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Abstract. Let M be an excluded minor for the class of P-representable
matroids for some partial field P, and let N be a 3-connected strong P-
stabilizer that is non-binary. We prove that either M is bounded relative
to N , or, up to replacing M by a ∆-Y -equivalent excluded minor, we can
choose a pair of elements {a, b} such that either M\{a, b} is N -fragile,
or M∗\{a, b} is N∗-fragile.

1. Introduction

One of the longstanding goals of matroid theory is to find excluded-
minor characterisations of classes of representable matroids. Results to
date include Tutte’s excluded-minor characterisation of binary and regu-
lar matroids [21]; Bixby’s and, independently, Seymour’s excluded-minor
characterisation of ternary matroids [1, 20]; Geelen, Gerards and Kapoor’s
excluded-minor characterisation of GF(4)-representable matroids [8]; and
Hall, Mayhew and Van Zwam’s excluded-minor characterisation of the near-
regular matroids, that is, the matroids representable over all fields with at
least three elements [9].

The immediate problem that looms large is that of finding the excluded
minors for the class of GF(5)-representable matroids. While this problem is
beyond the range of current techniques, a road map for an attack is outlined
in [16]. In essence, this road map reduces the problem to a finite sequence of
problems of a type that we now describe. First note that regular matroids
and many other naturally arising classes of representable matroids such as
near-regular, dyadic and 6

√
1-matroids [22] can be described as classes of ma-

troids representable over an algebraic structure called a partial field. We wish
to find the excluded-minor characterisation for the class of P-representable
matroids for some fixed partial field P. We have a 3-connected matroid N
with the property that every P-representation of N extends uniquely to a
P-representation of any 3-connected P-representable matroid having N as
a minor. Such a matroid N is called a strong stabilizer for the class of P-
representable matroids. With these ingredients, the goal is to bound the
size of an excluded minor for the class of P-representable matroids having
the strong stabilizer N as a minor. This situation is a more general version
of the one that arises in the proof of the excluded-minor characterisation of
GF(4)-representable matroids [8]. There, the partial field is GF(4) and the
strong stabilizer is U2,4. (See also the introduction to [4] for more detail on
this strategy.)
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Ideally, we would develop techniques that would reduce problems of the
above type to routine computation. But an annoying barrier arises. Let
N be a matroid. A matroid M is N -fragile if, for all elements e of M ,
at most one of M\e or M/e has an N -minor. It seems that, for a strong
stabilizer N for a partial field P, to bound the size of an excluded minor
for P-representable matroids that contains N as a minor, we need to have
some insight into the structure of P-representable N -fragile matroids. The
goal of this paper is to demonstrate that this is, in essence, the fundamental
problem. We prove that if M is an excluded minor for the class of P-
representable matroids having an N -minor, then either the size or rank of
M is bounded relative to N , or, up to replacing M by a ∆-Y -equivalent
excluded minor, M (or its dual) has a pair of elements {a, b} such that
M\a, b is an N -fragile (or N∗-fragile) matroid. More specifically, we prove
the following:

Theorem 1.1. Let P be a partial field, let M be an excluded minor for the
class of P-representable matroids, and let N be a non-binary strong stabi-
lizer for the class of P-representable matroids, where M has an N -minor.
For some matroid M1 that is ∆-Y -equivalent to M , and some (M ′, N ′) in
{(M1, N), (M∗1 , N

∗)}, the matroid M ′ is an excluded minor having an N ′-
minor such that at least one of the following holds:

(i) |E(M ′)| ≤ |E(N ′)|+ 9;
(ii) r(M ′) ≤ r(N ′) + 7; or

(iii) there is a pair {a, b} ⊆ E(M) such that M ′\a, b is a 3-connected
N ′-fragile matroid with an N ′-minor.

We defer the definition of the ∆-Y -equivalence to the next section.
Theorem 1.1 tells us that an excluded minor for P-representable matroids

will either have bounded size or will be very close to an N -fragile matroid.
Current techniques for bounding the size of an excluded minor in the latter
case rely on obtaining explicit information about the structure of N -fragile
matroids and this needs to be done on a case-by-case basis. Even for quite
simple matroids this can be a difficult problem. Here is an example. Recall
the non-Fano matroid F−7 . The barrier to finding the excluded minors for
the class of dyadic matroids is that we do not understand the structure of
dyadic F−7 -fragile matroids and such an understanding seems some way off.

On the other hand, U2,5 and U3,5 are strong stabilizers for representability
over two interesting partial fields and we do know the structure of U2,5- and
U3,5-fragile matroids within these classes [7]. The first is the partial field H5

which was introduced by Pendavingh and Van Zwam [16]. The class of ma-
troids representable over this partial field is the class obtained by taking
the 3-connected matroids that have exactly six inequivalent representations
over GF(5) and closing the class under minors. This class forms the bot-
tom layer of Pendavingh and Van Zwam’s hierarchy of GF(5)-representable
matroids. Finding excluded minors for this class would be a key first step
towards finding the excluded minors for matroids representable over GF(5).

The other partial field is the 2-regular or 2-uniform partial field, denoted
U2. This is a member of a family of partial fields. The matroids representable
over U0 and U1 are the regular and near-regular matroids respectively. Reg-
ular matroids are the matroids representable over all fields, and near-regular
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matroids are the matroids representable over all fields with at least three
elements. Let M4 denote the matroids representable over all fields of size
at least four. It would certainly be interesting to have a characterisation of
the class M4. The class of U2-representable matroids is contained in M4,
and it is known [19] that this class is a proper subclass ofM4. Nonetheless,
knowing the excluded minors for U2-representability would be a key step
towards characterising the class M4. The interesting matroids to uncover
are the excluded minors for U2 that belong toM4. Attention could then be
focussed on members ofM4 having these matroids as minors. It is possible
that these will form highly structured classes of bounded branch width.

With the results of this paper, and the characterisation of the U2- and
H5-representable U2,5- and U3,5-fragile matroids, there is real hope that ob-
taining the full list of excluded minors for these classes is an achievable goal.
Beyond these classes all bets are off. Experience with graph minors tells us
that we must expect to hit a wall quite soon — consider, for example, the
excluded minors for the class of toroidal graphs or the class of ∆-Y -reducible
graphs [25]. We know from [10] that there are at least 564 excluded minors
for GF(5)-representable matroids. It is possible that obtaining the full list
will be forever beyond our reach. But the quest is surely a worthy one.

2. Preliminaries and the main theorems

In this section we gather preliminaries that are used throughout the paper.
We will then be able to state the main results: Theorems 2.30 and 2.31. In
particular, Theorem 2.31 implies Theorem 1.1. Most of the relevant results
and terminology on matroid connectivity can either be found in Oxley [12]
or in the recent literature on removing elements relative to a fixed basis
[3, 14, 24]. The results and terminology on matroid representation theory
can be found in [11,16,17].

We write “by orthogonality” to refer to the property that a circuit and a
cocircuit cannot meet in one element. In the context of partitions of the form
(X, {e}, Y ), we will also write “by orthogonality” to refer to an application
of the next lemma.

Lemma 2.1. Let e be an element of a matroid M , and let (X, {e}, Y ) be a
partition of E(M). Then e ∈ cl(X) if and only if e /∈ cl∗(Y ).

2.1. Connectivity. The following results are well known.

Lemma 2.2. Let M be a 3-connected matroid. If X is a rank-2 subset of
E(M) and |X| ≥ 4, then M\x is 3-connected for all x ∈ X.

Lemma 2.3 (Bixby’s Lemma [2]). Let M be a 3-connected matroid, and let
e ∈ E(M). Then si(M/e) or co(M\e) is 3-connected.

The next three results state elementary properties of 3-separations that
we shall use frequently. We use the notation e ∈ cl(∗)(X) to mean e ∈ cl(X)
or e ∈ cl∗(X).

Lemma 2.4. Let X be an exactly 3-separating set in a 3-connected matroid,
and suppose that e ∈ E(M)−X. Then X ∪ e is 3-separating if and only if

e ∈ cl(∗)(X).
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Lemma 2.5. Let (X,Y ) be an exactly 3-separating partition of a 3-
connected matroid M . Suppose |X| ≥ 3 and x ∈ X. Then

(i) x ∈ cl(∗)(X − x); and
(ii) (X − x, Y ∪ x) is exactly 3-separating if and only if x is in exactly

one of cl(X − x) ∩ cl(Y ) and cl∗(X − x) ∩ cl∗(Y ).

Lemma 2.6 ([3, Lemma 2.11]). Let (X,Y ) be a 3-separation of a 3-
connected matroid M . If X ∩ cl(Y ) 6= ∅ and X ∩ cl∗(Y ) 6= ∅, then
|X ∩ cl(Y )| = 1 and |X ∩ cl∗(Y )| = 1.

Let M be a matroid. A 3-separation (X,Y ) of M is a vertical 3-separation
if min{r(X), r(Y )} ≥ 3. We say that a partition (X, {z}, Y ) is a vertical
3-separation of M when both (X ∪ {z}, Y ) and (X,Y ∪ {z}) are vertical
3-separations and z ∈ cl(X)∩ cl(Y ). We will write (X, z, Y ) for (X, {z}, Y ).
If (X, z, Y ) is a vertical 3-separation of M , then we say that (X, z, Y ) is a
cyclic 3-separation of M∗.

A path of 3-separations of M is a partition (P1, . . . , Pn) of E(M) such that
(P1∪· · ·∪Pi, Pi+1∪· · ·∪Pn) is a 3-separation of M for each i ∈ {1, . . . , n−1}.
In particular, a vertical 3-separation (X, z, Y ) is a path of 3-separations.

Lemma 2.7 ([23, Lemma 3.5]). Let M be a 3-connected matroid, and e ∈
E(M). The matroid M has a vertical 3-separation (X, e, Y ) if and only if
si(M/e) is not 3-connected.

Let k be a positive integer, and let (P,Q) be a k-separation. We call
the set cl(P ) ∩ cl(Q) the guts of (P,Q), and cl∗(P ) ∩ cl∗(Q) the coguts of
(P,Q). We also say that an element z ∈ cl(P )∩ cl(Q) is a guts element, and
z ∈ cl∗(P ) ∩ cl∗(Q) is a coguts element.

We write “by uncrossing” to refer to an application of the next result.

Lemma 2.8. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M). Then the following hold.

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

2.2. Series classes. We will use the following two results on series classes.
We omit the easy proof of the first lemma.

Lemma 2.9. Let M be a matroid such that co(M) is 3-connected. If S and
S′ are distinct series classes of M , then either S ∪ S′ is independent, or
co(M) ∼= U1,3.

When S is a series class of size two, we say S is a series pair.

Lemma 2.10. Let M be a 3-connected matroid, and let u ∈ E(M) be an
element such that co(M\u) is 3-connected and co(M\u) � U1,3. Let S be
a non-trivial series class of M\u. If there is some element s ∈ S such that
si(M/s) is not 3-connected, then

(i) |S| = 2;
(ii) M\u has exactly two distinct non-trivial series classes; and

(iii) si(M/s′) is 3-connected, where S = {s, s′}.
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Proof. Suppose that there is some element s ∈ S such that si(M/s) is not
3-connected. Observe that rM∗(S ∪ u) = 2. It follows that if |S| ≥ 3,
then M∗\s, and hence M/s, is 3-connected for all s ∈ S by Lemma 2.2; a
contradiction. So |S| = 2, and (i) holds. Henceforth, we let S = {s, s′}.

We now consider (ii) and (iii). We first show that A − u is a series class
of M\u, distinct from S. By Lemma 2.7, M has a vertical 3-separation
(A, s,B). Without loss of generality, we may assume that A is coclosed, and
that u ∈ A. Then (A − u,B) is a 2-separation of M/s\u, and M/s\u is 3-
connected up to series classes because co(M\u) is 3-connected. Hence A−u
or B is contained in a series class of M\u. Since S ∪ u is a triad containing
s, and (A, s,B) is a vertical 3-separation, it follows from orthogonality (see
Lemma 2.1) that S∪u is not contained in A∪s. So s′ ∈ B. If B is contained
in a series class of M\u, then s is also in this series class; a contradiction.
As A is coclosed in M , we have that A− u is a series class in M\u, distinct
from S.

Next we claim that A−u and S are the only series classes of M\u. Since
s ∈ cl(A), there is a circuit C of M such that s ∈ C ⊆ A ∪ s. Moreover,
u ∈ C by orthogonality with C and the triad S ∪ u. Suppose there is some
series pair S′ of M\u disjoint from S ∪ (A − u). Then S′ ∪ u is a triad
of M that meets the circuit C in the single element u; a contradiction to
orthogonality. Thus S and A− u are the only series classes of M\u, so (ii)
holds.

Finally, suppose that si(M/s′) is not 3-connected. Then, by Lemma 2.7,
M has a vertical 3-separation (A′, s′, B′). We may assume, without loss of
generality, that A′ is coclosed and that u ∈ A′. By the same argument
as used earlier, A′ − u is a series class of M\u, distinct from S. By (ii),
A′− u = A− u, and thus (A′, s′, B′) = (A, s′, (B− s′)∪ s). Then s′ ∈ cl(A),
so there is some circuit C ′ of M such that s′ ∈ C ′ ⊆ A ∪ s′, and u ∈ C ′ by
orthogonality. But then we have distinct circuits C ⊆ A∪ s and C ′ ⊆ A∪ s′
such that u ∈ C ∩ C ′. By circuit elimination, there is a circuit C ′′ of M
such that C ′′ ⊆ (A − u) ∪ S. Thus, by Lemma 2.9, co(M\u) ∼= U1,3, a
contradiction. Therefore (iii) holds. �

2.3. Fans. A subset F of the ground set of a matroid, with |F | ≥ 3, is a
fan if there is an ordering (f1, f2, . . . , fk) of the elements of F such that

(a) {f1, f2, f3} is either a triangle or a triad, and
(b) for all i ∈ {1, 2, . . . , k − 3}, if {fi, fi+1, fi+2} is a triangle, then
{fi+1, fi+2, fi+3} is a triad, while if {fi, fi+1, fi+2} is a triad, then
{fi+1, fi+2, fi+3} is a triangle.

When there is no ambiguity, we also say that the ordering (f1, f2, . . . , fk) is
a fan. If F has a fan ordering (f1, f2, . . . , fk) where k ≥ 4, then f1 and fk
are the ends of F , and f2, f3, . . . , fk−1 are the internal elements of F .

Let F be a fan with ordering (f1, f2, . . . , fk) where k ≥ 4, and let i ∈
{1, 2, . . . , k} if k ≥ 5, or i ∈ {1, 4} if k = 4. An element fi is a spoke element
of F if {f1, f2, f3} is a triangle and i is odd, or if {f1, f2, f3} is a triad and
i is even; otherwise fi is a rim element.

We say that a fan F is maximal if there is no fan that properly contains
F .
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We employ the following results when we encounter fans.

Lemma 2.11 ([3, Lemma 2.12]). Let M be a 3-connected matroid with
|E(M)| ≥ 7. Suppose that M has a fan F of at least 4 elements, and let f
be an end of F .

(i) If f is a spoke element, then co(M\f) is 3-connected and si(M/f)
is not 3-connected.

(ii) If f is a rim element, then si(M/f) is 3-connected and co(M\f) is
not 3-connected.

Lemma 2.12 ([3, Lemma 3.3]). Let M be a matroid with distinct elements
f1, f2, f3, f4. If the only triangle containing f3 is {f1, f2, f3} and the only
triad containing f2 is {f2, f3, f4}, then si(M/f3) ∼= co(M\f2).

2.4. Retaining an N-minor. Let M and N be matroids, and let x be an
element of M . If M\x has an N -minor, then x is N -deletable. If M/x has
an N -minor, then x is N -contractible. If neither M\x nor M/x has an N -
minor, then x is N -essential. If x is both N -deletable and N -contractible,
then we say that x is N -flexible. A matroid M is N -fragile if M has an
N -minor, and no element of M is N -flexible (note that some authors refer
to this as “strictly N -fragile”).

For X ⊆ E(M), we will also say that X is N -deletable (or N -contractible)
when M\X (or M/X, respectively) has an N -minor.

The next two results give some conditions for when we can keep an N -
minor when dealing with 2-separations.

Lemma 2.13 ([3, Lemma 4.3]). Let N be a 3-connected matroid such that
|E(N)| ≥ 4. If M has an N -minor, then si(M) has an N -minor.

Lemma 2.14 ([14, Lemma 2.7]). Let (X,Y ) be a 2-separation of a connected
matroid M and let N be a 3-connected minor of M . Then {X,Y } has a
member S such that |S ∩ E(N)| ≤ 1. Moreover, when s ∈ S,

(i) if M/s is connected, then M/s has an N -minor; and
(ii) if M\s is connected, then M\s has an N -minor.

Let (X, z, Y ) be a vertical 3-separation of a matroid M . Then (X,Y )
is a 2-separation of M/z such that |X| ≥ 3 and |Y | ≥ 3. Let N be a 3-
connected matroid with |E(N)| ≥ 3. If M/z has an N -minor, then it follows
from Lemma 2.14 that either |X ∩ E(N)| ≤ 1 or |Y ∩ E(N)| ≤ 1. When
|X ∩ E(N)| ≤ 1, we refer to X as the non-N -side and Y as the N -side of
(X, z, Y ).

The following result is a routine upgrade of [3, Lemma 4.5] that also covers
the case when the N -side of the vertical 3-separation is not closed.

Lemma 2.15. Let N be a 3-connected minor of a 3-connected matroid M .
Let (X, z, Y ) be a vertical 3-separation of M such that M/z has an N -minor,
where |X ∩ E(N)| ≤ 1. Then every element of X is either N -deletable or
N -contractible in M/z. In particular, letting Y ′ = clM (Y )− z,

(i) every element of X − Y ′ is N -contractible in M/z, and
(ii) at most one element of X is not N -deletable; moreover, if such an

element x exists, then x ∈ cl∗M (Y ′)− Y ′ and z ∈ clM (X − (Y ′ ∪ x)).
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Proof. It is immediate from the proof of [3, Lemma 4.5] that the lemma
holds when Y ∪ z is closed; in particular, (i) holds. We may therefore
assume that Y ∪z is not closed. Let s ∈ X ∩clM (Y ). We first show that s is
N -deletable. Since (X,Y ) is a 2-separation of the connected matroid M/z
and s ∈ clM/z(X)∩ clM/z(Y ), it follows that M/z\s is connected. Then, by
Lemma 2.14, M/z\s has an N -minor, so s is N -deletable. Thus any element
of X that is not N -deletable belongs to X − Y ′.

2.15.1. The partition (X − s, z, Y ∪ s) is a vertical 3-separation of M .

Subproof. By Lemma 2.5(i), s ∈ cl
(∗)
M (X − s). Since s ∈ clM (Y ) it follows

from orthogonality that s /∈ cl∗M (X − s). Therefore s ∈ clM (X − s) and,
by Lemma 2.5(ii), (X − s, Y ∪ {s, z}) is exactly 3-separating. By a similar
argument, ((X − s) ∪ z, Y ∪ s) is exactly 3-separating. As s ∈ clM (X − s),
we see that r(X − s) = r(X) ≥ 3. Hence the partition (X − s, z, Y ∪ s) is a
vertical 3-separation of M . �

By repeatedly applying 2.15.1, we see that (X − Y ′, z, Y ′) is a vertical 3-
separation of M with |(X−Y ′)∩E(N)| ≤ 1. As Y ′∪z is closed, (ii) holds. To
see that each element of X is either N -deletable or N -contractible, suppose
x ∈ X is neither N -deletable nor N -contractible. Then {x, z} ⊆ clM (Y ),
and x ∈ cl∗M (Y ), contradicting Lemma 2.6. �

Lemma 2.16. Let N be a 3-connected minor of a 3-connected matroid M .
Let (X, z, Y ) be a vertical 3-separation of M such that M/z has an N -minor,
|X ∩ E(N)| ≤ 1, and Y ∪ z is closed. Then there is at most one element
of X that is not N -flexible. Moreover, if s ∈ X is not N -flexible, then s is
N -contractible and si(M/s) is 3-connected.

Proof. By Lemma 2.15, every element in X is N -contractible. Suppose
s ∈ X is not N -flexible. Then s is not N -deletable, so s ∈ cl∗(Y ) and every
element in X − s is N -deletable. Since Y ∪ z is closed, s ∈ cl∗(X − s).
It follows that co(M\s) is not 3-connected, so si(M/s) is 3-connected by
Bixby’s Lemma. �

2.5. Representation Theory. A partial field is a pair (R,G), where R is
a commutative ring with unity, and G is a subgroup of the group of units
of R such that −1 ∈ G. If P = (R,G) is a partial field, then we write p ∈ P
whenever p ∈ G ∪ {0}.

Let P be a partial field, and let A be an X × Y matrix with entries from
P. Then A is a P-matrix if every subdeterminant of A is contained in P. If
X ′ ⊆ X and Y ′ ⊆ Y , then we write A[X ′, Y ′] to denote the submatrix of A
induced by X ′ and Y ′. When X and Y are disjoint, and Z ⊆ X ∪ Y , we
denote by A[Z] the submatrix induced by X ∩Z and Y ∩Z, and we denote
by A− Z the submatrix induced by X − Z and Y − Z.

Theorem 2.17 ([16, Theorem 2.8]). Let P be a partial field, and let A be
an X × Y P-matrix, where X and Y are disjoint. Let

B = {X} ∪ {X4Z : |X ∩ Z| = |Y ∩ Z|, det(A[Z]) 6= 0}.

Then B is the set of bases of a matroid on X ∪ Y .
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We say that the matroid in Theorem 2.17 is P-representable, and that A
is a P-representation of M . We write M = M [I|A] if A is a P-matrix, and
M is the matroid whose bases are described in Theorem 2.17.

Let A be an X × Y P-matrix, with X ∩ Y = ∅, and let x ∈ X and y ∈ Y
such that Axy 6= 0. Then we define Axy to be the (X4{x, y})× (Y4{x, y})
P-matrix given by

(Axy)uv =


A−1xy if uv = yx

A−1xyAxv if u = y, v 6= x

−A−1xyAuy if v = x, u 6= y

Auv −A−1xyAuyAxv otherwise.

We say that Axy is obtained from A by pivoting on xy. Note that Axy is a
P-matrix, by [18, Proposition 3.3].

Two P-matrices are scaling equivalent if one can be obtained from the
other by repeatedly scaling rows and columns by non-zero elements of P.
Two P-matrices are geometrically equivalent if one can be obtained from the
other by a sequence of the following operations: scaling rows and columns
by non-zero entries of P, permuting rows, permuting columns, and pivoting.

Let P be a partial field, and let M and N be matroids such that N is a
minor of M . Suppose that the ground set of N is X ′ ∪ Y ′, where X ′ is a
basis of N . We say that M is P-stabilized by N if, whenever A1 and A2 are
X × Y P-matrices, with X ′ ⊆ X and Y ′ ⊆ Y , such that

(i) M = M [I|A1] = M [I|A2],
(ii) A1[X

′, Y ′] is scaling equivalent to A2[X
′, Y ′], and

(iii) N = M [I|A1[X
′, Y ′]] = M [I|A2[X

′, Y ′]],

then A1 is scaling equivalent to A2. If M is P-stabilized by N , and every
P-representation of N extends to a P-representation of M , then we say M
is strongly P-stabilized by N .

Let M be a class of matroids. We say that N is a P-stabilizer for M if,
for every 3-connected P-representable matroid M ∈ M with an N -minor,
M is P-stabilized by N . We say that N is a strong P-stabilizer for M if, for
every 3-connected P-representable matroid M ∈ M with an N -minor, M
is strongly P-stabilized by N . Usually, we will be interested in the class of
P-representable matroids for some partial field P. When M is the class of
all P-representable matroids, we simply say “N is a strong P-stabilizer”.

2.6. Certifying non-representability. Let M be a matroid with a minor
N . If M has a pair of elements {a, b} such that M\a, b is 3-connected and
has an N -minor, then we say {a, b} is a deletion pair with respect to N . If
M has a pair of elements {a, b} that are N -deletable, M\a, b is connected,
and co(M\a), co(M\b), and co(M\a, b) are 3-connected, then we say {a, b}
is a weak deletion pair with respect to N .

When B is a basis for a matroid M , we write B∗ to denote E(M) − B.
When Z ⊆ E(M), we write MB[Z] to denote the minor M/(B−Z)\(B∗−Z).

Throughout the rest of this section, we assume that P is a partial field.

Theorem 2.18 ([11, Theorem 5.5]). Let M and N be 3-connected matroids.
Suppose M has an N -minor, N is a P-representable matroid that is a strong
P-stabilizer, and {a, b} ⊆ E(M) is a weak deletion pair with respect to N
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such that M\a and M\b are P-representable. Let D be an XN×YN P-matrix
such that N = M [I|D]. Choose B,EN ⊆ E(M) − {a, b} such that B is a
basis of M\{a, b}, XN ⊆ B, and MB[EN ] = N . Then there exists a B×B∗
matrix A with entries in P such that

(i) A− a and A− b are P-matrices,
(ii) M [I|A− a] = M\a and M [I|A− b] = M\b, and
(iii) A[EN ] is scaling equivalent to D.

Moreover, the matrix A is unique up to row and column scaling.

Usually, we will apply Theorem 2.18 to a matroid M that is not P-
representable. We call the matrix A a “companion matrix” for M .

Definition. Let M be a matroid and let E(M) = X ∪ Y where X and Y
are disjoint. Let A be an X×Y matrix with entries in P such that, for some
distinct a, b ∈ Y , both A− a and A− b are P-matrices, M\a = M [I|A− a],
and M\b = M [I|A− b]. Then A is an X × Y companion P-matrix for M .

Let M be an excluded minor for the class of P-representable matroids.
Then it is easily seen that M is 3-connected. By Theorem 2.18, given a
3-connected matroid N that is a minor of M and a strong P-stabilizer, a P-
representation for N , and a weak deletion pair, there is a B×B∗ companion
P-matrix A for M , where B is an appropriately chosen basis of M .

A companion matrix for an excluded minor contains a certificate of non-
representability over P.

Definition. Let B be a basis of M , and let A be a B × B∗ matrix with
entries in P. A subset Z of E(M) incriminates the pair (M,A) if A[Z] is
square and one of the following holds:

(i) det(A[Z]) /∈ P,
(ii) det(A[Z]) = 0 but B4Z is a basis of M , or
(iii) det(A[Z]) 6= 0 but B4Z is dependent in M .

The next result follows immediately from the definition.

Lemma 2.19. Let M be a matroid, let A be an X × Y matrix with entries
in P, where X and Y are disjoint, and X ∪ Y = E(M). Exactly one of the
following statements is true:

(i) A is a P-matrix and M = M [I|A], or
(ii) there is some Z ⊆ X ∪ Y that incriminates (M,A).

The next theorem shows that there is some companion matrix A′ for M
that has a 4-element incriminating set.

Theorem 2.20 ([11, Theorem 5.8]). Let M be a matroid, let A be an X×Y
companion P-matrix for M , let a, b ∈ Y , and suppose that Z ⊆ X ∪ Y
incriminates (M,A). Then there is some X ′× Y ′ matrix A′, and x, y ∈ X ′,
such that

(i) a, b ∈ Y ′,
(ii) A− a is geometrically equivalent to A′ − a,
(iii) A− b is geometrically equivalent to A′ − b, and
(iv) {x, y, a, b} incriminates (M,A′).
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Let N be a 3-connected non-binary matroid. A matroid M with an N -
minor is N -stable if, whenever (X,Y ) is a 2-separation of M where X is the
non-N -side, then the matroid MX , corresponding to X in the 1- or 2-sum
decomposition of M induced by (X,Y ), is binary.

The following result is proved by Hall, Mayhew, and Van Zwam [9, Propo-
sitions 3.1 and 3.2].

Lemma 2.21. Let N be a 3-connected strong P-stabilizer that is non-binary,
and let M be a P-representable matroid that has an N -minor. If M is N -
stable, then M is strongly P-stabilized by N .

We next consider how a matroid can lose the property of being N -stable
after a single-element extension. We say that a matroid M is 3-connected
up to series pairs if co(M) is 3-connected and every non-trivial series class
of M is a series pair.

Lemma 2.22. Let N be a 3-connected non-binary matroid. Let M be a
matroid with an element e such that M\e has an N -minor, where e is not a
coloop. Suppose that M\e is 3-connected up to series pairs, and that M is
not N -stable. Then M has a 2-separation (S∪e,Q) where S∪e is a triangle
and a triad, for some series pair S of M\e.

Proof. Suppose M\e is 3-connected up to series pairs and M is not N -stable.
If M is 3-connected up to series pairs, then it is trivially N -stable. So there
is some 2-separation (A,B) of M with e ∈ A, say. Since (A − e,B) is 2-
separating inM\e, andM\e is 3-connected up to series pairs, we deduce that
|A| ≤ 3. Let M = QA ⊕2 QB be the 2-sum decomposition corresponding to
the 2-separation (A,B) of M . Since M\e has an N -minor and |E(N)| ≥ 4,
we have |A ∩ E(N)| ≤ 1. As M is not N -stable, QA has a U2,4-minor. But
|A| ≤ 3, so QA ∼= U2,4. The result follows. �

Definition. Let M be a matroid with a 2-separation (P,Q) where P is a
triangle and a triad. Then P is an unstable triple of M .

Let N be a 3-connected non-binary matroid, and let M be a connected
matroid with e ∈ E(M) such that M\e has an N -minor. By Lemma 2.22, if
M\e is 3-connected up to series pairs, but M is not N -stable, then M has
an unstable triple, which contains e.

Observe also that if P is an unstable triple, then P − p is a series pair in
M\p, for each p ∈ P .

The next lemma gives sufficient conditions for showing that a certain
minor of M is not P-representable. It can be proved by a straightforward
modification of a result of Mayhew, Van Zwam and Whittle [11, Theorem
5.12]. The conditions (iv) and (v) are changed from “MB[Z1] and MB[Z2]
are 3-connected up to series-parallel classes” to “MB[Z1] and MB[Z2] are
N -stable”, using Lemma 2.21.

Lemma 2.23. Let M be a matroid, let A be a B×B∗ matrix with entries in
P, where {x, y, a, b} incriminates (M,A) for x, y ∈ B and a, b ∈ B∗. Let N
be a non-binary strong stabilizer for the class of P-representable matroids.
Suppose that C ⊆ E(M) is such that MB[C] is N -fragile. If there exist
subsets Z,Z1, Z2 ⊆ E(M) such that
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(a) a ∈ Z1 − Z2 and b ∈ Z2 − Z1,
(b) C ∪ {x, y} ⊆ Z ⊆ Z1 ∩ Z2,
(c) MB[Z] is connected,
(d) MB[Z1] is N -stable,
(e) MB[Z2] is N -stable, and
(f) {x, y, a, b} incriminates (MB[Z1 ∪ Z2], A[Z1 ∪ Z2]),

then MB[Z1 ∪ Z2] is not strongly P-stabilized by N .

The following special case of Lemma 2.23 is sufficient for our needs.

Lemma 2.24. Let M be a matroid, let E = E(M), let A be a B × B∗

matrix with entries in P, where {x, y, a, b} incriminates (M,A) for x, y ∈ B
and a, b ∈ B∗. Let N be a non-binary strong stabilizer for the class of
P-representable matroids. If there exists u ∈ E − {x, y, a, b} such that

(a) MB[E − {a, b, u}] is connected and has an N -minor, and
(b) MB[E − {b, u}] and MB[E − {a, u}] are N -stable,

then MB[E − u] is not strongly P-stabilized by N .

Let A be a B×B∗ companion P-matrix forM , and suppose that {x, y, a, b}
incriminates (M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗. For p ∈ B and q ∈
B∗ where Apq 6= 0, we say that the pivot Apq is allowable if {x, y, a, b}4{p, q}
incriminates (M,Apq). The next two results describe situations where a
pivot is allowable.

Lemma 2.25 ([11, Lemma 5.10]). Let A be a B ×B∗ companion P-matrix
for M . Suppose that {x, y, a, b} incriminates (M,A), where {x, y} ⊆ B
and {a, b} ⊆ B∗. If p ∈ {x, y}, q ∈ B∗ − {a, b}, and Apq 6= 0, then
{x, y, a, b}4{p, q} incriminates (M,Apq).

Lemma 2.26 ([11, Lemma 5.11]). Let A be a B ×B∗ companion P-matrix
for M . Suppose that {x, y, a, b} incriminates (M,A), where {x, y} ⊆ B and
{a, b} ⊆ B∗. If p ∈ B − {x, y}, q ∈ B∗ − {a, b}, Apq 6= 0, and either
Apa = Apb = 0 or Axq = Ayq = 0, then {x, y, a, b} incriminates (M,Apq).

The elements of a set {x, y, a, b} that incriminates (M,A) label a 2 × 2
submatrix A[{x, y, a, b}] of A. We will refer to the next result by saying “the
bad submatrix has no zero entries.”

Lemma 2.27. Let A be a B×B∗ companion P-matrix for M . Suppose that
{x, y, a, b} incriminates (M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗. Then
Aij 6= 0 for each i ∈ {x, y} and j ∈ {a, b}.

Proof. Towards a contradiction, suppose that Aij = 0 for some i ∈ {x, y}
and j ∈ {a, b}. We may assume without loss of generality that Axb = 0.
Then det(A[{x, y, a, b}]) ∈ P. Since {x, y, a, b} incriminates the pair (M,A),
it follows that either

(i) det(A[{x, y, a, b}]) = 0 but B4{x, y, a, b} is a basis of M , or
(ii) det(A[{x, y, a, b}]) 6= 0 but B4{x, y, a, b} is dependent in M .

Assume that (i) holds. As det(A[{x, y, a, b}]) = Axa · Ayb = 0 and non-
zero elements of P are units, it follows that Axa = 0 or Ayb = 0. Suppose
that Axa = 0. Let B′ = B4{x, y, a, b}. Now B and B′ are bases of M and
x ∈ B − B′, so, by basis exchange, there is some z ∈ B′ − B = {a, b} such
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that (B−x)∪z is a basis of M . Since M\b = M [I|A−b], M\a = M [I|A−a]
and Axa = Axb = 0, the fundamental circuits of a and b with respect to B do
not contain x. So we obtain the contradiction that (B−x)∪a and (B−x)∪b
are dependent in M . Thus Axa 6= 0. Similarly, since a ∈ B′ − B, it follows
that (B′ − a) ∪ x or (B′ − a) ∪ y is a basis of M\a = M [I|A − a]. Thus
Ayb 6= 0. We deduce that (i) does not hold.

Therefore (ii) holds. Since det(A[{x, y, a, b}]) = Axa · Ayb 6= 0, it follows
that Axa 6= 0 and Ayb 6= 0. Now M\b = M [I|A − b] and Axa 6= 0, so
(B − x) ∪ a is a basis of M . Similarly, M\a = M [I|A− a] and Ayb 6= 0, so
(B− y)∪ b is also a basis of M . Let B1 = (B−x)∪ a and B2 = (B− y)∪ b.
Then x ∈ B2 − B1, so, by basis exchange, there is some z ∈ B1 − B2 such
that (B2−x)∪z is a basis of M . But B1−B2 = {a, y}, so either (B−x)∪ b
or B′ is a basis. In the former case, since Axb = 0, it follows that (B−x)∪ b
is dependent in M\a = M [I|A− a] and hence in M . Since B′ is dependent
by assumption, we obtain a contradiction, thus completing the proof. �

2.7. Robust and strong elements. When working with a matroid M
and a P-representation A of M , there is a natural basis B of M that labels
the rows of A. We will frequently look to remove elements “relative to B”;
that is, in such a way that we obtain a P-representation of the minor of M
by removing rows and columns of A, without pivoting. This leads to the
following definitions.

Let M be a 3-connected matroid, let B be a basis of M , and let N be a
3-connected minor of M . Recall that we write B∗ to denote E(M)−B. An
element e ∈ E(M) is (N,B)-robust if either

(i) e ∈ B and M/e has an N -minor, or
(ii) e ∈ B∗ and M\e has an N -minor.

Note that an N -flexible element of M is clearly (N,B)-robust for any
basis B of M .

An element e ∈ E(M) is (N,B)-strong if either

(i) e ∈ B, and si(M/e) is 3-connected and has an N -minor; or
(ii) e ∈ B∗, and co(M\e) is 3-connected and has an N -minor.

2.8. Delta-wye exchange. Let M be a matroid with a triangle T =
{a, b, c}. Consider a copy of M(K4) having T as a triangle with {a′, b′, c′} as
the complementary triad labelled such that {a, b′, c′}, {a′, b, c′} and {a′, b′, c}
are triangles. Let PT (M,M(K4)) denote the generalised parallel connection
of M with this copy of M(K4) along the triangle T . Let M ′ be the matroid
PT (M,M(K4))\T where the elements a′, b′ and c′ are relabelled as a, b and
c respectively. The matroid M ′ is said to be obtained from M by a ∆-Y
exchange on the triangle T , and is denoted ∆T (M). Dually, M ′′ is obtained
from M by a Y -∆ exchange on the triad T ∗ = {a, b, c} if (M ′′)∗ is obtained
from M∗ by a ∆-Y exchange on T ∗. The matroid M ′′ is denoted ∇T ∗(M).

We say that a matroid M1 is ∆-Y -equivalent to a matroid M0 if M1

can be obtained from M0 by a sequence of ∆-Y and Y -∆ exchanges on
coindependent triangles and independent triads, respectively.

Oxley, Semple, and Vertigan proved that excluded minors for the class of
P-representable matroids are closed under ∆-Y exchange.
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Proposition 2.28 ([13, Theorem 1.1]). Let P be a partial field, and let
M be an excluded minor for the class of P-representable matroids. If M ′

is ∆-Y -equivalent to M , then M ′ is an excluded minor for the class of P-
representable matroids.

2.9. Detachable pairs. Let M be a 3-connected matroid, and let N be a
3-connected minor of M . A pair {a, b} ⊆ E(M) is N -detachable if either
M\a, b or M/a, b is 3-connected and has an N -minor. A 4-element subset
of E(M) is a quad if it is a circuit and a cocircuit of M . When P ⊆ E(M)
is an exactly 3-separating set of M with a partition {L1, . . . , Lt} for t ≥ 3
such that

(a) |Li| = 2 for each i ∈ {1, . . . , t},
(b) Li ∪ Lj is a quad for all distinct i, j ∈ {1, . . . , t}, and
(c) Li is not contained in a triangle or a triad, for each i ∈ {1, . . . , t},

then P is a spike-like 3-separator of M .
Brettell, Whittle, and Williams [4–6] proved that either M has a spike-

like 3-separator, or, after performing at most one ∆-Y or Y -∆ exchange on
M , we obtain a matroid with a detachable pair. More specifically:

Theorem 2.29 ([4, Theorem 1.1]). Let M be a 3-connected matroid, and let
N be a 3-connected minor of M such that |E(N)| ≥ 4 and |E(M)|−|E(N)| ≥
10. Then either

(i) M has an N -detachable pair,
(ii) there is a matroid M ′ obtained by performing a single ∆-Y or Y -∆

exchange on M such that M ′ has an N -detachable pair, or
(iii) there is a spike-like 3-separator P of M such that at most one ele-

ment of E(M)− E(N) is not in P .

We note that our definition of a spike-like 3-separator is more restrictive
than that which appears in [4], where condition (c) did not appear. However,
if M has a spike-like 3-separator for which (c) does not hold, then either (i)
or (ii) of Theorem 2.29 holds by [4, Theorem 3.2].

Now let P be a partial field, let N be a 3-connected strong P-stabilizer
for the class of P-representable matroids, and let M be an excluded minor
for the class of P-representable matroids. Then M is 3-connected. The
results in this paper rely on the existence of a pair of elements {a, b} such
that M\a, b is 3-connected with an N -minor. By Theorem 2.29, we can
guarantee such a pair exists, up to dualising and performing at most one
∆-Y or Y -∆ exchange, unless M has a spike-like 3-separator. We address
the possibility of M having a spike-like 3-separator in Section 7.

2.10. The main theorems. Let M be an excluded minor for the class of
P-representable matroids for some partial field P, and let N be a 3-connected
strong P-stabilizer. Let {a, b} be a pair of elements of M such that M\a, b
is 3-connected with an N -minor. Our first theorem describes, in the case
that M\a, b is not N -fragile and |E(M)| > |E(N)| + 9, the local structure
of M\a, b for any such deletion pair {a, b}.

Theorem 2.30. Let M be an excluded minor for the class of P-representable
matroids, and let N be a non-binary 3-connected strong P-stabilizer for the
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class of P-representable matroids. Suppose M has a pair of elements {a, b}
such that M\a, b is 3-connected with an N -minor. Then either

(i) |E(M)| ≤ |E(N)|+ 9, or
(ii) M has a B×B∗ companion P-matrix A for which {x, y, a, b} incrim-

inates (M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗, and either
(a) M\a, b is N -fragile, and M\a, b has at most one (N,B)-robust

element u outside of {x, y}, where if such an element u exists,
then u ∈ B∗−{a, b} is an (N,B)-strong element of M\a, b, and
{u, x, y} is a coclosed triad of M\a, b, or

(b) M\a, b is not N -fragile, but there is an element u ∈ B∗−{a, b}
that is (N,B)-strong in M\a, b; either

(I) the N -flexible, and (N,B)-robust, elements of M\a, b are
contained in {u, x, y}, or

(II) the N -flexible, and (N,B)-robust, elements of M\a, b are
contained in {u, x, y, z}, where z ∈ B, and (z, u, x, y) is a
maximal fan of M\a, b, or

(III) the N -flexible, and (N,B)-robust, elements of M\a, b are
contained in {u, x, y, z, w}, where z ∈ B, w ∈ B∗, and
(w, z, x, u, y) is a maximal fan of M\a, b;

the unique triad in M\a, b containing u is {u, x, y}; and M
has a cocircuit {x, y, u, a, b} and a triangle {d, x, y} for some
d ∈ {a, b}.

If M is sufficiently larger than N , then up to performing at most one
∆-Y exchange, we can eliminate case (ii)(b) of Theorem 2.30 by choosing
a different deletion pair. (Recall that excluded minors for the class of P-
representable matroids are closed under ∆-Y exchange by Proposition 2.28.)
This is the second main theorem of this paper, Theorem 2.31. This theorem
implies Theorem 1.1, but Theorem 2.31 provides additional information on
the existence of (N0, B)-robust elements in M0\a, b, and the local structure
of M0\a, b when an (N0, B)-robust element exists.

Theorem 2.31. Let M be an excluded minor for the class of P-representable
matroids, and let N be a non-binary 3-connected strong P-stabilizer, where
M has an N -minor. For some M1 that is ∆-Y -equivalent to M , and some
(M0, N0) in {(M1, N), (M∗1 , N

∗)}, the matroid M0 is an excluded minor with
an N0-minor, and at least one of the following holds:

(i) |E(M0)| ≤ |E(N0)|+ 9;
(ii) r(M0) ≤ r(N0) + 7; or
(iii) there is a pair {a, b} ⊆ E(M) such that M0\a, b is 3-connected with

an N0-minor, and M0\a, b is N0-fragile. Moreover, there is some
basis B for M0 and a B × B∗ companion P-matrix A for which
{x, y, a, b} incriminates (M,A), where {x, y} ⊆ B, {a, b} ⊆ B∗, and
both of the following hold:
(a) M0\a, b has at most one (N0, B)-robust element outside of
{x, y}, and

(b) if u is an (N0, B)-robust element of M0\a, b, then u ∈ B∗ −
{a, b}, the element u is (N0, B)-strong in M0\a, b, and {u, x, y}
is a triad of M0\a, b.
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The remainder of the paper is structured as follows. In Section 3, we
bound the number of (N,B)-strong elements in an excluded minor M with
a 3-connected strong stabilizer N and a basis B. In Section 4, we bound
|E(M)| relative to |E(N)| in the case where the (N,B)-strong elements are
contained in a 4- or 5-element set with particular properties, which we call a
“confining set”. In Section 5 we show that elements that are (N,B)-robust
but not (N,B)-strong give rise to a structured collection of 3-separations,
called a “path of 3-separations”. In Section 6, we use the structure given by
the path of 3-separations to bound the number of (N,B)-robust elements
and prove Theorem 2.30. In Section 7, we show that |E(M)| is bounded
relative to |E(N)| in the case where the existence of an N -detachable pair
cannot be guaranteed. Finally, in Section 8, we prove Theorem 2.31.

3. Strong elements

Let P be a partial field, and let N be a 3-connected strong P-stabilizer
for the class of P-representable matroids such that N is non-binary; so, in
particular, |E(N)| ≥ 4. Suppose M is an excluded minor for the class of
P-representable matroids, and M has a pair of elements {a, b} such that
M\a, b is 3-connected with an N -minor. Let A be a B × B∗ companion
P-matrix of M such that {x, y, a, b} incriminates (M,A), where {x, y} ⊆ B
and {a, b} ⊆ B∗. Let M ′ = M\a, b. We work under these assumptions for
the entirety of the section.

Recall that an element e ∈ E(M ′) is (N,B)-strong if either

(i) e ∈ B, and si(M ′/e) is 3-connected and has an N -minor; or
(ii) e ∈ B∗, and co(M ′\e) is 3-connected and has an N -minor.

In this section, we bound the number of (N,B)-strong elements of M ′.
The main result is that M ′ has at most two (N,B)-strong elements outside
of {x, y}, and any such elements are in B∗.

Lemma 3.1. If u is an (N,B)-strong element of M ′ such that u /∈ {x, y},
then u /∈ B.

Proof. Suppose that u is an (N,B)-strong element of M ′ such that u ∈
B − {x, y}. Since u is (N,B)-strong, M ′/u is 3-connected up to parallel
classes. Moreover, as M\a, M\b and M are 3-connected, it follows that
M\a/u, M\b/u, and M/u are 3-connected up to parallel classes, and hence
are N -stable. As M\a/u and M\b/u are N -stable, and M ′/u is connected,
Lemma 2.24 implies that M/u is not strongly P-stabilized by N . But, as
M/u is N -stable, this contradicts Lemma 2.21. �

A subset G of E(M) is a segment if every 3-element subset of G is a
triangle. A cosegment is a segment of M∗.

Lemma 3.2. Suppose u is an (N,B)-strong element of M ′ such that u /∈
{x, y}. If u is in a cosegment G of M ′ such that |G| ≥ 4, then |G| = 4 and
G ∩B = {x, y}.

Proof. Let G be a cosegment of M ′ with |G| ≥ 4. Since G is a corank-2 set,
|G∩B∗| ≤ 2. Hence |G∩B| ≥ |G| − 2. Since u is (N,B)-strong, u ∈ B∗ by
Lemma 3.1. So M ′\u has an N -minor, and hence the elements of the series
class G − u of M ′\u are N -contractible. Suppose that there is some c ∈ G
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that is in B − {x, y}. Then M ′/c is 3-connected by the dual of Lemma 2.2,
so c is an (N,B)-strong element, contradicting Lemma 3.1. We deduce that
|G| = 4 and that G ∩B = {x, y}. �

The following lemma applies to an (N,B)-strong element u for which
M ′\u is not only 3-connected up to series classes, but also 3-connected up
to series pairs.

Lemma 3.3. Suppose u ∈ B∗ − {a, b} is an (N,B)-strong element of M ′

such that M ′\u is 3-connected up to series pairs. Then at least one of M\a, u
or M\b, u is not N -stable.

Proof. Towards a contradiction, suppose that both M\a, u and M\b, u are
N -stable. Then, as M\a, b, u is connected, Lemma 2.24 implies that M\u
is not strongly P-stabilized by N .

Suppose that M\a, u is not 3-connected up to series pairs. Then,
as M\a, b, u is 3-connected up to series pairs, b is in a parallel pair of
co(M\a, u), which does not exist in M\a since M\a is 3-connected. Hence,
there is a triangle S ∪ b of M , where S is a series pair of M\a, u. Now S ∪ b
is 2-separating in M\a, u. Since M\a, u is N -stable, the S ∪ b component
in the 2-sum decomposition of M\a, u does not have a U2,4-minor. It fol-
lows that b is in the guts of a 2-separation (S, T ) where S is a series pair of
M\a, u. We deduce that either M\a, u is 3-connected up to series pairs, or
b is in the guts of some 2-separation (S, T ) of M\a, u where S is a series pair
of M\a, u. By symmetry, either M\b, u is 3-connected up to series pairs, or
a is in the guts of some 2-separation (S′, T ′) of M\b, u where S′, say, is a
series pair of M\b, u.

We claim that M\u is N -stable. Suppose the contrary. First consider
the case where M\a, u is 3-connected up to series pairs, but M\b, u is not.
Since M\u is not N -stable, it follows, by Lemma 2.22, that M\u has an
unstable triple, which contains a. But, by orthogonality, this contradicts
that a is in the guts of a 2-separation of M\b, u. Now consider the case
where both M\a, u and M\b, u are 3-connected up to series pairs. Then, by
Lemma 2.22, M\u has an unstable triple S ∪ a, and an unstable triple that
contains b. Since S ∪ a is 2-separating in M\u, and M\b, u is 3-connected
up to series pairs, it follows that b ∈ S. But then M\a, b, u has a coloop;
a contradiction. So we may assume that neither M\a, u nor M\b, u is 3-
connected up to series pairs. Now b is in the guts of a 2-separation (S, T )
where S is a series pair of M\a, u, and a is in the guts of a 2-separation
(S′, T ′) where S′ is a series pair of M\b, u. Since M\a, b, u is 3-connected
up to series pairs, the only 2-separations (A,B) of M\u with |B| ≥ |A| ≥ 3
have A ∈ {S′ ∪ a, S ∪ b}. In either case, since M\a, b, u has an N -minor, A
is the non-N -side, and it follows that M\u is N -stable, as claimed.

By Lemma 2.21, M\u is strongly P-stabilized by N ; a contradiction. �

Let M1 be a minor of M where, for some e ∈ E(M1), the matroid M1\e
has an N -minor and is 3-connected up to series classes, but M1 is not N -
stable. Recall that, by Lemma 2.22, the matroid M1 has an unstable triple
S ∪ e, where S is a series pair of M1\e.
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If M ′ has an (N,B)-strong element u ∈ B∗ − {a, b} where M ′\u is 3-
connected up to series pairs, then it follows from Lemma 3.3 that, up to
swapping a and b, the matroid M\a, u has an unstable triple containing b.

We now show that the intersection of an unstable triple with B is a non-
empty subset of {x, y}.

Lemma 3.4. Suppose u ∈ B∗ − {a, b} is an (N,B)-strong element of M ′

such that M ′\u is 3-connected up to series pairs. Then M ′\u has a series
pair S such that ∅ $ S ∩ B ⊆ {x, y}. Moreover, S ∪ b is an unstable triple
of M\a, u, up to swapping a and b.

Proof. By Lemma 3.3, either M\a, u or M\b, u is not N -stable. Without
loss of generality, we may assume that M\b, u is not N -stable. Then, by
Lemma 2.22, there is a pair S such that S∪a is an unstable triple in M\b, u.
Let S = {s1, s2}. Note that, since S is a series pair of M ′\u, both s1 and s2
are N -contractible in M ′. We also note that S ∩ B is non-empty because,
in M ′\u, the pair S is codependent and B∗ − {a, b, u} is a cobasis.

Towards a contradiction, suppose that s1 ∈ B − {x, y}. Then s1 is
not (N,B)-strong by Lemma 3.1, so si(M ′/s1) is not 3-connected. Hence
si(M ′/s2) is 3-connected by Lemma 2.10, so it follows from Lemma 3.1 that
either s2 ∈ {x, y} or s2 ∈ B∗ − {a, b}.

3.4.1. Up to an allowable pivot, we can assume that s2 ∈ {x, y}.

Subproof. Observe that since S is a series pair of M ′\u but M ′ is 3-
connected, S ∪ u is a triad in M ′. Suppose that s2 ∈ B∗ − {a, b}. Then
As1s2 6= 0 because {s1, s2, u} is a triad of M ′. If Axs2 = Ays2 = 0, then
a pivot on As1s2 is allowable, and s2 is an (N,B4{s1, s2})-strong element
with s2 ∈ (B4{s1, s2}) − {x, y}, which contradicts Lemma 3.1. Thus we
shall assume that Axs2 6= 0. Then a pivot on Axs2 is an allowable pivot, and
s2 takes the place of x as a member of the set {s2, y, a, b} that incriminates
(M,Axs2). �

By 3.4.1 we may assume that s2 = x. Since {a, s1, s2} is an unstable
triple of M\b, u, it follows that a ∈ clM ({s1, s2}) where {s1, s2} ⊆ B. Hence
Aja 6= 0 if and only if j ∈ {s1, s2}. But then Aya = 0, contradicting that
the bad submatrix has no zero entries. This contradiction arose from the
assumption that some member of S ∩ B was outside of {x, y}. Therefore
S ∩B ⊆ {x, y}. �

Lemma 3.5. Let u and v be distinct (N,B)-strong elements of M ′ outside
of {x, y} such that both M ′\u and M ′\v are 3-connected up to series pairs.
Then at least one of M\a, u or M\a, v is N -stable.

Proof. Suppose that both M\a, u and M\a, v are not N -stable. By
Lemma 2.22, there is a series pair Su of M ′\u such that Su∪b is an unstable
triple of M\a, u, and there is a series pair Sv of M ′\v such that Sv ∪ b is an
unstable triple of M\a, v.

First, suppose that Su ∩Sv = ∅. If u /∈ Sv, then Sv ⊆ E(M\a)− (Su ∪u),
so b ∈ clM\a(Sv) ⊆ clM\a(E(M\a)− (Su ∪ u)), implying b /∈ cl∗M\a(Su ∪ u).

But Su∪b is an unstable triple of M\a, u, so b ∈ cl∗M\a,u(Su) = cl∗M\a(Su∪u);

a contradiction. We deduce that u ∈ Sv and, by symmetry, v ∈ Su. Now, as
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Su ∪ u and Sv ∪ v are triads of M ′, the set Su ∪Sv is a 4-element cosegment
of M ′ that contains {u, v}. This contradicts that Su is a series pair of M ′\u.

Next, suppose that |Su∩Sv| = 1. Then, as Su∪b and Sv∪b are triangles of
M\a and M , it follows that Su∪Sv is a triangle of M ′, and so {u, v}∪Su∪Sv
is a 5-element fan of M ′ with rim ends u and v. But then co(M ′\v) is not
3-connected by Lemma 2.11; a contradiction. Therefore Su = Sv. But now
{u, v} ∪Su is a 4-element cosegment of M ′, contradicting that Su is a series
pair of M ′\u. We deduce that either M\a, u or M\a, v is N -stable. �

Lemma 3.6. If M ′ has a 4-element cosegment G such that G∩B = {x, y},
then M ′ has no (N,B)-strong elements outside of G.

Proof. Towards a contradiction, suppose that M ′ has an (N,B)-strong el-
ement v outside of G. By Lemma 3.1, v ∈ B∗. By Lemma 3.2, if v is in
a 4-element cosegment G′ of M ′, then G ∪ G′ is a cosegment consisting of
more than four elements; a contradiction. So M ′\v is 3-connected up to
series pairs. Hence M ′\v has a series pair S such that ∅ $ S ∩ B ⊆ {x, y},
by Lemma 3.4. Now, in M ′, the triad S ∪ v meets the cosegment G, so
r∗M ′(G ∪ S ∪ v) ≤ 3. It follows that |(G ∪ S ∪ v) ∩ B∗| = 3. Thus S ∪ v
intersects G in two elements, implying r∗(G∪S∪v) = 2; a contradiction. �

These results are enough to bound the number of (N,B)-strong elements
outside of {x, y}. The bound on the number of (N,B)-strong elements is a
key ingredient in many subsequent arguments.

Proposition 3.7. M ′ has at most two (N,B)-strong elements outside of
{x, y}.

Proof. Let u be an (N,B)-strong element of M ′ outside of {x, y}. By
Lemma 3.1, u ∈ B∗. Suppose that M ′\u has a series class of size at least
three. Then M ′ has a 4-element cosegment G such that {u, x, y} ⊆ G and
G ∩ B = {x, y}, by Lemma 3.2. Thus, by Lemma 3.6, M ′ has at most two
(N,B)-strong elements outside of {x, y}.

We may now assume that M ′\u is 3-connected up to series pairs for each
(N,B)-strong element u of M ′ outside of {x, y}. Suppose there exist distinct
(N,B)-strong elements u, v1, v2 ∈ B∗ such that M ′\u, M ′\v1, and M\v2 are
3-connected up to series pairs. By Lemma 3.3, we may assume without loss
of generality that M\b, u is not N -stable. Now, by Lemma 3.5, both M\b, v1
and M\b, v2 are N -stable. By two further applications of Lemma 3.3, both
M\a, v1 and M\a, v2 are not N -stable. But this contradicts Lemma 3.5. �

4. Confining sets

In this section, we work under the following setup. Let P be a partial field,
and let M and N be matroids, where N is a non-binary 3-connected strong
P-stabilizer for the class of P-representable matroids, and M is an excluded
minor for the class of P-representable matroids with a pair of elements {a, b}
such that M\a, b is 3-connected with an N -minor. Let M ′ = M\a, b.

We say that a subset G of E(M ′) is a confining set if G ∩ B1 = {x1, y1}
for some basis B1 of M ′, and either

(a) G is a 4-element cosegment, or
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(b) G is the union of two triads T and T ′ with |T ∩T ′| = 1, where G∩B∗1
has at least one (N,B1)-strong element,

where x1 and y1 are elements of B1 such that {x1, y1, a, b} incriminates
(M,A1) for some B1×B∗1 companion P-matrix A1 of M . In this case, we also
say G is a confining set relative to B1. Note that a confining set satisfying
(b) has corank 3 in M ′. Every confining set G relative to a basis B1 has the
property that G ∩B∗1 cospans G, since |G ∩B∗1 | = |G| − 2 = r∗M ′(G).

We first show that M ′ either has a confining set, or there is at most one
(N,B0)-strong element outside of {x, y} for some basis B0 of M such that
{x, y, a, b} incriminates (M,A) where A is a B0 × B∗0 companion P-matrix
of M with {x, y} ⊆ B0 and {a, b} ⊆ B∗0 . We then prove the main result of
this section: if M ′ has a confining set, then |E(M)| is bounded relative to
|E(N)|.

Proposition 4.1. Suppose M ′ does not have a confining set. Then there is
some basis B0 of M ′, and B0 ×B∗0 companion P-matrix A0 of M such that
{x0, y0, a, b} incriminates (M,A0), for some {x0, y0} ⊆ B0, and either

(i) M ′ has exactly one (N,B0)-strong element u outside of {x0, y0}, and
{u, x0, y0} is a triad of M ′; or

(ii) M ′ has no (N,B1)-strong elements outside of {x1, y1} for every
choice of basis B1 with a B1×B∗1 companion P-matrix A1 of M such
that {x1, y1, a, b} incriminates (M,A1), for some {x1, y1} ⊆ B1.

Proof. We first prove the following claim.

4.1.1. Let B1 be a basis of M ′, and let A1 be a B1×B∗1 companion P-matrix
of M such that {x1, y1, a, b} incriminates (M,A1), for some {x1, y1} ⊆ B1.
If u is an (N,B1)-strong element of M ′ outside of {x1, y1}, then M ′\u is
3-connected up to series pairs.

Subproof. By Lemma 3.1, u ∈ B∗1 . If u is in a cosegment G consisting of
at least four elements, then, by Lemma 3.2, G is a confining set of M ′; a
contradiction. So we may assume that M ′\u is 3-connected up to series
pairs for each (N,B1)-strong element u of M ′ outside of {x1, y1}. �

If, for every choice of basis B1, with corresponding incriminating set
{x1, y1, a, b}, the matroid M ′ has no (N,B1)-strong elements outside of
{x1, y1}, then clearly the proposition holds. So let B1 be a basis of M ′

such that u is an (N,B1)-strong element of M ′ outside of {x1, y1}.

4.1.2. Either the proposition holds, or there is a B2 × B∗2 companion P-
matrix A2 such that {x2, y2, a, b} incriminates (M,A2) for some {x2, y2} ⊆
B2, and M ′ has exactly two (N,B2)-strong elements outside of {x2, y2}.

Subproof. By Proposition 3.7, M ′ has at most two (N,B1)-strong elements
outside of {x1, y1}. Thus if M ′ has two (N,B1)-strong elements outside of
{x1, y1}, then 4.1.2 holds with B2 = B1. So suppose that u is the only
(N,B1)-strong element of M ′ outside of {x1, y1}. Then M ′\u is 3-connected
up to series pairs, by 4.1.1. By Lemma 3.3 we may assume, up to swapping a
and b, that M\a, u is not N -stable, Su is a series pair of M ′\u, and Su∪ b is
an unstable triple of M\a, u. Since M ′ is 3-connected, Su∪u is a triad of M ′.
Thus, if Su = {x1, y1}, then {u, x1, y1} is a triad, so the proposition holds
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in this case. Assume that Su 6= {x1, y1}. Then it follows from Lemma 3.4
that, without loss of generality, Su = {x1, s} for some s ∈ B∗1 − {a, b, u}.
Now b is spanned by Su in M , and Ayb 6= 0 because the bad submatrix
has no zero entries, so it follows that Ays 6= 0. Hence a pivot on Ays is
allowable. So {x1, s, a, b} incriminates (M,Ays1 ). Let B2 = B14{y1, s}. If
y1 is not (N,B2)-strong, then the proposition holds, since {u, x1, s} is a
triad. Otherwise, u and y1 are distinct (N,B2)-strong elements outside of
{x1, s}, satisfying 4.1.2. �

By 4.1.2, we may now assume that B2 is a basis for M ′, the matrix A2

is a B2 × B∗2 companion P-matrix where {x2, y2, a, b} incriminates (M,A2)
for some {x2, y2} ⊆ B2, and M ′ has exactly two (N,B2)-strong elements, u
and v, in B∗2 . By 4.1.1, M ′\u and M ′\v are 3-connected up to series pairs.
We may assume, up to swapping a and b, that M\a, u and M\b, v are not
N -stable, but that M\b, u and M\a, v are N -stable, by Lemmas 3.3 and 3.5.
Let Su be a series pair of M ′\u, and let Sv be a series pair of M ′\v, where
Su ∪ b is an unstable triple of M\a, u, and Sv ∪ a is an unstable triple of
M\b, v. Next, we show that Su ∪ u = Sv ∪ v. In fact, we prove a more
general claim that we can apply even after an allowable pivot.

4.1.3. Let B3 be a basis of M ′ such that {x3, y3, a, b} incriminates (M,A3),
for some B3×B∗3 companion P-matrix A3 of M and {x3, y3} ⊆ B3. Suppose
M ′ has exactly two (N,B3)-strong elements u, v ∈ B∗3 , where M\a, u and
M\b, v are not N -stable. Let Su and Sv be pairs such that Su ∪ b and Sv ∪ a
are unstable triples of M\a, u and M\b, v, respectively. Then Su∪u = Sv∪v.

Subproof. Suppose that the triads Su∪u and Sv∪v of M ′ are disjoint. Then,
by Lemma 3.4, we may assume that Su = {s, x3} and Sv = {t, y3} for some
s, t ∈ B∗3 − {a, b, u, v}. Then Ay3s = 0 because Sv ∪ v is a triad of M ′. But
then s is spanned by B3 − y3. Since Su ∪ b is a triangle, it follows that b
is spanned by B3 − y3. Then Ay3b = 0; a contradiction because the bad
submatrix has no zero entries.

Let G = Su ∪ Sv ∪ {u, v}. Suppose that |(Su ∪ u) ∩ (Sv ∪ v)| = 1. Then
G has corank 3 in M ′, so |G ∩ B∗3 | ≤ 3. It now follows from Lemma 3.4
that G ∩ B3 = {x3, y3}, so G is a confining set of M ′; a contradiction. If
|(Su ∪ u) ∩ (Sv ∪ v)| = 2, then G is a 4-element corank-2 subset of M ′, and
it follows from Lemma 3.2 that G is a confining set; a contradiction. So
Su ∪ u = Sv ∪ v, completing the proof of 4.1.3. �

By 4.1.3 we have that Su ∪ u = Sv ∪ v. Then, by Lemma 3.4, we may
assume that Su = {v, x2} and Sv = {u, x2}. Since b is spanned by Su =
{v, x2}, and Ay2b 6= 0 because the bad submatrix has no zero entries, it
follows that Ay2v 6= 0. Hence a pivot on Ay2v is allowable. Now {x0, y0, a, b}
incriminates (M,Ay2v), where x0 = x2 and y0 = v. Let B0 = B24{y2, v}.
Then u is an (N,B0)-strong element outside of {x0, y0}, and {u, x0, y0} is
a triad. If y2 is not (N,B0)-strong, then the proposition holds. So suppose
that y2 is an (N,B0)-strong element of M ′. By 4.1.1, M ′\y2 is 3-connected
up to series pairs. By Lemma 3.4, M ′\y2 has a series pair Sy2 , and Sy2 ∪ y2
is a triad in M ′. By 4.1.3, Su ∪ u = Sy2 ∪ y2. But y2 /∈ Su ∪ u, so this is
contradictory. �
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Later, we refer to a basis B0 satisfying Proposition 4.1 as a strengthened
basis.

In the remainder of this section we show that if M ′ = M\a, b has a
confining set, then |E(M)| ≤ |E(N)| + 9. We begin with the following
constraint on the strong elements of M ′.

Lemma 4.2. If M ′ has a confining set G relative to a basis B, then M ′ has
no (N,B)-strong elements outside of G.

Proof. Suppose M ′ has a confining set G relative to a basis B. Let A
be a B × B∗ companion P-matrix of M such that {x, y, a, b} incriminates
(M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗. By the definition of a confining
set, G ∩ B = {x, y}. If G is a 4-element cosegment, then it follows from
Lemma 3.6 that M ′ has no (N,B)-strong elements outside of G. So assume
that G = {u, v, w, x, y} has corank 3 in M ′. By the definition of a confining
set, {u, v, w} contains an (N,B)-strong element. Suppose t is an (N,B)-
strong element outside of G. Then t ∈ B∗ by Lemma 3.1. Now M ′\t is 3-
connected up to series classes; we next show that M ′\t is in fact 3-connected
up to series pairs.

Suppose that M ′ has a cosegment G′ containing t with |G′| ≥ 4. Then
G′ = {s, t, x, y} for some s ∈ B∗ by Lemma 3.2. If s /∈ {u, v, w}, then,
as there is an (N,B)-strong element in {u, v, w}, there is some (N,B)-
strong element of M ′ outside of the 4-element cosegment G′, contradict-
ing Lemma 3.6. Thus we may assume, without loss of generality, that
G′ = {u, t, x, y}. Then G∪G′ has corank 3; a contradiction, because G∪G′
has a four-element subset {t, u, v, w} contained in B∗. Therefore M ′\t is
3-connected up to series pairs.

By Lemma 3.4, M ′\t has a series pair St that meets {x, y}. Then T ∗ =
St ∪ t is a triad of M ′; without loss of generality, we may assume that
St = {x, z} for some z ∈ E(M ′)− {x, t}. If z ∈ G, then G ∪ T ∗ has corank
at most 3 but contains a 4-element subset {t, u, v, w} of B∗; a contradiction.
Thus z /∈ G, so z ∈ B∗ by Lemma 3.4. Then G ∪ T ∗ has corank four but
contains a 5-element subset {t, u, v, w, z} of B∗; a contradiction. �

In each of the following lemmas, we work under the hypothesis that M ′

has a basis B, and a confining set relative to B. For notational convenience,
we let A denote a B × B∗ companion P-matrix of M such that {x, y, a, b}
incriminates (M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗.

The following results consider allowable pivots when M ′ has a confining
set. The routine proof of the first lemma is omitted. The second is a straight-
forward consequence of the first, using the fact that {x, y} ⊆ cl∗M ′(G ∩B∗).

Lemma 4.3. Let G be a confining set relative to a basis B, and let p ∈ B.
Then Apq = 0 for all q ∈ (B∗ − {a, b})−G if and only if p ∈ cl∗M ′(G ∩B∗).

Lemma 4.4. Let G be a confining set relative to a basis B. Then Axq = 0
and Ayq = 0 for all q ∈ (B∗ − {a, b})−G.

Lemma 4.5. Let G be a confining set relative to a basis B. If Apq 6= 0
for some p ∈ B − {x, y} and q ∈ (B∗ − {a, b}) − G, then a pivot on Apq is
allowable. Moreover, G is a confining set relative to the basis B4{p, q}.
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Proof. Suppose that Apq 6= 0 for some p ∈ B − {x, y} and q ∈ (B∗ −
{a, b}) − G. Then the pivot on Apq is allowable by Lemma 4.4. Since
G ∩ B = G ∩ (B4{p, q}) and G ∩ B∗ = G ∩ (B∗4{p, q}), G is a confining
set relative to B4{p, q}. �

Due to the existence of these allowable pivots when M ′ has a confining
set, the following restrictions are imposed on elements of M ′.

Lemma 4.6. Let G be a confining set relative to a basis B. For every
z ∈ E(M ′),

(i) if z is N -contractible and si(M ′/z) is 3-connected, then z ∈ G; and
(ii) if z is N -deletable and co(M ′\z) is 3-connected, then z ∈ cl∗M ′(G).

Proof. Suppose there is an element z ∈ E(M ′) − G that is N -contractible,
and si(M ′/z) is 3-connected. Since z /∈ G it follows from Lemma 4.2 that
z ∈ B∗ − G. Then Axz = Ayz = 0 by Lemma 4.4, so there is some p ∈
B−{x, y} such that Apz 6= 0 because M ′ has no loops. Let B′ = B4{p, z}.
Now, a pivot on Apz is allowable by Lemma 4.5. So M ′ has an (N,B′)-strong
element z in B′ − {x, y}; a contradiction of Lemma 3.1. This proves (i).

Now suppose there is an element z ∈ E(M ′)− cl∗(G) that is N -deletable,
and co(M ′\z) is 3-connected. Then z /∈ G, so z ∈ B−{x, y} by Lemma 4.2.
It follows from Lemma 4.3 that there is some q ∈ (B∗ − {a, b}) − G such
that Azq 6= 0. Let B′ = B4{z, q}. Now, a pivot on Azq is allowable by
Lemma 4.5, and G is a confining set relative to B′. But z is an (N,B′)-
strong element outside of G; a contradiction of Lemma 4.2. This proves
(ii). �

When C and D are disjoint subsets of E(M ′) such that M ′/C\D ∼= N , we
say (C,D) is an N -labelling of M ′. For the remainder of the section, suppose
M ′ has a confining set G relative to B, and let (C,D) be an N -labelling of
M ′. Recall that if G has corank three, then there is an (N,B)-strong element
u ∈ G∩B∗. In this case, we choose an N -labelling (C,D) such that u ∈ D.
Having fixed (C,D), our goal is to bound the size of C ∪D, and thus bound
|E(M)| − |E(N)|.

We write r∗(X) instead of r∗M ′(X), and cl∗(X) instead of cl∗M ′(X), for the
remainder of the section.

Lemma 4.7. Suppose that the confining set G has corank 3 in M ′. If
z′, z′′ ∈ C∪D are in cl∗(G)−G, then for every partition (X,Y ) of G∪{z′, z′′},
either r∗(X) ≥ 3 or r∗(Y ) ≥ 3.

Proof. Suppose that (X,Y ) is a partition of G ∪ {z′, z′′} such that
max{r∗(X), r∗(Y )} ≤ 2. We claim that either z′ or z′′ is an element that
contradicts Lemma 4.6(i). Since |G ∪ {z′, z′′}| = 7, we may assume that
|X| ≥ 4. Then X is a cosegment with at least four elements that contains
at least one element z ∈ {z′, z′′}, so si(M/z) is 3-connected by the dual of
Lemma 2.2. Hence z is not N -contractible by Lemma 4.6(i), so z ∈ D.

First suppose that z′, z′′ ∈ X. Then z′, z′′ ∈ D, but z′ is in a series
class X ∪ z′ of M ′\z′′, so z′ is N -contractible in M ′\z′′ and hence in M ′; a
contradiction of Lemma 4.6(i).

We may now assume that z′ ∈ X and z′′ ∈ Y , so X and cl∗(Y ) are both
4-element cosegments. Hence both si(M ′/z′) and si(M ′/z′′) are 3-connected
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by the dual of Lemma 2.2. By the definition of a confining set, there is
some element u ∈ G − {x, y} that is (N,B)-strong in M ′, and u belongs
to either X or Y . Hence, in M ′\u, either z′ or z′′ is in a non-trivial series
class, so at least one of z′ and z′′ is N -contractible in M ′; a contradiction of
Lemma 4.6(i). �

Lemma 4.8. There are at most two elements of D that belong to cl∗(G)−G.

Proof. Suppose that there are distinct elements z, z′, z′′ ∈ (cl∗(G)−G)∩D.
Then z, z′, z′′ ∈ B − {x, y}, since G ∩B∗ is a basis for cl∗(G).

If G is a 4-element cosegment of M ′, then cl∗(G) is a cosegment containing
z and z′. Since z′ is N -deletable, z is in a non-trivial series class of M ′\z′,
and |E(N)| ≥ 4, the element z is N -contractible in M ′. By the dual of
Lemma 2.2, M ′/z is 3-connected, so z′ is an (N,B)-strong element of B −
{x, y}; a contradiction of Lemma 3.1.

Now we may assume that cl∗(G) has corank 3 in M ′. We first show
that z is N -contractible in M ′. If {z, z′, z′′} is a triad of M ′, then z is
N -contractible since it is in a series pair of M ′\z′, and z′ is N -deletable
in M ′. So suppose {z, z′, z′′} is coindependent in M ′. Then {z, z′, z′′} is a
cobasis for cl∗(G). As M ′\z′, z′′ has an N -minor, and G ∪ z is contained in
a series class in this matroid, it follows that M ′\{z′, z′′}/z has an N -minor.
In particular, z is N -contractible in M ′.

Now z is an N -contractible element of M ′, so it follows from Lemma 4.6(i)
that si(M ′/z) is not 3-connected. Hence there is a vertical 3-separation
(X, z, Y ) of M ′ for some X and Y . But then either X or Y cospans cl∗(G)
by Lemma 4.7. Assume X cospans cl∗(G). Then z ∈ cl∗(X), and by the
definition of a vertical 3-separation, z ∈ cl(Y ); a contradiction to orthogo-
nality. �

Lemma 4.9. If c ∈ E(M ′) is N -flexible, then c ∈ cl∗(G).

Proof. Suppose that c is N -flexible. By Bixby’s Lemma, either si(M ′/c)
or co(M ′\c) is 3-connected. Lemma 4.6 then implies that c ∈ cl∗(G), as
required. �

Lemma 4.10. If z ∈ E(M ′) is N -deletable, then z ∈ cl∗(G).

Proof. Let z ∈ E(M ′)− cl∗(G), and suppose that z is N -deletable. It then
follows from Lemma 4.6(ii) that co(M ′\z) is not 3-connected. Thus, by the
dual of Lemma 2.16, there is a cyclic 3-separation (X, z, Y ) of M ′ such that
at most one element of X is not N -flexible. We claim that X ⊆ cl∗(G). The
claim follows immediately from Lemma 4.9 unless s ∈ X is the single element
of X that is not N -flexible. By the dual of Lemma 2.16, the element s is
N -deletable and co(M ′\s) is 3-connected, so, by Lemma 4.6(ii), s ∈ cl∗(G).
Thus X ⊆ cl∗(G), as claimed.

Since (X, z, Y ) is a cyclic 3-separation, r∗(X) ≥ 3 ≥ r∗(G). Thus
cl∗(X) = cl∗(G). But z ∈ cl∗(X) because (X, z, Y ) is a cyclic 3-separation
in M ′, so z ∈ cl∗(G); a contradiction. �

Lemma 4.11. Suppose that the confining set G is a cosegment. Then
|(cl∗(G) − G) ∩ (C ∪ D)| ≤ 1. In particular, no elements of cl∗(G) − G
are N -contractible.
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Proof. As cl∗(G) has corank two, M ′/p is 3-connected for any p ∈ cl∗(G),
by Lemma 2.2. Thus, for any p ∈ cl∗(G) −G, Lemma 4.6(i) implies that p
is not N -contractible. Let p and q be distinct elements in C ∪D such that
p, q ∈ cl∗(G) − G. Then p, q ∈ D, but p is in a series class in M ′\q, so p is
N -contractible; a contradiction. �

Lemma 4.12. Suppose that the confining set G has corank three, and there
is an element p ∈ cl∗(G)−G that is N -contractible. Then either

(i) cl∗(G)−G = {p}, or
(ii) |E(M)| ≤ |E(N)|+ 9.

Proof. Suppose that (i) does not hold. Then there are distinct elements p
and q in cl∗(G)−G, where p is N -contractible. By Lemma 4.6(i), si(M ′/p)
is not 3-connected. Let (U, p, V ) be a vertical 3-separation of M ′ such that
|U ∩ E(N)| ≤ 1 and V ∪ p is closed. If U (or V ) cospans cl∗(G), then U
(or V , respectively) also cospans p, as p ∈ cl∗(G). But this contradicts that
p ∈ cl(U) ∩ cl(V ). Thus r∗(cl∗(G) ∩ U) ≤ 2 and r∗(cl∗(G) ∩ V ) ≤ 2. Recall
that G is the union of triads T ∗1 and T ∗2 . It follows that cl∗(G) − p is the
union of two cosegments G1 = cl∗(T ∗1 ) and G2 = cl∗(T ∗2 ). Without loss of
generality, we assume that q ∈ G1, so |G1| ≥ 4. By the dual of Lemma 2.2,
M ′/q is 3-connected, so q is not N -contractible, by Lemma 4.6(i).

If |G2| ≥ 4, then, by Lemma 3.2, |G2| = 4 and G2 ∩ B = {x, y}. So G2

is also a confining set. But then q /∈ cl∗(G2), contradicting Lemma 4.10. So
we may assume that |G2| = 3.

If G1 − q contains an element that is N -deletable, then it follows that q
is N -contractible; a contradiction. So no element in G1 − q is N -deletable;
in particular, the (N,B)-strong element u ∈ G ∩ B∗ is not in G1, and no
elements in G1 are N -flexible. Moreover, if q ∈ U , then q is N -contractible
by Lemma 2.16; a contradiction. Letting G1∩G2 = {v}, we may now assume
that G1 − v ⊆ V , and G2 − v ⊆ U .

By Lemma 2.16, each y ∈ U is either N -flexible, or y is N -contractible
and si(M ′/y) is 3-connected. In the former case, y ∈ cl∗(G) by Lemma 4.9;
in the latter, y ∈ G by Lemma 4.6(i). So U ⊆ cl∗(G). Since G1 − v ⊆ V ,
and |U | ≥ 3, it now follows that U = G2, where G2 is the triad containing
{u, v}. Let G2 = {u, v, w}. Note that v is not N -deletable, since v ∈ G1− q.
It follows, by Lemma 2.15, that p ∈ cl(U − v), so {u,w, p} is a triangle of
M ′. This triangle is coindependent, since M ′ is 3-connected, so it cospans
cl∗(G). Moreover, the only N -flexible elements of M ′ are {u,w, p}.

We now bound the elements of C ∪D outside of cl∗(G). By Lemma 4.10,
every element of C ∪ D that is not in cl∗(G) is in C. Let z ∈ C − cl∗(G).
Then, by Lemma 4.6(i), si(M ′/z) is not 3-connected, so there is a vertical
3-separation (X, z, Y ) such that |X ∩E(N)| ≤ 1 and Y ∪ z is closed. Thus,
by Lemma 2.16, at most one element of X is not N -flexible, and if there is
such an element s, then s is N -contractible and si(M ′/s) is 3-connected. If
X = {u,w, p}, then z ∈ cl(X)−X, but as {u,w, p} cospans G, we then have
|cl∗(X)−X| > 1, which contradicts Lemma 2.6. So X contains an element
s, where s is N -contractible and si(M ′/s) is 3-connected, so s ∈ G by
Lemma 4.6(i). Note that q is in the coclosure of the coindependent triangle
{u,w, p}, so {u,w, p, q} is 3-separating. By uncrossing {u,w, p, q} and X,
we observe that the set P = {u,w, p, q, s} is also 3-separating. Moreover,
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since z ∈ cl(X), we have z ∈ cl(P ). Let Q = E(M ′) − (P ∪ z). We may
assume that |Q| ≥ 3, otherwise the lemma holds trivially. So P ∪ z is
exactly 3-separating. As v ∈ cl∗(P ∪ z), we have v /∈ cl(Q− v), so r(Q) ≥ 3.
Thus, (P, z,Q) is a vertical 3-separation, where |P ∩ E(N)| ≤ 1. Since
q ∈ cl∗(P − q), we have q /∈ cl(Q). By Lemma 2.15(i), it follows that q is
N -contractible; a contradiction.

We deduce that C−cl∗(G) = ∅. So C∪D ⊆ cl∗(G). As |(C∪D)∩(cl∗(G)−
G)| = 2, we have |C∪D| ≤ 7. Thus, |E(M)|−|E(N)| = |C∪D|+|{a, b}| ≤ 9,
as required. �

By Lemma 4.10, D−cl∗(G) = ∅. We now focus on bounding |C−cl∗(G)|.

Lemma 4.13. Suppose that there exist distinct p1, p2 ∈ E(M ′)−cl∗(G) such
that M ′/pi has an N -minor for i ∈ {1, 2}. Let (X1, p1, Y1) and (X2, p2, Y2)
be vertical 3-separations of M ′. Then |X1 ∩X2| ≤ 1 or |Y1 ∩ Y2| ≤ 1.

Proof. Towards a contradiction, suppose that |X1∩X2| ≥ 2 and |Y1∩Y2| ≥ 2.
By uncrossing, the sets X1 ∪X2, X1 ∪X2 ∪ p1, X1 ∪X2 ∪ p2, and X1 ∪X2 ∪
{p1, p2} are all 3-separating. Since |Y1∩Y2| ≥ 2, the setsX1∪X2, X1∪X2∪p1,
X1 ∪X2 ∪ p2, and X1 ∪X2 ∪ {p1, p2} are sides of exact 3-separations of M ′

and p1, p2 are guts elements. In particular, (X1 ∪X2 ∪ p2, p1, Y1 ∩ Y2) is a
vertical 3-separation of M ′ unless r(Y1 ∩ Y2) ≤ 2. But if r(Y1 ∩ Y2) ≤ 2,
then (Y1 ∩ Y2) ∪ {p1, p2} is a segment of M ′ with at least four elements, so
p1 belongs to a non-trivial parallel class of M ′/p2. Then p1 is N -deletable
in M ′/p2 and hence in M ′, so p1 ∈ cl∗(G) by Lemma 4.9; a contradiction.
Thus (X1 ∪X2 ∪ p2, p1, Y1 ∩ Y2) is a vertical 3-separation of M ′, and either
|(X1 ∪X2 ∪ p2) ∩ E(N)| ≤ 1 or |(Y1 ∩ Y2) ∩ E(N)| ≤ 1.

If |(X1 ∪X2 ∪ p2) ∩ E(N)| ≤ 1, then there is an element p2 in the non-
N -side of (X1 ∪X2 ∪ p2, p1, Y1 ∩ Y2). Since p2 ∈ cl(Y1 ∩ Y2), it follows from
Lemma 2.15(ii) that p2 is N -deletable. Hence p2 ∈ cl∗(G) by Lemma 4.10;
a contradiction. So |(Y1 ∩Y2)∩E(N)| ≤ 1. But (X1 ∪X2, p1, (Y1 ∩Y2)∪ p2)
is also a vertical 3-separation of M ′. Moreover, as |E(N)| ≥ 4, we have
|(X1 ∪ X2 ∪ p2) ∩ E(N)| ≥ 3, so |(X1 ∪ X2) ∩ E(N)| ≥ 2 and hence, by
Lemma 2.14, |(Y1 ∩ Y2) ∪ p2| ≤ 1. Again, it follows that p2 ∈ cl∗(G); a
contradiction. �

Lemma 4.14. Suppose cl∗(G) has at most six N -contractible elements.
Then |C − cl∗(G)| ≤ 2.

Proof. Suppose that |C − cl∗(G)| ≥ 3. Let p1, p2, p3 be distinct elements in
C − cl∗(G). It follows from Lemma 4.6(i) that si(M ′/pi) is not 3-connected,
so there is a vertical 3-separation (Xi, pi, Yi) of M ′, for each i ∈ {1, 2, 3},
where |Xi ∩ E(N)| ≤ 1 and Yi ∪ pi is closed. Then, by Lemma 2.16, each
element x ∈ Xi is either N -flexible, or x is N -contractible and si(M ′/x) is
3-connected. By Lemma 4.9, in the former case, and Lemma 4.6(i), in the
latter, Xi ⊆ cl∗(G). Note that |Xi| ≥ 3, for each i, and if |Xi| = 3, then Xi

is a triad.
Let H be the set of N -contractible elements of cl∗(G). Since, for i ∈

{1, 2, 3}, each element in Xi is N -contractible, Xi ⊆ H, where |H| ≤ 6.
We claim that |Xi ∩ Xj | ≥ 2 for some distinct i, j ∈ {1, 2, 3}. If, for some
{i, j, k} = {1, 2, 3}, the sets Xi and Xj are disjoint, then Xi ∪Xj = H, so
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Xk intersects Xi or Xj in two elements, as claimed. Similarly, if |Xi| ≥ 4,
then either |Xi∩Xj | ≥ 2, or Xi∪Xj = H, in which case Xk intersects Xi or
Xj in two elements. So we may assume that |Xi| = 3 for each i ∈ {1, 2, 3},
and the pairwise intersection between any two of the three sets has size one.
Let X2 = {x1, x2, x3} where X1 ∩ X2 = {x1} and X2 ∩ X3 = {x3}. Now
X2 ∪ p2 contains a circuit, since (X2, p2, Y2) is a vertical 3-separation. By
orthogonality, this circuit does not meet the triad X3, nor the triad X1, so
X2∪p2 contains a circuit of size at most two; a contradiction. This proves the
claim. Without loss of generality, we may now assume that |X1 ∩X2| ≥ 2.

If |E(M ′)−cl∗(G)| ≥ 4, then |Y1∩Y2| ≥ |E(M ′)−(cl∗(G)∪{p1, p2})| ≥ 2,
which contradicts Lemma 4.13. So |E(M ′) − cl∗(G)| ≤ 3, in which case
E(M ′) − cl∗(G) = {p1, p2, p3}. Now, as p1 /∈ cl∗(G), we have p1 ∈
cl({p2, p3}), by orthogonality. Since M ′ is 3-connected, {p1, p2, p3} is a
triangle. Then {p2, p3} is a parallel pair in M ′/p1, so the element p2 is
N -deletable. As si(M/p2) is not 3-connected, co(M\p2) is 3-connected by
Bixby’s Lemma. But p2 /∈ cl∗(G); contradicting Lemma 4.6(ii). We deduce
that |C − cl∗(G)| ≤ 2, thus completing the lemma. �

We handle one more special case.

Lemma 4.15. Suppose that the confining set G has corank three, cl∗(G)−
G = {q} for some q ∈ C ∪ D, and |C − cl∗(G)| = 2. Then |E(M)| ≤
|E(N)|+ 9.

Proof. Let p1 and p2 be distinct elements in C − cl∗(G). By Lemma 4.6(i),
si(M ′/pi) is not 3-connected, so there is a vertical 3-separation (Xi, pi, Yi) of
M ′ for i ∈ {1, 2}, where |Xi∩E(N)| ≤ 1 and Yi∪pi is closed. By Lemma 2.16,
each element x ∈ Xi is either N -flexible, or x is N -contractible and si(M ′/x)
is 3-connected. By Lemma 4.9, in the former case, and Lemma 4.6(i), in the
latter, Xi ⊆ cl∗(G). Note that |Xi| ≥ 3, for each i, and if |Xi| = 3, then Xi

is a triad. Recall also that G is the union of two triads T ∗1 and T ∗2 .
Suppose q together with one of the triads, T ∗1 say, forms a cosegment.

Then si(M/q) is 3-connected, by the dual of Lemma 2.2, so q is not N -
contractible, by Lemma 4.6(i). Now X1 ∪ X2 ⊆ G, so it follows that
{X1, X2} = {T ∗1 , T ∗2 }. But then p1 ∈ cl(T ∗1 ), up to swapping the labels
on p1 and p2, so, by orthogonality with T ∗2 , we deduce that {p1, s1, t1} is a
triangle, where T ∗1 − T ∗2 = {s1, t1}. Let T ∗1 ∩ T ∗2 = {v}. Now, as T ∗1 ∪ q is
a cosegment, {t1, v, q} is a triad that intersects the triangle {p1, s1, t1} in a
single element; a contradiction.

Now suppose q /∈ cl∗(T ∗1 )∪cl∗(T ∗2 ). We claim that |X1∩X2| ≥ 2. Suppose
not. Then |Xi| = 3, for some i ∈ {1, 2}, so we may assume X1, say, is a
triad. Either X1 ∈ {T ∗1 , T ∗2 }, or q ∈ X1 and X1 intersects T ∗1 and T ∗2 in one
element each. Let T ∗1 = {v, s1, t1} and T ∗2 = {v, s2, t2}.

If X1 = T ∗1 , then, as p1 ∈ cl(X1), by orthogonality with T ∗2 we have that
{p1, s1, t1} is a triangle. But as {s2, t2, q} cospans cl∗(G), the element t1
is in a cocircuit contained in {s2, t2, q, t1}, which contradicts orthogonality
with the triangle {p1, s1, t1}.

On the other hand, if X1 is a triad that meets both {s1, t1} and {s2, t2},
and q ∈ X1, then, p1 is in a circuit contained in X1 ∪ p1. But X1 ∪ p1
meets T ∗1 and T ∗2 in a single element each, so, by orthogonality, p1 is in
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a parallel pair; a contradiction. So |X1 ∩ X2| ≥ 2 as claimed. Note that
the lemma holds trivially if |E(M)| ≤ 11, since |E(N)| ≥ 4. So we may
assume that |E(M ′)| ≥ 10, in which case |Y1 ∩Y2| ≥ 2. But this contradicts
Lemma 4.13. �

Finally, we are in a position to prove the main result of this section.

Proposition 4.16. Suppose that M ′ has a confining set. Then |E(M)| ≤
|E(N)|+ 9.

Proof. First, suppose that M ′ has a confining set G that is a cosegment.
Then, by Lemma 4.11, cl∗(G) −G contains at most one element of C ∪D,
and cl∗(G) contains at most four N -contractible elements (those elements
in G). Therefore, by Lemma 4.14, |C − cl∗(G)| ≤ 2. As D ⊆ cl∗(G) by
Lemma 4.10, we have

|E(M)| − |E(N)| ≤ |cl∗(G) ∩ (C ∪D)|+ |C − cl∗(G)|+ |{a, b}|
≤ 5 + 2 + 2 = 9.

Now suppose that M ′ has a confining set G with corank three. Con-
sider first the case where |cl∗(G)−G| ≥ 2. If cl∗(G) − G contains an ele-
ment that is N -contractible, then, by Lemma 4.12, |E(M)| ≤ |E(N)| + 9,
as required. So we may assume that no elements in cl∗(G) − G are N -
contractible. Suppose there is an element q ∈ (cl∗(G) − G) ∩ D, and
let p be an element in cl∗(G) − G, with q 6= p. Recall that (C,D) was
chosen such that u ∈ D, and note that r∗M ′\u(cl∗(G) − u) = 2. So p is

in a series class in M ′\u\q, implying p is N -contractible; a contradiction.
Thus (cl∗(G) − G) ∩ D = ∅. Now, |C − cl∗(G)| ≤ 2 by Lemma 4.14, and
D − cl∗(G) = ∅ by Lemma 4.10. It follows that |cl∗(G) ∩ (C ∪D)| ≤ 5, and
hence |E(M)| − |E(N)| ≤ 5 + 2 + |{a, b}| = 9, as required.

Finally we consider the case where |cl∗(G)−G| ≤ 1. Since |cl∗(G)| ≤ 6,
Lemma 4.14 implies that |C − cl∗(G)| ≤ 2. If (cl∗(G) − G) ∩ (C ∪D) = ∅,
then |E(M)| − |E(N)| ≤ 5 + 2 + |{a, b}| = 9 as required. So suppose
that cl∗(G) − G = {q} for some q ∈ C ∪ D. We may also assume that
|C − cl∗(G)| = 2, otherwise the result holds trivially. Now, by Lemma 4.15,
|E(M)| ≤ |E(N)|+ 9, as required. �

5. Robust elements

Let M be a 3-connected matroid, let N be a 3-connected minor of M such
that |E(N)| ≥ 4, and let B be a basis of M . In this section, we consider
the structure of M that arises from elements that are (N,B)-robust but
not (N,B)-strong. Recall that a path of 3-separations of M is a partition
(P1, P2, . . . , Pn) of E(M) such that (P1 ∪ · · · ∪ Pi, Pi+1 ∪ · · · ∪ Pn) is a 3-
separation of M for each i ∈ {1, 2, . . . , n − 1}. The main result of this
section shows that the presence of an element that is (N,B)-robust but not
(N,B)-strong gives rise to a particular path of 3-separations.

Let (X, z, Y ) be a vertical 3-separation of M . We say that X is z-closed
if X = cl∗(X) and X = cl(X) − z. We use z-closure to ensure that the
(N,B)-strong elements of M are contained in the non-N -side of a vertical
3-separation of M . A set is fully closed if it is both closed and coclosed.
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Given a subset A of E(M), we use fclM (A) to denote the smallest fully
closed set that contains A. Thus, the set X is z-closed if fclM/z(X) = X.

Dually, given a cyclic 3-separation (X, z, Y ), we say X is z-coclosed if X
is z-closed in M∗.

Lemma 5.1. If z ∈ B and z is (N,B)-robust but not (N,B)-strong, then
there is some vertical 3-separation (X, z, Y ) of M such that X is z-closed
and |X ∩ E(N)| ≤ 1.

Proof. By Lemma 2.7, M has a vertical 3-separation (X, z, Y ), and we may
assume that |X∩E(N)| ≤ 1, by Lemma 2.14. The elements of fclM/z(X)−X
can be ordered (x1, . . . , xm) such that X∪{x1, . . . , xi} is 2-separating in M/z
for all i ∈ {1, . . . ,m}. Let Xi = X ∪ {x1, . . . , xi} and Yi = Y − {x1, . . . , xi}
for each i ∈ {1, 2, . . . ,m}. We also let (X0, Y0) = (X,Y ). Suppose that
|Xj ∩ E(N)| ≥ 2 for some j ∈ {1, 2, . . . ,m}. We shall assume that j is
the smallest index such that |Xj ∩ E(N)| ≥ 2. Then |Xj−1 ∩ E(N)| ≤
1, so |Yj−1 ∩ E(N)| ≥ 3 because |E(N)| ≥ 4. Hence |Yj ∩ E(N)| ≥ 2.
But then (Xj , Yj) is a 2-separation of M/z such that |Yj ∩ E(N)| ≥ 2
and |Xj ∩ E(N)| ≥ 2; a contradiction. Hence |Xi ∩ E(N)| ≤ 1 for all
i ∈ {1, . . . ,m}. Thus, for each i, the partition (Xi, Yi) is a 2-separation
in M/z such that Yi is the N -side. It follows that |Yi| ≥ 3 for all i. In
particular, (Xm, Ym) is a 2-separation of M/z such that Xm is fully closed.
Since M is 3-connected, z ∈ clM (Xm)∩clM (Ym). Finally, Ym is not a parallel
class of M/z because Xm is fully closed, so rM (Ym) ≥ 3. Thus (Xm, z, Ym)
is a z-closed vertical 3-separation of M , as desired. �

Suppose that F is a 4-element fan of M with ordering (f1, f2, f3, f4) where
{f1, f2, f3} is a triangle. We say that (f1, f2, f3, f4) is a type-I fan relative
to B if F ∩ B = {f1, f3}, and (f1, f2, f3, f4) is a type-II fan relative to B
if F ∩ B = {f1, f3, f4}. When there is no ambiguity, we also say, in these
cases, that F is a type-I or type-II fan relative to B.

We need the following, which is one of the main results of [3].

Lemma 5.2 ([3, Lemma 4.8]). Suppose that z ∈ B is an element that
is (N,B)-robust but not (N,B)-strong, and let (X, z, Y ) be a vertical 3-
separation of M such that |X ∩E(N)| ≤ 1. Then one of the following holds:

(i) there are distinct (N,B)-strong elements s1, s2 ∈ X; or
(ii) there are distinct (N,B)-strong elements s1 ∈ X and s2 ∈ cl∗(X)∩B;

or
(iii) there are distinct (N,B)-strong elements s1 ∈ X and s2, s3 ∈ cl(X)∩

B∗; or
(iv) M has a type-I or type-II fan relative to B contained in X ∪ z.

The next lemma is a consequence of Lemmas 2.15 and 5.2.

Lemma 5.3. Let z ∈ B be an element that is (N,B)-robust but not (N,B)-
strong, and let (X, z, Y ) be a vertical 3-separation of M such that X is
z-closed and |X ∩E(N)| ≤ 1. If there is at most one (N,B)-strong element
of M contained in X, then there is a type-I or type-II fan (α, β, γ, δ) relative
to B that is contained in X ∪ z where β, γ, δ are N -contractible, and α, β, γ
are N -deletable.
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Proof. Since X is z-closed, it follows from Lemma 5.2 that M has a type-I
or type-II fan (α, β, γ, δ) relative to B such that {α, β, γ, δ} ⊆ X ∪ z. Let
T ∗ be the triad {β, γ, δ}. Note that z /∈ T ∗, since z ∈ cl(Y ). Since T ∗ ⊆ X,
it follows from orthogonality that β, γ, δ /∈ clM (Y ). Hence β, γ, δ are N -
contractible by Lemma 2.15. It follows, since {α, β, γ} is a triangle of M
and |E(N)| ≥ 4, that α, β, γ are also N -deletable in M . �

We will also require the following lemma, which can be proved by making
routine modifications to [24, Lemma 5.4] or [3, Lemma 6.3].

Lemma 5.4. Let M be a 3-connected matroid and let (A,Z,B) a parti-
tion of E(M) with |A|, |B| ≥ 2. If, for all z ∈ Z, there is a path of 3-
separations (Az, z, Bz) such that A ⊆ Az and B ⊆ Bz, then there is an
ordering (z1, . . . , zn) of the elements of Z such that (A, z1, . . . , zn, B) is a
path of 3-separations of M .

For the remainder of this section, we work under the following assump-
tions. Let P be a partial field, let N be a non-binary 3-connected strong
P-stabilizer for the class of P-representable matroids, and let M be an ex-
cluded minor for the class of P-representable matroids. Suppose that M has
a pair of elements {a, b} such that M\a, b is 3-connected with an N -minor,
and let M ′ = M\a, b. Let A be a B × B∗ companion P-matrix of M such
that {x, y, a, b} incriminates (M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗. We
assume that M ′ has no confining set. We also assume that B is chosen such
that either there is one (N,B)-strong element u of M ′ outside of {x, y}, and
{u, x, y} is a triad; or there are no (N,B)-strong elements outside of {x, y},
and for any B1×B∗1 companion P-matrix A1 where {x1, y1, a, b} incriminates
(M,A1), with {x1, y1} ⊆ B1 and {a, b} ⊆ B∗1 , the matroid M\a, b has no
(N,B1)-strong elements outside of {x1, y1}. Note that such a B exists by
Proposition 4.1. Recall that we say that such a basis B is strengthened.

Let S ⊆ E(M ′) be a set consisting of {x, y} and all (N,B)-strong elements
of M ′. Then either |S| = 2 or S is a triad. In particular, observe that
S ⊆ cl∗M ′({x, y}).

For the remainder of the section, all ranks, coranks, closure operators,
and coclosure operators are with respect to M ′.

If z is an element that is (N,B)-robust but not (N,B)-strong in M ′,
then there is either a vertical or a cyclic 3-separation (X, z, Y ) of M ′. We
now prove that if the non-N -side of this vertical 3-separation (or cyclic 3-
separation) is z-closed (or z-coclosed, respectively), then it contains S. We
first handle the case where z ∈ B − {x, y}.

Lemma 5.5. Let z ∈ B−{x, y} be an element that is (N,B)-robust but not
(N,B)-strong in M ′, and let (X, z, Y ) be a vertical 3-separation of M ′ such
that X is z-closed and |X ∩ E(N)| ≤ 1. Then S ⊆ X.

Proof. Suppose that there are at least two distinct (N,B)-strong elements
in X. By definition, the (N,B)-strong elements of M contained in X belong
to S. If |S| = 2, then it follows immediately that S ⊆ X. If |S| = 3, then S
is a triad, so S ⊆ X because X is z-closed.

We may therefore assume that there is at most one (N,B)-strong element
of M ′ contained in X. Then it follows from Lemma 5.3 that there is a type-I
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or type-II fan (α, β, γ, δ) relative to B contained in X ∪ z where β, γ, δ are
N -contractible and α, β, γ are N -deletable. Let F = {α, β, γ, δ}.

5.5.1. {x, y} ∩ {α, γ} 6= ∅.

Subproof. Assume that {x, y}∩{α, γ} = ∅. Suppose β is an (N,B)-strong el-
ement ofM ′. Then, since β /∈ B, it follows that S = {β, x, y} is a triad ofM ′.
Since {α, β, γ} is a triangle that meets {β, x, y}, it follows from orthogonal-
ity that x or y is in {α, γ}; a contradiction because {x, y}∩{α, γ} = ∅. Thus
β is not an (N,B)-strong element of M ′. Since β is N -flexible, co(M ′\β) is
not 3-connected. Thus, by Bixby’s Lemma, si(M ′/β) is 3-connected. Since
{α, β, γ} is a triangle of M ′, the cobasis element β is spanned by the basis
elements α and γ, so Aiβ 6= 0 if and only if i ∈ {α, γ}. In particular, since
{x, y} ∩ {α, γ} = ∅, this means that Aαβ 6= 0 and Axβ = Ayβ = 0. Thus
a pivot on Aαβ is an allowable pivot. But then β is an (N,B4{α, β})-
strong element outside of {x, y} such that β ∈ B4{α, β}; a contradiction of
Lemma 3.1. �

Now α or γ is a member of {x, y}. Suppose δ ∈ B, in which case (α, β, γ, δ)
is a type-II fan. Since δ is N -contractible and si(M/δ) is 3-connected by
Lemma 2.11, it follows from Lemma 3.1 that δ ∈ {x, y}. Hence {x, y} ⊆
F − z, and S ⊆ cl∗(F − z) ⊆ cl∗(X) = X as required. Thus we may assume
that δ ∈ B∗, in which case F is a type-I fan.

We first handle the case when α ∈ {x, y}.

5.5.2. If α ∈ {x, y}, then S ⊆ X.

Subproof. Assume that α = x. If β is an (N,B)-strong element of M ′, then
{β, x, y} is a triad of M ′, so S ⊆ cl∗({β, x}) ⊆ cl∗(F − z) ⊆ X, as required.
So suppose that β is not an (N,B)-strong element of M ′. Consider the
entry Aαβ. Since {α, β, γ} is a triangle of M ′ it follows that Aαβ 6= 0, so
a pivot on Aαβ is allowable. Then B′ = B4{α, β} is a basis of M ′, the

set {β, y, a, b} incriminates (M,Aαβ), and α is an (N,B′)-strong element
outside of {β, y}. Since B is strengthened, there is some element u ∈ B∗
such that u is (N,B)-strong and {u, x, y} is a triad. Since β and δ are not
(N,B)-strong, it follows that u ∈ E(M ′) − F . But then, by orthogonality
between the triad {u, α, y} and the triangle {α, β, γ}, we have y ∈ {β, γ},
so y = γ. Therefore S ⊆ cl∗({x, y}) ⊆ cl∗(F − z) ⊆ X. �

We may now assume that α /∈ {x, y}, so γ ∈ {x, y}. Suppose that γ = x.
If β is (N,B)-strong, then {β, x, y} is a triad, and {β, δ, x, y} is a 4-element
cosegment, contradicting that M ′ has no confining set. We deduce that β
is not (N,B)-strong.

Suppose that co(M ′\x) is 3-connected. Since {α, β, x} is a triangle of
M ′, we have Axβ 6= 0, so a pivot on Axβ is allowable. Then B′ = B4{x, β}
is a basis such that x is an (N,B)-strong element outside of {β, y}, where
{β, y, a, b} incriminates (M,Axβ). Since B is strengthened, there is some
(N,B)-strong element u ∈ B∗ such that {u, x, y} is a triad. Since β is
not (N,B)-strong, u is not in the triangle {α, β, x}. It then follows from
orthogonality that α = y; a contradiction. So co(M ′\x) is not 3-connected,
and thus si(M ′/x) is 3-connected by Bixby’s Lemma.
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Since β is not (N,B)-strong, there is a cyclic 3-separation (P, β,Q) of M ′.
By orthogonality, we may assume that x ∈ P and α ∈ Q. Consider (P −
x, x,Q∪β). Observe that Q∪β and Q∪{β, x} are exactly 3-separating, since
x ∈ cl(Q∪β). But (P−x, x,Q∪β) is not a vertical 3-separation of M ′, since
si(M ′/x) is 3-connected. Thus r(P − x) ≤ 2, so P contains a triangle. By
orthogonality, P is a triangle and P = {x, δ, µ} for some µ ∈ E(M ′). Thus
M ′ has a 5-element fan with ordering (α, β, x, δ, µ). Moreover, µ ∈ cl(Q) or
else {β, x, δ, µ} is a 4-element cosegment; a contradiction to orthogonality.
Now co(M ′\µ) is 3-connected by Lemma 2.11, and µ is N -deletable since µ
is in a non-trivial parallel class in M ′/γ. Suppose µ ∈ B∗−{a, b}. Then µ is
(N,B)-strong and outside of {x, y}, so {µ, x, y} is a triad. By orthogonality,
it follows that α = y, contradicting the assumption that α /∈ {x, y}. We
deduce that µ ∈ B.

We now repeat this argument, interchanging the roles of x and β. Since
co(M ′\x) is not 3-connected, there is a cyclic 3-separation (P ′, x,Q′) of
M ′. By orthogonality, we may assume that β ∈ P ′ and α ∈ Q′. Consider
(P ′ − β, β,Q′ ∪ x). Observe that Q′ ∪ x and Q′ ∪ {x, β} are exactly 3-
separating, since β ∈ cl(Q′ ∪ x). But (P ′ − β, β,Q′ ∪ x) is not a vertical
3-separation of M ′, since si(M ′/β) is 3-connected, by Bixby’s Lemma. Thus
r(P ′−β) = 2, and it follows by orthogonality that P ′ is a triangle of M ′. By
orthogonality between P ′ and {β, x, δ}, we have δ ∈ P ′. Since β /∈ cl(P ), it
follows that µ ∈ Q′. Let P ′ = {β, δ, ε} for some ε ∈ E(M ′). Now, ε ∈ cl(Q′)
or else {ε, x, β, δ} is a 4-element cosegment; a contradiction to orthogonality.

Now α, µ, ε are in the closure of the triad {β, x, δ}, so {α, µ, ε} is a triangle.
But α, µ ∈ B, so ε ∈ B∗. We claim that ε is an (N,B)-strong element of
M ′. That ε is (N,B)-robust follows from the fact that β is N -contractible
and {δ, ε} is a parallel pair in M ′/β. Since (F, ε, E(M ′) − F ) is a vertical
3-separation of M ′, Lemma 2.7 and Bixby’s Lemma imply that co(M ′\ε)
is 3-connected. As ε is an (N,B)-strong element of M ′ outside of {x, y},
we have that {ε, x, y} is a triad of M ′. But {ε, x, y} intersects the triangle
{β, δ, ε} in a single element; a contradiction to orthogonality. �

Next we handle the case where the element z, which is (N,B)-robust but
not (N,B)-strong, is in B∗.

Lemma 5.6. Let z ∈ B∗ be an element of M ′ that is (N,B)-robust but not
(N,B)-strong, and let (X, z, Y ) be a cyclic 3-separation of M ′ such that X
is z-coclosed and |X ∩ E(N)| ≤ 1. Then S ⊆ X.

Proof. Suppose that there are at least two distinct (N,B)-strong elements
in X. The (N,B)-strong elements of M ′ contained in X must belong to S
by the definition of S. If |S| = 2, then it follows immediately that S ⊆ X.
If |S| = 3, then S is a triad, so S ⊆ cl∗(X) = X ∪ z, as X is z-coclosed, but
z /∈ S, so S ⊆ X as required.

We may therefore assume that there is at most one (N,B)-strong element
of M ′ contained in X. Then it follows from the dual of Lemma 5.3 that there
is a type-I or type-II fan (α, β, γ, δ) relative to B∗ in (M ′)∗ that is contained
in X ∪ z where β, γ, δ are N -deletable and α, β, γ are N -contractible in M ′.

Suppose that F is a type-II fan relative to B∗ in (M ′)∗. Then δ is an
(N,B)-strong element of M ′ by Lemma 2.11. Hence M ′ has a triad {δ, x, y}.
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By orthogonality with the triangle {β, γ, δ}, we have {β, γ}∩{x, y} 6= ∅; but
γ /∈ B, so β ∈ {x, y}. Since {β, δ} ⊆ F − z ⊆ X, we have S ⊆ cl∗({β, δ}) ⊆
cl∗(X) = X ∪ z, as X is z-coclosed. But z /∈ S, so S ⊆ X as required.

We may now assume that F is a type-I fan relative to B∗ in (M ′)∗. If
γ is an (N,B)-strong element of M ′, then M ′ has a triad {γ, x, y}. By
orthogonality with {β, γ, δ}, either β ∈ {x, y} or δ ∈ {x, y}. As z /∈ {β, δ},
we have S ⊆ cl∗(F − z) ⊆ X because X is z-coclosed and z /∈ S. Therefore
we may also assume that co(M ′\γ) is not 3-connected, so si(M ′/γ) is 3-
connected, by Bixby’s Lemma.

5.6.1. {x, y} ∩ {β, δ} 6= ∅.

Subproof. Suppose that {x, y}∩{β, δ} = ∅. Then, since {β, γ, δ} is a triangle
of M ′, it follows that Axγ = Ayγ = 0 and Aβγ 6= 0. Hence a pivot on Aβγ
is allowable, and γ is in the basis B′ = B4{β, γ} of M ′, where {x, y, a, b}
incriminates (M,Aβγ). But then γ is an (N,B′)-strong element of M ′ in
B′ − {x, y}; a contradiction of Lemma 3.1. �

Suppose δ ∈ {x, y}. Then, since {β, γ, δ} is a triangle of M ′, Aδγ 6= 0,
and a pivot on Aδγ is allowable. Hence M ′ has a basis B′ = B4{δ, γ} with
an (N,B′)-strong element δ in (B′)∗. Since B is a strengthened basis, there
is an (N,B)-strong element u ∈ B∗ such that S = {u, x, y} is a triad of
M ′. By orthogonality, either β ∈ S or γ ∈ S. Hence S ⊆ cl∗(F − z) ⊆ X
because X is z-coclosed and z /∈ S. A similar argument holds if β ∈ {x, y}
and co(M ′\β) is 3-connected.

We may now assume that β ∈ {x, y} and that co(M ′\β) is not 3-
connected. Let (P, β,Q) be a cyclic 3-separation of M ′. Since β is in a trian-
gle of M ′, we may assume that γ ∈ P and δ ∈ Q. Consider (P −γ, γ,Q∪β).
Observe that Q∪ β and Q∪{β, γ} are exactly 3-separating, the latter since
γ ∈ cl(Q ∪ β). But (P − γ, γ,Q ∪ β) is not a vertical 3-separation of M ′,
since si(M ′/γ) is 3-connected, so it follows that r(P ) = 2. By orthogonality
with the triad {α, β, γ}, it follows that α ∈ P and P is a triangle of M ′.
Thus P = {α, γ, p} for some p ∈ E(M ′)− F .

Let (P ′, γ,Q′) be a cyclic 3-separation of M ′. Since {β, γ, δ} is a triangle
of M ′, we may assume that β ∈ P ′ and δ ∈ Q′. Now Q′ ∪ γ and Q′ ∪ {β, γ}
are exactly 3-separating, but (P ′−β, β,Q′∪γ) is not a vertical 3-separation
of M ′, since si(M ′/β) is 3-connected, by Bixby’s Lemma. It follows, by
orthogonality, that α ∈ P ′ and P ′ is a triangle of M ′. Therefore P ′ =
{α, β, p′} for some p′ ∈ E(M ′) − F . Note also that p 6= p′, since the triad
{α, β, γ} is independent.

Now {α, β, γ, δ, p, p′} is a rank-3 subset of M ′, with {β, δ} ⊆ B. Hence, at
least one of p and p′ is in B∗. Suppose p′ ∈ B∗. It follows, by Lemma 2.11,
that p′ is an (N,B)-strong element of M ′. But then S = {p′, x, y} is a triad
of M ′ that meets the triangle {β, γ, δ}, since β ∈ {x, y}. By orthogonality,
and since p′ /∈ F , we have {x, y} ⊆ F − z. It follows by z-coclosure that
S ⊆ X. A similar argument applies if p ∈ B∗. �

In the next lemma, we show that elements on the non-N -side of a vertical
3-separation that are not N -flexible are not (N,B)-robust.
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Lemma 5.7. Let z ∈ B−{x, y} be an element that is (N,B)-robust but not
(N,B)-strong in M ′, and let (X, z, Y ) be a vertical 3-separation of M ′ such
that |X ∩ E(N)| ≤ 1 and S ⊆ X. Then for e ∈ X − S, the element e is
N -flexible if and only if e is (N,B)-robust. Moreover, at most one element
in X − S is not N -flexible in M ′/z, and if such an element µ exists, then
(X − µ, z, Y ∪ µ) is a vertical 3-separation of M ′.

Proof. Clearly, if e ∈ X − S is N -flexible, then e is (N,B)-robust. Suppose
e ∈ X − S is not N -flexible. By Lemma 2.15, either e is N -deletable but
not N -contractible, or e is N -contractible but not N -deletable.

First, suppose that e is N -deletable but not N -contractible. Then e ∈
cl(Y ) by Lemma 2.15(i). It follows that ((X − e) ∪ z, e, Y ) is a vertical
3-separation of M ′, so co(M ′\e) is 3-connected by Bixby’s Lemma. Since
e /∈ S, it follows that e ∈ B − {x, y}, so e is not (N,B)-robust. Moreover, if
e and e′ ∈ X − S are N -deletable but not N -contractible, then {z, e, e′} ⊆
cl(Y )− Y , so r({z, e, e′}) = 2. But {z, e, e′} ⊆ B, so e = e′.

Now suppose that e is N -contractible but not N -deletable. Let Y ′ =
cl(Y )−z. By Lemma 2.15(ii), e ∈ cl∗(Y ′)−Y ′ and z ∈ cl(X− (Y ′∪e)), and
there is only one such element e. Observe that Y ′ and Y ′ ∪ e are exactly
3-separating. Moreover, (X ∪ z) − (Y ′ ∪ e) contains a circuit, implying
r∗((X ∪ z) − (Y ′ ∪ e)) ≥ 3. Now ((X ∪ z) − (Y ′ ∪ e), e, Y ′) is a cyclic 3-
separation, so si(M ′/e) is 3-connected by Bixby’s Lemma. As e /∈ S, it
follows that e ∈ B∗, so e is not (N,B)-robust.

Suppose µ and µ′ are distinct elements of X − S that are not N -flexible.
Then, by the foregoing, we may assume that µ is not N -deletable, and µ′

is not N -contractible. Note that M/z is the two sum of MX and MY with
basepoint z′ say, where MX\z′ = (M/z)|X and MY \z′ = (M/z)|Y . Since µ
is not N -deletable and µ′ is not N -contractible, {z′, µ} is a cocircuit in MX ,
and {z′, µ′} is a circuit in MX ; a contradiction to orthogonality. So at most
one element in X − S is not N -flexible.

Now let µ be the unique element in X − S that is not N -flexible, and
consider (X −µ, z, Y ∪µ). If µ is N -deletable but not N -contractible, then,
as µ ∈ cl(Y ), clearly (X − µ, z, Y ∪ µ) is a vertical 3-separation of M ′.
Suppose that µ is N -contractible but not N -deletable. Since µ is the only
element in X−S that is not N -flexible, cl(Y ) = Y ∪ z, so µ ∈ cl∗(Y ). Thus,
if (X − µ, z, Y ∪ µ) is not a vertical 3-separation of M ′, then r(X − µ) ≤ 2.
But X − µ spans z, and {x, y} ⊆ S ⊆ X − µ, so {x, y, z} is a triangle of M ′

contained in B; a contradiction. �

Note that a similar argument applies when z ∈ B∗ is an element of M ′

that is (N,B)-robust but not (N,B)-strong; we omit the proof.

Lemma 5.8. Let z ∈ B∗ be an element of M ′ that is (N,B)-robust but
not (N,B)-strong, and let (X, z, Y ) be a cyclic 3-separation of M ′ such that
|X ∩ E(N)| ≤ 1 and S ⊆ X. Then for e ∈ X − S, the element e is N -
flexible if and only if e is (N,B)-robust. Moreover, at most one element
in X − S is not N -flexible in M ′\z, and if such an element µ exists, then
(X − µ, z, Y ∪ µ) is a cyclic 3-separation of M ′.

We now come to the main result of the section.
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Proposition 5.9. Let z ∈ E(M ′) − {x, y} be an element that is (N,B)-
robust but not (N,B)-strong in M ′. Then M ′ has a path of 3-separations
(S, z1, z2, . . . , zn, z, Y ) where the elements in {z1, . . . , zn} are N -flexible,
|(S ∪ {z1, . . . , zn, z}) ∩ E(N)| ≤ 1, and |S ∪ {z1, . . . , zn}| ≥ 3.

Proof. Let z be an element of M ′ that is (N,B)-robust but not (N,B)-
strong. First, suppose z ∈ B−{x, y}. By Lemma 5.1, there exists a vertical
3-separation (X ′, z, Y ′) such that X ′ is z-closed and |X ′ ∩ E(N)| ≤ 1. By
Lemma 5.5, S ⊆ X ′. By Lemma 5.7, X ′ − S contains at most one element
that is not (N,B)-robust. If such an element µ exists, let (X,Y ) = (X ′ −
µ, Y ′ ∪ µ); otherwise, let (X,Y ) = (X ′, Y ′). Now, by Lemma 5.7 again,
(X, z, Y ) is a vertical 3-separation of M ′ where S ⊆ X, |X ∩ E(N)| ≤ 1,
and every element in X − S is N -flexible. We say that (X, z, Y ) is a good
separation for z in M ′. Similarly, if z ∈ B∗ − {a, b}, then, by the dual of
Lemma 5.1, and Lemmas 5.6 and 5.8, there is a cyclic 3-separation (X, z, Y )
that is a good separation for z in (M ′)∗. Thus, for each (N,B)-robust
element z of M ′ outside of {x, y}, there is a good separation for z.

We now show that a good separation induces a path of 3-separations in
M ′. Let (X, z, Y ) be a good separation for z, in either M ′ or (M ′)∗, and let
Z = X − S. Consider the partition (S,Z, z ∪ Y ) of E(M ′), and note that
each zi ∈ Z is N -flexible, |(S ∪ Z ∪ z) ∩ E(N)| ≤ 1, and |S ∪ Z| ≥ 3.

We claim that, for each zi ∈ Z, there is a path of 3-separations (Xi, zi, Yi)
of M ′ such that S ⊆ Xi and z ∪ Y ⊆ Yi. In what follows, we assume
that z, zi ∈ B, but the argument is similar if one or both of z, zi are in
B∗. Since zi is N -flexible in M ′/z, we can fix an N -minor of M ′/z/zi on
ground set EN . We may assume that |X ∩EN | ≤ 1. As zi is N -flexible, and
hence (N,B)-robust, in M ′, but zi is not (N,B)-strong, there is a vertical
3-separation (X ′i, zi, Y

′
i ) of M ′ where |X ′i ∩ EN | ≤ 1. By Lemma 5.1, we

may assume that X ′i is zi-closed. Hence S ⊆ X ′i by Lemma 5.5 (in the case
that zi ∈ B∗, we can use Lemma 5.6). Since |EN | ≥ 4, it now follows that
|Y ∩ Y ′i | ≥ |EN | − 2 ≥ 2. Therefore, by uncrossing Y ∪ z and Y ′i , the set
Y ∪Y ′i ∪z is 3-separating. Similarly, by uncrossing Y ∪z and Y ′i ∪zi, the set
Y ∪ Y ′i ∪ {z, zi} is 3-separating. Now (Xi, zi, Yi) = (X ∩X ′i, zi, Y ∪ Y ′i ∪ z)
is a path of 3-separations of M ′ that satisfies the claim.

It now follows from Lemma 5.4 that there is an ordering (z1, . . . , zn) of Z
such that (S, z1, . . . , zn, z, Y ) is a path of 3-separations of M ′, satisfying the
proposition. �

6. Proof of Theorem 2.30

Let P be a partial field, let N be a non-binary 3-connected strong P-
stabilizer for the class of P-representable matroids, and let M be an excluded
minor for the class of P-representable matroids with a pair of elements {a, b}
such that M\a, b is 3-connected with an N -minor. Let A be a B × B∗

companion P-matrix of M such that {x, y, a, b} incriminates (M,A), where
{x, y} ⊆ B and {a, b} ⊆ B∗, for some basis B of M . Let M ′ = M\a, b. We
assume that M ′ has no confining set, and that B is a strengthened basis.

Let S ⊆ E(M ′) be a set consisting of {x, y} and all (N,B)-strong elements
of M ′. Then, as before, either |S| = 2 or S is a triad. If M ′ has an element z
that is (N,B)-robust but not (N,B)-strong, then, by Proposition 5.9, M ′ has
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a path of 3-separations of the form (S, z′1, . . . , z
′
n′ , z, Y ) where each element

in {z′1, . . . , z′n′} is N -flexible. In this section, we study such paths of 3-
separations, in order to prove Theorem 2.30.

It is convenient to write such a path of 3-separations as
({x, y}, z1, . . . , zn, z, Y ), where in the case that |S| = 3, the (N,B)-strong
element outside of {x, y} is labelled z1, and zi = z′i−1 for i ∈ {2, . . . , n},
where n = n′ + 1. We say that ({x, y}, z1, . . . , zn, z, Y ) is a good path of
3-separations for z. Note that n ≥ 1, since |S ∪ {z′1, . . . , z′n′}| ≥ 3, and
observe that zi is (N,B)-robust for each i ∈ {1, 2, . . . , n}.
Lemma 6.1. Suppose M ′ has an element z that is (N,B)-robust but not
(N,B)-strong, and let ({x, y}, z1, . . . , zn, z, Y ) be a good path of 3-separations
for z. Then

(i) {x, y, z1} is a triad of M ′, and
(ii) z1 ∈ B∗.

Proof. First we prove (i). Clearly (i) holds when z1 ∈ S, so we may assume
that z1 /∈ S. It suffices to show that {x, y, z1} is not a triangle of M ′.
Towards a contradiction, suppose {x, y, z1} is a triangle. Then z1 ∈ B∗,
since {x, y} ⊆ B. Thus co(M ′\z1) is not 3-connected, as z1 is (N,B)-robust
but not (N,B)-strong.

Let (P, z1, Q) be a cyclic 3-separation of M ′. Since {x, y, z1} is a triangle,
it follows from orthogonality that |P ∩ {x, y}| = |Q ∩ {x, y}| = 1. We shall
therefore assume that x ∈ P and y ∈ Q. Since z1 is N -flexible, it follows
that x and y are N -deletable in M ′. Suppose co(M ′\x) is 3-connected.
Due to the triangle {x, y, z1}, Axz1 6= 0, so a pivot on Axz1 is allowable.
Thus B′ = B4{x, z1} is a basis, {z1, y, a, b} incriminates (M,Axz1), and
x is an (N,B′)-strong element outside of {z1, y}, contradicting that B is a
strengthened basis. Hence co(M ′\x) and, by symmetry, co(M ′\y) are not
3-connected.

Now P∪z1 is exactly 3-separating, and y ∈ cl(P∪z1), so (P∪z1, y,Q−y) is
a path of 3-separations of M ′, and y ∈ cl(Q−y). Similarly, (P −x, x,Q∪z1)
is a path of 3-separations of M ′. If r(P ∪ z1) ≥ 3 and r(Q − y) ≥ 3, then
(P ∪ z1, y,Q− y) is a vertical 3-separation of M ′, in which case si(M ′/y) is
not 3-connected, contradicting Bixby’s Lemma. Therefore r(P ∪ z1) ≤ 2 or
r(Q−y) ≤ 2. But if r(P ∪z1) ≤ 2, then M ′\z1 is 3-connected by Lemma 2.2;
a contradiction. Thus r(Q−y) ≤ 2, and hence r(Q) ≤ 2. Similarly, it follows
that r(P − x) ≤ 2, and hence r(P ) ≤ 2. Since x ∈ P , y ∈ Q, and co(M ′\x)
and co(M ′\y) are not 3-connected, it follows from Lemma 2.2 that |P | = 3
and |Q| = 3. But now |E(M ′)| = 7, so n = 1, and it is readily checked that
the (N,B)-robust element z2 is (N,B)-strong; a contradiction.

We now prove (ii). When z1 is an (N,B)-strong element of M ′, (ii)
holds by Lemma 3.1. So we may assume that M ′ has no (N,B)-strong el-
ements outside of {x, y}. Towards a contradiction, suppose that z1 ∈ B.
Then si(M ′/z1) is not 3-connected. Now M ′ has an (N,B)-robust ele-
ment z′ ∈ {z2, z3, . . . , zn, z} that is either in the closure or coclosure of
the triad {x, y, z1}. If z′ is in the coclosure of {x, y, z1}, then {x, y, z1, z′}
is a 4-element cosegment of M ′, so si(M ′/z1) is 3-connected by the dual
of Lemma 2.2; a contradiction. Thus z′ is in the closure of {x, y, z1}.
Then ({x, y, z1}, z′, E(M ′) − {x, y, z1, z′}) is a vertical 3-separation of M ′,
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so si(M ′/z′) is not 3-connected. Hence co(M ′\z′) is 3-connected by Bixby’s
Lemma. But, since {x, y, z1, z′} contains a circuit of M ′, it follows that
z′ ∈ B∗. Thus z′ is an (N,B)-strong element outside of {x, y}; a contradic-
tion. �

Let ({x, y}, z1, . . . , zn, z, Y ) be a good path of 3-separations for some
element z ∈ E(M ′) that is (N,B)-robust but not (N,B)-strong. Re-
call that an element zi ∈ {z1, z2, . . . , zn} is a guts or coguts element
according to whether zi is in the guts or coguts of the 3-separation
({x, y, z1, . . . , zi−1}, {zi, . . . , zn, z} ∪ Y ). Similarly, z is a guts or coguts el-
ement depending on whether z is in the guts or coguts of the 3-separation
({x, y, z1, . . . , zn}, z ∪ Y ).

Lemma 6.2. Suppose M ′ has an element z that is (N,B)-robust but not
(N,B)-strong, and let ({x, y}, z1, . . . , zn, z, Y ) be a good path of 3-separations
for z. Let z′ ∈ {z1, . . . , zn, z}. Then z′ is a guts element if and only if z′ ∈ B.

Proof. Suppose that z′ is a guts element. Then, by Lemma 6.1(i), z′ 6= z1.
If z′ is not N -deletable, then z′ ∈ B because z′ is an (N,B)-robust element.
Thus we may assume that z′ is N -deletable. Since z′ is in the guts of a
vertical 3-separation, co(M ′\z′) is 3-connected by Bixby’s Lemma, so z′ ∈ B
because no element in {z2, . . . , zn, z} is (N,B)-strong in M ′.

Conversely, suppose that z′ is a coguts element. If z′ = z1, then z′ ∈ B∗
by Lemma 6.1(ii). So we may assume that z′ ∈ {z2, . . . , zn, z}. If z′ is
not N -contractible, then z′ ∈ B∗ because z′ is an (N,B)-robust element.
Thus we may assume that z′ is N -contractible. Now z′ is in the coguts
of a cyclic 3-separation of M ′, so Bixby’s Lemma implies that si(M ′/z′) is
3-connected. Thus z′ ∈ B∗ because no element in {z2, . . . , zn, z} is (N,B)-
strong in M ′. �

Lemma 6.3. Suppose M ′ has elements z and z′ that are (N,B)-
robust but not (N,B)-strong, and let ({x, y}, z1, . . . , zn, z, Y ) and
({x, y}, z′1, . . . , z′n′ , z′, Y ′) be good paths of 3-separations for z and z′ respec-
tively. Let zn+1 = z and z′n′+1 = z′. Then

(i) z1 = z′1, and
(ii) z2 = z′2, where z2 ∈ B.

Moreover, {x, y, z1, z2} is closed in M ′.

Proof. By Lemma 6.1, {x, y, z1} and {x, y, z′1} are triads of M ′, and z1, z
′
1 ∈

B∗. Since M ′ has no confining sets, z1 = z′1.
Consider the element z2. Suppose z2 /∈ B. Then z2 is a coguts element

by Lemma 6.2, so {x, y, z1, z2} is a 4-element cosegment, contradicting that
M ′ has no confining set. Thus z2 ∈ B. Similarly, z′2 ∈ B.

By Lemma 6.2, z2 and z′2 are spanned by the triad {x, y, z1}. Now
it suffices to show that cl({x, y, z1}) = {x, y, z1, z2}. Towards a con-
tradiction, suppose there is some z′′ ∈ clM ′({x, y, z1}) − {x, y, z1, z2}.
Then, as {x, y, z1} and {x, y, z1, z′′} are exactly 3-separating, it follows
that z′′ /∈ cl∗M ′({x, y, z1}), by Lemmas 2.1 and 2.5. Since z2 ∈ B is
(N,B)-robust but not (N,B)-strong, r(E(M ′) − {x, y, z1, z′′}) ≥ 3. Thus
({x, y, z1}, z′′, E(M ′) − {x, y, z1, z′′}) is a vertical 3-separation of M ′, so
si(M ′/z′′) is not 3-connected. Thus co(M ′\z′′) is 3-connected by Bixby’s



EXCLUDED MINORS ARE ALMOST FRAGILE 37

Lemma. Moreover, ({x, y, z1, z′′}, z2, E(M ′) − {x, y, z1, z2, z′′}) is a vertical
3-separation of M ′, so Lemma 2.15(ii) implies that z′′ is N -deletable. Now,
if z′′ ∈ B∗, then z′′ is an (N,B)-strong element; a contradiction. Thus
z′′ ∈ B. But then the rank-3 set clM ′({x, y, z1}) contains {x, y, z2, z′′}, and
{x, y, z2, z′′} ⊆ B; a contradiction. �

We need the following result of Whittle and Williams.

Lemma 6.4 ([24, Lemma 2.13]). Let M0 be a 3-connected matroid with
a triad {c, d, e} and circuit {c, d, e, f}. Then at least one of the following
holds:

(i) either co(M0\c) or co(M0\e) is 3-connected,
(ii) there exist c′, e′ ∈ E(M0) such that both {c, c′, d} and {d, e, e′} are

triangles, or
(iii) there exists g ∈ E(M0) such that {c, d, e, g} is a 4-element cosegment.

We require one more definition. Let B be a strengthened basis, and let
A be a B×B∗ companion P-matrix of M such that {x, y, a, b} incriminates
(M,A), where {x, y} ⊆ B and {a, b} ⊆ B∗. We say that B is bolstered if

• when M ′ has no (N,B)-strong elements outside of {x, y}, then for
any B1×B∗1 companion P-matrix A1 where {x1, y1, a, b} incriminates
(M,A1), with {x1, y1} ⊆ B1 and {a, b} ⊆ B∗1 , the number of (N,B)-
robust elements of M ′ outside of {x, y} is at least the number of
(N,B1)-robust elements of M ′ outside of {x1, y1}; or
• when M ′ has an (N,B)-strong element u of M ′ outside of {x, y},

then for any B1 ×B∗1 companion P-matrix A1 such that
– {x, y, a, b} incriminates (M,A1), with {x, y} ⊆ B1 and {a, b} ⊆
B∗1 , and

– u is the only (N,B1)-strong element of M ′, with u ∈ B∗1 ,
the number of (N,B)-robust elements of M ′ is at least the number
of (N,B1)-robust elements of M ′.

Loosely speaking, a strengthened basis B is bolstered if no allowable pivot
increases the number of elements that are (N,B)-robust but not (N,B)-
strong. For a strengthened basis B with no (N,B)-strong elements, each
allowable pivot cannot introduce an (N,B)-strong element. For a strength-
ened basis B with an (N,B)-strong element u, where {u, x, y} is a triad,
B is bolstered if the number of robust elements is maximised subject to
preserving that u is the only strong element, {x, y} ⊆ B, and u ∈ B∗.

We can now show that either M is bounded relative to N , or M ′ has at
most two elements outside of {x, y} that are (N,B)-robust but not (N,B)-
strong. Recall that when F is a 4-element fan with ordering (f1, f2, f3, f4)
such that {f1, f2, f3} is a triangle, and B′ is a basis, we say that (f1, f2, f3, f4)
is a type-II fan relative to B′ if F ∩B′ = {f1, f3, f4}.

Lemma 6.5. Suppose B is a bolstered basis. Then there are at most two
elements outside of {x, y} that are (N,B)-robust but not (N,B)-strong in
M ′. Moreover, up to swapping x and y, either

(i) M ′ has a maximal type-II fan (z, u, x, y) relative to B, where u is
(N,B)-strong, z ∈ B is N -flexible, and z is the only element outside
of {x, y} that is (N,B)-robust but not (N,B)-strong;
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(ii) M ′ has a maximal fan (w, z, x, u, y), where u is (N,B)-strong, z ∈ B
is N -flexible, w ∈ B∗, and the elements outside of {x, y} that are
(N,B)-robust but not (N,B)-strong are contained in {z, w}; or

(iii) |E(M)| ≤ |E(N)|+ 8.

Proof. Suppose that z is (N,B)-robust but not (N,B)-strong, let
({x, y}, z1, z2, . . . , zn, z, Y ) be a good path of 3-separations for z, where
n ≥ 1, and let zn+1 = z. By Lemmas 6.1 to 6.3, {x, y, z1} is a triad with
z1 ∈ B∗, and z2 ∈ B is a guts element. Observe that {x, y, z1, z2} is either a
4-element fan or a circuit of M ′. In the case that {x, y, z1, z2} is a 4-element
fan, {z2, x, y} is not a triangle, since z2 ∈ B, so we may assume, up to
swapping x and y, that this fan has ordering (z2, z1, x, y), where {z2, z1, x}
is a triangle.

As z1 ∈ B∗ is (N,B)-robust, and {x, y} is a series pair in M ′\z1, it
follows that x is N -contractible. Similarly, since x is N -contractible, z2 is
N -deletable. As z2 ∈ B is (N,B)-robust, z2 is N -flexible.

6.5.1. Suppose (z2, z1, x, y) is a maximal fan and co(M ′\x) is not 3-
connected. Then case (i) of the lemma holds, with z = z2 and u = z1.

Subproof. By Lemma 2.12, si(M ′/z1) ∼= co(M ′\x), so si(M ′/z1) is not 3-
connected. As z1 is (N,B)-robust, Bixby’s Lemma implies that z1 is (N,B)-
strong. We claim that z2 is the only element outside of {x, y} that is (N,B)-
robust but not (N,B)-strong. Suppose z′ ∈ E(M ′)−{x, y, z1, z2} is (N,B)-
robust but not (N,B)-strong, and let ({x, y}, z′1, . . . , z′n′ , z′, Y ′) be a good
path of 3-separations for z′. Let z′ = z′n′+1. By Lemma 6.3, z′1 = z1, z

′
2 = z2,

n′ ≥ 2, and z′3 is an (N,B)-robust coguts element. By Lemma 6.2, z′3 ∈ B∗.
Now z′3 is in a cocircuit C∗ contained in {x, y, z1, z2, z′3}. Since {x, y, z1} is
a triad, {x, y, z1} * C∗. Moreover, if y ∈ C∗, then by cocircuit elimination
with {x, y, z1}, there is a cocircuit contained in {x, z1, z2, z′3}, and this co-
circuit also contains z′3. So we may assume that y /∈ C∗. Since M ′ has no
confining sets, z2 ∈ C∗. Since (z2, z1, x, y) is maximal, neither {x, z2, z′3} nor
{z1, z2, z′3} is a triad. So {x, z1, z2, z′3} is a cocircuit of M ′. Now {z2, z1, x}
is not contained in a 4-element segment by orthogonality, and {x, z2} is not
contained in a triad because (z2, z1, x, y) is maximal. Therefore, by the dual
of Lemma 6.4, either si(M ′/z2) or si(M ′/z1) is 3-connected. But si(M ′/z2) is
not 3-connected because z2 is not (N,B)-strong, and si(M ′/z1) ∼= co(M ′\x)
is not 3-connected; a contradiction. We deduce that z2 is the only element
outside of {x, y} that is (N,B)-robust but not (N,B)-strong. �

6.5.2. Suppose {z2, z1, x, y} is contained in a fan (w, z2, x, z1, y), for some
w ∈ E(M ′)−{x, y, z1, z2}, and co(M ′\x) is not 3-connected. Then case (ii)
of the lemma holds, with z = z2 and u = z1.

Subproof. As z1 is N -deletable, and co(M ′\z1) is 3-connected by
Lemma 2.11, z1 is (N,B)-strong. Since z2 is N -deletable, w is N -
contractible. If w ∈ B, then w is (N,B)-strong by Lemma 2.11; a con-
tradiction. So w ∈ B∗.

Next we show that the fan (w, z2, x, z1, y) is maximal. First, observe that
{z1, y} is not contained in a triangle by Lemma 6.3. Suppose {z2, w} is
contained in a triangle {z2, w, z′} say. Since z2 is N -contractible, it follows
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that z′ is N -deletable. By Lemma 2.11, co(M\z′) is 3-connected, so, as the
(N,B)-strong elements are contained in {x, y, z1}, we have z′ ∈ B. Now, as
{z2, w, z′} is a triangle, Axw = Ayw = 0 and Az2w 6= 0, so a pivot on Az2w is
allowable. But then B′ = B4{z2, w} is a basis, and z2 is an (N,B′)-strong
element in B′ − {x, y}, contradicting Lemma 3.1.

Now, if the elements outside of {x, y} that are (N,B)-robust but not
(N,B)-strong are contained in {z2, w}, then 6.5.2 holds.

Suppose there is some N -contractible element w′ ∈ cl∗({x, y, z1, z2}) −
{x, y, z1, z2, w}. Then {y, w,w′} is in the coclosure of the 3-separating tri-
angle {x, z1, z2}, so, as M ′ is 3-connected, {y, w,w′} is a triad. Recall
that w ∈ B∗. By Bixby’s Lemma, si(M ′/w′) is 3-connected. Since w′

is N -contractible, and the (N,B)-strong elements of M ′ are contained in
{x, y, z1}, it follows that w′ ∈ B∗. Now {x, y, z1, w, w′} is a confining set; a
contradiction.

Suppose there is some w′ ∈ E(M ′)−{x, y, z1, z2, w} that is (N,B)-robust.
Let ({x, y}, z′1, z′2, . . . , z′n′ , w′, Y ′) be a good path of 3-separations for w′,
and let z′n′+1 = w′. It follows from Lemmas 6.2 and 6.3 and the preceding
paragraph that z′1 = z1, z

′
2 = z2, z

′
3 = w, and z′4 is a guts element, so z′4 ∈ B.

We work towards a contradiction.
We first claim that {y, z1, z2, w, z′4} is a circuit of M ′. Certainly, z′4 is in

a circuit contained in {x, y, z1, z2, w, z′4}. If this circuit contains x, then, by
circuit elimination with the triangle {z2, x, z1}, there is a circuit contained
in {y, z1, z2, w, z′4}. So we may assume that there is a circuit C contained in
{y, z1, z2, w, z′4}, which may or may not contain z′4. By orthogonality with
the triad {w, z2, x}, either C contains {w, z2} or C ∩{w, z2} = ∅. But in the
latter case, {z1, y, z′4} is a triangle of M ′, contradicting the maximality of
the fan (w, z2, x, z1, y). So C contains {w, z2} and, similarly, {z1, y}. Finally,
if z′4 /∈ C, then {w, z2, x, z1, y} is 2-separating; a contradiction. This proves
the claim.

By orthogonality, the only triads containing x are {w, z2, x} and {x, z1, y},
so co(M ′\x) ∼= M ′\x/z1, z2. Let M ′′ = M ′\x/z1, z2. As {w, z2, z1, y, z′4} is
a circuit of M ′, the set T = {w, z′4, y} is a triangle of M ′′. Let (P,Q) be a
2-separation of M ′′, where |P ∩ T | ≥ 2. Now (fclM ′′(P ), Q − fclM ′′(P )) is
also a 2-separation of M ′′, so we may also assume, without loss of generality,
that P is fully closed. In particular, T ⊆ P . Since {z1, z2} ⊆ cl∗M ′\x(P ), we

have that (P ∪{z1, z2}, Q) is a 2-separation in M ′\x. As x ∈ cl(P ∪{z1, z2}),
it follows that (P ∪ {z1, z2, x}, Q) is a 2-separation of M ′; a contradiction.

We deduce that no w′ ∈ E(M ′)− {x, y, z1, z2, w} is (N,B)-robust, so the
elements of M ′ that are (N,B)-robust but not (N,B)-strong are contained
in {z2, w}, as required. �

Suppose that (z2, z1, x, y) is a 4-element fan, and co(M ′\x) is not 3-
connected. If {z2, z1} is contained in a triad, then x is a spoke end of
a 4-element fan, contradicting Lemma 2.11; whereas if y is in a triangle,
then, by orthogonality, this contradicts Lemma 6.3. Thus either the fan
(z2, z1, x, y) is maximal, in which case (i) holds by 6.5.1; or it is contained
in a fan (w, z2, x, z1, y) for some w ∈ E(M ′) − {x, y, z1, z2}, in which case
(ii) holds by 6.5.2. So we may assume that when (z2, z1, x, y) is a 4-element
fan, co(M ′\x) is 3-connected.
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Now consider the case where {x, y, z1, z2} is a circuit. Suppose {x, y, z1}
is contained in a 4-element cosegment {x, y, z1, f}. Then, as M ′ has no
confining sets, f ∈ B. Since z1 ∈ B∗ is (N,B)-robust, it follows that f is
N -contractible. But si(M ′/f) is 3-connected by the dual of Lemma 2.2, so f
is (N,B)-strong; a contradiction. Since {x, y, z1, z2} is closed by Lemma 6.3,
it follows from Lemma 6.4 that either co(M ′\x) or co(M ′\y) is 3-connected.
Thus, when {x, y, z1, z2} is a circuit, we may assume without loss of gener-
ality that co(M ′\x) is 3-connected.

Now, in either case, we may assume that co(M ′\x) is 3-connected.

6.5.3. Apa = Apb = 0 for all p ∈ B − {x, y, z2}, and z1 is (N,B)-strong.

Subproof. Either {x, y, z1, z2} is a circuit, or this set is a 4-element fan con-
taining the triangle {x, z1, z2}. If x is in a 4-element cosegment of M ′,
then, by orthogonality, this cosegment intersects the circuit {x, y, z1, z2} or
{x, z1, z2} in three elements. But this implies that {x, y, z1} is contained in
a 4-element cosegment; a contradiction. So M ′\x is 3-connected up to series
pairs. Similarly, z1 is not in a 4-element cosegment of M ′.

Next we claim that x is N -deletable. Observe that ({x, y, z1}, z2, E(M ′)−
{x, y, z1, z2}) is a vertical 3-separation, where M ′/z2 has an N -minor since
z2 ∈ B is (N,B)-robust. Since {x, y, z1} is a triad, E(M ′) − {x, y, z1} is
closed. Moreover, x ∈ cl({y, z1, z2}), so x /∈ cl∗M ′(E(M ′) − {x, y, z1, z2}).
Thus, by Lemma 2.15(ii), the element x is N -deletable.

We work towards showing that a, b ∈ clM ({x, y, z2}). Observe that Axz1 6=
0 because {x, y, z1, z2} is a circuit with {x, y, z2} ⊆ B. So a pivot on Axz1
is allowable. Now {z1, y, a, b} incriminates (M,Axz1). Let B′ = B4{x, z1}.
Then x is an (N,B′)-strong element outside of {z1, y}. By Lemma 3.4, M ′\x
has a series pair that meets {z1, y} and is contained in an unstable triple
of M\a, x or M\b, x. Since {z1, y} is a series class of M ′\x, the series pair
{z1, y} is contained in an unstable triple {z1, y, b} of M\a, x, up to swapping
labels on a and b. So b ∈ clM ({z1, y}). Since z1 ∈ cl({x, y, z2}), it follows
that b ∈ clM ({x, y, z2}).

As B is a strengthened basis and x is an (N,B′)-strong element outside of
{z1, y}, it follows that z1 is an (N,B)-strong element outside of {x, y}. Since
z1 is not in a 4-element cosegment of M ′, the matroid M ′\z1 is 3-connected
up to series pairs. Thus, by Lemma 3.4 again, M ′\z1 has a series pair that
meets {x, y} and is contained in an unstable triple of M\a, z1 or M\b, z1.
It now follows that this series pair is {x, y}, so either a ∈ clM ({x, y}) or
b ∈ clM ({x, y}). But in the latter case, {x, y, z1} is a triangle, contradicting
Lemma 6.1(i). So a ∈ clM ({x, y}). Now a, b ∈ clM ({x, y, z2}), so Apa =
Apb = 0 for all p ∈ B − {x, y, z2}. Thus 6.5.3 holds. �

6.5.4. There are no N -contractible elements of M ′ in B − {x, y, z2}.

Subproof. Suppose that M ′ has an N -flexible element q ∈ B∗ − z1. Then,
since q is not (N,B)-strong in M ′, the matroid co(M ′\q) is not 3-connected.
Hence si(M ′/q) is 3-connected by Bixby’s Lemma. By Lemma 6.3, q /∈
cl({x, y, z1}) = cl({x, y, z2}), so Apq 6= 0 for some p ∈ B − {x, y, z2}.
Since Apa = Apb = 0, by 6.5.3, a pivot on Apq is allowable. But then
B′ = B4{p, q} has an (N,B′)-strong element q in B′−{x, y}, contradicting
Lemma 3.1. Thus M ′ has no N -flexible elements in B∗ − z1.
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Now suppose that M ′ has an N -contractible element p ∈ B − {x, y, z2}.
Let ({x, y}, z′1, . . . , z′n′ , p, Y ′) be a good path of 3-separations for p. By
Lemma 6.3, z′1 = z1, z

′
2 = z2, and {x, y, z1, z2} is closed. Hence, as p is

a guts element by Lemma 6.2, n′ ≥ 3. But then z′3 ∈ B∗ − z1 is N -flexible;
a contradiction. �

6.5.5. There are at most two elements outside of {x, y} that are (N,B)-
robust but not (N,B)-strong.

Subproof. By 6.5.4, each (N,B)-robust element of M ′ outside of {x, y, z2}
is in B∗, so any such element is a coguts element by Lemma 6.2. Sup-
pose q and q′ are distinct (N,B)-robust elements of M ′ in B∗ − z1.
Then ({x, y}, z1, z2, q, Y ) and ({x, y}, z1, z2, q′, Y ′) are the good paths of 3-
separations for q and q′ respectively, otherwise there is an N -contractible
element in B∗ − z1. Now ({x, y, z1, z2, q}, q′, Y − q′) is a cyclic 3-separation,
and q ∈ cl∗M ′(Y − q′), so q ∈ B∗ − z1 is N -contractible in M ′ by the dual of
Lemma 2.15(ii); a contradiction. Hence there is at most one (N,B)-robust
element of M ′ outside of {x, y, z1, z2}. As z1 is (N,B)-strong, by 6.5.3, the
claim follows. �

By 6.5.5, it now suffices to show that |E(M ′)| ≤ |E(N)| + 6. Towards
a contradiction, suppose that |E(M ′)| ≥ |E(N)| + 7. Let R be the set
consisting of {x, y, z1, z2} and the (N,B)-robust element z3 of M ′ outside of
{x, y, z1, z2}, if such an element exists. So the set of (N,B)-robust elements
ofM ′ is contained in R, where |R| ≤ 5. Since |E(M ′)| ≥ |E(N)|+7, there are
elements p and p′ outside of R that are either N -deletable or N -contractible
in M ′, but not (N,B)-robust in M ′. By 6.5.4, p ∈ B − R and p is N -
deletable. Since z1 is in a circuit of M ′ contained in {x, y, z1, z2}, it follows
from orthogonality that the fundamental cocircuit of p with respect to B∗

does not contain z1, so p /∈ cl∗M ′(R ∩ B∗). Thus there is some q ∈ B∗ − R
such that Apq 6= 0. Since Apa = Apb = 0, by 6.5.3, a pivot on Apq is
allowable. Similarly, p′ ∈ B−R is N -deletable, and there is some q′ ∈ B∗−R
such that a pivot on Ap′q′ 6= 0 is allowable. If p′ ∈ cl∗((R ∩ B∗) ∪ {q}),
then {q, z3, p′} is a cocircuit, where z3 ∈ R ∩ B∗ is (N,B)-robust, and it
follows that p′ is N -contractible; a contradiction. So q′ 6= q. Now, there
are more (N,B4{p, q})-robust elements than (N,B)-robust elements, and
more (N,B4{p′, q′})-robust elements than (N,B)-robust elements. So if
p is not (N,B4{p, q})-strong, or p′ is not (N,B4{p′, q′})-strong, then B
is not bolstered; a contradiction. But if both are strong, then there are
three (N,B4{p, q, p′, q′})-strong elements outside of {x, y}, contradicting
Proposition 3.7. We deduce that |E(M ′)| ≤ |E(N)|+ 6, as required. �

Lemma 6.6. Suppose B is a bolstered basis. If M ′ has no (N,B)-robust
elements outside of {x, y}, then M ′ is N -fragile.

Proof. Suppose M ′ has no (N,B)-robust elements outside of {x, y}. Since
the elements outside of {x, y} are not (N,B)-robust, it suffices, by symmetry,
to show that M ′\x has no N -minor. Towards a contradiction, suppose that x
is N -deletable. There is some x′ ∈ B∗−{a, b} such that Axx′ 6= 0 because x is
not a coloop ofM ′, so a pivot on Axx′ is allowable. LetB′ = B4{x, x′}. Now
x is an (N,B′)-robust element of M ′ outside of {x′, y}, contradicting the fact
that B is bolstered. We deduce that x is not N -deletable, as required. �
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We now prove Theorem 2.30, which we restate here with the added ob-
servation that the distinguished basis in outcome (ii) may be chosen to be
bolstered. For clarity, we drop all assumptions made at the beginning of the
section.

Theorem 6.7. Let M be an excluded minor for the class of P-representable
matroids, and let N be a non-binary 3-connected strong P-stabilizer for the
class of P-representable matroids. Suppose M has a pair of elements {a, b}
such that M\a, b is 3-connected with an N -minor. Then either

(i) |E(M)| ≤ |E(N)|+ 9, or
(ii) M has a bolstered basis B, and a B × B∗ companion P-matrix A

for which {x, y, a, b} incriminates (M,A), where {x, y} ⊆ B and
{a, b} ⊆ B∗, and either
(a) M\a, b is N -fragile, and M\a, b has at most one (N,B)-robust

element outside of {x, y}, where if such an element u exists,
then u ∈ B∗ − {a, b} is an (N,B)-strong element of M\a, b,
and {u, x, y} is a coclosed triad of M\a, b, or

(b) M\a, b is not N -fragile, but there is an element u ∈ B∗−{a, b}
that is (N,B)-strong in M\a, b; either

(I) the N -flexible, and (N,B)-robust, elements of M\a, b are
contained in {u, x, y}, or

(II) the N -flexible, and (N,B)-robust, elements of M\a, b are
contained in {u, x, y, z}, where z ∈ B, and (z, u, x, y) is a
maximal fan of M\a, b, or

(III) the N -flexible, and (N,B)-robust, elements of M\a, b are
contained in {u, x, y, z, w}, where z ∈ B, w ∈ B∗, and
(w, z, x, u, y) is a maximal fan of M\a, b;

the unique triad in M\a, b containing u is {u, x, y}; and M
has a cocircuit {x, y, u, a, b} and a triangle {d, x, y} for some
d ∈ {a, b}.

Proof. It follows from Proposition 4.1 that M ′ has either a confining set
or a strengthened basis B. If M ′ has a confining set, then (i) holds by
Proposition 4.16. Assume that M ′ has a strengthened basis B and that
(i) does not hold, so |E(M)| ≥ |E(N)| + 10 and M ′ has no confining sets.
We may assume that the strengthened basis B is chosen to be bolstered.
If M ′ has no (N,B)-robust elements outside of {x, y}, then (ii)(a) holds by
Lemma 6.6. We shall therefore assume M ′ has an (N,B)-robust element
outside of {x, y}.

We distinguish two cases. First, suppose that all (N,B)-robust elements
of M ′ outside of {x, y} are (N,B)-strong. Then M ′ has exactly one (N,B)-
strong element u, and {u, x, y} is a triad of M ′ by Proposition 4.1. Since M ′

has no confining sets, Lemma 3.2 implies that M ′\u is 3-connected up to
series pairs; in particular, the triad {u, x, y} is coclosed. If M ′ is N -fragile,
then (ii)(a) holds. Suppose then that M ′ is not N -fragile. Since N -flexible
elements are (N,B)-robust, it follows that the N -flexible elements of M ′ are
contained in {u, x, y}. To show that (ii)(b)(I) holds, it remains to prove that
{d, x, y} is a triangle of M for some d ∈ {a, b}, the unique triad in M\a, b
containing u is {u, x, y}, and {x, y, u, a, b} is a cocircuit of M ′. Since M ′\u
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is 3-connected up to series pairs, the former follows from Lemma 3.4. We
return to the latter two claims momentarily.

Second, suppose that some (N,B)-robust element of M ′ outside of {x, y}
is not (N,B)-strong. Since |E(M)| ≥ |E(N)| + 10, Lemma 6.5 implies
that u is (N,B)-strong, and either M ′ has a maximal type-II fan (z, u, x, y)
relative to B, or M ′ has a maximal fan (w, z, x, u, y) such that z ∈ B and
w ∈ B∗ , where {u, x, y, z} or {u, x, y, z, w}, respectively, contains all of the
(N,B)-robust elements of M ′. Hence M ′ is not N -fragile, and {u, x, y, z},
or {u, x, y, z, w}, contains all of the N -flexible elements of M ′. Lemma 3.4
implies that {d, x, y} is a triangle of M for some d ∈ {a, b}.

Now, in either of the two cases, M ′ has an (N,B)-strong element u.

6.7.1. {x, y, u, a, b} is a cocircuit of M .

Subproof. We claim that there is some q ∈ B∗ − {a, b, u} such that at most
one of Axq and Ayq is zero. First suppose there are distinct elements p, p′ ∈
B − {x, y} that are N -deletable but not (N,B)-robust. As {p, a, b} is not a
triad of M since M\a, b is 3-connected, we can choose q ∈ B∗−{a, b, u} such
that the entry Apq is non-zero. If p′ ∈ cl∗({q, u, a, b}), then {u, q, p′} is a triad
of M ′, and as u is N -deletable in M ′, it follows that p′ is N -contractible; a
contradiction. So there is some q′ ∈ B∗ − {a, b, u, q} such that Ap′q′ is non-
zero. If both p and p′ are (N,B4{p, q, p′, q′})-strong, then this contradicts
Proposition 3.7. So we may assume that p is not (N,B4{p, q})-strong. Now,
if Axq = 0 and Ayq = 0, then the pivot on Apq is allowable, in which case
B4{p, q} is a basis, and there are more (N,B4{p, q})-robust elements than
(N,B)-robust elements in M ′, contradicting the fact that B is bolstered.

Now suppose no such p, p′ exist. By orthogonality, {x, y} is not contained
in a 4-element segment of M ′, so there is at most one element in B∗ that
is in a triangle of M ′ with {x, y}. As |E(M)| ≥ |E(N)| + 10, there are
distinct elements q, q′ ∈ B∗−{a, b, u} that areN -contractible but not (N,B)-
robust, neither of which is contained in a triangle with {x, y}. We can
choose p, p′ ∈ B − {x, y} so that the entries Apq and Ap′q′ are non-zero,
since {q, x, y} is not a triangle. Moreover, we can choose p′ 6= p unless both
{p, x, y, q} and {p, x, y, q′} contain circuits. But then, by circuit elimination
and orthogonality with the triad {x, y, u} of M ′, it follows that {p, q, q′} is a
triangle, and since q is N -contractible, q′ is N -deletable; a contradiction. So
we choose p′ 6= p. If both p and p′ are (N,B4{p, q, p′, q′})-strong, then this
contradicts Proposition 3.7. So we may assume that p is not (N,B4{p, q})-
strong. As before, if Axq = 0 and Ayq = 0, then the pivot on Apq is
allowable, and there are more (N,B4{p, q})-robust elements than (N,B)-
robust elements in M ′, contradicting the fact that B is bolstered.

Now we may assume, up to swapping x and y, that Ayq 6= 0. As a pivot on
Ayq is allowable, Ayq is a companion P-matrix where {x, q, a, b} incriminates
(M,Ayq). If {b, u, x, y} is a cocircuit of M , then (Ayq)xa = 0 because {b, y, u}
cospans x, contradicting that the bad submatrix Ayq[{x, q, a, b}] has no zero
entries. So {b, u, x, y}, and similarly {a, u, x, y}, are not cocircuits of M .
Therefore {x, y, u, a, b} is a cocircuit of M . �

6.7.2. {x, y} is the only series pair of M ′\u.
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Subproof. Suppose {p, q} is a series pair of M ′\u that is distinct from {x, y}.
Since {u, x, y} is a coclosed triad of M ′, the pairs {x, y} and {p, q} are not
contained in the same series class of M ′\u; in particular, they are disjoint.
As {u, p, q} is a triad of M ′ and u is an N -deletable element in B∗, both p
and q are N -contractible in M ′, and at least one of p and q is in B−{x, y}.
So p, say, is an (N,B)-robust element in B − {x, y}. Since {u, p, q} is a
triad of M ′, for some q ∈ E(M ′) − {u, p, x, y}, it now follows that we are
in the case where (ii)(b)(III) holds. Now M ′ has a 5-element fan F with
ordering (w, p, x, u, y), where q /∈ F and q is N -contractible. Since q is not
(N,B)-robust, q ∈ B∗. Moreover, as {y, w, q} ⊆ cl∗M ′({u, x, p}) − {u, x, p},
where {u, x, p} is 3-separating, it follows that {y, w, q} is a triad of M ′. Now
{x, y, u, p, q} is a confining set; a contradiction. �

Finally, either (I), (II), or (III) of (ii)(b) holds, by 6.7.1 and 6.7.2. �

7. Spike-like 3-separators

Suppose that M is an excluded minor for the class of P-representable
matroids, for some partial field P, with a minor N where N is a 3-connected
strong P-stabilizer. By Theorem 2.29, if M has no spike-like 3-separator,
then, after replacingM by a ∆-Y -equivalent matroid, and possibly dualising,
we obtain a matroid with a deletion pair with respect to N or N∗. In this
section, we show that in the case that M has a spike-like 3-separator, |E(M)|
is bounded relative to |E(N)|.

We require the following lemma which shows, in particular, that an el-
ement that is in a quad but not in a triangle (or, dually, a triad) can be
contracted (or deleted, respectively) without destroying 3-connectivity.

Lemma 7.1 ([23, Lemma 3.8]). Let C∗ be a rank-3 cocircuit of a 3-connected
matroid M . If x ∈ C∗ has the property that clM (C∗)−x contains a triangle
of M/x, then si(M/x) is 3-connected.

Lemma 7.2. Let P be a partial field, let N be a non-binary 3-connected
strong stabilizer for the class of P-representable matroids, and let M be an
excluded minor for the class of P-representable matroids, where M has an
N -minor. If M has a spike-like 3-separator P such that at most one element
of E(M)− E(N) is not in P , then |E(M)| ≤ |E(N)|+ 5.

Proof. Towards a contradiction, suppose that |E(M)| ≥ |E(N)|+ 6. By the
definition of a spike-like 3-separator, there is a partition {L1, . . . , Lt} of P
such that |Li| = 2 for each i ∈ {1, . . . , t}, and Li∪Lj is a quad for all distinct
i, j ∈ {1, . . . , t}, where t ≥ 3. Since at most one element of E(M) − E(N)
is not in P , we have |P − E(N)| ≥ 5.

Up to possibly replacing (M,N) with (M∗, N∗), there are distinct ele-
ments a, b ∈ P such that {a, b} is N -deletable, a ∈ Li, and b ∈ Lj , with
i 6= j. It follows from orthogonality, and the fact that i 6= j and t ≥ 3, that if
{a, b} is contained in a triad, then this triad meets Li′ for each i′ ∈ {1, . . . , t}.
But then t = 3 and r∗(P ) = 3, implying λ(P ) = 1; a contradiction. Thus,
by the dual of Lemma 7.1, M\a and M\b are 3-connected, and M\a, b is
3-connected up to series classes. Thus {a, b} is a weak deletion pair. By
Theorems 2.18 and 2.20, there exists a B ×B∗ companion P-matrix A with
{x, y} ⊆ B and {a, b} ⊆ B∗ such that {x, y, a, b} incriminates (M,A).
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Since Li ∪ Lj is a cocircuit, there is some u ∈ (Li ∪ Lj) ∩ B. As u is
in a series pair of M\a, b, the element u is N -contractible in M\a, b, and
M\a, b/u is 3-connected up to series classes. Without loss of generality,
we may assume that u ∈ Li. By the definition of a spike-like 3-separator,
Li = {a, u} is not contained in a triangle. Thus, if u is in a triangle, then,
by orthogonality with the cocircuits Li ∪ Lj′ for j′ ∈ {1, . . . , t} − i, this
triangle meets each Lj′ . But then t = 3 and r(P ) = 3, implying λ(P ) = 1;
a contradiction. So M/u is 3-connected by Lemma 7.1. It now follows
that co(M\a/u) and co(M\b/u) are 3-connected. In particular, M\a/u and
M\b/u are N -stable, and M\a, b/u is connected. Thus, by Lemma 2.24,
M/u is not strongly P-stabilized by N . But, as M/u is 3-connected, and
hence N -stable, this contradicts Lemma 2.21. �

The following is a consequence of Lemma 7.2 and Theorem 2.29.

Corollary 7.3. Let P be a partial field, let M be an excluded minor for the
class of P-representable matroids, and let N be a non-binary 3-connected
strong stabilizer for the class of P-representable matroids, where M has an
N -minor. Suppose that |E(M)| ≥ |E(N)| + 10. Then, there exists a ma-
troid M0, where M0 is obtained from M by at most one ∆-Y or Y -∆ ex-
change, and (M1, N1) ∈ {(M0, N), (M∗0 , N

∗)} such that M1 has a pair of
elements {a, b} for which M1\a, b is 3-connected and has an N1-minor.

8. Proof of Theorem 2.31

Let M be an excluded minor for the class of P-representable matroids,
for some partial field P, and let N be a non-binary 3-connected strong P-
stabilizer for the class of P-representable matroids.

In this section we prove Theorem 2.31. We first address a few more cases
where we can bound |E(M)| relative to |E(N)|.

Lemma 8.1. Suppose M has a pair of elements {a, b} such that M\a, b is
3-connected with an N -minor. If (ii)(b) of Theorem 6.7 holds, and {a, b} ⊆
clM ({x, y}), then |E(M)| ≤ |E(N)|+ 8.

Proof. Suppose that (ii)(b) of Theorem 6.7 holds, and {a, b} ⊆ clM ({x, y}),
but |E(M)| ≥ |E(N)| + 9. Now B is a bolstered basis, and u ∈ B∗ is an
(N,B)-strong element. Since |E(M)| ≥ |E(N)| + 9, there is at least one
element in E(M ′)− {x, y} that is N -deletable or N -contractible in M ′ but
not (N,B)-robust, and, by Lemma 6.5, we may assume that either (ii)(b)(II)
or (ii)(b)(III) of Theorem 6.7 holds, z ∈ B is N -flexible, and at most one
element in B∗ − {u, a, b} is (N,B)-robust.

Suppose that p ∈ E(M ′) − {x, y} is N -deletable but not (N,B)-robust.
Then p ∈ B − {x, y, z}. Now Apa = Apb = 0 because {a, b} ⊆ clM ({x, y}).
Similarly, Aza = Azb = 0. We claim that there are distinct elements q, q′ ∈
B∗ − {a, b} that are not (N,B)-robust and Apq 6= 0 and Azq′ 6= 0. First
consider the case where no element in B∗−{u, a, b} is (N,B)-robust. Then
there is some q ∈ B∗ − {u, a, b} such that Apq 6= 0, because M ′ has no
coloops or series pairs. Similarly, there is some q′ ∈ B∗ − {u, a, b} such
that Azq′ 6= 0. Suppose q = q′. Then {p, z, q, u} is a cosegment. Since
M ′\u has an N -minor, and p is in a series pair in this matroid, it follows
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that p is N -contractible; a contradiction. So q 6= q′. Now consider the case
where there is an element w ∈ B∗ − {u, a, b} that is (N,B)-robust. Then
(w, z, x, u, y) is a 5-element fan, and it follows that {u,w} is not contained
in a triad. Hence, as in the other case, it follows that there are distinct
elements q, q′ ∈ B∗ − {u,w, a, b} such that Apq 6= 0 and Azq′ 6= 0, where q
and q′ are not (N,B)-robust. Now, in either case, pivots on Apq and Azq′ are
allowable. As z is N -flexible, it follows from Lemma 2.11 that both u and z
are (N,B4{p, q, z, q′})-strong. By Proposition 3.7, we have that co(M\p)
is not 3-connected. Now B4{p, q} is a basis of M ′ for which there are more
(N,B4{p, q})-robust elements than (N,B)-robust elements, contradicting
that B is a bolstered basis.

We may now assume that there is an element q that is N -contractible but
not (N,B)-robust in M ′, so q ∈ B∗. Since x is in a triad with the (N,B)-
strong element u, it follows that x is N -contractible in M ′. If q ∈ cl({x, y}),
then, since {q, y} is a parallel pair in M ′/x, it follows that q is N -deletable,
and hence (N,B)-robust, in M ′; a contradiction. Thus q /∈ cl({x, y}). More-
over, it follows from Lemmas 6.3 and 6.5 that q /∈ cl({x, y, z}). So Apq 6= 0
for some element p ∈ B − {x, y} that is not (N,B)-robust. Now a pivot on
Apq is allowable, and B′ = B4{p, q} is a basis for M ′. Note that neither p
nor q is (N,B′)-strong: q is not (N,B′)-strong by Lemma 3.1, and p is not
N -deletable by the previous paragraph. So the number of (N,B′)-robust but
not (N,B′)-strong elements is greater than the number of (N,B)-robust but
not (N,B)-strong elements, contradicting that B is a bolstered basis. �

Lemma 8.2. Suppose M has a pair of elements {a, b} such that M\a, b is
3-connected with an N -minor. Suppose (ii)(b) of Theorem 6.7 holds, and
there is some p ∈ (B−{x, y})∩cl({u, x, y}) such that {a, b} ⊆ clM ({p, x, y}).
Then |E(M)| ≤ |E(N)|+ 8.

Proof. Let R be the set consisting of {p, x, y, a, b} and the (N,B)-robust
elements of M ′ outside of {x, y}. Then |R| ≤ 8. Towards a contradiction,
suppose that |E(M)| ≥ |E(N)| + 9. Then M has at least one element
outside of R that is either N -deletable or N -contractible, but not (N,B)-
robust. By Lemma 6.5, we may assume that either (ii)(b)(II) or (ii)(b)(III)
of Theorem 6.7 holds, and the element z ∈ B is N -flexible.

Suppose first that there is some p′ ∈ B − {x, y, p} that is N -deletable.
Then there is an element q ∈ B∗ − R such that Ap′q 6= 0, because M ′ is
3-connected and, in the case that Theorem 6.7(ii)(b)(III) holds, {z, w, u} is
not a triad. Since {a, b} ⊆ clM ({p, x, y}), it follows that Ap′a = Ap′b = 0,
so a pivot on Ap′q is allowable. But, with B′ = B4{p′, q}, there are more
(N,B′)-robust elements than there are (N,B)-robust elements. Moreover,
using the same argument as in the proof of Lemma 8.1, neither p′ nor q is
(N,B′)-strong. This contradicts that B is bolstered.

So we may assume that no p′ ∈ B − {x, y, p} is N -deletable. Thus M ′

has an element q ∈ B∗ − R that is N -contractible but not N -deletable.
Suppose that q ∈ cl({x, y, p}). Then, as {u, x, y} is a triad of M ′, it follows
that ({q, u, x, y}, p, E(M ′) − {p, q, u, x, y}) is a vertical 3-separation of M ′.
But then q is N -deletable by Lemma 2.15(ii); a contradiction. So q /∈
cl({x, y, p}), thus there is some p′ ∈ B − {x, y, p} such that Ap′q 6= 0. Now
Ap′a = Ap′b = 0, hence a pivot on Ap′q is allowable. Let B′ = B4{p′, q},
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and observe that q is not (N,B′)-strong by Lemma 3.1, and p′ is not (N,B′)-
strong since it is not N -deletable. So there are more (N,B′)-robust elements
than there are (N,B)-robust elements, contradicting that B is bolstered. �

We also use the following, which is proved in [3].

Lemma 8.3 ([3, Lemma 3.1]). Let M0 be a 3-connected matroid with
r(M0) ≥ 4. Suppose that C∗ is a rank-3 cocircuit of M0. If there exists
some x ∈ C∗ such that x ∈ cl(C∗ − x), then co(M0\x) is 3-connected.

We now prove our second main result, Theorem 2.31. We restate it here
with the added observation that the distinguished basis in outcome (iii) is
bolstered.

Theorem 8.4. Let M be an excluded minor for the class of P-representable
matroids, and let N be a non-binary 3-connected strong P-stabilizer, where
M has an N -minor. For some M1 that is ∆-Y -equivalent to M , and some
(M0, N0) in {(M1, N), (M∗1 , N

∗)}, the matroid M0 is an excluded minor with
an N0-minor, and at least one of the following holds:

(i) |E(M0)| ≤ |E(N0)|+ 9;
(ii) r(M0) ≤ r(N0) + 7; or

(iii) there is a pair {a, b} ⊆ E(M) such that M0\a, b is 3-connected with
an N0-minor, and M0\a, b is N0-fragile. Moreover, there is some
bolstered basis B for M0 and a B × B∗ companion P-matrix A for
which {x, y, a, b} incriminates (M,A), where {x, y} ⊆ B, {a, b} ⊆
B∗, and both of the following hold:
(a) M0\a, b has at most one (N0, B)-robust element outside of
{x, y}, and

(b) if u is an (N0, B)-robust element of M0\a, b, then u ∈ B∗ −
{a, b}, the element u is (N0, B)-strong in M0\a, b, and {u, x, y}
is a triad of M0\a, b.

Proof. Suppose that neither (i) nor (ii) holds; in particular, |E(M)| ≥
|E(N)| + 10 and r∗(M) ≥ r∗(N) + 8. By Corollary 7.3, there exists a
matroid M0, where M0 is obtained from M by at most one ∆-Y or Y -∆
exchange, and (M1, N1) ∈ {(M0, N), (M∗0 , N

∗)} such that M1 has a pair of
elements {a, b} for which M1\a, b is 3-connected and has an N1-minor. By
Proposition 2.28, M1 is an excluded minor for the class of P-representable
matroids. We relabel (M1, N1) as (M,N) and apply Theorem 6.7. If (ii)(a)
of Theorem 6.7 holds, then (iii) holds. We may therefore assume that (ii)(b)
of Theorem 6.7 holds. Without loss of generality, we may assume that
{b, x, y} is a triangle of M .

Note that M ′ = M\a, b has an element u ∈ B∗ that is (N,B)-strong,
where {u, x, y} is a triad.

8.4.1. The element u is N -contractible in M ′.

Subproof. As M ′ is not N -fragile, M ′ has at least one N -flexible element.
If x is N -deletable, then, as u is in a series pair of M ′\x, the element u
is N -contractible. Similarly, if y is N -deletable, then u is N -contractible.
Thus, if the N -flexible elements of M ′ are contained in the triad {u, x, y},
then, since M ′ has at least one N -flexible element, it follows that u is N -
contractible in M ′. Next, suppose that (z, u, x, y) is a fan of M ′, and z is
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N -flexible. As x is in a parallel pair of M ′/z, the element x is N -deletable,
so u is N -contractible. Finally, we may assume that (w, z, x, u, y) is a fan of
M ′, and w is N -flexible. As z is in a series pair of M ′\w, the element z is N -
contractible, and it follows that x is N -deletable, so u is N -contractible. �

Next, we show that, up to duality and replacing M by a ∆-Y -equivalent
matroid, there is some deletion pair that is contained in a triangle. This
triangle will provide additional leverage in later orthogonality arguments.

8.4.2. For some M2 ∈ {M,∇T (M∗)}, where T = {b, x, y}, there is a pair
{a′, b′} ⊆ E(M2) such that M2\a′, b′ is 3-connected with an N -minor, and
{a′, b′} is contained in a triangle of M2.

Subproof. We first consider the case where {a, u} is contained in a triangle
with either x or y. If (ii)(b)(II) or (ii)(b)(III) of Theorem 6.7 holds, then
z ∈ (B − {x, y}) ∩ cl({u, x, y}), and {a, b} ⊆ clM ({x, y, z}), so |E(M)| ≤
|E(N)|+7 by Lemma 8.2; a contradiction. So we may assume that (ii)(b)(I)
of Theorem 6.7 holds. Now we have symmetry between x and y, so we may
assume that {a, u, x} is a triangle.

We claim that {b, x} is a deletion pair with the desired properties. Clearly
M\b is 3-connected and has an N -minor. By 8.4.1, u is N -contractible in
M\b. But {a, x} is a parallel pair in M\b/u, so M\b, x/u, and hence M\b, x,
has an N -minor. As {a, u, x, y} is a rank-3 cocircuit of M\b, the matroid
co(M\b, x) is 3-connected by Lemma 8.3. Thus, if M\b, x is not 3-connected,
then there is a triad T ∗ of M\b that contains x. By orthogonality with the
triangle {a, u, x}, the triad T ∗ meets {a, u}. But a /∈ T ∗ because M\a, b is
3-connected. Thus T ∗ contains {x, u}. But since M\a, b is 3-connected, T ∗

is also a triad of M\a, b, so T ∗ ∪ y is a 4-element cosegment of M\a, b. Let
T ∗ − {x, u} = {q}. Now q ∈ B∗, since q is N -contractible but not (N,B)-
robust. But then T ∗ ∪ y is a confining set, so Proposition 4.16 implies that
|E(M)| ≤ |E(N)|+ 9; a contradiction. Thus M\b, x is 3-connected with an
N -minor, and {b, x} is contained in a triangle of M .

We may now assume that neither {a, u, x} nor {a, u, y} is a triangle of
M . Suppose that (ii)(b)(II) or (ii)(b)(III) of Theorem 6.7 holds. Consider
the matroid ∆T (M) obtained by a ∆-Y exchange on T = {b, x, y}. Observe
that ∆T (M)/b ∼= M\b, where the labels on x and y are swapped. Thus,
if ∆T (M)/b, x ∼= M\b/y is 3-connected with an N -minor, then {b, x} is
a deletion pair of ∇T (M∗) with the desired properties. Since y is a rim
end of a maximal fan in M\a, b, the matroid M\a, b/y is 3-connected by
[15, Lemma 1.5]. Moreover, as M\a, b, u has an N -minor, and y is in a series
pair in this matroid, M\b/y, has an N -minor. If M\b/y is 3-connected, then
{b, x} is a deletion pair of ∇T (M∗) as desired.

So we may assume that M\b/y is not 3-connected; then a is in a parallel
pair of M\b/y. Since M\b is 3-connected, {a, y, q′} is a triangle of M\b
for some q′ ∈ E(M) − {a, y, u}. Note also that q′ 6= x, by Lemma 8.1.
If q′ ∈ B, then {a, b} ⊆ clM ({q′, x, y}), so (i) holds by Lemma 8.2; a
contradiction. So q′ ∈ B∗. Moreover, q′ is N -deletable because x is N -
contractible in M\b and q′ is in a parallel pair of M\b/x. So q′ is (N,B)-
robust, implying that (ii)(b)(III) holds and (q′, z, x, u, y) is a maximal fan in
M\a, b. We will show that M\a, y is 3-connected with an N -minor. Since
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{x, y, b} is a triangle and {x, y, u, b} is a rank-3 cocircuit of M\a, the ma-
troid co(M\a, y) is 3-connected by Lemma 8.3. Suppose y is in a triad T ∗

of M\a. By orthogonality, T ∗ meets {x, b}. But b /∈ T ∗, since M\a, b is 3-
connected, so x ∈ T ∗. Now, by orthogonality with the triangle {u, x, z}, ei-
ther T ∗ = {y, x, u} or T ∗ = {y, x, z}. Since {x, y, u, b} is a cocircuit of M\a,
we deduce T ∗ = {y, x, z}. But then {q′, z, x, y} is a cosegment of M\a, b,
contradicting orthogonality with the triangle {z, x, u}. Hence M\a, y is 3-
connected. Since M\a/x has an N -minor, and {b, y} is a parallel pair in
this matroid, M\a, y has an N -minor. So {a, y} is a deletion pair of M that
meets the requirements.

We may now assume that (ii)(b)(I) of Theorem 6.7 holds. Again, consider
the matroid ∆T (M), where T = {b, x, y}. We claim that either ∆T (M)/b, x
or ∆T (M)/b, y is 3-connected with an N -minor, so either {b, x} or {b, y}
is a deletion pair of ∇T (M∗) with the desired properties. Observe that
∆T (M)/b ∼= M\b, so ∆T (M)/b is 3-connected and has an N -minor. Now
∆T (M)/b, x ∼= M\b/y and ∆T (M)/b, y ∼= M\b/x. Since u is N -deletable in
M ′, the elements x and y are N -contractible, so M\b/x and M\b/y have
N -minors. Thus ∆T (M)/b, x and ∆T (M)/b, y have N -minors.

Suppose that si(M\b/x) is not 3-connected. Then there is a vertical 3-
separation (P, x,Q) of M\b. Recall that {x, y} is the only series pair of
M ′\u. Now, as co(M ′\u) = M\b/x\a, u is 3-connected, it follows that
Q = {a, u, q} for some q ∈ E(M ′)− {u, x}, up to swapping P and Q. Since
Q is 3-separating and r(Q) ≥ 3, the set Q is a triad of M\b. But then
{u, q} is a series pair in M\a, b; a contradiction. Thus M\b/x, and hence
∆T (M)/b, x, is 3-connected up to parallel pairs. The same argument shows
that ∆T (M)/b, y is 3-connected up to parallel pairs.

Now, if ∆T (M)/b, x or ∆T (M)/b, y is 3-connected, then 8.4.2 holds. Thus
we may assume that x and y are in triangles Tx and Ty of M\b. If {a, x, y}
is a triangle, then |E(M)| ≤ |E(N)| + 8 by Lemma 8.1; a contradiction.
Suppose that {p, x, y} is a triangle of M ′ for some p ∈ E(M ′)−{x, y}. Then
p is not (N,B)-robust. Since u is N -deletable in M ′, it follows that x is N -
contractible in M ′. Since {p, y} is a parallel pair of M ′/x, the element p is
N -deletable in M ′. Moreover, p ∈ B∗, since {x, y} ⊆ B and {p, x, y} is a tri-
angle of M ′. Therefore p is an (N,B)-robust element of M ′; a contradiction.
We deduce that {x, y} is not contained in a triangle of M\b.

By orthogonality, Tx meets {a, y, u}, and Ty meets {a, x, u}. So either
Tx = {x, a, q} or Tx = {x, u, q} for some q ∈ E(M ′) − {u, x, y}. Now q is
N -deletable because x is N -contractible in M\b and q is in a parallel pair
of M\b/x. But q is not (N,B)-robust, since q /∈ {u, x, y}, so q ∈ B. If
Tx = {x, a, q}, then, as q ∈ B − {x, y}, we have {a, b} ⊆ clM ({q, x, y}), and
so (i) holds by Lemma 8.2; a contradiction. So Tx = {x, u, q}. Likewise,
arguing with y in the place of x, we deduce that Ty = {y, u, q′} for some
q′ ∈ E(M ′)− {u, x, y} where q′ is N -deletable.

Now Tx = {x, u, q} and Ty = {y, u, q′} for some N -deletable elements
q, q′ ∈ E(M ′)− {u, x, y}. Moreover, q 6= q′, since {x, y, u} is not a triangle.
Since {q, q′, u, x, y} is a rank-3 set, and {x, y} ⊆ B, at most one of q and q′

is in B. Without loss of generality, say q ∈ B∗. Then q is (N,B)-robust; a
contradiction. �
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Let M2 and {a′, b′} be as given in 8.4.2. We again apply Theorem 6.7, this
time on the matroid M2 with minor N and deletion pair {a′, b′}; we may
assume that (ii)(b) holds. We relabel M2 as M and {a′, b′} as {a, b}. Now
M ′ = M\a, b has an (N,B)-strong element u ∈ B∗, there is a 5-element
cocircuit {x, y, u, a, b} of M , and the only (N,B)-robust elements of M ′

are contained in a set R where {u, x, y} ⊆ R, and R is either a triad, a
maximal type-II fan (z, u, x, y) relative to B, or a maximal 5-element fan
(w, z, x, u, y). Up to switching the labels on a and b, we may assume that
{b, x, y} is a triangle of M .

Additionally, now {a, b} is contained in a triangle of M ; let {a, b, p} be this
triangle. Note that if p ∈ {x, y}, then {a, b} ⊆ clM ({x, y}), contradicting
Lemma 8.1. So p /∈ {x, y}.
8.4.3. Let q be an N -deletable element of M ′ such that q /∈ cl∗M ′(R ∪ p).
Either

(I) M\b, q is 3-connected with an N -minor, or
(II) there exists t ∈ E(M ′) − q such that t /∈ cl∗M ′(R ∪ p), the matroid

M\b, t is 3-connected with an N -minor, t ∈ B∗, and, for some s ∈
{x, y}, the matroid M\b has a triangle T = {s, t, a} and a 4-element
cocircuit T ∪ q.

Subproof. Note that q ∈ B, since q /∈ R and q is N -deletable in M ′.
Suppose that co(M\b, q) is 3-connected, but M\b, q is not 3-connected.

Then M\b has a triad {q, s, t}. Hence either {q, s, t} or {b, q, s, t} is a co-
circuit of M . Since M ′ is 3-connected, it follows that a /∈ {q, s, t} and that
{q, s, t} is a triad of M ′. As q is N -deletable in M ′, the elements s and t
are N -contractible in M ′. We claim that (R−{x, y})∩{s, t} = ∅. To begin
with, u /∈ {s, t} since {x, y} is the only series pair of M ′\u. If R is a max-
imal type-II fan (z, u, x, y) of M ′, then z /∈ {s, t} since the fan is maximal.
Finally, if R is a 5-element fan (w, z, x, u, y) of M ′ with w ∈ {s, t}, then w
is N -deletable, implying q is N -contractible and hence N -flexible in M ′; a
contradiction. Thus, as s and t are N -contractible but not in R − {x, y},
either {s, t} ⊆ B∗ − {a, b, u}, or {s, t} meets {x, y}.

Suppose that {s, t} ⊆ B∗ − {a, b, u}. If {b, q, s, t} is a cocircuit of M ,
then it intersects the triangle {b, x, y} in a single element; a contradiction
to orthogonality. So {q, s, t} is a triad of M . Now Aqa = Aqb = 0, so
a pivot on Aqs or Aqt is allowable. If {s, t} is contained in a triangle of
M ′, then, as s and t are N -contractible, it follows that t and s are N -
flexible; a contradiction. So by Tutte’s Triangle Lemma [21] (see also [12,
Lemma 8.7.7]), either si(M ′/s) or si(M ′/t) is 3-connected. Hence, after an
allowable pivot on Aqs or Aqt, we obtain a contradiction to Lemma 3.1.

Therefore {s, t} meets {x, y}. If {s, t} = {x, y}, then q ∈ cl∗M ′({x, y}); a
contradiction. So we may assume that s ∈ {x, y} and t /∈ {x, y}. If {q, s, t}
is a triad of M , then this triad intersects {b, x, y} in a single element; a
contradiction. On the other hand, if {q, s, t, b} is a cocircuit of M , then
by orthogonality with the triangle {a, b, p}, we have t = p, in which case
q ∈ cl∗M ′({x, y, p}); a contradiction.

We may now assume that co(M\b, q) is not 3-connected. We first show
co(M\a, b, q) is 3-connected. Suppose not. Then there is a cyclic 3-
separation (X, q, Y ) of M ′ such that |X∩E(N)| ≤ 1 and Y ∪q is coclosed in
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M ′. By the dual of Lemma 2.15, at most one element of X is not N -flexible
in M ′, and if such an element v exists, then q ∈ cl∗M ′(X−v). But X−v ⊆ R,
so q ∈ cl∗M ′(R); a contradiction. So co(M\a, b, q) is 3-connected.

Since co(M\b, q) is not 3-connected, there is a cyclic 3-separation (P, q,Q)
of M\b with a ∈ Q. Since co(M\a, b, q) is 3-connected, (P,Q − a) is not
a cyclic 2-separation of M\a, b, q, so Q − a is a series class of M\a, b, q.
Hence (Q − a) ∪ q is a cosegment of M ′. Suppose that |Q − a| ≥ 3. Then
Q − a meets B, and, since q is N -deletable in M ′, the elements of Q − a
are N -contractible. By the dual of Lemma 2.2, the elements of (Q− a)∩B
are (N,B)-strong, so Lemma 3.1 implies that (Q − a) ∩ B ⊆ {x, y}. Since
q is not cospanned by {x, y} in M ′, we have |(Q − a) ∩ B| = 1, and thus
|Q − a| = 3. But then {x, y, u} ∪ (Q − a) is a corank-3 confining set of
M\a, b, contradicting Proposition 4.16. Therefore |Q− a| = 2. Since Q is a
3-separating set of M\b that contains a circuit, Q = {s, t, a} is a triangle.

Since M ′ is 3-connected, either {q, s, t} or {q, s, t, a} is a cocircuit of M\b.
By orthogonality between the triangle {s, t, a} and the cocircuit {x, y, u, a}
of M\b, we have that {x, y, u} meets {s, t}. Moreover, u /∈ {s, t} because the
only triad containing u in M ′ is {u, x, y}. Thus {x, y} meets {s, t}. How-
ever, {x, y} 6= {s, t}, otherwise {x, y} spans {a, b}, contradicting Lemma 8.1.
Without loss of generality, let s ∈ {x, y} and t /∈ {x, y}.

Suppose {q, s, t} is a triad of M\b. If {q, s, t} is a triad of M , then, by
orthogonality with the triangle {b, x, y}, we have t ∈ {x, y}; a contradiction.
On the other hand, if {q, s, t, b} is a triad of M , then, by orthogonality,
the triangle {a, b, p} meets {s, t}. But then p = t, so q ∈ cl∗M ′({x, y, p}); a
contradiction. So {q, s, t, a} is a cocircuit of M\b.

We claim that t satisfies (II). Recall s ∈ {x, y}, and pick s′ such that
{s, s′} = {x, y}. Since s is N -contractible in M\b and {a, t} is a parallel
pair of M\b/s, it follows that M\b, t has an N -minor. If t ∈ cl∗M ′(R ∪ p),
then q ∈ cl∗M ′(R ∪ p), since s ∈ R. Thus t /∈ cl∗M ′(R ∪ p). Now, t is N -
contractible in M ′, since t is in a series pair in M ′\q. Thus, if t ∈ B, then t
is (N,B)-robust, and q ∈ cl∗M ′(R); a contradiction. So t ∈ B∗.

It remains to prove that M\b, t is 3-connected. Since {q, s, t, a} is a rank-3
cocircuit in M\b, the matroid co(M\b, t) is 3-connected by Lemma 8.3.
Suppose M\b, t is not 3-connected. Then t is in a triad T ∗ of M\b. By
orthogonality with the triangle {s, t, a}, the triad T ∗ meets {s, a}. But
a /∈ T ∗ because M\a, b is 3-connected. Thus {s, t} ⊆ T ∗. If p ∈ T ∗, then
t ∈ cl∗M\b({s, p}), so t ∈ cl∗M ′({x, y, p}); a contradiction. So p /∈ T ∗. Now T ∗

or T ∗ ∪ b is a cocircuit of M . But {b, x, y} is a triangle of M that meets T ∗

in a single element, so T ∗ is not a cocircuit; and {a, b, p} is a triangle of M
that meets T ∗∪ b in a single element, so T ∗∪ b is not a cocircuit. We deduce
that M\b, t is 3-connected, and 8.4.3 follows. �

8.4.4. There are distinct elements q′, q′′ ∈ E(M) such that, for q ∈ {q′, q′′},
both of the following hold:

(I) M\b, q is 3-connected with an N -minor, where q /∈ cl∗M ′(R ∪ p); and
(II) either

(a) q ∈ B, the element q is N -deletable in M\a, b, and neither
{x, u, q} nor {y, u, q} is a triangle; or
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(b) q ∈ B∗ and, for some s ∈ {x, y}, the set T = {s, q, a} is a
triangle that is contained in a 4-element cocircuit of M\b.

Subproof. Suppose R is either a 4- or 5-element fan. Then r∗M ′(R) = 3, the
set {x, u} is contained in a triangle with an element z ∈ R, and {y, u} is not
in a triangle, since R is a maximal fan. Now r∗M (R ∪ {a, b, p}) ≤ 6. Since
r∗(M) ≥ r∗(N) + 8, there are distinct N -deletable elements q′, q′′ outside of
cl∗M (R ∪ {a, b, p}), neither of which is in a triangle with {x, u} or {y, u}.

Now suppose R = {u, x, y}. Then r∗M ′(R) = 2, so r∗M (R ∪ {a, b, p}) ≤ 5.
Since r∗(M) ≥ r∗(N) + 8, there are at least three N -deletable elements out-
side of cl∗M (R ∪ {a, b, p}). Since these N -deletable elements are not (N,B)-
robust, they belong to B−{x, y}. As rM ′({x, y, u}) = 3, and {x, y} ⊆ B, at
most one of these elements is in a triangle with {x, u} or {y, u}. Thus there
exist distinct elements q′, q′′ outside of cl∗M (R ∪ {a, b, p}), neither of which
is in a triangle with {x, u} or {y, u}.

Now q′, q′′ /∈ cl∗M (R ∪ {a, b, p}) = cl∗M ′(R ∪ p). By 8.4.3, either q′ satisfies
(I) and (II)(a), or there exists an element t′ that satisfies (I) and (II)(b).
Likewise, either q′′ satisfies (I) and (II)(a), or there exists an element t′′ that
satisfies (I) and (II)(b). Suppose that neither q′ nor q′′ satisfies (II)(a), and
t′ = t′′. Then {s′, t′, a} and {s′′, t′, a} are triangles of M\b where s′, s′′ ∈
{x, y}. If {s′, s′′} = {x, y}, then {x, y, t′} is a triangle of M ′, but then
co(M ′\u) ∼= M ′\u/x is not 3-connected; a contradiction. So s′ = s′′. Now
{q′, s′, t′, a} and {q′′, s′, t′, a} are distinct cocircuits of M\b, so {q′, q′′, s′, t′}
is a cosegment of M ′. But q′ is N -deletable in M ′, implying q′′ is N -
contractible and hence (N,B)-robust; a contradiction. �

Let q′ and q′′ be elements as in 8.4.4. Suppose that {q′, q′′} ⊆ B∗. Then,
by 8.4.4(II)(b), M\b has a triangle T ′ = {s′, q′, a} that is contained in a 4-
element cocircuit C∗, and a triangle T ′′ = {s′′, q′′, a}, for some s′, s′′ ∈ {x, y}.
Observe that {x, y} * C∗, since q′ /∈ cl∗M ′({x, y}) by 8.4.4(I). Thus C∗ ∪ b is
a cocircuit of M , by orthogonality with the triangle {b, x, y}. If s′ = s′′, then
{q′, q′′, a} is a triangle that intersects the cocircuit {x, y, u, a, b} in a single
element; a contradiction. Thus we may assume that T ′ = {x, q′, a} and
T ′′ = {y, q′′, a}. By orthogonality between C∗ ∪ b and T ′′, we deduce that
q′′ ∈ C∗∪b, since y /∈ C∗. Now {x, q′, q′′} is a triad of M ′ with {q′, q′′} ⊆ B∗,
so {u, x, y, q′, q′′} is a corank-3 confining set, contradicting Proposition 4.16.

Without loss of generality, we may now assume that q′ ∈ B and q′ is N -
deletable in M ′. Towards a contradiction, assume that (iii) does not hold for
M and the deletion pair {b, q′}. Then, after applying Theorem 6.7, (ii)(b)
holds. Let A′ be the B′ × (B′)∗ companion P-matrix where {x′, y′, b, q′}
incriminates (M,A′) for {x′, y′} ⊆ B′ and {b, q′} ⊆ (B′)∗. Then M has a 5-
element cocircuit D′ = {x′, y′, u′, b, q′}, where M\b, q′ has an (N,B′)-strong
element u′ outside of {x′, y′}, and either {b, x′, y′} or {q′, x′, y′} is a triangle.

Suppose that {b, x′, y′} is a triangle of M . By orthogonality between
the cocircuit D′ of M and the triangles {b, x, y} and {a, b, p}, and us-
ing the fact that q′ /∈ {x, y, a, p}, we deduce that {x, y} and {a, p} meet
{x′, y′, u′}. If {x, y} or {a, p} intersects {x′, y′} in a single element, then
{b, x, y} or {a, b, p} is in the span of {x′, y′}, so {x′, y′} spans a 4-element
segment in M . Thus {x′, y′} spans a triangle in M\b, q′. But then
co(M\b, q′, u′) is not 3-connected by Lemma 2.11, contradicting that u′ is
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(N,B′)-strong in M\b, q′. We deduce that {x′, y′, u′} ⊆ {x, y, a, p}. But
q′ ∈ cl∗M ′({x′, y′, u′}) ⊆ cl∗M ′({x, y, p}), contradicting 8.4.4(I).

We may now assume that {q′, x′, y′} is a triangle of M . The triangles
{b, x, y} and {a, b, p} meet the cocircuit D′ in the element b. Thus, by
orthogonality, {x, y} and {a, p} meet {x′, y′, u′}. Let D = {x, y, u, a, b}, and
recall that D is a cocircuit of M .

First suppose that D ∩ {x′, y′} = ∅. Then u′ ∈ {x, y} and p /∈ D, so
p ∈ {x′, y′}. Since q′ is N -deletable in M ′, the element a is N -deletable in
M\b, q′. If a ∈ B′, then {a, b, p} is a triangle of M with a, p ∈ B′, so A′vb = 0
for v ∈ {x′, y′} − p, contradicting that the bad submatrix A′[{x′, y′, b, q′}]
has no zero entries. So a ∈ (B′)∗, hence a is (N,B′)-robust in M\b, q′. It
follows thatM\b, q′ has a 5-element fan (a, z′, x′, u′, y′) for some z′, where the
(N,B′)-robust elements of M\b, q′ are contained in {x′, y′, u′, z′, a}. Since
M\b, q′, a has an N -minor, and x′ is in a series pair in this matroid, the
element x′ is N -contractible in M\a, b. Moreover, {u′, z′} and {q′, y′} are
parallel pairs in M\a, b/x′, so M\a, b, u′, y′ has an N -minor. But {x′, q′} is
a series pair in this matroid, so q′ is also N -contractible in M\a, b. Now q′

is (N,B)-robust; a contradiction.
Now we may assume that D ∩ {x′, y′} 6= ∅. By orthogonality with the

triangle {q′, x′, y′}, we have {x′, y′} ⊆ D. If u′ ∈ D, then q′ ∈ cl∗M (D) ⊆
cl∗M ′(R); a contradiction. By orthogonality between the cocircuit D′ and
triangles {b, x, y} and {a, b, p}, one of {x′, y′} is in {x, y} and the other in
{a, p} ∩ D. By 8.4.4(II)(a), neither {x, u, q′} nor {y, u, q′} is a triangle, so
{s, a, q′} is a triangle for some s ∈ {x, y}. But {s, q′} ⊆ B, so either Axa = 0
or Aya = 0, contradicting that the bad submatrix has no zero entries. We
deduce that (iii) holds for M and the pair {b, q′}. �
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