graph theory, posets, set systems, algorithms, computational complexity.

- Probability:

Markov processes, birth-death processes, coupling, martingale theory, MCMC.

Others: algebra, dynamical systems:
linear algebra, algebraic geometry, discrete fourier analysis, differential equation modélling

Why maths?

- Analysing existing methods
- Developing better methods

"I hope it arises from your being 10 fathoms deep in the Mathematics,
\& if you are God help you, for so am I, only with this difference: I stick fast in the mud at the bottom and there I shall remain
- C. Darwin to W.D. Fox 29 July, 1828
- Help answer questions:
- Why do some methods lead to different estimated trees?
- How can we have confidence in a given tree? (or any tree?)
- What can trees tell us about evolutionary processes?
- How much data do we need to find a tree?

Graphs (and trees)

$$
\begin{align*}
& G=(V, E) \\
& \sum_{v \in V} \operatorname{deg}(v)=2|E| \\
& \quad G \text { connected } \Rightarrow|V| \leq|E|+1 \tag{4}
\end{align*}
$$

A tree is a connected graph with no cycles

$G=(V, E)$ (connected) is a tree $\Leftrightarrow|V|=|E|+1$

Binary phylogenetic trees (rooted and unrooted)

$T \in R B(X)$

$T \cong T^{\prime}$ if there is a graph isomorphism
$\varphi: V(T) \mapsto V\left(T^{\prime}\right): \varphi(x)=x, \forall x \in X$

Counting rooted trees

$R B(X) \longleftrightarrow B(X \uplus\{x\})$
$r b(n):=|R B(X)|=b(n+1)=(2 n-3)!!$

$$
\text { matchings } \quad \frac{(2 n-2)!}{(n-1)!2^{n-1}}
$$

Counting trees

Arthur Cayley, 1889

$$
n^{n-2}
$$

$$
\begin{aligned}
& B(n)=B(\{1,2, \ldots, n\}), b(n)=|B(n)| \\
& \begin{array}{l}
T=(V, E) \in B(n) \Rightarrow|E|=2 n-3 \\
b(n+1)=b(n) \times(2 n-3)
\end{array} \quad \begin{array}{l}
\quad b(n)=1 \times 3 \times \cdots \times(2 n-5)=(2 n-5)!!
\end{array}
\end{aligned}
$$

An 'algebraic' proof

$$
\begin{aligned}
& \phi(x)=\sum_{n \geq 1} r b(n) \frac{x^{n}}{n!} \\
& \phi(x)=x+\frac{1}{2} \phi(x)^{2} \\
& \Rightarrow \phi(x)=1-\sqrt{1-2 x}
\end{aligned}
$$

$r b(n) \sim \frac{1}{\sqrt{2}}\left(\frac{2}{e}\right)^{n} n^{n-1}$

Counting trees by shape (via the 'Orbit-Stablizer' theorem)

$|O(s)|=\frac{|G|}{|\operatorname{Stab}(s)|}=\frac{n!}{\operatorname{Stab}(T)}=n!2^{-s}$
Quiæ: how many trees
 have the same shape as the above?

$$
\frac{5!}{2^{3}}=5 \times 3=15
$$

Counting trees II

A more interesting type of counting:

How many binary phylogenetic trees can we construct in this way?

$$
\frac{\frac{b(n)}{b(n-k+2)} \prod_{i=1}^{k}\left|E_{i}\right|=\frac{b(14)}{b(12)} \times 3 \times 5 \times 1 \times 7}{50,715}
$$

Discrete tree space: interesting properties

Diameter?

$$
\max \left\{d_{N N I}\left(T, T^{\prime}\right)\right\}=\Theta(n \log (n))
$$

Theorem [Gordon, Ford, St John, 2013]
For all n, there exists a Hamiltonian path through the n-leaf NNI tree-space.

Other tree rearrangement operations

SPR (Subtree prune and re-graft)

TBR (Tree bisection and reconnection)

Number of neighbors

$$
\begin{aligned}
& \text { SPR: } 2(n-3)(2 n-7) \\
& \text { TBR: } \Theta\left(n^{2} \log n\right)-\Theta\left(n^{3}\right)
\end{aligned}
$$

Diameter? $\quad \Theta(n)$

$$
[2(n-3)(2 n-7)]^{d} \geq b(n) \Rightarrow d \geq c n
$$

Specialist topic:

Models for generating discrete random trees
Uniform model - select a tree from $\mathrm{RB}(n)$ uniformly at random

Yule-Harding model - select a ranked rooted binary phylogenetic tree uniformly at random, then forget the ranking.

$$
\text { \# ranked trees on } n \text { leaves }=\prod_{i=2}^{n}\binom{i}{2}=\frac{n!(n-1)!}{2^{n-1}}
$$

Quiz: Do these two models produce same probability distribution on $\mathrm{RB}(n)$?

Why of interest?

Yulle-1HIMdimg

All roads lead to Rome...

Reconstructed tree

Proposition: [Aldous; Lambert and Stadler]
All such models lead to same distribution on the shape of the reconstructed tree (ignoring branch lengths). This is precisely the Yule-Harding distribution.

Evolving ‘discrete’

 Yule-Harding trees

Quiz:
Grow a Yule-Harding tree till it has 101 leaves.
Which is more likely?

OR

$$
\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \ldots \times \frac{99}{100}=\frac{1}{100}
$$

Why maths? (again)...

During the three years which I spent at Cambridge my time was wasted, as far as the academical studies were concerned, as completely as at Edinburgh and at school. I attempted mathematics, and even went during the summer of 1828 with a private tutor (a very dull man) to Barmouth, but I got on very slowly. The work was repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience was very foolish, and in after years I have deeply regretted that I did not proceed far enough at east to understand something of the great leading principles of mathematics, for
 have succeeded beyond a very low grade.

The exact probability of a tree under YH and U?

$$
\begin{aligned}
& \mathbb{P}_{U}(T)=\frac{1}{r b(n)} \\
& \mathbb{P}_{Y H}(T)=\frac{2^{n-1}}{n!\prod_{v \in I(T)} \lambda_{v}} \quad \text { Why? }
\end{aligned}
$$

Example

Lecture 2: Properties of trees

Mike Steel

from F. Delsuc and N. Lartillo

Outline

- Part 1: Rooted phylogenetic trees, clusters, hierarchies
- Part 2: Unrooted phyl. trees, splits
- Part 3: Applications: RF metric, Consensus, Quartet encodings
- break

Part 4: Adams consensus

Hierarchies

A bierarchy on H on X is a collection of non-empty subsets of X satisfying:

$$
\begin{aligned}
& A, B \in H \Rightarrow A \cap B \in\{A, B, \emptyset\} \\
& X \in H, \text { and }\{x\} \in H, \forall x \in X
\end{aligned}
$$

The clusters of any rooted phylogenetic Xtree form a hierarchy on X

Moreover, any hierarchy on X equals $C(T)$ for a unique rooted phylogenetic X-tree T.

Partial order:

$$
T \leq T^{\prime} \Longleftrightarrow C(T) \subseteq C\left(T^{\prime}\right)
$$

Rooted phylogenetic trees

Definition: A rooted phylogenetic X-tree is a rooted tree, with

- $X=$ the set of leaves,
- Every non-root vertex has in-degree 1,
- Every non-leaf vertex has out-degree >1.
$R(X)=$ set of rooted phylogenetic X-trees.
"Polytomy"
$C(v)=\{x \in X: x$ is separated from the root by deleting $v\}$
$C(T)=\left\{c(v): c \in V_{T}\right\}$
"Clusters (or clades) of T "
(aka 'momophyletic group')

Unrooted phylogenetic X-trees

Definition: A phylogenetic X-tree is a tree, with

- $X=$ the set of leaves;
- Every non-leaf vertex has degree at least 3 .
$U(X)=$ set of phylogenetic X-trees.
"Polytomy"
"Isomorphism"

$$
R(X) \leftrightarrow U(X \uplus\{x\})
$$

What corresponds to clusters/clades?

Encoding unrooted trees via splits

$$
\Sigma(T)=\left\{A_{e} \mid B_{e}: e \in E\right\}
$$

$$
=\{13 \mid 2456, \cdots\}
$$

$\Sigma(T)$ determines T

Partial order:

$$
\Sigma(T)=\Sigma\left(T^{\prime}\right) \Leftrightarrow T \cong T^{\prime}
$$

$$
T \leq T^{\prime} \Longleftrightarrow \Sigma(T) \subseteq \Sigma\left(T^{\prime}\right)
$$

Conversely....

If Σ is a set of pairwise compatible splits, and

$$
\star\{x\} \mid(X-\{x\}) \in \Sigma \text { for all } x \in X
$$

then $\Sigma=\Sigma(T)$ for a (unique!) phylogenetic X-tree

> Without the the applies with the phylogenetic replaced by " X-tree"

Simple algorithm for reconstructing T from $\Sigma(T)$ ('tree popping')

When does a set of splits come from a tree?

- Two splits $A_{1} \mid B_{1}$ and $A_{2} \mid B_{2}$ of X are compatible, if one of the following intersections is empty:

$$
A_{1} \cap A_{2}, A_{1} \cap B_{2}, B_{1} \cap A_{2}, B_{1} \cap B_{2}
$$

Two compatible splits:

${ }_{3} 8$
The set of splits of a phylogenetic tree is pairwise compatible

The link(s) between pc X-splits vs hierarchies

Obvious one: \quad Select $x_{0} \in X$
$A \mid B \mapsto$ the set $(A$ or $B)$ that does not contain x_{0}
Σ is pc iff the induced set system is a hierarchy on $X-\left\{x_{0}\right\}$
Example: $\Sigma=\{1|234,2| 134,3|124,4| 123,12 \mid 34\}$

More subtle...

$$
A \mid B \mapsto \text { smaller of } A \text { or } B
$$

Σ is pc iff the induced set system is a hierarchy on X Example: $\Sigma=\{1|234,2| 134,3|124,4| 123,12 \mid 34\}$

Applications of split encoding I: Tree metrics

Robinson-Foulds metric [1981]

Interpretation?
$d\left(T, T^{\prime}\right)$ is the minimum number of interior edges we need to collapse
in T and in T^{\prime} (combined) to arive at the same tree T^{*}

Most big trees share only few (and tiny!) non-trivial splits
$s\left(T, T^{\prime}\right)=\#$ non-trivial splits that T and T^{\prime} share

Given $T \in U B(n)$, and
T^{\prime} (random) from $\mathrm{UB}(\mathrm{n})$

$$
\begin{gathered}
\mathbb{P}\left(s\left(T, T^{\prime}\right)=k\right) \sim e^{-\lambda_{T}} \frac{\lambda_{T}^{k}}{k!} \\
\lambda_{T}=\frac{\# \text { cherries in } T}{2 n}
\end{gathered}
$$

Properties of RF metric on UB(n)

$$
\begin{aligned}
& d\left(T, T^{\prime}\right)=2\left|\Sigma(T)-\Sigma\left(T^{\prime}\right)\right|=2\left|\Sigma\left(T^{\prime}\right)-\Sigma(T)\right| \\
& \quad d \text { is even! } \\
& \min _{T \neq T^{\prime}}\left\{d\left(T, T^{\prime}\right)\right\}=2 \\
& d_{N N I}\left(T, T^{\prime}\right)=\min \left\{k: T_{0}=T, \cdots, T_{k}=T^{\prime}, d\left(T_{i}, T_{i+1}\right)=2\right\} \\
& \max \left\{d\left(T, T^{\prime}\right)\right\}=2 n-6
\end{aligned}
$$

How many cherries are there in a binary tree?

Tree model

 mean \# cherries| Yule-Harding | $\frac{n}{3}$ | |
| :--- | ---: | :--- |
| Uniform model | $\sim \frac{n}{4}$ | |

$\lambda_{T}=\frac{\# \text { cherries in } T}{2 n}$
Corollary: Two trees chosen uniformly at random share a Poisson number of non-trivial splits with mean ($1 / 8$). So 88% share no non-trivial splits.

An interesting combinatorial challenge:

Show that the number of trees in $\mathrm{UB}(n)$ that have exactly c cherries is:

$$
\frac{n!(n-4)!}{(n-2 c)!(c-2)!c!2^{2 c-2}}
$$

Hint

$$
\binom{n}{2 c} \cdot \frac{(2 c)!}{c!2^{c}} \times \frac{(2 c-4)!}{(c-2)!2^{c-2}}(=b(c)) \times\binom{ k+(2 c-3)-1}{k} \cdot k!
$$

Strict and majority rule consensus

$$
\mathcal{P}=\left(T_{1}, T_{2}, \ldots, T_{k}\right)
$$

Strict consensus:

Let $\Sigma_{100 \%}$ be the splits that appear in all the trees.

Majority rule consensus:

Let $\Sigma_{>50 \%}$ be the splits that appear in more than half the trees.

Proposition: $\Sigma_{>50 \%}$ is pairwise compatible (and so determines a tree.

Proof: Applies the 'pigeonhole principle'

Applications of split encoding II: Consensus

A consensus method is a function that assigns to each 'profile' (sequence) of phylogenetic X-trees

$$
\mathcal{P}=\left(T_{1}, T_{2}, \ldots, T_{k}\right)
$$

a single phylogenetic X-tree. Why interesting?

Example

A nice exercise:

Theorem [McMorris]: When n is odd, the Majority Rule tree is the unique phylogenetic X -tree T that minimizes the median RF-distance:

$$
\sum_{i=1}^{k} d\left(T, T_{i}\right)
$$

Quartet trees

- A quartet tree is a binary phylogenetic tree on four leaves (say, x, y, w, z) written $x y \mid w z$.

- A phylogenetic X-tree displays $x y \mid w z$ if there is an edge in T whose deletion separates $\{x, y\}$ from $\{w, z\}$

(Displayed) quartet trees encode any phylogenetic tree

Given a phylogenetic X-tree T, let $\mathrm{Q}(T)$ be the set of quartets that T displays.

Then $\forall T, T^{\prime} \in U(X)$

$$
Q(T)=Q\left(T^{\prime}\right) \Leftrightarrow T \cong T^{\prime}
$$

Quiz: Why?
Harder question: How many questions do we need to ask of the form 'what is $T \mid q$ ' for a quartet q in order to reconstruct T ?

Another tree metric - the 'quartet metric'

$$
d_{Q}\left(T, T^{\prime}\right)=\left|Q(T) \nabla Q\left(T^{\prime}\right)\right|
$$

Less 'sensitive' than RF
Mean = easy to compute $\frac{1}{3}\binom{n}{4}$
Complexity?
The diameter is a difficult unsolved problem!
Conjecture:
$\max \left\{d_{Q}\left(T, T^{\prime}\right): T, T^{\prime} \in U B(n)\right\}=\left(\frac{1}{3}+o(1)\right)\binom{n}{4}$
(S. Grunewald seems to have a proof)

Analogous theory for rooted trees:
In place of quartet trees $a b \mid c d$, one has rooted triples $a b \mid c$

Maximum agreement subtree I:

Definition

$T_{1}, T_{2}, \ldots T_{k}$ phylogenetic X-trees

$$
\operatorname{MAST}\left(T_{1}, T_{2}, \cdots, T_{k}\right):=
$$

$$
\max \left\{|Y|: Y \subseteq X, T_{1}\left|Y=T_{2}\right| Y=\cdots T_{k} \mid Y\right\}
$$

Algorithms? Two trees

Three trees

k-trees, with ≥ 1 tree having no vertex of high degree

Summary: Encoding trees

Hierarchies on X (a subsets of X that do not 'overlap').

Collection of rooted 3-leaf phylogenetic trees that are compatible

Distance function on X that satisfies a 3-point condition (ultrametrics)

Collections of ' X-splits' that are pairwise compatible.

Collection of unrooted 4-leaf trees that are compatible

Distance function on X that satisfy a 4-point condition

Maximum agreement subtree II: mathematical aspects

Randomized question

Given two trees generated 'at random' (uniform or Yule) what can we say about the size of their max. agreement subtree? [see Katherine St John!]

Extremal question

- Any two trees on $\mathrm{UB}(6)$ have a max. agrement subtree of size at least 4 .
- There are two trees in $\mathrm{UB}(n)$ that have max. agreement subtree of size $\log _{2}(n)$

Conjecture: The max. agreement subtree of any two trees in $\mathrm{UB}(n)$ has size at least $c \log (n)$ for some constant c.

Specialist topic: Axiomatic aspects of

 consensus methods
Three properties we'd expect any consensus method to have:

- Unanimity: $\mathcal{P}=(T, T, \ldots, T) \Rightarrow \psi(\mathcal{P})=T$
- Tree order invariance:

$$
\psi\left(T_{1}, T_{2}, \ldots, T_{k}\right)=\psi\left(T_{\sigma(1)}, T_{\sigma(2)}, \ldots, T_{\sigma(k)}\right)
$$

- Taxon permutation equivariance:

$$
\psi\left(T_{1}^{\sigma}, T_{2}^{\sigma}, \cdots, T_{k}^{\sigma}\right)=\psi\left(T_{1}, T_{2}, \cdots, T_{k}\right)^{\sigma}
$$

\qquad

Adams concensus and nestings
" A nests in B in T " means that the MRCA of A is a strict descendant of the MRCA of B in T

Vbc ly

[Ad1] If A nests in B for each tree in the profile, then A nests in B in the Adams tree
[Ad2] If A, B are clusters of the Adams consensus tree, and A nests in B then A nests in B in every tree in the profile.

[Moreover, Adams consensus is the only tree satisfying these properties]
Note that [Ad1] implies: If all input trees display $x y \mid$ ₹ so
too does Adams tree

Another consensus method:

(Adams consensus) [E.N. Adams III, 1972, 1986]

Given partitions $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ consider the product partition

$$
\pi_{1} \otimes \pi_{2} \cdots \otimes \pi_{k}
$$

Adams consensus tree for above two trees

Can we do better than that?

If at least one input tree displays $x y \mid \approx$ and no input tree displays $x z \mid y$ or $y z \mid x$ then the consensus tree should display $x y \mid \approx$

[^0]What about Adams for unrooted trees?

If each tree in \mathcal{P} displays $a b \mid c d$ then $\psi(\mathcal{P})$ does too

These trees each display
$\{12|45,34| 16,56 \mid 23\}$
They are the only trees that display these quartets.

The cyclic permutation
(123456) interchanges the two trees in \mathcal{P}

- THE END

Lecture 3: Character data

Mike Steel

Revision

If A is a cluster/clade of a rooted tree T, and we suppress the root of T, is $A \mid X-A$ a split of T ?

If $A \mid B$ is a split of an unrooted tree T, and we root T, is A a cluster of T ?

Outline of talk

- Part 1: Discrete characters and homoplasy
- Part 2: Perfect phylogeny
- Part 3: Parsimony
- 20x pushups
- Part 4: Specialist topic: The 'joys of being mean'

Tree reconstruction

A 'character'. Any $f: X \rightarrow C$
Discrete data: $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$

Species	Attribute	1	2	3	4
Kangaroo	T	R	U	E	
Chimpanzee		B	R	E	T
Human	B	R	O	E	
Gorilla		C	O	E	E
Hippopotamus		C	A	P	O
Whale	C	A	U	P	
Lion	D	R	A	O	
Tiger		D	R	U	G

Types of "characters"

- Morphology (eg. Wings vs no-Wings) - Genomic data (gene order SINEs, RCGs) Genomic data (gene order, SINEs, RCGs)

Homoplasy-free: $\quad h(f, T)=0$
\Longleftrightarrow the minimal subtrees of T connecting the leaf sets $f^{-1}(c)$ and $f^{-1}\left(c^{\prime}\right)$ are vertex-disjoint, for each $c \neq c^{\prime}$

Species	Attribute	1	2	3	4
Kangaroo		T	R	U	E
Chimpanzee		B	R	E	T
Human		B	R	O	E
Gorilla		C	O	E	E
Hippopotamus		C	A	P	O
Whale		C	A	U	P
Lion		D	R	A	o
Tiger		D	R	U	G

T is a perfect phylogeny for $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ if each character is homoplasy-free on T

Signal in data (and why it be misleading...)

$h(f, T)=$ minimal number of such events required to fit f to T

Example of low-homoplasy data I (SINEs)
[Kreigs et al. PLoS biology, 2006. Tree of placental mammals]

Example of low homoplasy-data II

- Gene order rearrangements (n species, L genes, random inversion model)

$$
\begin{aligned}
& g_{1} g_{2}{\underline{g_{3}} g_{4} g_{5}}^{2} g_{6} g_{,} \cdots g_{1} g_{2} g_{5} g_{4} g_{3} g_{6} g_{,} \cdots \\
& \mathbb{P}(h(f, T)=0) \geq 1-\frac{2(2 n-3)(n-1)}{L(L-1)}
\end{aligned}
$$

Application (example)

Consider an r-state character f on 120 species, with $120 / r$ species in each state. Select a tree T from $\mathrm{UB}(120)$ uniformly at random.

How many trees have $b(f, T)=0$?

jklmn

How many binary phylogenetic trees can we construct in this way? (c.f. lecture 1)

$$
\begin{gathered}
\frac{b(n)}{b(n-k+2)} \prod_{i=1}^{k}\left|E_{i}\right|=\frac{B(14)}{B(12)} \times 3 \times 5 \times 1 \times 7=50,715 \\
\text { So } \# T: h(T, f)=0 \text { is } \frac{b(n)}{b(n-k+2)} \prod_{i=1}^{k} r b\left(n_{i}\right)
\end{gathered}
$$

When does a perfect phylogeny exist?

- Definition: Characters $f_{1}, f_{2}, \ldots f_{k}$ are compatible if there exists a perfect phylogeny for them.
- Special case: Binary characters are compatible if and only if the associated set of X-splits Σ is pairwise compatible.

$$
\Sigma=\left\{f_{i}^{-1}(0) \mid f_{i}^{-1}(1) ; i=1, \ldots, k\right\}
$$

- Corollary: A set of binary characters are compatible iff each pair is; and there is a unique minimal perfect phylogeny.
- Both parts of this corollary fail for 3-state characters.

A link to graph theory...

G is chordal if every cycle of length four or more has a chord Example

Definition:

- Given $G=(V, E)$ and a partition $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ a restricted chordal completion of G is any chordal graph satisfying

$$
\begin{gathered}
H=\left(V, E^{\prime}\right): E \subseteq E^{\prime} \\
x, y \in V_{i} \Rightarrow\{x, y\} \notin E^{\prime}-E
\end{gathered}
$$

How hard is the perfect phylogeny problem?

Given characters $f_{1}, f_{2} \ldots, \ldots, f_{k}$ what is the complexity of deciding whether or not they are compatible?

- Easy for binary characters

- Poly-time for r-state characters (r bounded)
- NP-hard in general (we'll see why in the lecture 5!)

Special 'easy' case:

Characters f, g are strongly compatible if $f^{-1}(s) \cup g^{-1}\left(s^{\prime}\right)=X$ for some s, s^{\prime}
Theorem Suppose $\mathcal{C}=\left(f_{1}, \ldots, f_{k}\right)$ is pairwise strongly compatible. Then \mathcal{C} is compatible, and has a unique minimal perfect phylogeny.

Characterising compatibility

	Species	1	2	3	4	5

f_{1}	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{X}
f_{2}	\mathbf{C}	\mathbf{E}	\mathbf{C}	\mathbf{B}	\mathbf{B}
f_{3}	\mathbf{U}	\mathbf{R}	\mathbf{R}	\mathbf{S}	\mathbf{U}

$$
\operatorname{Int}\left(\left\{f_{1}, f_{2}, f_{3}\right\}\right)
$$

Theorem

Partition Intersection Graph (PIG)

- $C=\left(f_{1}, \ldots, f_{k}\right)$ is compatible if and only if int (C) has a restricted chordal completion. [why?]
- If $|C|=2$, then C is compatible if and only if int (C) has no cycles [why?] \qquad

A curious result....

When $r=2$ or $r=3$, a set of r-state characters $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ is compatible if and only if every subset of r characters is compatible ${ }^{1}$.

How does this generalize?

Theorem ${ }^{2} \quad$ For all $r \geq 2$ there is an incompatible set of $\left\lfloor\frac{r}{2}\right\rfloor \cdot\left\lceil\frac{r}{2}\right\rceil+1 r$-state characters with every r-subset compatible

Interesting unsolved problem:
Is (quadratic) behaviour 'as bad as it gets'?

Question: how many characters are needed so that T is the only perfect phylogeny for this data?
T must be binary!
'Binary characters': $f: X \rightarrow C,|C|=2$
If T is the only perfect phylogeny for $\left(f_{1}, \ldots, f_{k}\right)$ then $k \geq n-3$

Maximum parsimony (minimum evolution)

$$
\operatorname{ps}(f, T) \quad \text { The "parsimony score" of character } f \text { on } T
$$

$=$ the minimum number of edges that need to have different states assigned to their ends in order to extend f to all vertices of T.

PIC

Easy or hard?

Easy - by dynamic programming.
Moreover, the 'Fitch-Hartigan algorithm' is linear-time algorithm (in n and r) due to Walter-Fitch (formalized and mathematically verified by John Hartigan).

The 'four is enough' theorem

Every binary phylogenetic tree - on any number of species - is a unique perfect phylogeny for at most four characters.

Homoplasy (again)

- $\quad h(f, T)=$ smallest number of reversals/convergent events required to 'evolve' f on (any rooting of T.

- Easily computed: $h(f, T)=\operatorname{ps}(f, T)-[|f(X)|-1]$

Homoplasy as measure of tree distortion from a perfect fit

SPR (Subtree prune and re-graft operation)
$h(f, T)-h\left(f, T^{\prime}\right) \in\{0, \pm 1\}$ if T and T^{\prime} are one SPR apart

Theorem [Bruen and Bryant 2008]

$h(f, T)=\min$ \#SPR operations to transform T into a
tree on which f is homoplasy-free.

Maximum parsimony trees

$$
\mathcal{C}=\left(f_{1}, \ldots, f_{k}\right) \quad \operatorname{ps}(\mathcal{C})=\min _{T} \sum_{i=1}^{k} \operatorname{ps}\left(f_{i}, T\right)
$$

Exercise
Show if $T \in U B(2 n)$ then $\# f: \operatorname{ps}(f, T)=n$ is 2^{n}

Generalization due to Peter Erdös and Laszlo Székely.

A way of thinking of the MP tree (from Bryant and Bruen's result)

 $h(f, T)=\min$ \#SPR operations to transform T into a

Further mathematical properties of the MP tree I

Proposition[Bruen and Bryant 2008]
For any two characters $C=\left(f_{1}, f_{2}\right)$ the score of the MP tree is determined by $\operatorname{int}(C)$.

$$
\operatorname{ps}(\mathcal{C})=\# \text { edges of } \operatorname{int}(\mathcal{C})-\# \text { components of } \operatorname{int}(\mathcal{C})+2
$$

Proposition[Bryant 2003]

If C consists of just binary characters, and one of them, say f, is compatible with all others, then:

$$
f^{-1}(0) \mid f^{-1}(1)
$$

is a split of every MP tree for C.

An extension of this: H.J.- Bandelt's result that all MP trees lie in the 'median network' for $C \quad{ }_{85}$

Maximum parsimony trees III

If T is the unique perfect phylogeny on n leaves for k characters then we need k to be at least $n-3$ (and this suffices for the right choice!)

But what if we want T to be the unique MP tree?
We can do this with fewer than n-3? Sublinear?

A primitive counting argument gives a lower bound of $\log (n)$. Remarkably, this can be achieved...

Theorem [Chai and Housworth, 2011]
For every $T \in U B(n)$ there is a set of $\Theta(\log n)$ binary characters with T as the unique MP tree.

Counting: How many trees in UB(n) have parsimony score k for a binary character f ?

$$
\begin{aligned}
& a=\left|f^{-1}(0)\right| ; b=\left|f^{-1}(1)\right| \\
& \qquad N(a, b ; k)=\# T \in U B(n): \operatorname{ps}(f, T)=k
\end{aligned}
$$

Example: $N(2,2, k)=$?
David Penny's remarkable conjecture:

$$
\begin{aligned}
& N(a, b ; k) / b(n)=2^{k} \cdot \frac{k(2 n-3 k)}{(2 a-k)(2 b-k)} \cdot \frac{(2 a-k)!}{(a-k)!} \cdot \frac{(2 b-k)!}{(b-k)!} \cdot \frac{(n-k)!}{k!(2 n-2 k)!} \\
& \quad a+b=n ; 0 \leq k \leq \min (a, b)
\end{aligned}
$$

Proof uses several ideas above (Menger's theorem; counting trees that can be constructed by joining trees etc) plus some
The original proof involved generating functions and a computer-assisted use of the multivariate Lagrange inversion formula

Parsimony: Ancestral state reconstruction

Maximum Parsimony vs Majority Rule

$f_{h}=\min \{\#$ red tips $: M P($ root $)=\{$ red $\}\}$

$$
f_{h} / 2^{h} \rightarrow 0
$$

$$
\begin{gathered}
f_{h}=f_{h-1}+f_{h-2} \\
f_{1}=2, f_{2}=3 \\
f_{h} \sim c\left(\frac{1+\sqrt{5}}{2}\right)^{h}
\end{gathered}
$$

A curious recursion...

$$
S_{T}=S_{T-1}+S_{T-2}+2^{T-2}+21+5 T+3 \sum_{2}^{T-3} i+\sum_{X=0}^{T-8 / 2}\binom{T-8-X}{T-8-2 X} \times(15 X+53)
$$

$$
+\sum_{X=0}^{T-7 / 2}\left(\sum_{i=0}^{T-7-2 X}\left({ }^{+}{ }_{Y}^{Y}\right) \times\left(S_{T-4-2 X-Y}+\left(\left(2^{T-4-2 X-Y}-T+2+2 X+Y\right) \times(X+2)\right)\right)\right)
$$

$+\sum_{r=1}^{T-8-2 X}\left(\binom{r+r-1}{r-1} \times(42+10 X+((T-2-2 X-r) \times(X+3))\right.$
$\left.\left.\left.+\sum_{z=2}^{T-4-2 x-r}(X+3+(Z \times(X+4)))\right)\right)\right)$

Specialist topic:

Random thoughts about parsimony

Binary tree with T leaves.
$S_{T}:=$ average value of $\mathrm{ps}(f, T)$ over all 2^{n} binary f.
where does it comes from?

Random thoughts...

$$
\mathrm{PS}= \begin{cases}\mathrm{PS}^{\prime} & \text { if } x=y ; \\ \mathrm{PS}^{\prime \prime}+1 & \text { if } x \neq y\end{cases}
$$

$\mathbb{E}[\mathrm{PS}]=\frac{1}{2} \mathbb{E}\left[\mathrm{PS}^{\prime}\right]+\frac{1}{2}\left(\mathbb{E}\left[\mathrm{PS}^{\prime \prime}\right]+1\right)$

$$
S_{T}=\frac{1}{2} S_{T-1}+\frac{1}{2}\left(S_{T-2}+1\right) \quad S_{T}=\frac{3 T-2-\left(\frac{-1}{2}\right)^{T}}{9}
$$

- Actually the recursion gives more....

$$
\mathbb{P}(\mathrm{ps}=k)=\frac{(2 n-3)}{k}\binom{n-k-1}{k-1} 2^{k}
$$

for any T in $\mathrm{UB}(n)$ (independent of shape), $k>0$, and this is asymptotically normal as n grows.

THE END

Two solutions

$$
S_{T}=\frac{3 T-2-\left(-\frac{1}{2}\right)^{T}}{9}
$$

$$
\begin{aligned}
& S_{T}=S_{T-1}+S_{T-2}+2^{T-2}+21+5 T+3 \sum_{2}^{T-3} i+\sum_{X=0}^{T-8 / 2}\binom{T-8-X}{T-8-2 X} \times(15 X+53) \\
+ & \sum_{X=0}^{T-T / 2}\left(\sum_{r=0}^{T-T-2 X}\left(\left({ }^{T+Y}\right) \times\left(S_{T-4-2 X-r}+\left(\left(2^{T-4-2 X-Y}-T+2+2 X+Y\right) \times(X+2)\right)\right)\right)\right. \\
+ & \sum_{r=1}^{T-8-2 X}\left(\left({ }_{r}^{T+r-1} r_{r-1}\right) \times(42+10 X+((T-2-2 X-Y) \times(X+3))\right. \\
+ & \left.\left.\left.\sum_{Z=2}^{T-4-2 X-Y}(X+3+(Z \times(X+4)))\right)\right)\right)
\end{aligned}
$$

Lecture 4: Distance-based tree reconstruction

Mike Steel

Winthrop lectures, 2014

Outline

- Part 1: Encoding trees by distances, 4PC, ultrametrics
- Part 2: Reconstruction methods
- Part 3: Phylogenetic diversity and BME
- 20x pushups
- Part 4: Specialist topic: Do we need all the distances?

Edge-weighted trees and tree metrics

$$
d_{(T, w)}(x, y)=\sum_{e \in P(T ; x, y)} w(e)
$$

If this holds for all pairs of leaves we that d is 'tree metric' with a 'representation on \boldsymbol{T} ',

The unified view

Figure 1 In this figure, we indicate the manifold relationships between various combinatorial objects relevant in phylogenetic analysis that will be studied in this book.

When can a distance (metric) on X be represented on a phylogenetic X-tree?

$$
\begin{aligned}
& n=3 \text {, always! } \\
& n=4 \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& d(x, y)+d(w, z)<d(x, w)+d(y, z) \\
& d(x, w)+d(y, z)=d(x, z)+d(y, w)
\end{aligned}
$$

What does this tell us?

When about general n ?

For any four points x, y, w, z let

$$
\begin{aligned}
& S_{1}=d(x, y)+d(w, z) \\
& S_{2}=d(x, w)+d(y, z) \\
& S_{3}=d(x, z)+d(y, w)
\end{aligned}
$$

If d is a tree metric then, for $i=1,2,3$

$$
S_{i} \leq \max \left\{S_{j}, S_{k}\right\}
$$

This is called the four point condition (4PC)

Ultrametrics trees (aka. 'equidistant tree', 'clock-like tree')

Defintion: A rooted tree with edge weighting (T, w) is an 'ultrametric tree' if the distance from the root to each leaf is the same (rooted).

For an unrooted tree - it is ultrametric if it can be rooted (at some point)so this holds).

Quiz: are these unrooted trees ultrametric trees

A classic result (1960s/early 70s)

Theorem

d is a tree metric if and only if it satisfies the 4 PC
And the choice of T and $w>0$ to represent d is unique

Proof?

Ultrametrics

Definition: D is an ultrametric on X if it satisfies the 3-point condition:

$$
D(x, y) \leq \max \{D(x, z), D(y, z)\}
$$

The connection: D is an ultrametric on X if and only if there is a tree T in $R(X)$ on which D has ultrametric branch lengths (and then T, w unique)

Transforming an arbitrary tree metric into an ultrametric (Farris/Gromov transform):
$D(x, y)= \begin{cases}d(x, y)-d(x, r)-d(y, r), & x \neq y ; \\ 0, & x=y .\end{cases}$

Distances vs characters - the 'darndest thing'!
Let $d_{C}(i, j)=\#$ characters in C on which i and j differ (sequence dissimilarity).
QUIZ: If T is a perfect phylogeny for C does d_{C} a tree metric (on T)?
C binary characters - yes.
C non-binary characters - not necessarily.

Theorem [Fischer and Bandelt, H.-J. 2008; Huson and S, 2004]:

For any two trees T_{1}, T_{2} there is a set of 3 -state characters C such that:

- $\quad T_{1}$ is the unique perfect phylogeny for, yet
- $\quad d_{C}$ is a tree metric (ultrametric!) represented only by T_{2}.

A simple approach
Select $p \in X$
Let x, y maximize $d(x, p)+d(y, p)-d(x, y)$

Then x, y form a cherry of T
Why?

Distance-based tree reconstruction methods

Desirable property: perturbing d slightly leads to same tree

Neighbor-Joining

$>36,000$ citations: The neighbor-joining method: new method for reconstructing phylogenetic trees. N Saitou, M Nei Molecular biology and evolution 4 (4), 406-425

Neighor-Joining

$$
Q(x, y)=d(x, y)-\frac{1}{n-2} \sum_{p} d(x, p)-\frac{1}{n-2} \sum_{p} d(y, p)
$$

Select (x, y) to minimize Q
(1) If $d=d_{(T, y)}$ then (x, y) selected by Q is a cherry of T
(2) Q is a linear function of d
(3) If Q selects (x, y) and σ is a permutation of taxa, then Q applied to d^{σ} will select $(\sigma(x), \sigma(y))$.

Theorem [Bryant] If a selection criterion Q^{*} satisfies
(1), (2) and (3) then Q^{*} makes the same selection as Q

Phylogenetic diversity (PD)

$$
\begin{gathered}
d(x, y)=\sum_{e \in p(T ; x, y)} w(e) \\
P D(Y)=\sum_{e \in T(Y)} w(e) \\
L=P D(X)
\end{gathered}
$$

Theorem [Yves Pauplin 2000 Molecular Biology and Evolution]

$$
L=P D(X)=\sum_{\{x, y\} \subseteq X}\left(\frac{1}{2}\right)^{\Delta_{T}(x, y)} d(x, y)
$$

$\Delta_{T}(x, y)=\#$ int. vertices between x and y in $T \quad=\left(\frac{1}{2}\right)^{3} d\left(x_{1}, x_{2}\right)+\cdots$

An inconvenient truth

- Biological distances were not created by a mathematician!
- Our best hope: If δ is 'close' to $d=d_{(T, w)} \mid \mathcal{L}$ then $N J(\delta)=T$

We say that a distance-based method M
has safety radius r if following holds: $\forall x, y \in X$

$$
\begin{aligned}
& \left|\delta(x, y)-d_{(T, w)}(x, y)\right|<r \cdot w^{*} \Rightarrow M(\delta)=T \\
& w^{*}=\min \left\{w(e): e \in E_{\mathrm{int}}(T)\right\} \quad T \in U B(n)
\end{aligned}
$$

- No method allows $r>1 / 2$. (why?)
- But NJ has safety radius $1 / 2$ [K. Atteson]
(also there is an 'edge safety radius' result also)
- NJ exhibits discontinuity (when far from tree metric)

Balanced minimum evolution (BME)

Given d (not necessarily a tree metric) select the phylogenetic tree(s) T to minimizes L according to the Pauplin formula

$$
L=P D(X)=\sum_{\{x, y\} \subseteq X}\left(\frac{1}{2}\right)^{\Delta_{T}(x, y)} d(x, y)
$$

BME is 'consistent'
(Desper and Gascuel, 2004)

A way to view Pauplin's formula

 [original proof by induction]
$L=\frac{1}{2}[d(a, b)+d(b, c)+d(c, e)+d(e, f)+d(f, g)+d(g, h)+d(h, a)]$
Each 'cyclic ordering' of the leaves of T gives a different way of writing L
Each is an arbitrary choice, so let's average over all of them -
what do we get?
\qquad

Question: How many cyclic orderings does T have?

(1234), (1324), (1423), (1432)

$(d(v)-1)!$
-• \# cyclic orderings for T is $\prod_{v \in I(T)}$

For a binary tree this is 2^{n-2}

Cyclic Permutation on X

$$
\pi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$\Sigma^{o}(\pi):=$ the splits (bipartitions of X) induced by planar 'cuts'.

[Definition] π is a cyclic ordering for T if $\quad \Sigma(T) \subseteq \Sigma^{o}(\pi)$

More counting

How many cyclic orderings for T for with ...xy...?

At least one!

Lemma: The proportion of co's of T with $\ldots x y \ldots$ equals

$$
\prod_{v \in I(x, y)}(\operatorname{deg}(\mathrm{v})-1)^{-1}
$$

Corollary:

Given a cyclic ordering π the \# binary phylogenetic trees for which π is a cyclic ordering is the Catalan number

$$
\frac{1}{(n-1)}\binom{2 n-4}{n-2}
$$

Why?

$$
\#(T, o):=b(n) 2^{n-2}=(n-1)!Q
$$

Summary:

For any phylogenetic tree T the average of all the representations of L is.

$$
\begin{aligned}
& L=P D(X)= \sum_{\{x, y\} \subseteq X} \lambda_{T}(x, y) d(x, y) \\
& \lambda_{T}(x, y)=\prod_{v \in I(x, y)}(\operatorname{deg}(v)-1)^{-1}
\end{aligned}
$$

Example

$$
l=\frac{1}{3} d(a, b)+\frac{1}{6} d(a, d)+\ldots
$$

Application: NJ selects the pair of leaves (at each step) to maximizes the reduction in BME score [Desper and Gascuel, 2004; Gascuel and S, 2006]

Back to Pauplin...

$$
\begin{gathered}
L=\frac{1}{|o(T)|} \sum_{\left(x_{1}, \ldots, x_{n}\right) \in o(T)}\left(\frac{1}{2} \sum_{i} d\left(x_{i}, x_{i+1}\right)\right) \\
=\frac{1}{2} \sum_{(x, y)}\left(\frac{n_{T}(x, y)}{|o(T)|}\right) d(x, y) \\
=\sum_{\{x, y\} \subseteq X} \lambda_{T}(x, y) d(x, y) \\
\text { where } \\
\lambda_{T}(x, y)=\prod_{v \in I(x, y)}(\operatorname{deg}(v)-1)^{-1} .
\end{gathered}
$$

Phylogenetic diversity (again) $\quad P D(Y)=\sum_{e \in T(Y)} w(e)$

Relevant for:

- Conservation biology
- Ensuring evolutionary 'coverage' in study designs

- Tree reconstruction

A nice combinatorial property of PD

- Problem: Find a subset $Y_{\max }$ of X given size k to maximise $P D$.
- Theorem: $\mathrm{Y}_{\text {max }}$ can always be found by using the 'greedy algorithm'.
[The sets of maximal PD-score for their cardinality form a (strong) 'greedoid']
- Why?

If $1<\left|Y_{1}\right|<\left|Y_{2}\right|$ there exists $y \in Y_{2}-Y_{1}$:
$P D\left(Y_{1} \cup\{y\}\right)+P D\left(Y_{2}-\{y\}\right) \geq P D\left(Y_{1}\right)+P D\left(Y_{2}\right)$.

What's the connection?

Theorem [Bordewich and Semple (Syst. Biol. 2012)]
For clock-like branch lengths the optimal max-min selection of k species is identical to the optimal PD selection.

Quiz: What happens to our distance and PD results if the edges are weighted by an (Abelian) group?

$\left(\mathbb{Z}_{2},+\right)$

An alternative measure: "max-min"

Select set S of k leaves to maximise $\min \{d(x, y): x, y \in S, x \neq y\}$

Min-max selection on a tree is easy, but not via greedy
Bordewich and Semple

Specialist topic: Do we need all of the distances?
Given $\mathcal{L} \subseteq\binom{X}{2}$ and $d=d_{(T, w)} \mid \mathcal{L}$
Does d determine T ? (and/or w ?)
Example:

$$
\mathcal{L}=\{a b, c d, a c, b d\}
$$

$d \mid \mathcal{L}$ determines T but not w
$\mathcal{L}^{\prime}=\mathcal{L} \cup\{a d\}$ determines T and w
$\mathcal{L}^{\prime \prime}=\{a b, a c, a d, b c, b d\}$ determines neither

How few distances do we need?

Classic result: [Yusmanov, 1984]
For any binary tree T with n leaves, there is a set $\mathcal{L} \subseteq\binom{X}{2}$ of size $2 n-3$ so that the $d_{(T, w)} \mid \mathcal{L} \quad$ determines both T and w.

Qui\%
If $d_{(T, w)} \mid \mathcal{L}$ determines w on given T, does it also
determine T ?
[Dress, Huber, S, (2014)] If we just want to define T, we can reduce the size of \mathcal{L} by 1 (but no more!)

$$
5
$$

$$
\mathcal{L}=\{a b, c d, a c, b d\}
$$

If T is binary, each interior vertex must be ' 3 -covered'

$$
\left\{a b, b^{\prime} c, c^{\prime} a^{\prime}\right\} \subseteq \mathcal{L}
$$

[^0]: Output tree should display $12|5,23| 5,34 \mid 1$ and $45 \mid 1$ - but there is no tree that does this!

