AN ALGORITHM FOR CONSTRUCTING A k-TREE FOR A k-CONNECTED MATROID

NICK BRETTELL AND CHARLES SEMPLE
Dedicated to James Oxley on the occasion of his 60th birthday

Abstract

For a k-connected matroid M, Clark and Whittle showed there is a tree that displays, up to a natural equivalence, all non-trivial k-separations of M. In this paper, we present an algorithm for constructing such a tree, and prove that, provided the rank of any subset of $E(M)$ can be found in constant time, the algorithm runs in polynomial time in $|E(M)|$.

1. Introduction

Oxley et al. [10] showed that every 3 -connected matroid M with at least nine elements has a 3-tree: a tree decomposition that displays, up to a natural equivalence, all non-sequential 3 -separations of M. The approach taken in the proof of this result does not appear to elicit an efficient algorithm for finding such a 3 -tree. However, by taking a different approach, and thereby reproving the result, Oxley and Semple [9] presented such an algorithm. Provided the rank of a subset of $E(M)$ can be found in constant time, this algorithm finds a 3 -tree for M with running time polynomial in the size of $E(M)$.

Clark and Whittle 4 generalised the main result of [10], showing that every tangle of order k in a connectivity system that satisfies a certain "robustness" property has a tree decomposition, called a k-tree, that displays, up to equivalence, all the non-sequential k-separations of the connectivity system with respect to the tangle. In particular, this result specialises to k-connected matroids as follows:

Theorem 1.1. Let M be a k-connected matroid, where $k \geq 3$ and $|E(M)| \geq$ $8 k-15$. Then there is a k-tree T for M such that every non-sequential k separation of M is equivalent to a k-separation displayed by T.

Date: June 18, 2014.
1991 Mathematics Subject Classification. 05B35.
Key words and phrases. k-connected matroid; Tree decomposition; k-tree; k separation.

The first author was supported by a University of Canterbury Doctoral Scholarship and the second author was supported by the New Zealand Marsden Fund.

As with the case where $k=3$, although Theorem 1.1 ensures the existence of a k-tree for M, it does not guarantee the existence of a polynomial-time algorithm for finding such a tree. In this paper, we present an algorithm for finding a k-tree for M. The main result of the paper establishes that the algorithm indeed outputs a k-tree, thereby giving an independent proof of Theorem 1.1, and that it runs in time polynomial in the size of $E(M)$ provided the rank of any subset of $E(M)$ can be found in constant time. Our overall approach is similar to (9]; however, there are a number of additional hurdles to overcome when $k \geq 4$.

The paper is structured as follows. In the next section, we formally state the main result; to do so requires a review of connectivity and flowers in the setting of k-connected matroids. Section 3 contains a number of preliminary results concerning k-connectivity, k-flowers, and k-paths, where the latter are a generalisation of 3 -paths introduced in [9. Throughout the algorithm, we repeatedly attempt to find non-sequential k-separations where each side of the separation contains certain subsets; in Section 4 , we show how to find such k-separations in polynomial time. In Section 55, we discuss one key situation that arises only when $k \geq 4$. Section 6 contains a formal description of the algorithm; while in Section 7 , we prove its correctness and that it runs in polynomial time. Finally, in Section 8, we review why the condition that the ground set have at least $8 k-15$ elements is necessary, and why a polynomial-time algorithm is not forthcoming from the proof of Theorem 1.1 in (4).

The notation and terminology in the paper follows Oxley [8. Throughout, we assume that the matroid M for which we wish to construct a k-tree is specified by a rank oracle, that is, a subroutine that, given a subset $X \subseteq$ $E(M)$, returns the rank of X in unit time. A number of results in the paper are generalisations of results in [9]. When the proofs can be obtained by making routine modifications, for example, essentially just replacing each " 3 " with " k ", we have omitted the details assuming the reader has access to 9].

2. Main Result

k-connectivity. Let M be a matroid with ground set E. The connectivity function of M, denoted by λ_{M}, is defined on all subsets X of E by

$$
\lambda_{M}(X)=r(X)+r(E-X)-r(M) .
$$

A subset X or a partition $(X, E-X)$ of E is k-separating if $\lambda_{M}(X) \leq k-1$. A k-separating partition $(X, E-X)$ is a k-separation of M if $|X| \geq k$ and $|E-X| \geq k$. A k-separating set X, a k-separating partition $(X, E-X)$ or a k-separation $(X, E-X)$ is exact if $\lambda_{M}(X)=k-1$. The matroid M is k-connected if, for all $j<k$, it has no j-separations.

Let M be a k-connected matroid with ground set E, and let X be an exactly k-separating subset of E. A partial k-sequence for X is a sequence $\left(X_{i}\right)_{i=1}^{m}$ of pairwise-disjoint non-empty subsets of $E-X$ such that $\left|X_{i}\right| \leq$
$k-2$, for all $i \in\{1,2, \ldots, m\}$, and $X \cup\left(\bigcup_{i=1}^{j} X_{i}\right)$ is k-separating, for all $j \in\{1,2, \ldots, m\}$. A partial k-sequence $\left(X_{i}\right)_{i=1}^{m}$ for X is maximal if, for every partial k-sequence $\left(X_{i}^{\prime}\right)_{i=1}^{m^{\prime}}$ for X, we have $\bigcup_{i=1}^{m^{\prime}} X_{i}^{\prime} \subseteq \bigcup_{i=1}^{m} X_{i}$.

Let $\left(X_{i}\right)_{i=1}^{m}$ be a maximal partial k-sequence for the exactly k-separating set X. We define the full k-closure of X, denoted $\mathrm{fcl}_{k}(X)$, to be $X \cup \bigcup_{i=1}^{m} X_{i}$. For readers familiar with [4], note that this operator is a specialisation of the $\mathrm{fcl}_{\mathcal{T}}$ operator used in that paper, where \mathcal{T} is the unique "tangle" for a k-connected matroid. The fcl_{k} operator is a well-defined closure operator on the set of exactly k-separating subsets of E [4, Lemma 3.3]. When $k=3$, the operator is equivalent to the full closure operator for 3 -connected matroids (as given in [10], for example) and, when $k=4$, it is equivalent to the full 2 span operator of [2]. It is important to note that the full k-closure operator is only well-defined on exactly k-separating sets; that is, k-separating sets with at least $k-1$ elements, but no more than $|E|-(k-1)$ elements.

An exactly k-separating set X is k-sequential if $\mathrm{fcl}_{k}(E-X)=E$; otherwise, it is not k-sequential. When there is no ambiguity, we just say that X is sequential or non-sequential, respectively. An exact k-separation (X, Y) is k-sequential if X or Y is k-sequential; otherwise, when X and Y are nonsequential, we say that (X, Y) is non-sequential. When X is k-sequential and $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ is a maximal partial k-sequence for $E-X$, we say that $\left(X_{m}, X_{m-1}, \ldots, X_{1}\right)$ is a k-sequential ordering of X.

Let $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be k-separations of M; then $\left(A_{1}, B_{1}\right)$ is k equivalent to $\left(A_{2}, B_{2}\right)$ if $\left\{\mathrm{fcl}_{k}\left(A_{1}\right), \mathrm{fcl}_{k}\left(B_{1}\right)\right\}=\left\{\operatorname{fcl}_{k}\left(A_{2}\right), \mathrm{fcl}_{k}\left(B_{2}\right)\right\}$.
k-flowers. The crossing k-separations of a k-connected matroid M are represented by the k-flowers of M.

Let M be a k-connected matroid for some $k \geq 3$ with ground set E. For $n>1$, a partition $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ of E is a k-flower with petals $P_{1}, P_{2}, \ldots, P_{n}$ if each P_{i} is exactly k-separating, and each $P_{i} \cup P_{i+1}$ is k separating, where subscripts are interpreted modulo n. We also view (E) as a k-flower with a single petal E; we call this k-flower trivial. In what follows, for a flower $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$, the subscripts will always be interpreted modulo n. A k-flower Φ displays a k-separating set X or a k-separation (X, Y) if X is a union of petals of Φ. Let Φ_{1} and Φ_{2} be k-flowers. Then $\Phi_{1} \preccurlyeq \Phi_{2}$ if every non-sequential k-separation displayed by Φ_{1} is k-equivalent to a k-separation displayed by Φ_{2}. We say that Φ_{1} and Φ_{2} are k-equivalent if $\Phi_{1} \preccurlyeq \Phi_{2}$ and $\Phi_{2} \preccurlyeq \Phi_{1}$. The order of a k-flower Φ is the minimum number of petals in a k-flower k-equivalent to Φ.

Let $\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a k-flower of M. The k-flower Φ is a k anemone if $\bigcup_{s \in S} P_{s}$ is k-separating for every subset S of $\{1,2, \ldots, n\}$; whereas Φ is a k-daisy if $P_{i} \cup P_{i+1} \cup \cdots \cup P_{i+j}$ is k-separating for all $i, j \in\{1,2, \ldots, n\}$, and no other union of petals is k-separating. Aikin and Oxley 1$]$ showed that every non-trivial k-flower is either a k-anemone or a k-daisy.

An element $e \in E$ is loose if $e \in \operatorname{fcl}_{k}\left(P_{i}\right)-P_{i}$ for some $i \in\{1,2, \ldots, n\}$, otherwise e is tight. A petal P_{i}, for some $i \in\{1,2, \ldots, n\}$, is loose if every $e \in P_{i}$ is loose; otherwise, P_{i} is tight. A flower of order at least three is tight if all its petals are tight; while a flower of order one or two is tight if it has one or two petals, respectively. A k-daisy Φ is irredundant if, for all $i \in\{1,2, \ldots, n\}$, there is a non-sequential k-separation (X, Y) displayed by Φ with $P_{i} \subseteq X$ and $P_{i+1} \subseteq Y$. A k-anemone Φ is irredundant if, for all distinct $i, j \in\{1,2, \ldots, n\}$, there is a non-sequential k-separation (X, Y) displayed by Φ with $P_{i} \subseteq X$ and $P_{j} \subseteq Y$. Note that a tight 3-flower is always irredundant, but this does not necessarily hold for tight k-flowers where $k \geq 4$ [2, Example 3.14]. As the purpose of a k-tree is to describe the non-sequential k-separations of a matroid, it is most efficient to do so using irredundant flowers.

This definition of an irredundant k-flower Φ is stronger than that given in [2] when Φ is a k-anemone. The stronger definition ensures that for a tight irredundant k-anemone Φ with n petals, the order of Φ is n. This is illustrated by considering the 4 -anemone ($P_{1}, P_{2}, P_{4}, P_{3}$) as described in [2, Example 3.14], but with the last two petals interchanged; this 4 -flower is "irredundant" as defined in [2], but $\left(P_{1}, P_{2} \cup P_{3}, P_{4}\right)$ is an equivalent 4-flower with fewer petals. Our terminology also differs from [4], where a k-flower in the unique tangle \mathcal{T} for M is called \mathcal{S}-tight, where \mathcal{S} is the set of all non-sequential k-separations of M, if no k-flower displaying the same k separations contained in \mathcal{S} has fewer petals. Thus, such an \mathcal{S}-tight k-flower must be not only tight, as defined here, but also irredundant.
k-trees. Let π be a partition of a finite set E. Let T be a tree such that every member of π labels exactly one vertex of T; some vertices may be unlabelled but no vertex is multiply labelled. We say that T is a π-labelled tree; labelled vertices are called bag vertices and members of π are called bags. If B is a bag vertex of T, then $\pi(B)$ denotes the subset of E that labels it. If the degree of B is at most one, then B is a terminal bag vertex; otherwise B is non-terminal.

Let G be a subgraph of T with components $G_{1}, G_{2}, \ldots, G_{m}$. Let X_{i} be the union of those bags that label vertices of G_{i}. Then the subsets of E displayed by G are $X_{1}, X_{2}, \ldots, X_{m}$. In particular, if $V(G)=V(T)$, then $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ is the partition of E displayed by G. Let e be an edge of T. The partition of E displayed by e is the partition displayed by $T \backslash e$. If $e=v_{1} v_{2}$ for vertices v_{1} and v_{2}, then (Y_{1}, Y_{2}) is the (ordered) partition of $E(M)$ displayed by $v_{1} v_{2}$ if Y_{1} is the union of the bags in the component of $T \backslash v_{1} v_{2}$ containing v_{1}. Let v be a vertex of T that is not a bag vertex. The partition of E displayed by v is the partition displayed by $T-v$. The edges incident with v correspond to the components of $T-v$, and hence to the members of the partition displayed by v. In what follows, if a cyclic ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is imposed on the edges incident with v, this cyclic ordering
is taken to represent the corresponding cyclic ordering on the members of the partition displayed by v.

Let M be a k-connected matroid with ground set E. Let T be a π-labelled k-tree for M, where π is a partition of E such that:
(F1) For each edge e of T, the partition (X, Y) of E displayed by e is k-separating, and, if e is incident with two bag vertices, then (X, Y) is a non-sequential k-separation.
(F2) Every non-bag vertex v is labelled either D or A; if v is labelled D, then there is a cyclic ordering on the edges incident with v.
(F3) If a vertex v is labelled A, then the partition of E displayed by v is a k-anemone of order at least three.
(F4) If a vertex v is labelled D, then the partition of E displayed by v, with the cyclic order induced by the cyclic ordering on the edges incident with v, is a k-daisy of order at least three.

A vertex of T is referred to as a daisy vertex or an anemone vertex if it is labelled D or A, respectively. A vertex labelled either D or A is a flower vertex. By conditions (F3) and (F4), the partition displayed by a flower vertex v is a k-flower Φ of M; we say that Φ is the flower corresponding to v, and the k-separations displayed by Φ are the k-separations displayed by v. A k-separation is displayed by T if it is displayed by some edge or some flower vertex of T. A k-separation (R, G) of M conforms with T if either (R, G) is equivalent to a k-separation that is displayed by a flower vertex or an edge of T, or (R, G) is equivalent to a k-separation (R^{\prime}, G^{\prime}) with the property that either R^{\prime} or G^{\prime} is contained in a bag of T.

A π-labelled k-tree T for M satisfying (F1) (F4) is a conforming k-tree for M if every non-sequential k-separation of M conforms with T. A conforming k-tree T is a partial k-tree if, for every flower vertex v of T, the partition of E displayed by v is a tight maximal k-flower of M.

We now define a quasi order on the set of partial k-trees for M. Let T_{1} and T_{2} be partial k-trees for M. Define $T_{1} \preccurlyeq T_{2}$ if every non-sequential k separation displayed by T_{1} is equivalent to one displayed by T_{2}. If $T_{1} \preccurlyeq T_{2}$ and $T_{2} \preccurlyeq T_{1}$, then T_{1} and T_{2} are equivalent partial k-trees. A partial k tree is maximal if it is maximal with respect to this quasi order. We call a maximal partial k-tree a k-tree.

We can now state the main result of the paper.
Theorem 2.1. Let M be a k-connected matroid specified by a rank oracle, where $|E(M)| \geq 8 k-15$. Then there is a polynomial-time algorithm for finding a k-tree for M.

3. Preliminaries

k-connectivity. The following lemma follows from the submodularity of the connectivity function; it is an elementary, but frequently-used result in matroid connectivity.

Lemma 3.1. Let M be a k-connected matroid, and let X and Y be k separating subsets of $E(M)$.
(i) If $|X \cap Y| \geq k-1$, then $X \cup Y$ is k-separating.
(ii) If $|E(M)-(X \cup Y)| \geq k-1$, then $X \cap Y$ is k-separating.

When an application of Lemma 3.1 is used in subsequent proofs, we refer to it as "by uncrossing".

The following results note some elementary properties of k-sequential k separating sets. The first is a generalisation of [11, Lemma 2.7] and [2, Lemma 2.6]. The proofs of the subsequent corollaries are straightforward.

Lemma 3.2. In a k-connected matroid M, let X and Y be k-separating sets such that $|E(M)-X| \geq k-1$ and $Y \subseteq X$. If X is k-sequential, then so is Y.

Proof. Take a k-sequential ordering $\left(X_{1}, X_{2}, \ldots, X_{t}\right)$ of X. Then, by uncrossing, for all $i \in\{1,2, \ldots, t\}$, the set $Y \cap\left(X_{1} \cup X_{2} \cup \cdots \cup X_{i}\right)$ is k separating.

Corollary 3.3. Let (X, Y) be a k-separation in a k-connected matroid M and let Y^{\prime} be a non-sequential k-separating set in M. If $Y^{\prime} \subseteq Y$, then Y is non-sequential.

Corollary 3.4. Let M be a k-connected matroid, and let \mathcal{F} be the collection of maximal k-sequential k-separating sets of M. Then, a k-separating set X is not k-sequential if and only if no member of \mathcal{F} contains X.

The next lemma generalises a well-known property of non-sequential 3separating sets (see, for example, [10, Lemma 3.4(i)]).
Lemma 3.5. Let (X, Y) be exactly k-separating in a k-connected matroid M. If (X, Y) is not k-sequential, then $|X|,|Y| \geq 2 k-2$.

Proof. Suppose that $|X| \leq 2 k-3$. Clearly, $|X| \geq k-1$. Any ($k-1$)-element subset X_{1} of X is trivially k-separating. Therefore, as $\left|X-X_{1}\right| \leq k-2$, we have $\operatorname{fcl}_{k}(E(M)-X)=\operatorname{fcl}_{k}\left(E(M)-X_{1}\right)=E(M)$; a contradiction.

An ordered partition $\left(Z_{1}, Z_{2}, \ldots, Z_{t}\right)$ of $E(M)$ is a k-sequence if, for all $i \in\{1,2, \ldots, t-1\}$, the set $\bigcup_{j=1}^{i} Z_{j}$ is k-separating.
Lemma 3.6. Let U and Y be disjoint subsets of the ground set E of a k-connected matroid M. Suppose that U and $U \cup Y$ are k-separating and $Y \subseteq \operatorname{fcl}_{k}(U)$. If $\operatorname{fcl}_{k}(U) \neq E$, then there is a partition $\left(Y_{1}, Y_{2}, \ldots, Y_{s}\right)$ of Y such that $1 \leq\left|Y_{i}\right| \leq k-2$ for each $i \in\{1,2, \ldots, s\}$ and $\left(U, Y_{1}, Y_{2}, \ldots, Y_{s}, E-\right.$ $(U \cup Y))$ is a k-sequence.

Proof. Let $\left(U_{1}, U_{2}, \ldots, U_{l}\right)$ be a partition of $\operatorname{fcl}_{k}(U)-U$ such that, for all $i \in\{1,2, \ldots, l\}$, we have $1 \leq\left|U_{i}\right| \leq k-2$ and $U \cup U_{1} \cup U_{2} \cup \cdots \cup U_{i}$ is k separating. Let $\left(Y_{1}, Y_{2}, \ldots, Y_{s}\right)$ be the partition of the elements of Y induced by this partition of $\operatorname{fcl}_{k}(U)-U . \operatorname{As~}_{\operatorname{fcl}}^{k}(U) \neq E$, we have $\left|E-\operatorname{fcl}_{k}(U)\right| \geq$
$2 k-2$ by Lemma 3.5. So, by uncrossing $U \cup Y$ and $U \cup U_{1} \cup U_{2} \cup \cdots \cup U_{i}$ for $i \in\{1,2, \ldots, l\}$, we deduce that $U \cup Y_{1} \cup Y_{2} \cup \cdots \cup Y_{j}$ is k-separating for all j in $\{1,2, \ldots, s\}$. In particular, $\left(U, Y_{1}, Y_{2}, \ldots, Y_{s}, E-(U \cup Y)\right)$ is a k-sequence.

The following corollary is a straightforward consequence of Lemma 3.6, where (ii) follows by [4, Lemma 3.7].

Corollary 3.7. Let U and Y be disjoint subsets of the ground set E of a k-connected matroid M. Suppose that U and $U \cup Y$ are k-separating and $Y \subseteq \mathrm{fcl}_{k}(U)$. If $\mathrm{fcl}_{k}(U) \neq E$, then
(i) $Y \subseteq \mathrm{fcl}_{k}(E-(U \cup Y))$, and
(ii) $(U, E-U)$ is k-equivalent to $(U \cup Y, E-(U \cup Y))$.
k-flowers. The following lemma is a generalisation of [2, Lemma 3.4]. A partial k-sequence $\left(X_{i}\right)_{i=1}^{m}$ for X is fully refined if, for every partial k sequence $\left(X_{i}^{\prime}\right)_{i=1}^{m^{\prime}}$ for X such that $\bigcup_{i=1}^{m^{\prime}} X_{i}^{\prime}=\bigcup_{i=1}^{m} X_{i}$, we have $m \geq m^{\prime}$.
Lemma 3.8. Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a tight k-flower Φ of order at least three in a k-connected matroid M. Let $\left(Y_{i}\right)_{i=1}^{m}$ be a fully refined partial k sequence of $P_{1} \cup P_{2} \cup \cdots \cup P_{j}$, where $j \leq n-2$. Let d be the largest member of $\{1,2, \ldots, m\}$ such that, for all $i \in\{1,2, \ldots, d\}$, the set Y_{i} is contained in one of $P_{j+1}, P_{j+2}, \ldots, P_{n}$, or set $d=0$ if there is no such member. Let $Y^{\prime}=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{d}$.
(i) If $d<m$, then
(a) $j=n-2$;
(b) Y_{d+1} meets both P_{n-1} and P_{n};
(c) each of $P_{n-1}-\left(Y^{\prime} \cup Y_{d+1}\right)$ and $P_{n}-\left(Y^{\prime} \cup Y_{d+1}\right)$ has between 2 and $k-2$ elements;
(d) each of $P_{n-1}-Y^{\prime}$ and $P_{n}-Y^{\prime}$ has between $k-1$ and $2 k-5$ elements; and
(e) $\mathrm{fcl}_{k}\left(P_{1} \cup P_{2} \cup \cdots \cup P_{j}\right)=E(M)$.
(ii) When $i \leq d$,
(a) if Y_{i} is contained in P_{n}, then $Y_{i} \subseteq \operatorname{fcl}_{k}\left(P_{1}\right)-P_{1}$; and
(b) if Y_{i} is not contained in P_{n}, then $Y_{i} \subseteq \mathrm{fcl}_{k}\left(P_{j}\right)-P_{j}$.
(iii) The k-flower Φ is k-equivalent to

$$
\left(P_{1} \cup\left(Y^{\prime} \cap P_{n}\right), P_{2}, \ldots, P_{j-1}, P_{j} \cup\left(Y^{\prime}-P_{n}\right), P_{j+1}-Y^{\prime}, \ldots, P_{n}-Y^{\prime}\right)
$$

Proof. Cases (ii) and (iii) can be established by a routine upgrade of the proof of [2, Lemma 3.4(ii) and (iii)]. To prove (i), let $\Phi^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}\right)$

$$
=\left(P_{1} \cup\left(Y^{\prime} \cap P_{n}\right), P_{2}, \ldots, P_{j-1}, P_{j} \cup\left(Y^{\prime}-P_{n}\right), P_{j+1}-Y^{\prime}, \ldots, P_{n}-Y^{\prime}\right)
$$

Recall that Y_{d+1} is not contained in any of $P_{j+1}, P_{j+2}, \ldots, P_{n}$. Let $s \in$ $\{j+1, j+2, \ldots, n\}$ be the minimum index such that Y_{d+1} meets P_{s}^{\prime}. The sets $P_{1}^{\prime} \cup P_{2}^{\prime} \cup \cdots \cup P_{j}^{\prime} \cup Y_{d+1}$ and $P_{1}^{\prime} \cup P_{2}^{\prime} \cup \cdots \cup P_{s}^{\prime}$ are k-separating. If their union avoids at least $k-1$ elements, then, by uncrossing, $P_{1}^{\prime} \cup P_{2}^{\prime} \cup \cdots \cup P_{j}^{\prime} \cup$ ($P_{s}^{\prime} \cap Y_{d+1}$) is k-separating, where $P_{s}^{\prime} \cap Y_{d+1}$ is a non-empty proper subset of
Y_{d+1}, contradicting that the partial k-sequence is fully refined. Thus we may assume that $\left|\left(P_{s+1}^{\prime} \cup P_{s+2}^{\prime} \cup \cdots \cup P_{n}^{\prime}\right)-Y_{d+1}\right| \leq k-2$. Since $\left|Y_{d+1}\right| \leq k-2$ and $P_{s}^{\prime} \cap Y_{d+1} \neq \emptyset$, it follows that $\left|\bigcup_{i=s+1}^{n} P_{i}^{\prime}\right| \leq 2 k-5$. But $\left|P_{i}^{\prime}\right| \geq k-1$ for all $i \in\{1,2, \ldots, n\}$, since Φ is tight. Thus $s+1=n$, the set Y_{d+1} meets P_{n}^{\prime}, and $k-1 \leq\left|P_{n}^{\prime}\right| \leq 2 k-5$. Likewise, by uncrossing $\left(\bigcup_{i=1}^{j} P_{i}^{\prime}\right) \cup Y_{d+1}$ and $\left(\bigcup_{i=1}^{j} P_{i}^{\prime}\right) \cup P_{n}^{\prime}$, we deduce that $\left|\left(\bigcup_{i=j+1}^{n-1} P_{i}^{\prime}\right)-Y_{d+1}\right| \leq k-2$, thus $s=j+1$ and $k-1 \leq\left|P_{s}^{\prime}\right| \leq 2 k-5$. Hence $j=n-2$ and, since $\left|P_{n}^{\prime}-Y_{d+1}\right|, \mid P_{n-1}^{\prime}-$ $Y_{d+1}\left|,\left|Y_{d+1}\right| \leq k-2\right.$, it follows that $|\left(P_{n}^{\prime} \cup P_{n-1}^{\prime}\right)-Y_{d+1} \mid \leq 2 k-4$. Thus the k-separating set $\left(P_{n-1}^{\prime} \cup P_{n}^{\prime}\right)-Y_{d+1}$ is k-sequential, by Lemma 3.5. We deduce that $\operatorname{fcl}_{k}\left(P_{1} \cup P_{2} \cup \cdots \cup P_{j}\right)=E(M)$. Thus (i) holds.

We now give three corollaries of the previous lemma. The first is analogous to [9, Lemma 3.4(i)], which concerns only 3 -flowers. The requirement that $\mathrm{fcl}_{k}\left(P_{1} \cup P_{2} \cup \cdots \cup P_{j}\right) \neq E(M)$, not present in the $k=3$ case, is necessary, as will become evident in Example 5.3. Corollary 3.10 generalises the corresponding results for $k=3$ [10, Corollary 5.10] and $k=4$ [2, Corollary 3.15]. Corollary 3.11 is a straightforward generalisation of 9, Corollary 3.5] that follows from Corollaries 3.9 and 3.10 .

Corollary 3.9. Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a tight k-flower of order at least three in a k-connected matroid M. If $1 \leq j \leq n-2$ and $\operatorname{fcl}_{k}\left(P_{1} \cup P_{2} \cup \cdots \cup P_{j}\right) \neq$ $E(M)$, then
$\mathrm{fcl}_{k}\left(P_{1} \cup P_{2} \cup \cdots \cup P_{j}\right)-\left(P_{1} \cup P_{2} \cup \cdots \cup P_{j}\right) \subseteq\left(\operatorname{fcl}_{k}\left(P_{1}\right)-P_{1}\right) \cup\left(\mathrm{fcl}_{k}\left(P_{j}\right)-P_{j}\right)$, and every element of $\left(\mathrm{fcl}_{k}\left(P_{1}\right)-P_{1}\right) \cup\left(\mathrm{fcl}_{k}\left(P_{j}\right)-P_{j}\right)$ is loose.

Corollary 3.10. Let $\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a tight irredundant k-flower. Then the order of Φ is n.

Proof. By definition, the order of Φ is at most n. Towards a contradiction, suppose Φ^{\prime} is a k-flower with n^{\prime} petals, where $n^{\prime}<n$, that is k-equivalent to Φ. Without loss of generality, we may assume that Φ^{\prime} is tight. If $n^{\prime}=1$, then Φ displays no non-sequential k-separations, and it follows that Φ is not tight; a contradiction. Thus $n^{\prime} \geq 2$.

Let $\left(U_{1}, V_{1}\right)$ be a non-sequential k-separation displayed by Φ. Then Φ^{\prime} displays a k-separation $\left(U_{1}^{\prime}, V_{1}^{\prime}\right)$ with $\mathrm{fcl}_{k}\left(U_{1}\right)=\mathrm{fcl}_{k}\left(U_{1}^{\prime}\right)$ and $\mathrm{fcl}_{k}\left(V_{1}\right)=$ $\mathrm{fcl}_{k}\left(V_{1}^{\prime}\right)$. Since Φ^{\prime} has fewer petals than Φ, we may assume, without loss of generality, that U_{1} is the union of p_{1} petals of Φ, and U_{1}^{\prime} is the union of p_{1}^{\prime} petals of Φ^{\prime}, where $p_{1}^{\prime}<p_{1}$. Suppose there is a petal P_{1} of Φ contained in U_{1} for which $\left(U_{1}-P_{1}, V_{1} \cup P_{1}\right)$ is a non-sequential k-separation. The k-flower Φ^{\prime} displays an equivalent k-separation $\left(U_{2}^{\prime}, V_{2}^{\prime}\right)$, with $\mathrm{fcl}_{k}\left(U_{1}-P_{1}\right)=\mathrm{fcl}_{k}\left(U_{2}^{\prime}\right)$ and $\operatorname{fcl}_{k}\left(V_{1} \cup P_{1}\right)=\operatorname{fcl}_{k}\left(V_{2}^{\prime}\right)$, where U_{2}^{\prime} is the union of p_{2}^{\prime} petals of Φ^{\prime}. Since Φ is tight, it follows, by Corollary 3.9, that $P_{1} \nsubseteq \operatorname{fcl}_{k}\left(V_{1}\right)$. Thus $\mathrm{fcl}_{k}\left(V_{1}^{\prime}\right)=\mathrm{fcl}_{k}\left(V_{1}\right) \varsubsetneqq \mathrm{fcl}_{k}\left(V_{1} \cup P_{1}\right)=\mathrm{fcl}_{k}\left(\bar{V}_{2}^{\prime}\right)$. If there is a petal P^{\prime} of Φ^{\prime} contained in $V_{1}^{\prime}-V_{2}^{\prime}$, then $P^{\prime} \subseteq \mathrm{fcl}_{k}\left(V_{2}^{\prime}\right)-V_{2}^{\prime}$. As $\mathrm{fcl}_{k}\left(V_{2}^{\prime}\right) \neq E(M)$, the set U_{2}^{\prime} contains a petal of Φ^{\prime} other than P^{\prime}. By Corollary 3.9. P^{\prime} is loose; a contradiction. We deduce that $V_{1}^{\prime} \varsubsetneqq V_{2}^{\prime}$. Since U_{1}^{\prime} is the union of p_{1}^{\prime} petals,
it follows that U_{2}^{\prime} is the union of at most $p_{1}^{\prime}-1$ petals; that is, $p_{2}^{\prime}<p_{1}^{\prime}$. Let $\left(U_{2}, V_{2}\right)=\left(U_{1}-P_{1}, V_{1} \cup P_{1}\right)$. If there is a petal P_{2} contained in U_{2} for which $\left(U_{2}-P_{2}, V_{2} \cup P_{2}\right)$ is a non-sequential k-separation, then we can repeat this process until, for some $i<n$, we obtain a non-sequential k-separation (U_{i}, V_{i}) where for each petal P_{i} of Φ contained in U_{i}, if $\left(U_{i}-P_{i}, V_{i} \cup P_{i}\right)$ is a k-separation, then it is k-sequential. We relabel this k-separation (U, V). Observe that Φ^{\prime} displays a k-separation $\left(U^{\prime}, V^{\prime}\right)$, with $\operatorname{fcl}_{k}(U)=\operatorname{fcl}_{k}\left(U^{\prime}\right)$ and $\operatorname{fcl}_{k}(V)=\mathrm{fcl}_{k}\left(V^{\prime}\right)$, such that U^{\prime} is the union of p^{\prime} petals of Φ^{\prime}, and U is the union of p petals of Φ, with $p^{\prime}<p$.

Suppose that $p^{\prime} \geq 2$, so $p \geq 3$. Pick distinct petals P_{a}, P_{b}, and P_{c} of Φ contained in U. Since Φ is irredundant, there exists a non-sequential k separation (A, B) displayed by Φ such that $P_{a} \subseteq A$ and $P_{b} \subseteq B$. Without loss of generality, we may assume that $P_{c} \subseteq B$. The k-flower Φ^{\prime} displays a k-separation $\left(A^{\prime}, B^{\prime}\right)$ equivalent to (A, B). We now consider petals of Φ^{\prime} contained in U^{\prime}. For any such petal P_{a}^{\prime} contained in A^{\prime}, we have $P_{a}^{\prime} \cap\left(P_{b} \cup\right.$ $\left.P_{c}\right) \subseteq \mathrm{fcl}_{k}(A)-A$, and these elements are loose in Φ by Corollary 3.9. As Φ is irredundant, there exists a non-sequential k-separation (B_{2}, C_{2}) displayed by Φ such that $P_{b} \subseteq B_{2}$ and $P_{c} \subseteq C_{2}$, with an equivalent k-separation ($B_{2}^{\prime}, C_{2}^{\prime}$) displayed by Φ^{\prime}. Since $P_{b} \varsubsetneqq U$ and $\left(B_{2}, C_{2}\right)$ is non-sequential, B_{2} contains a petal of Φ other than P_{b}. Likewise, C_{2} contains a petal other than P_{c}. Let P_{b}^{\prime} be a petal of Φ^{\prime} contained in B^{\prime} and U^{\prime}. If $P_{b}^{\prime} \subseteq C_{2}^{\prime}$, then $P_{b}^{\prime} \cap P_{b} \subseteq \mathrm{fcl}_{k}\left(C_{2}\right)-C_{2}$, and these elements are loose in Φ by Corollary 3.9 . Otherwise, $P_{b}^{\prime} \subseteq B_{2}^{\prime}$, in which case $P_{b}^{\prime} \cap P_{c} \subseteq \mathrm{fcl}_{k}\left(B_{2}\right)-B_{2}$, and, again, these elements are loose by Corollary 3.9. We deduce that all the elements of $U^{\prime} \cap\left(P_{b} \cup P_{c}\right)$ are loose in Φ. If V^{\prime} is a single petal of Φ^{\prime}, then the only non-sequential k-separation displayed by Φ^{\prime} is $\left(U^{\prime}, V^{\prime}\right)$, in which case $\left(A^{\prime}, B^{\prime}\right)$ is an equivalent k-separation, contradicting the fact that Φ^{\prime} is tight. Thus, by Corollary 3.9, the elements of $\mathrm{fcl}_{k}\left(U^{\prime}\right)-U^{\prime}$ are loose, so P_{b} and P_{c} are loose; a contradiction.

We may now assume that $p^{\prime}=1$. Let P_{x} and P_{y} be distinct petals of Φ contained in U such that $P_{x} \cup P_{y}$ is k-separating. Since Φ is irredundant, there exists a non-sequential k-separation (X, Y) displayed by Φ such that $P_{x} \subseteq X$ and $P_{y} \subseteq Y$. The k-flower Φ^{\prime} displays an equivalent k-separation $\left(X^{\prime}, Y^{\prime}\right)$ for which, without loss of generality, the petal U^{\prime} is contained in X^{\prime}. Thus fcl $k_{k}\left(P_{x} \cup P_{y}\right) \subseteq \operatorname{fcl}_{k}\left(U^{\prime}\right) \subseteq \operatorname{fcl}_{k}\left(X^{\prime}\right)=\mathrm{fcl}_{k}(X)$. Now $P_{y} \subseteq \mathrm{fcl}_{k}\left(P_{x} \cup\right.$ $\left.P_{y}\right) \subseteq \operatorname{fcl}_{k}(X)$, and $P_{y} \subseteq Y$, so $P_{y} \subseteq \operatorname{fcl}_{k}(X)-X$. Since Y is non-sequential, it contains a petal of Φ other than P_{y}. Thus, by Corollary 3.9, P_{y} is loose; a contradiction. This completes the proof of the corollary.

Corollary 3.11. Let Φ be a tight irredundant flower in a k-connected matroid M and let (U, V) be a non-sequential k-separation displayed by Φ. Then no petal of Φ is in the full k-closure of both U and V.

The following lemma provides a straightforward way to verify that a petal is tight.

Lemma 3.12. Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a k-flower in a k-connected matroid M. If, for some $i \in\{1,2, \ldots, n\}$, the petal P_{i} is loose, then either $P_{i} \subseteq$ $\mathrm{fcl}_{k}\left(P_{1} \cup P_{2} \cup \cdots \cup P_{i-1}\right)$, or $P_{i} \subseteq \operatorname{fcl}_{k}\left(P_{i+1} \cup P_{i+2} \cup \cdots \cup P_{n}\right)$.

Proof. Let $P_{i}^{-}=P_{1} \cup P_{2} \cup \cdots \cup P_{i-1}$ and $P_{i}^{+}=P_{i+1} \cup P_{i+2} \cup \cdots \cup P_{n}$. If $\operatorname{fcl}_{k}\left(P_{i}^{+}\right)=E(M)$, then $P_{i} \subseteq \operatorname{fcl}_{k}\left(P_{i}^{+}\right)$; so assume otherwise. Let $A=P_{i} \cap$ $\mathrm{fcl}_{k}\left(P_{i}^{-}\right)$and $B=P_{i}-\mathrm{fcl}_{k}\left(P_{i}^{-}\right)$. Since P_{i} is loose, $B \subseteq \mathrm{fcl}_{k}\left(P_{i}^{+}\right)$. Then, there exists a set B^{\prime} containing B where $B^{\prime} \cup P_{i}^{+}$is k-separating and $B^{\prime} \subseteq \operatorname{fcl}_{k}\left(P_{i}^{+}\right)$. By Corollary 3.7](i), $B^{\prime} \subseteq \operatorname{fcl}_{k}\left(\left(P_{i}^{-} \cup P_{i}\right)-B^{\prime}\right) \subseteq \operatorname{fcl}_{k}\left(P_{i}^{-} \cup A\right) \subseteq \operatorname{fcl}_{k}\left(P_{i}^{-}\right)$. Thus $B \subseteq \operatorname{fcl}_{k}\left(P_{i}^{-}\right)$. We deduce that $B=\emptyset$, completing the proof of the lemma.

Let $\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a k-flower of M. We can obtain a new flower Φ^{\prime} from $\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ in the following way. Let $\Phi^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{m}^{\prime}\right)$, where there are indices $0=j_{0}<j_{1}<\cdots<j_{m}=n$ such that $P_{i}^{\prime}=$ $P_{j_{i-1}+1} \cup \cdots \cup P_{j_{i}}$ for all $i \in\{1,2, \ldots, m\}$. Then we say that the flower Φ^{\prime} is a concatenation of Φ, and that Φ refines Φ^{\prime}.
k-paths. Oxley and Semple [9] introduced the notion of a 3 -path to facilitate describing inequivalent non-sequential 3 -separations. Here, we generalise this notion to k-paths.

Let M be a k-connected matroid with ground set E. A k-path in M is an ordered partition $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of E into non-empty sets, called parts, such that
(i) $\left(\bigcup_{j=1}^{i} X_{j}, \bigcup_{j=i+1}^{m} X_{j}\right)$ is a non-sequential k-separation of M for all $i \in\{1,2, \ldots, m-1\}$; and
(ii) for all $i \in\{2,3, \ldots, m-1\}$, the set X_{i} is not in the full k-closure of either $\bigcup_{j=1}^{i-1} X_{j}$ or $\bigcup_{j=i+1}^{m} X_{j}$.
Condition (ii) is equivalent to the assertion that the non-sequential k separations $\left(\bigcup_{j=1}^{i} X_{j}, \bigcup_{j=i+1}^{m} X_{j}\right)$ and $\left(\bigcup_{j=1}^{i+1} X_{j}, \bigcup_{j=i+2}^{m} X_{j}\right)$ are inequivalent for all $i \in\{1,2, \ldots, m-2\}$. We say X_{1} and X_{m} are the end parts of the k-path. For each $i \in\{1,2, \ldots, m\}$, we denote the sets $\bigcup_{j=1}^{i-1} X_{j}$ and $\bigcup_{j=i+1}^{m} X_{j}$ by X_{i}^{-}and X_{i}^{+}, respectively. In particular, $X_{1}^{-}=\emptyset=X_{m}^{+}$. Observe that each of X_{1} and X_{m} has at least $2 k-2$ elements, by Lemma 3.5, as neither set is k-sequential, and each of $X_{2}, X_{3}, \ldots, X_{m-1}$ has at least $k-1$ elements by (ii).

For a subset X_{0} of E, an X_{0}-rooted k-path is a k-path of the form $\left(X_{0} \cup\right.$ $X_{1}, X_{2}, \ldots, X_{m}$) where $X_{0} \cap X_{1}=\emptyset$. Thus a k-path is just a \emptyset-rooted k-path. An X_{0}-rooted k-path is maximal if
(I) none of the sets X_{i} with $i \geq 2$ can be partitioned into sets $X_{i, 1}, X_{i, 2}, \ldots, X_{i, k}$ for some $k \geq 2$ such that $\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{i-1}\right.$, $\left.X_{i, 1}, X_{i, 2}, \ldots, X_{i, k}, X_{i+1}, \ldots, X_{m}\right)$ is a k-path; and
(II) X_{1} cannot be partitioned into sets $X_{1,1}, X_{1,2}, \ldots, X_{1, k}$ for some $k \geq 2$ such that $\left(X_{0} \cup X_{1,1}, X_{1,2}, \ldots, X_{1, k}, X_{2}, \ldots, X_{m}\right)$ is a k-path.

Observe that, in (II), the set $X_{1,1}$ may be empty when X_{0} is non-empty although all of $X_{1,2}, X_{1,3}, \ldots, X_{1, k}$ must be non-empty. An X_{0}-rooted k path is left-justified if, for all $i \in\{2,3, \ldots, m\}$, no element of X_{i} is in the full k-closure of $\bigcup_{j=0}^{i-1} X_{j}$.

In what follows, we shall frequently be referring to a k-separation (R, G) in a k-connected matroid M. In general, we shall view (R, G) as a colouring of the elements of $E(M)$, the elements in R and G being coloured red and green, respectively. A non-empty subset X of $E(M)$ is bichromatic if it meets both R and G; otherwise it is monochromatic. We shall view the empty set as being monochromatic. A proof of the following lemma is given in [4, Lemma 3.7]. We make repeated use of this result in the subsequent lemmas.

Lemma 3.13. Let M be a k-connected matroid. If (R, G) is a nonsequential k-separation of M and $\left(R^{\prime}, G^{\prime}\right)$ is a k-separation of M such that $\mathrm{fcl}_{k}\left(R^{\prime}\right)=\mathrm{fcl}_{k}(R)$ or $\mathrm{fcl}_{k}\left(R^{\prime}\right)=\mathrm{fcl}_{k}(G)$, then $\left(R^{\prime}, G^{\prime}\right)$ is a non-sequential k-separation of M that is k-equivalent to (R, G).

The following lemmas generalise the corresponding results for 3-paths [9, Lemmas 3.8-3.12, 3.14, and 3.15]. The majority of the proofs generalise in a straightforward manner and have been omitted. On the other hand, the proof for Lemma 3.16 is not a trivial upgrade, as [9, Lemma 3.10] relies properties specific to 3 -sequences, and Lemma 3.21 is new.
Lemma 3.14. Let $\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\right)$ be a left-justified maximal X_{0} rooted k-path in a k-connected matroid $M . \operatorname{Let}(R, G)$ be a non-sequential k-separation in M. If, for some i in $\{2,3, \ldots, m-1\}$, both X_{i}^{-}and X_{i}^{+} contain at least $k-1$ red and at least $k-1$ green elements, then X_{i} is monochromatic.

Lemma 3.15. Let $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ be a k-path in a k-connected matroid M. Let X_{0} be a subset of X_{1}, and let (R, G) be a non-sequential k-separation in M for which X_{0} is monochromatic and no equivalent k-separation in which X_{0} is monochromatic has fewer bichromatic parts. Suppose that, for some i in $\{1,2, \ldots, m\}$, the set X_{i} is bichromatic. If, for some Z in $\left\{X_{i}^{-}, X_{i}^{+}\right\}$, there is at least one red element in Z, then there are at least $k-1$ red elements in Z.

Lemma 3.16. Let $\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\right)$ be a left-justified maximal X_{0} rooted k-path in a k-connected matroid M. Let (R, G) be a non-sequential k-separation in M for which X_{0} is monochromatic and no equivalent k separation in which X_{0} is monochromatic has fewer bichromatic parts. Suppose, for some $i \in\{2,3, \ldots, m-1\}$, the set X_{i} is bichromatic. Then either X_{i} is not k-separating, or $X_{i}^{-} \cup X_{i}^{+}$is monochromatic.

Proof. Assume that X_{i} is k-separating and that $X_{i}^{-} \cup X_{i}^{+}$is bichromatic. By Lemma 3.14, X_{i}^{-}or X_{i}^{+}contains at most $k-2$ elements of some colour, red say. If this set has at least one such red element, then, by Lemma 3.15, it
has at least $k-1$ red elements; a contradiction. We deduce that X_{i}^{-}or X_{i}^{+} is green. Then, by Lemma 3.15, X_{i}^{+}or X_{i}^{-}, respectively, contains at least $k-1$ red elements. If X_{i} contains at most $k-2$ red elements, then, for some Y in $\left\{X_{i}^{-} \cup X_{i}, X_{i} \cup X_{i}^{+}\right\}$, there are at most $k-2$ red elements contained in Y. By uncrossing Y and G, we see that $Y \cup G$, which equals $X_{i} \cup G$, is k-separating, so $X_{i} \cap R$ can be recoloured green to produce a k-separation equivalent to (R, G) with fewer bichromatic parts. Thus X_{i} contains at least $k-1$ red elements. Suppose X_{i} contains at most $k-2$ green elements. Now, by uncrossing, $X_{i} \cap R$ is k-separating, so $X_{i} \cap G \subseteq \operatorname{fcl}_{k}\left(X_{i} \cap R\right)$ as X_{i} is k-separating. Since $X_{i} \cup R$ is k-separating, by uncrossing, it follows that we can recolour the elements in $X_{i} \cap G$ red to obtain a k-separation that is k-equivalent to (R, G) and which reduces the number of bichromatic parts; a contradiction. We conclude that both $X_{i} \cap R$ and $X_{i} \cap G$ contain at least $k-1$ elements.

Recall that either X_{i}^{-}or X_{i}^{+}is green. In the first case, by uncrossing $X_{i}^{-} \cup X_{i}$ and G, we deduce that $X_{i}^{-} \cup\left(X_{i} \cap G\right)$ is k-separating. As $\left(X_{0} \cup\right.$ $\left.X_{1}, X_{2}, \ldots, X_{i-1}, X_{i} \cap G, X_{i} \cap R, X_{i+1}, \ldots, X_{m}\right)$ is not a k-path, but $\left(X_{0} \cup\right.$ $\left.X_{1}, X_{2}, \ldots, X_{m}\right)$ is a left-justified k-path, it follows, by corollary 3.7(i), that $X_{i} \cap R \subseteq \operatorname{fcl}_{k}\left(X_{i}^{+}\right)$or $X_{i} \cap R \subseteq \operatorname{fcl}_{k}\left(X_{i}^{-} \cup\left(X_{i} \cap G\right)\right)$. Again by Corollary 3.7|(i), $X_{i} \cap R \subseteq \operatorname{fcl}_{k}\left(X_{i}^{-} \cup\left(X_{i} \cap G\right)\right) \subseteq \operatorname{fcl}_{k}(G)$ in either case. Since $X_{i} \cup G$ is k-separating, $X_{i} \cap R$ can be recoloured green to give a k-separation that is equivalent to (R, G) but has fewer bichromatic parts; a contradiction. Similarly, if X_{i}^{+}is green, then $\left(X_{i} \cap G\right) \cup X_{i}^{+}$is k-separating by uncrossing G and $X_{i} \cup X_{i}^{+}$. As the original k-path is maximal and left-justified, it follows, by Corollary 3.7 (i), that $X_{i} \cap G \subseteq \operatorname{fcl}_{k}\left(X_{i}^{+}\right) \subseteq \operatorname{fcl}_{k}\left(G-X_{i}\right)$, where $G-X_{i}$ is k-separating by uncrossing G and $E(M)-X_{i}$. It now follows that the elements in $X_{i} \cap G$ can be recoloured red to give a k-separation that is equivalent to (R, G) but has fewer bichromatic parts; a contradiction. This completes the proof of the lemma.
Lemma 3.17. Let $\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\right)$ be a left-justified maximal X_{0} rooted k-path in a k-connected matroid M. Let (R, G) be a non-sequential k-separation in M for which X_{0} is monochromatic and no equivalent k separation in which X_{0} is monochromatic has fewer bichromatic parts. If, for some i in $\{2,3, \ldots, m-1\}$, the set X_{i}^{-}is monochromatic but X_{i} is bichromatic, then $X_{i}^{-} \cup X_{i}^{+}$is monochromatic.
Lemma 3.18. Let $\left(Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ be a k-path in a k-connected matroid M where $m \geq 2$. Let (R, G) be a non-sequential k-separation of M such that
(i) each of $Z_{1}, Z_{2}, \ldots, Z_{m-1}$ is monochromatic;
(ii) either
(a) Z_{0} is monochromatic but $Z_{0} \cup Z_{1}$ is not, or
(b) Z_{0} is bichromatic and $\min \left\{\left|Z_{0} \cap R\right|,\left|Z_{0} \cap G\right|\right\} \geq k-1$; and
(iii) either
(a) Z_{m} is monochromatic but $Z_{m-1} \cup Z_{m}$ is not, or
(b) Z_{m} is bichromatic and $\min \left\{\left|Z_{m} \cap R\right|,\left|Z_{m} \cap G\right|\right\} \geq k-1$.

Then M has a k-flower $\left(Z_{0}, Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, s}, Z_{m}, Z_{j, t}, Z_{j, t-1}, \ldots, Z_{j, 1}\right)$ where
(I) both $Z_{i, 1} \cup Z_{i, 2} \cup \cdots \cup Z_{i, s}$ and $Z_{j, t} \cup Z_{j, t-1} \cup \cdots \cup Z_{j, 1}$ are monochromatic;
(II) each of $\left(Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, s}\right)$ and $\left(Z_{j, 1}, Z_{j, 2}, \ldots, Z_{j, t}\right)$ is a subsequence of $\left(Z_{1}, Z_{2}, \ldots, Z_{m-1}\right)$; and
(III) $\left\{Z_{1}, Z_{2}, \ldots, Z_{m-1}\right\}=\left\{Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, s}\right\} \cup\left\{Z_{j, 1}, Z_{j, 2}, \ldots, Z_{j, t}\right\}$.

Moreover, when Z_{0} is bichromatic, this k-flower can be refined so that $\left(Z_{0}^{\prime}, Z_{0}^{\prime \prime}, Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, s}, Z_{m}, Z_{j, t}, Z_{j, t-1}, \ldots, Z_{j, 1}\right)$ is a k-flower where $\left\{Z_{0}^{\prime}, Z_{0}^{\prime \prime}\right\}=\left\{Z_{0} \cap R, Z_{0} \cap G\right\}$ and $Z_{0}^{\prime \prime} \cup Z_{i, 1}$ and $Z_{0}^{\prime} \cup Z_{j, 1}$ are monochromatic. When Z_{m} is also bichromatic, this k-flower can be refined so that $\left(Z_{0}^{\prime}, Z_{0}^{\prime \prime}, Z_{i, 1}, Z_{i, 2}, \ldots, Z_{i, s}, Z_{m}^{\prime}, Z_{m}^{\prime \prime}, Z_{j, t}, Z_{j, t-1}, \ldots, Z_{j, 1}\right)$ is a k-flower where $\left\{Z_{m}^{\prime}, Z_{m}^{\prime \prime}\right\}=\left\{Z_{m} \cap R, Z_{m} \cap G\right\}$ and $Z_{i, s} \cup Z_{m}^{\prime}$ and $Z_{m}^{\prime \prime} \cup Z_{j, t}$ are monochromatic.

Lemma 3.19. Let $\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\right)$ be a left-justified maximal X_{0} rooted k-path in a k-connected matroid M. Let (R, G) be a non-sequential k-separation in M for which X_{0} is monochromatic and no equivalent k separation in which X_{0} is monochromatic has fewer bichromatic parts. Suppose that $\{2,3, \ldots, m-1\}$ contains an element j such that X_{j} and X_{j}^{-}are bichromatic, but X_{j}^{+}is red. Then $R \cap X_{j} \subseteq \operatorname{fcl}_{k}\left(X_{j}^{+}\right)$. Furthermore, there is ak-separation $\left(R^{\prime}, G^{\prime}\right)$ equivalent to (R, G) such that $R^{\prime} \cap X_{j}=X_{j} \cap \mathrm{fcl}_{k}\left(X_{j}^{+}\right)$ while, for all $i \neq j$, the set $R^{\prime} \cap X_{i}=R \cap X_{i}$ and $G^{\prime} \cap X_{i}=G \cap X_{i}$.

Lemma 3.20. Let $\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\right)$ be a left-justified maximal X_{0} rooted k-path in a k-connected matroid M. Let (R, G) be a non-sequential k-separation in M for which X_{0} is monochromatic and no equivalent k separation in which X_{0} is monochromatic has fewer bichromatic parts. Suppose that $m \geq 2$, and that X_{m} and X_{m}^{-}are bichromatic. Then both $R \cap X_{m}$ and $G \cap X_{m}$ are sequential k-separating sets.

Lemma 3.21. Let $\left(X_{1}, X_{2}\right)$ be a left-justified maximal k-path in a k connected matroid M. Let (R, G) be a non-sequential k-separation in M for which X_{1} and X_{2} are bichromatic, and there is no equivalent k-separation where X_{1} or X_{2} is monochromatic. Then each of $R \cap X_{1}, G \cap X_{1}, R \cap X_{2}$ and $G \cap X_{2}$ are sequential k-separating sets.

Proof. The sets $R \cap X_{2}$ and $G \cap X_{2}$ are sequential by Lemma 3.20. If $R \cap X_{1}$ is non-sequential, then as (X_{1}, X_{2}) is a maximal k-path, $G \cap X_{1} \subseteq$ $\mathrm{fcl}_{k}\left(R \cap X_{1}\right)$, and so $G \cap X_{1} \subseteq \operatorname{fcl}_{k}(R)$. But $G \cap X_{2}$ is sequential, so $G \subseteq$ $\mathrm{fcl}_{k}(R)$; a contradiction. We deduce that $R \cap X_{1}$, and similarly $G \cap X_{1}$, are sequential.

4. Finding a Non-Sequential k-Separation

Our approach for constructing a k-tree for a k-connected matroid depends on being able to repeatedly find non-sequential k-separations, in time polynomial in $|E(M)|$. We can do this by extending an algorithm of Cunningham and Edmonds that, in polynomial time, finds a k-separation if one exists. In order to find k-separations that are also non-sequential, we require a characterisation of non-sequential k-separations, which we prove as Lemma 4.3 . Towards this result, we begin by considering the complexity of constructing maximal k-sequential k-separating sets.

Let M be a k-connected matroid, and let X be a subset of $E(M)$ where $|E(M)|=n$. Since there are $O\left(n^{k-2}\right)$ subsets of $E(M)$ of size at most $k-2$, we can find a non-empty subset X_{1} of $E(M)$ such that $\left(X_{1}\right)$ is a partial k-sequence for X, or determine that no such X_{1} exists, by making $O\left(n^{k-2}\right)$ calls to the rank oracle. By repeating this process $O(n)$ times, we find a maximal partial k-sequence for X. Thus, we can find $\operatorname{fcl}_{k}(X)$ by making at most $O\left(n^{k-1}\right)$ calls to the rank oracle. We make use of this fact in the proof of the next lemma.

Lemma 4.1. Let M be a k-connected matroid specified by a rank oracle, where $|E(M)|=n$. Then, the collection \mathcal{F} of maximal k-sequential k separating sets of M can be constructed in time polynomial in n.

Proof. All $(k-1)$-element subsets of $E(M)$ are sequential k-separating sets, and every sequential k-separating set Y is a subset of $\operatorname{fcl}_{k}(X)$ for some $(k-1)$-element set $X \subseteq E(M)$. Thus, the collection \mathcal{F} consists of all the maximal members of $\left\{\operatorname{fcl}_{k}(X):|X|=k-1\right\}$. As there are $O\left(n^{k-1}\right)$ subsets of $E(M)$ consisting of $k-1$ elements, and we can find the full k-closure of such a subset by making $O\left(n^{k-1}\right)$ calls to the rank oracle, we deduce that the lemma holds.

We now work towards an efficient algorithm for finding a non-sequential k separation. The following is due to Cunningham [6], building on the Matroid Intersection Theorem of Edmonds [7.

Theorem 4.2. Let M be a k-connected matroid specified by a rank oracle, and let X^{\prime} and Y^{\prime} be disjoint subsets of $E(M)$ each having at least k elements. Then, there is a polynomial-time algorithm for either finding a k-separation (X, Y) such that $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$, or identifying that no such k-separation exists.

The algorithm referred to in Theorem 4.2 is known as the Matroid Intersection Algorithm. For details, see [5]. This algorithm allows us to find a k-separation satisfying certain criteria, if one exists, in polynomial time. However, for our purposes we want to find, in polynomial time, such a k separation that is non-sequential. The next lemma allows us to do this. The result generalises [9, Lemma 4.4]; a characterisation of non-sequential

3-separations. However, as the proof of that result relies on properties specific to 3 -sequential sets, a different approach is taken in the proof below.

Lemma 4.3. Let (U, V) be a k-separation in a k-connected matroid M, let \mathcal{F} be the collection of maximal k-sequential k-separating sets of M, and let $j \in\{k, k+1, \ldots, 2 k-2\}$. Then (U, V) is not k-sequential if and only if there are j-element subsets U^{\prime} and V^{\prime} of U and V, respectively, such that no member of \mathcal{F} contains U^{\prime} or V^{\prime}.

Proof. Suppose (U, V) is not k-sequential. Then $\left(U-\mathrm{fcl}_{k}(V), \mathrm{fcl}_{k}(V)\right)$ is also not k-sequential. We will show that there is a subset U^{\prime} of $U-\mathrm{fcl}_{k}(V)$ satisfying the conditions of the lemma; then, symmetrically, there is a subset V^{\prime} of $V-\mathrm{fcl}_{k}(U)$. Thus, in what follows, we may assume without loss of generality that V is fully closed.

By Lemma 3.5, $|U|,|V| \geq 2 k-2$. Let U_{1} be a j-element subset of U. Take $U^{\prime}=U_{1}$, unless $U_{1} \subseteq F_{1}$ for some $F_{1} \in \mathcal{F}$. Consider the exceptional case. Let $i=1$. If $\left|V-F_{i}\right| \leq k-2$, then $\left|V \cap F_{i}\right| \geq k-1$, so, by uncrossing, $V \subseteq \mathrm{fcl}_{k}\left(F_{i}\right) ;$ a contradiction. It follows that, since $\left|E(M)-\left(F_{i} \cup U\right)\right|=$ $\left|V-F_{i}\right| \geq k-1$, the set $F_{i} \cap U$ is k-separating by uncrossing. Furthermore, $F_{i} \cap U$ is k-sequential, by Lemma 3.2 . Thus there is a $(k-1)$-element subset Q_{i} of $F_{i} \cap U$ such that $F_{i} \cap U \subseteq \operatorname{fcl}_{k}\left(Q_{i}\right)$. Note that $\left|U-\mathrm{fcl}_{k}\left(Q_{i}\right)\right| \geq k-1$, otherwise $U \subseteq \mathrm{fcl}_{k}\left(Q_{i}\right)$ by uncrossing; a contradiction. Recall that j is fixed and $j-k+1 \in\{1,2, \ldots, k-1\}$. Let C_{i} be a $(j-k+1)$-element subset of $U-\mathrm{fcl}_{k}\left(Q_{i}\right)$ and let $U_{i+1}=C_{i} \cup Q_{i}$. If U_{i+1} is not contained in some $F_{i+1} \in \mathcal{F}$, then we have the desired $U^{\prime}=U_{i+1}$. Otherwise, observe that for all $i \geq 1$ such that $U_{i+1} \subseteq F_{i+1} \in \mathcal{F}$, we have $F_{i} \cap U \subseteq \mathrm{fcl}_{k}\left(U_{i+1}\right) \subseteq F_{i+1}$ and $C_{i} \subseteq U_{i+1}-\mathrm{fcl}_{k}\left(U_{i}\right)$, so $\left|F_{i+1} \cap U\right|>\left|F_{i} \cap U\right|$. Therefore, we can repeat the process with $i=2,3, \ldots, i^{\prime}$ until for $i^{\prime} \leq|U|-k+1$ either $U^{\prime}=U_{i^{\prime}}$ is not contained in F for all $F \in \mathcal{F}$, or $\left|U-\mathrm{fcl}_{k}\left(Q_{i^{\prime}}\right)\right|<j-k+1$, contradicting the fact that U is not k-sequential.

The converse is a consequence of Corollary 3.4
Now to obtain a non-sequential k-separation of M, we apply Theorem 4.2 where the disjoint sets X^{\prime} and Y^{\prime} are chosen to be k-element sets that are not contained in any member of \mathcal{F}. Then, by Lemma 4.3, if there exists a k-separation (X, Y) such that $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$, the k-separation (X, Y) is non-sequential. As k is fixed, there are polynomially many k-element subsets not contained in a member of \mathcal{F}. If, after searching through all such pairs of sets $\left\{X^{\prime}, Y^{\prime}\right\}$, no k-separation (X, Y) with $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ is found, then M has no non-sequential k-separations.

5. Sequential Petals in k-Paths

In our algorithm for constructing a k-tree, we shall construct maximal k flowers from k-paths. Although an end part of a k-path is a non-sequential k separating set, a tight maximal k-flower may have k-sequential petals. When
$k=3$, Oxley and Semple [9, Lemma 3.13] showed that a non-sequential 3separating set displayed by an end part of a 3 -path breaks into at most two petals in a tight 3 -flower. However, the same does not necessarily hold for the ends of k-paths when $k \geq 4$, as we shall demonstrate in Examples 5.3 and 5.4. Nevertheless, the number of such petals in a tight k-flower is not a function of k. In this section, we will show that, for all $k \geq 3$, a nonsequential k-separating set displayed by an end part of a k-path breaks into at most three petals in a tight k-flower.

Let M be a k-connected matroid. The truncation of M, denoted $T(M)$, is the matroid obtained by freely adding an element e to M, and then contracting e. It can be shown that for a subset $X \subseteq E(T(M))$, the rank of X in $T(M)$ is given by $r_{T(M)}(X)=\min \left\{r_{M}(X), r(M)-1\right\}$. We omit the straightforward proof of the next lemma.
Lemma 5.1. Let M be a k-connected matroid with $r(M)>k$ and no k circuits. Then $T(M)$ is $(k+1)$-connected.

We can truncate a k-flower to obtain a $(k+1)$-flower, due to the following result of Aikin [3, Lemma 2.5.2].
Lemma 5.2. Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a k-flower Φ in a k-connected matroid M, with $n \geq 3$. If $r\left(E(M)-P_{i}\right)<r(M)$ for all $i \in\{1,2, \ldots, n\}$, then Φ is a $(k+1)$-flower in $T(M)$.

We now give two examples of 4-connected matroids for which an end part of a maximal 4-path breaks into three petals in a tight irredundant 4-flower. In the first example we construct a 4 -anemone by modifying a type of 3 anemone called a paddle. Informally, one can obtain a paddle by gluing together sufficiently structured matroids along a common line, called the spine. For further details, see [10, Section 4]. The free (n, j)-swirl is a $3-$ connected matroid obtained by beginning with a basis $\{1,2, \ldots, n\}$, adding j points freely on each of the n lines spanned by $\{1,2\},\{2,3\}, \ldots,\{n, 1\}$, and then deleting $\{1,2, \ldots, n\}$. In the second example we construct a k-daisy from the free (5, 3)-swirl.
Example 5.3. Let $\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right)$ be a paddle in a 3 -connected matroid N, where P_{1} and P_{2} each consist of 8 points freely placed in rank 4 , the petal P_{i} is a triad $\left\{x_{i}, y_{i}, z_{i}\right\}$ for each $i \in\{3,4,5\}$, and each of $\left\{x_{3}, y_{3}, x_{4}, y_{4}\right\},\left\{x_{4}, y_{4}, x_{5}, y_{5}\right\}$, and $\left\{x_{3}, y_{3}, x_{5}, y_{5}\right\}$ is a circuit of N. Then $\Phi=\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right)$ is a tight 3 -flower in N. A geometric representation of N is given in Figure 1, where the elements of P_{1} and P_{2} are suppressed. The rank-8 matroid $T(N)$ is 4 -connected by Lemma 5.1, and Φ is a tight 4-flower in $T(N)$ by Lemma 5.2. It is easily verified that Φ is irredundant. The set $P_{3} \cup P_{4}$ is 4 -sequential, since it has a 4 -sequential ordering $\left(\left\{x_{3}, y_{3}\right\},\left\{x_{4}\right\},\left\{y_{4}\right\},\left\{z_{3}, z_{4}\right\}\right)$; likewise, $P_{4} \cup P_{5}$ and $P_{3} \cup P_{5}$ are 4 -sequential. Furthermore, $\left(P_{1}, P_{2}, P_{3} \cup P_{4} \cup P_{5}\right)$ is a left-justified maximal 4-path.
Example 5.4. Let Ψ be the free $(5,3)$-swirl with $a_{i}, b_{i}, c_{i} \in E(\Psi)$ such that $r\left(\left\{a_{i}, b_{i}, c_{i}\right\}\right)=2$ and $r\left(\left\{a_{i}, b_{i}, c_{i}, a_{i+1}, b_{i+1}, c_{i+1}\right\}\right)=3$, for all $i \in$

Figure 1. A representation of the 3 -connected rank-9 paddle N.
$\{1,2,3,4,5\}$, where the subscripts are interpreted modulo 5 . Let Ψ^{\prime} be the coextension of this matroid by an element e where $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$, $\left\{a_{2}, b_{2}, a_{3}, b_{3}\right\}$ and $\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}\right\}$ are the only dependent flats not containing e in the coextension. Let $M^{\prime}=\Psi^{\prime} \backslash e$. An illustration of the resulting rank-6 matroid M^{\prime} is given in Figure 2, where the elements $\left\{a_{i}, b_{i}, c_{i}\right\}$ for $i \in\{4,5\}$ are suppressed. Take the direct sum of M^{\prime} with a copy of $U_{2,2}$ having ground set $\left\{d_{4}, d_{5}\right\}$. Then, for each $i \in\{4,5\}$, freely add the elements e_{i}, f_{i}, g_{i}, and h_{i}, in turn, to the flat spanned by $\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$. The resulting rank-8 matroid M is 4-connected, and $\Phi=\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right)$ is a swirl-like 4-flower, where $P_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ for $i \in\{1,2,3\}$ and $P_{i}=\left\{a_{i}, b_{i}, \ldots, h_{i}\right\}$ for $i \in\{4,5\}$.

It is easy to check that the 4 -flower Φ is tight and irredundant. The set $P_{1} \cup P_{2}$ is 4 -sequential, since it has a 4 -sequential ordering ($\left\{a_{1}, b_{1}\right\},\left\{a_{2}\right\}$, $\left.\left\{b_{2}\right\},\left\{c_{1}, c_{2}\right\}\right)$; likewise, $P_{2} \cup P_{3}$ is 4 -sequential. Furthermore, $\left(P_{1} \cup P_{2} \cup P_{3}\right.$, $\left.P_{4}, P_{5}\right)$ is a left-justified maximal 4-path.

Examples 5.3 and 5.4 show that an end part of a 4-path can break into three petals of a tight k-flower, even if the k-flower is also irredundant. Recall that an end part of a 3-path can break into at most two petals of a tight 3 -flower. Thus, one might expect that an end part of a k-path could break into $k-1$ petals in a tight k-flower. Fortunately, this is not the case; an end part cannot break into more than three petals, even when $k \geq 5$. This follows from the fact that, for all $k \geq 3$, the union of three consecutive petals in a tight k-flower is not k-sequential. We shall prove this as Corollary 5.7. First, we require the following two lemmas.
Lemma 5.5. Let (U, Y, V) and (R, G) be partitions of the ground set E of a k-connected matroid. Suppose that $U, U \cup Y$ and R are k-separating,

Figure 2. A representation of the 4-connected rank-6 matroid $M^{\prime}=\Psi^{\prime} \backslash e$.
$Y \subseteq \operatorname{fcl}_{k}(U) \cap R$, and $\operatorname{fcl}_{k}(U) \neq E$. If $|U \cap R|,|V \cap G| \geq k-1$, then $Y \subseteq \mathrm{fcl}_{k}(U \cap R)$.

Proof. By Lemma 3.6, there exists a partition $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ of Y such that $\left(U, Y_{1}, Y_{2}, \ldots, Y_{n}, V\right)$ is a k-sequence with $\left|Y_{i}\right| \leq k-2$ for all $i \in\{1,2, \ldots, n\}$. As $|V \cap G| \geq k-1$, it follows, by uncrossing, that $U \cap R$ and $(U \cap R) \cup Y_{1} \cup Y_{2} \cup$ $\cdots \cup Y_{i}$ are k-separating for each i in $\{1,2, \ldots, n\}$. So $Y \subseteq \operatorname{fcl}_{k}(U \cap R)$.

Lemma 5.6. Let M be a k-connected matroid, and let A and B be k separating subsets of $E(M)$ such that $|A \cap B|,|E(M)-(A \cup B)| \geq k-1$, and $A \cup B$ is a sequential k-separating set. Then, up to interchanging A and B, either
(i) $B-A \subseteq \operatorname{fcl}_{k}(A \cap B)$, where $A \cap B$ is k-separating, or
(ii) $A \cap B \subseteq \operatorname{fcl}_{k}(B-A)$, where $B-A$ is k-separating and $|B-A| \geq k-1$.

Proof. Let $\left(Z_{1}, Z_{2}, \ldots, Z_{s}\right)$ be a sequential ordering of $A \cup B$. We denote $Z_{1} \cup Z_{2} \cup \cdots \cup Z_{x}$ as $Z_{[x]}$. Let i be the greatest index such that $\left|A \cap Z_{[i]}\right| \leq k-2$ and $\left|B \cap Z_{[i]}\right| \leq k-2$. Since $|A|,|B| \geq k-1$, the index i is less than or equal to $s-1$. Without loss of generality, we may assume that $\left|A \cap Z_{[i+1]}\right| \geq k-1$. Suppose $\left|(B-A) \cap Z_{[i+1]}\right| \leq k-2$. By uncrossing, $A \cap Z_{[i+1]}$ is k-separating, so $(B-A) \cap Z_{[i+1]} \subseteq \operatorname{fcl}_{k}\left(A \cap Z_{[i+1]}\right)$. Since $B-A \subseteq \operatorname{fcl}_{k}\left(Z_{[i+1]}\right)$, we have $B-A \subseteq \operatorname{fcl}_{k}\left(A \cap Z_{[i+1]}\right) \subseteq \operatorname{fcl}_{k}(A)$. It follows, by Lemma 5.5, that (i) holds. So we may assume that $\left|(B-A) \cap Z_{[i+1]}\right| \geq k-1$. Now, if $\left|(A-B) \cap Z_{[i+1]}\right| \leq k-2$, then, as above, (i) holds but with the roles of A and B interchanged. Thus we may assume that $\left|(A-B) \cap Z_{[i+1]}\right| \geq k-1$. Then, by uncrossing B and $E(M)-A$, we deduce that $B-A$ is k-separating. Furthermore, since $\left|(A \cup B) \cap Z_{[i]}\right|=\left|B \cap Z_{[i]}\right|+\left|A \cap Z_{[i]}\right|-\left|B \cap A \cap Z_{[i]}\right| \leq 2 k-4$,
and $\left|Z_{i+1}\right| \leq k-2$, it follows that $\left|(A \cup B) \cap Z_{[i+1]}\right| \leq 3 k-6$. Thus $\left|A \cap B \cap Z_{[i+1]}\right| \leq k-2$, in which case (ii) holds.

The next corollary generalises [2, Corollary 3.5] regarding 4-flowers.
Corollary 5.7. Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a k-flower Φ of order at least three in a k-connected matroid. Then no union of three consecutive tight petals of Φ is a k-sequential set.

Proof. Suppose $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ is a k-flower where $n \geq 3$, the petals P_{1}, P_{2} and P_{3} are tight, and $P_{1} \cup P_{2} \cup P_{3}$ is k-sequential. If $n=3$, then, by Lemma 3.2, $P_{2} \cup P_{3}$ is k-sequential, so $P_{2} \cup P_{3} \subseteq \operatorname{fcl}_{k}\left(P_{1}\right)$. Hence P_{2} and P_{3} are loose; a contradiction. So we may assume that $n \geq 4$. By Lemma 3.2, $P_{1} \cup P_{2}$ and $P_{2} \cup P_{3}$ are k-sequential sets. It follows, by Lemma 5.6, that $P_{1} \subseteq \operatorname{fcl}_{k}\left(P_{2}\right)$ or $P_{2} \subseteq \operatorname{fcl}_{k}\left(P_{1}\right)$, up to swapping P_{1} and P_{3}. Thus one of P_{1}, P_{2} or P_{3} is loose; a contradiction. Hence the corollary holds.

The following is an analogue of [9, Lemma 3.13] for general k.
Lemma 5.8. Let $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ be a maximal k-path in a k-connected matroid M with at least $8 k-15$ elements. Let (U, V) be a non-sequential k-separation where $U \cap X_{m}$ and $V \cap X_{m}$ are k-separating sets, $U-X_{m}$ and $V-X_{m}$ are k-separating sets consisting of at least $k-1$ elements, and $U \cap X_{m} \nsubseteq \mathrm{fcl}_{k}\left(U-X_{m}\right)$ and $V \cap X_{m} \nsubseteq \mathrm{fcl}_{k}\left(V-X_{m}\right)$. Let (R, G) be a non-sequential k-separation such that both $R \cap X_{m}$ and $G \cap X_{m}$ are sequential k-separating sets. Then, by recolouring elements of X_{m}, there is a k-separation equivalent to (R, G) for which at least one of $U \cap X_{m}$ and $V \cap X_{m}$ is monochromatic.

Proof. We begin by proving two sublemmas.
5.8.1. At least one of the sets $U \cap R \cap X_{m}, U \cap G \cap X_{m}, V \cap R \cap X_{m}$ and $V \cap G \cap X_{m}$ has at least $k-1$ elements.

Suppose each of $U \cap R \cap X_{m}, U \cap G \cap X_{m}, V \cap R \cap X_{m}$, and $V \cap G \cap X_{m}$ has at most $k-2$ elements. Then $\left|X_{m}\right| \leq 4 k-8$. Since $|E(M)| \geq 8 k-15$, we may assume, without loss of generality, that $\left|U-X_{m}\right| \geq 2 k-3$ and $\left|\left(U-X_{m}\right) \cap R\right| \geq k-1$. Suppose $|V \cap G| \leq k-2$. If $\left|\left(U-X_{m}\right) \cap G\right| \leq k-2$, then, by uncrossing R and $U-X_{m}$, it follows that $\left(U-X_{m}\right) \cap G \subseteq \operatorname{fcl}_{k}(R)$. Moreover, as $R \cup U$ is also k-separating, by uncrossing, $\left(\left(U-X_{m}\right) \cap G\right.$, $\left.U \cap G \cap X_{m}, V \cap G\right)$ is a partial k-sequence for R, contradicting the fact that (R, G) is non-sequential. Thus $\left|\left(U-X_{m}\right) \cap G\right| \geq k-1$. Since $|V| \geq 2 k-2$, by Lemma 3.5, $|V \cap R| \geq k-1$, so $U \cap G$ is k-separating by uncrossing. It follows that $\left(U \cap G \cap X_{m}, V \cap G \cap X_{m}, U \cap R \cap X_{m}, V \cap R \cap X_{m}\right)$ is a partial k-sequence for X_{m}^{-}, so X_{m}^{-}is k-sequential; a contradiction. Now suppose $|V \cap G| \geq k-1$. By uncrossing, $U \cap R$ is k-separating. Thus $X_{m}^{-} \cup(U \cap R)$ is k-separating. It follows that $\left(U \cap R \cap X_{m}, U \cap G \cap X_{m}, V \cap R \cap X_{m}, V \cap G \cap X_{m}\right)$ is a partial k-sequence for X_{m}^{-}; a contradiction. We deduce that (5.8.1) holds.
5.8.2. If $\left|U \cap R \cap X_{m}\right| \geq k-1$ and $V \cap G \cap X_{m} \neq \emptyset$, then either $(U \cup R) \cap X_{m}$ is a sequential k-separating set, or $V \cap G \cap X_{m}$ can be recoloured red to obtain a k-separation equivalent to (R, G) where $V \cap X_{m}$ is monochromatic.

Since $U \cap X_{m}$ and $R \cap X_{m}$ are k-separating, it follows, by uncrossing, that $(U \cup R) \cap X_{m}$ is k-separating. Suppose $(U \cup R) \cap X_{m}$ is non-sequential. As $(U \cup R) \cap X_{m} \varsubsetneqq X_{m}$ and the k-path $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ is maximal, the nonempty set $V \cap G \cap X_{m}$ is contained in either $\operatorname{fcl}_{k}\left(X_{m}^{-}\right)$or $\operatorname{fcl}_{k}\left((U \cup R) \cap X_{m}\right)$. By Corollary 3.7(i), $V \cap G \cap X_{m}$ is contained in both of these sets. If $\left|V \cap R \cap X_{m}\right| \leq k-2$, then $V \cap R \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(U \cap X_{m}\right)$. Since $V \cap G \cap X_{m} \subseteq$ $\mathrm{fcl}_{k}\left((U \cup R) \cap X_{m}\right)$, we deduce that $V \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(U \cap X_{m}\right) \subseteq \mathrm{fcl}_{k}(U)$. It follows, by Corollary 3.7(i), that $V \cap X_{m} \subseteq \mathrm{fcl}_{k}\left(V-X_{m}\right)$; a contradiction. So $\left|V \cap R \cap X_{m}\right| \geq k-1$. Thus, since $V \cap G \cap X_{m} \subseteq \operatorname{fcl}_{k}\left((U \cup R) \cap X_{m}\right)$, and $\left|U-X_{m}\right| \geq k-1$, it follows by Lemma 5.5 that $V \cap G \cap X_{m} \subseteq \operatorname{fcl}_{k}(V \cap$ $\left.R \cap X_{m}\right) \subseteq \operatorname{fcl}_{k}(R)$. Thus $V \cap G \cap X_{m}$ can be recoloured red to obtain a k-separation equivalent to (R, G), thereby completing the proof of (5.8.2),
5.8.3. Up to swapping U and V, there is a k-separation $\left(R_{1}, G_{1}\right)$ equivalent to (R, G) such that $U \cap X_{m}$ is monochromatic.

By (5.8.1), we can swap U and V, if necessary, so that either $U \cap R \cap X_{m}$ or $U \cap G \cap X_{m}$ consists of at least $k-1$ elements. Without loss of generality, we assume that $\left|U \cap R \cap X_{m}\right| \geq k-1$. If $V \cap G \cap X_{m}=\emptyset$, then (5.8.3) holds. Thus we may assume, by (5.8.2), that $(U \cup R) \cap X_{m}$ is a sequential k-separating set. By Lemma 3.2, the k-separating set $U \cap X_{m}$ is also sequential. Hence, by Lemma 5.6, one of the following holds, where the set on which the full k-closure operator is applied is k-separating and consists of at least $k-1$ elements.
(I) $U \cap G \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(U \cap R \cap X_{m}\right)$, or
(II) $U \cap R \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(U \cap G \cap X_{m}\right)$, or
(III) $V \cap R \cap X_{m} \subseteq \mathrm{fcl}_{k}\left(U \cap R \cap X_{m}\right)$, or
(IV) $U \cap R \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(V \cap R \cap X_{m}\right)$.

If (I) or (II) holds, then $U \cap G \cap X_{m}$ or $U \cap R \cap X_{m}$ is in the full k-closure of R or G respectively, in which case this set can be recoloured to obtain (R_{1}, G_{1}) where $U \cap X_{m}$ is monochromatic, satisfying (5.8.3).

We now consider (III) and (IV). If $U \cap G \cap X_{m}$ consists of at most $k-2$ elements, then this set can be recoloured red, satisfying (5.8.3); so assume otherwise. Suppose (IV) holds. By uncrossing, $G \cup\left(U \cap X_{m}\right)$ is k-separating. Thus $R-\left(U \cap X_{m}\right)$ is k-separating. It follows that $U \cap R \cap X_{m} \subseteq \mathrm{fcl}_{k}(V \cap$ $\left.R \cap X_{m}\right) \subseteq \operatorname{fcl}_{k}\left(R-\left(U \cap X_{m}\right)\right)$. Then, by Corollary 3.7[(i), the set $U \cap R \cap X_{m}$ can be recoloured green, satisfying (5.8.3). In case (III), if $\left|V \cap G \cap X_{m}\right| \leq$ $k-2$, then, by Corollary 3.7|(i), $V \cap X_{m} \subseteq \operatorname{fcl}_{k}(U)$ implies that $V \cap X_{m} \subseteq$ $\mathrm{fcl}_{k}\left(V-X_{m}\right)$; a contradiction. Now, by a similar argument as for (IV) but with U and V interchanged, the set $R-\left(V \cap X_{m}\right)$ is k-separating, $V \cap R \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(R-\left(V \cap X_{m}\right)\right)$, and hence $V \cap R \cap X_{m}$ can be recoloured green. This completes the proof of (5.8.3), and the proof of the lemma.

Corollary 5.9. Let $\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ be a maximal k-path in a k-connected matroid M with at least $8 k-15$ elements. Let (U, V) be a non-sequential k-separation where $U \cap X_{m}$ and $V \cap X_{m}$ are k-separating sets, $U-X_{m}$ and $V-X_{m}$ are k-separating sets consisting of at least $k-1$ elements, and $U \cap X_{m} \nsubseteq \operatorname{fcl}_{k}\left(U-X_{m}\right)$ and $V \cap X_{m} \nsubseteq \operatorname{fcl}_{k}\left(V-X_{m}\right)$. Let (R, G) be a non-sequential k-separation such that both $R \cap X_{m}$ and $G \cap X_{m}$ are sequential k-separating sets. Suppose there is no recolouring of elements of X_{m} that gives a k-separation equivalent to (R, G) such that both $U \cap X_{m}$ and $V \cap X_{m}$ are monochromatic. Then, up to swapping U and V, for some $\left(R^{\prime}, G^{\prime}\right)$ equivalent to (R, G) obtained by recolouring elements of X_{m} and possibly swapping R^{\prime} and G^{\prime} :
(i) $U \cap X_{m} \subseteq R^{\prime}$ and $V \cap X_{m}$ is bichromatic, and
(ii) $\left(V \cap X_{m}^{-}, U \cap X_{m}^{-}, U \cap X_{m}, R^{\prime} \cap V \cap X_{m}, G^{\prime} \cap V \cap X_{m}\right)$ is a k-flower where the last three petals are tight.

Proof. By Lemma 5.8, and by swapping U and V, and R^{\prime} and G^{\prime}, if necessary, (i) holds. Let $\Phi=\left(V \cap X_{m}^{-}, U \cap X_{m}^{-}, U \cap X_{m}, R^{\prime} \cap V \cap X_{m}, G^{\prime} \cap V \cap X_{m}\right)$. By 4, Lemma 4.2], and since each of $X_{m}, U, R^{\prime} \cap X_{m}$ and $V \cap X_{m}$ is k-separating, we deduce that Φ is a flower. If $U \cap X_{m} \subseteq \operatorname{fcl}_{k}(V)$, then $U \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(U-X_{m}\right)$ by Corollary 3.7|(i)\} a contradiction. Thus, by a cyclic shift of the petals and Lemma 3.12, $U \cap X_{m}$ is tight. Similarly, if $G^{\prime} \cap V \cap X_{m} \subseteq \mathrm{fcl}_{k}\left(X_{m}^{-}\right)$, then $G^{\prime} \cap V \cap X_{m}$ can be recoloured red by Corollary 3.7)(i), a contradiction. Thus, by Lemma 3.12, $G^{\prime} \cap V \cap X_{m}$ is tight. Since this petal consists of at least $k-1$ elements, $R^{\prime} \cap U$ is k separating by uncrossing. Suppose $R^{\prime} \cap V \cap X_{m} \subseteq \mathrm{fcl}_{k}\left(V-\left(R^{\prime} \cap X_{m}\right)\right)$. Then $R^{\prime} \cap V \cap X_{m} \subseteq \mathrm{fcl}_{k}(U)$, by Corollary 3.7](i), and it follows, by Lemma 5.5 , that $R^{\prime} \cap V \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(R^{\prime} \cap U\right)$. By uncrossing the sets $U \cup X_{m}^{-}$and R^{\prime}, we deduce that $R^{\prime}-\left(V \cap X_{m}\right)$ is k-separating. Hence $R^{\prime} \cap V \cap X_{m} \subseteq \operatorname{fcl}_{k}\left(R^{\prime}-\left(V \cap X_{m}\right)\right)$, so $R^{\prime} \cap V \cap X_{m}$ can be recoloured green by Corollary 3.7(i); a contradiction. Thus, by Lemma 3.12, $R^{\prime} \cap V \cap X_{m}$ is tight, and (ii) holds.

6. The Algorithm

At last we present the algorithm k-Tree for constructing a k-tree given a k-connected matroid M with $|E(M)| \geq 8 k-15$. We begin by describing the algorithm informally, then we give some additional definitions that are required for the subsequent formal description. We finish the section with an example to illustrate the algorithm.

Informally, the algorithm works as follows. Consider a k-connected matroid M with ground set E, for which we wish to construct a k-tree. We start with a single unmarked bag vertex labelled E as our π-labelled tree. The algorithm repeatedly selects an unmarked bag vertex B, and decides if there is a non-sequential k-separation (Y, Z) such that $Y \subseteq \pi(B)$ or $Z \subseteq \pi(B)$. If there is no such k-separation, the vertex is marked, another unmarked bag vertex B is selected, and the process repeats. If there is such a k-separation, the algorithm first finds a left-justified maximal $(E-\pi(B))$-rooted k-path by
calling the first of its two subroutines, ForwardSweep. Starting with the k-path (Y, Z), this subroutine repeatedly finds non-sequential k-separations that are not equivalent to a k-separation currently displayed by the k-path. By refining the k-path methodically from the "rooted" end, outwards, we ensure the k-path returned by ForwardSweep is maximal. Then the second subroutine, BackwardSweep, is called. This subroutine starts at the unrooted end of the k-path, and works towards the rooted end, uncovering flower structure along the way. We use a "generalised k-path" to represent the k-path together with the related uncovered flower structure. Loosely speaking, a generalised k-path allows us to describe a number of flowers in series; thus describing the k-tree structure in one direction. From the generalised k-path τ, we obtain the corresponding k-tree, which we call the "path realisation" of τ. We formally define these terms presently. The algorithm adjoins the path realisation to the bag vertex B, and then recursively proceeds by finding another unmarked bag vertex. Finally, when all bag vertices are marked, it outputs the k-tree for M.

Now we require some additional terminology to present the algorithm. Our definition of a generalised k-path is consistent with a generalised 3path of [9] however, we need to allow for an end of a k-path to break into three petals, rather than just two, for the reasons discussed in Section 5 .

Let M be a k-connected matroid with ground set E. Suppose $\tau=$ $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ is an ordered tuple where, for each $i \in\{1,2, \ldots, n\}$, either
(i) P_{i} is a subset of E, or
(ii) $2 \leq i \leq n-1$ and $P_{i}=\left[\left(P_{i, 1}, P_{i, 2}, \ldots, P_{i, j}\right),\left(P_{i, l}, P_{i, l-1}, \ldots, P_{i, j+1}\right)\right]$ for some $1 \leq j \leq l$, where the $P_{i, x}$ are mutually disjoint subsets of E for $x \in\{1,2, \ldots, l\}$.

We say that P_{i} is a flower part when (ii) holds for some $i \in\{2,3, \ldots, n-1\}$. Let $\mu=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the ordered sequence obtained from τ by replacing each flower part P_{i} with the set X_{i}, which is the union of all the sets enclosed by its square brackets; we say that μ is the flattening of τ. Suppose that for each flower part $P_{i}=\left[\left(P_{i, 1}, P_{i, 2}, \ldots, P_{i, j}\right),\left(P_{i, l}, P_{i, l-1}, \ldots, P_{i, j+1}\right)\right]$, the partition $\Phi=\left(X_{i}^{-}, P_{i, 1}, P_{i, 2}, \ldots, P_{i, j}, X_{i}^{+}, P_{i, j+1}, P_{i, j+2}, \ldots, P_{i, l}\right)$ is a k flower, where $X_{i}^{-}=X_{1} \cup X_{2} \cup \cdots \cup X_{i-1}$ and $X_{i}^{+}=X_{i+1} \cup X_{i+2} \cup \cdots \cup X_{n}$. We call X_{i}^{-}and X_{i}^{+}the entry and exit petals, respectively, of Φ relative to τ, and we call ($P_{i, 1}, P_{i, 2}, \ldots, P_{i, j}$) and ($P_{i, l}, P_{i, l-1}, \ldots, P_{i, j+1}$) the clockwise and anticlockwise petals, respectively, of Φ relative to τ. If $j=l$, then the flower part P_{i} is of the form $\left[\left(P_{i, 1}, P_{i, 2}, \ldots, P_{i, l}\right)\right]$ and we say that Φ has no anticlockwise petals relative to τ. There are four variants of a generalised k-path. Firstly, if μ is a k-path, then τ is a generalised k-path. If μ is not a k-path, but P_{1} is k-sequential and $P_{2}=\left[\left(P_{2,1}, P_{2,2}, \ldots, P_{2, j}\right),\left(P_{2, l}, P_{2, l-1}, \ldots, P_{2, j+1}\right)\right]$ is a flower part such that $\left(P_{1} \cup P_{2,1}, X_{2}-P_{2,1}, X_{3}, \ldots, X_{n}\right)$ or $\left(P_{1} \cup P_{2,1} \cup P_{2,2}, X_{2}-\left(P_{2,1} \cup\right.\right.$ $\left.\left.P_{2,2}\right), X_{3}, \ldots, X_{n}\right)$ is a k-path, then τ is a generalised k-path, and we say that τ is obtained from the k-path via an end move, and $P_{1} \cup P_{2,1}$ or $P_{1} \cup$
$P_{2,1} \cup P_{2,2}$, respectively, is the split part. Symmetrically, if P_{n} is k-sequential and $P_{n-1}=\left[\left(P_{n-1,1}, P_{n-1,2}, \ldots, P_{n-1, j}\right)\left(P_{n-1, l}, P_{n-1, l-1}, \ldots, P_{n-1, j+1}\right)\right]$ is a flower part such that either $\left(X_{1}, \ldots, X_{n-2}, X_{n-1}-P_{n-1, j}, P_{n-1, j} \cup X_{n}\right)$ or $\left(X_{1}, \ldots, X_{n-2}, X_{n-1}-\left(P_{n-1, j-1} \cup P_{n-1, j}\right), P_{n-1, j-1} \cup P_{n-1, j} \cup X_{n}\right)$ is a k-path, then τ is also a generalised k-path, and again we say τ is obtained from the k-path via an end move, and $P_{n-1, j} \cup X_{n}$ or $P_{n-1, j-1} \cup P_{n-1, j} \cup X_{n}$, respectively, is the split part. A combination of the last two generalised k-paths also can arise: if $\tau=\left(P_{1},\left[\left(P_{2,1}, P_{2,2}, \ldots, P_{2, p}\right)\right], P_{3}\right)$, where $p \in\{2,3,4\}$, and $\left(P_{1} \cup P_{2,1} \cup P_{2,2} \cup \cdots \cup P_{2, j}, P_{2, j+1} \cup \cdots \cup P_{2, p} \cup P_{3}\right)$ is a k-path for some $j \in\{1, \ldots, p-1\}$, then τ is a generalised k-path, we say τ is obtained from the k-path by end moves, and $P_{1} \cup P_{2,1} \cup P_{2,2} \cup \cdots \cup P_{2, j}$ and $P_{2, j+1} \cup \cdots \cup P_{2, p} \cup P_{3}$ are the split parts.

Let τ be a generalised k-path. We say that τ is left-justified if the flattening of τ is left-justified. Let Z be a term in τ and assume that Z is not in a flower part. We can then write τ as $\left(\tau\left(Z^{-}\right), Z, \tau\left(Z^{+}\right)\right)$so $\tau\left(Z^{-}\right)$ and $\tau\left(Z^{+}\right)$denote, respectively, the portions of τ that occur before and after Z. In this case, as in a k-path, we shall denote by Z^{-}and Z^{+}the union of all of the sets in τ that occur, respectively, before and after Z. If $\tau=\left(\tau\left(Z_{i}^{-}\right), Z_{i}, Z_{i+1}, \tau\left(Z_{i+1}^{+}\right)\right)$, where Z_{i} is not a flower part and Z_{i+1} may be a flower part, then we sometimes write $\tau\left(Z_{i+1}^{+}\right)$as $\tau\left(Z_{i}^{++}\right)$.

Let $\tau_{1}=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a generalised k-path of M. Suppose τ_{2} is obtained from τ_{1} in one of the following ways:
(I) For some $1 \leq i<i^{\prime} \leq n$, where each of $P_{i}, P_{i+1}, \ldots, P_{i^{\prime}}$ are subsets of $E, \tau_{2}=\left(P_{1}, P_{2}, \ldots, P_{i-1}, P_{i} \cup P_{i+1} \cup \cdots \cup P_{i^{\prime}}, P_{i^{\prime}+1}, P_{i^{\prime}+2}, \ldots, P_{n}\right)$.
(II) For some $2 \leq i \leq n-1$, where $P_{i}=\left[\left(P_{i, 1}, P_{i, 2}, \ldots, P_{i, j}\right)\right.$, $\left.\left(P_{i, l}, P_{i, l-1}, \ldots, P_{i, j+1}\right)\right]$ is a flower part, $\tau_{2}=\left(P_{1}, P_{2}, \ldots, P_{i-1}, P_{i, 1} \cup\right.$ $\left.P_{i, 2} \cup \cdots \cup P_{i, l}, P_{i+1}, P_{i+2}, \ldots, P_{n}\right)$.

Clearly, τ_{2} is a generalised k-path. We say that τ_{m}, for some $m \geq 1$, is a concatenation of τ_{1} if there is a sequence $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ where each τ_{i+1} is obtained from τ_{i} by either (I) or (II). Conversely, we say that τ_{1} is a refinement of τ_{m}.

Let τ be a generalised k-path in a k-connected matroid M with ground set E, and let $\mu=\left(Y_{1}, Y_{2}, \ldots, Y_{p}\right)$ be the flattening of τ. Note that μ is a k-path unless Y_{1} or Y_{p} is sequential as may occur if we apply an end move or end moves. Let P denote the π-labelled tree consisting of a path of p bag vertices labelled, in order, $Y_{1}, Y_{2}, \ldots, Y_{p}$. Now modify P as follows. For each Y_{j} that is the union of s clockwise petals and t anticlockwise petals of a flower, replace the bag vertex labelled Y_{j} with a flower vertex v and adjoin $s+t$ new bag vertices to v each via a new edge so that the cyclic ordering induced by the cyclic ordering on the edges incident with v preserves the ordering of the flower Φ_{j} to which Y_{j} corresponds. Label the vertex v by D or A depending on whether Φ_{j} is a daisy or an anemone, respectively. We refer to the resulting modification of P as a path realisation of τ.

The algorithm k-Tree follows the approach taken in [9; indeed, it generalises the algorithm 3-tree. However, because of the additional hurdles in going from $k=3$ to arbitrary k, necessary modifications have had to be made resulting in extra length in the description of the algorithm. These modifications are required in order to handle the more-complicated end moves, and to ensure the resulting k-flower is irredundant. The notable changes are in BackwardSweep, at lines $3-15,23-26$, and $57-60$.

We now give an example of a k-connected matroid M, its corresponding k-tree T, and a brief walk-through of the algorithm when applied to M. This example is inspired by the corresponding example of a 3 -tree for a 3 -connected matroid in 9].

The Higgs lift of a matroid N, denoted $L(N)$, is obtained by freely coextending N by a non-loop element e, and then deleting e. Note that $L(N)=\left(T\left(N^{*}\right)\right)^{*}$. By the next lemma, which is a consequence of Lemma 5.1 and duality, we can obtain a $(k+1)$-connected matroid by performing the Higgs lift on an appropriate k-connected matroid. The subsequent lemma 3, Lemma 2.6.2] states that the Higgs lift turns k-flowers into $(k+1)$-flowers.

Lemma 6.1. Let M be a k-connected matroid with $r^{*}(M)>k$ and no k-cocircuits. Then $L(M)$ is $(k+1)$-connected.

Lemma 6.2. Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be a k-flower Φ in a k-connected matroid M, with $n \geq 4$. If every petal of Φ is a dependent set, then Φ is a $(k+1)$ flower in $L(M)$.

We start by constructing the matroid M^{\prime}. Fix $j \geq k-1$, and let S be a free $(5, j)$-swirl $\left(V_{1}, V_{2}, V_{3}, V_{4}, L\right)$, where each of $V_{1}, V_{2}, V_{3}, V_{4}$, and L is a line of S. Use L as the spine of a paddle to which we attach three free $(4, j)$-swirls $\left(X_{1}, X_{2}, X_{3}, L\right),\left(Y_{1}, Y_{2}, Y_{3}, L\right)$, and $\left(Z_{1}, Z_{2}, Z_{3}, L\right)$. The resulting matroid M^{\prime} is 3 -connected.

We now repeatedly perform the Higgs lift to obtain $L\left(M^{\prime}\right)$, $L^{2}\left(M^{\prime}\right), \ldots, L^{k-3}\left(M^{\prime}\right)$, for some $k \geq 4$. It is easily verified that for $i \in\{0,1,2, \ldots, k-4\}$, the matroid $L^{i}\left(M^{\prime}\right)$ has corank greater than $i+3$ and has no $(i+3)$-cocircuits, so $L^{k-3}\left(M^{\prime}\right)$ is a k-connected matroid. Moreover, for each 3-flower Φ in M^{\prime}, every petal of Φ is dependent in $L\left(M^{\prime}\right), L^{2}\left(M^{\prime}\right), \ldots, L^{k-4}\left(M^{\prime}\right)$, so Φ is a k-flower in $L^{k-3}\left(M^{\prime}\right)$. A possible k-tree for this matroid, irrespective of the precise value of k, is given in Figure 3, where large open circles represent bag vertices.

Now suppose that k-Tree is applied to M. Let $X=X_{1} \cup X_{2} \cup X_{3}$, $Y=Y_{1} \cup Y_{2} \cup Y_{3}$, and $Z=Z_{1} \cup Z_{2} \cup Z_{3}$. If $\left(V_{2} \cup V_{3} \cup V_{4}, V_{1} \cup L \cup X \cup Y \cup Z\right)$ is the k-separation found in line 3 of k-Tree, then a possible k-path returned by the first call to ForwardSweep is

$$
\left(V_{2} \cup V_{3}, V_{4}, V_{1} \cup L, X, Z, Y_{1}, Y_{2} \cup Y_{3}\right) .
$$

Observe that the k-path is left-justified and maximal. With this k-path, a possible generalised k-path returned by the immediate subsequent call to

```
Algorithm \(1 k\)-Tree( \(M\) )
    Input: A \(k\)-connected matroid \(M\) with ground set \(E\) and \(|E| \geq 8 k-15\).
    Output: A \(k\)-tree for \(M\).
    Construct the collection \(\mathcal{F}\) of maximal sequential \(k\)-separating sets of
    M.
    Let \(T_{0}\) denote the \(\pi\)-labelled tree consisting of a single unmarked bag
    vertex labelled \(E\).
    if there exists a \(k\)-separation \((U, V)\) for which \(U\) and \(V\) contain mutually
    disjoint \(k\)-element subsets \(U^{\prime}\) and \(V^{\prime}\), respectively, such that no member
    of \(\mathcal{F}\) contains \(U^{\prime}\) or \(V^{\prime}\), then
        Set \(X_{0}=\emptyset\), set \(X_{1}=\mathrm{fcl}_{k}(U)\), set \(X_{2}=V-\mathrm{fcl}_{k}(U)\), and set \(i=1\).
        Call \(\operatorname{ForwardSweep}\left(M,\left(X_{0} \cup X_{1}, X_{2}\right), \mathcal{F}\right)\) and let \(\left(X_{0} \cup\right.\)
        \(Z_{1}, Z_{2}, \ldots, Z_{m}\) ) be the resulting \(k\)-path.
        Call BackwardSweep \(\left(M,\left(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\right), \mathcal{F}\right)\), and let \(T_{1}\) be
        the path realisation of the resulting generalised \(k\)-path, with each bag
        vertex unmarked.
        while there is an unmarked bag vertex \(B\) of \(T_{i}\), do
            if \(B\) is a non-terminal bag vertex, then
                Find a \(k\)-separation \((Y, Z)\) such that \(Y\) contains \(\mathrm{fcl}_{k}(E-\pi(B))\),
                and \(Z\) contains a \(k\)-element subset \(Z^{\prime} \subseteq \pi(B)-\mathrm{fcl}_{k}(E-\pi(B))\)
                with no member of \(\mathcal{F}\) containing \(Z^{\prime}\).
            else \(\quad \triangleright B\) is a terminal bag vertex
                Find a \(k\)-separation \((Y, Z)\) such that \(Y\) contains \(\mathrm{fcl}_{k}(E-\pi(B))\)
                and an element \(y \in \pi(B)-\mathrm{fcl}_{k}(E-\pi(B))\), and \(Z\) contains a
                \(k\)-element subset \(Z^{\prime} \subseteq \pi(B)-\mathrm{fcl}_{k}(E-\pi(B))-\{y\}\) with no
                member of \(\mathcal{F}\) containing \(Z^{\prime}\).
            if there exists such a \(k\)-separation \((Y, Z)\), then
                Set \(X_{0}=E-\pi(B)\), set \(X_{1}=\pi(B) \cap \operatorname{fcl}_{k}(Y)\), set \(X_{2}=\)
                \(\pi(B)-\mathrm{fcl}_{k}(Y)\), and increase \(i\) by 1 .
                Call ForwardSweep \(\left(M,\left(X_{0} \cup X_{1}, X_{2}\right), \mathcal{F}\right)\), and let \(\left(X_{0} \cup\right.\)
                \(Z_{1}, Z_{2}, \ldots, Z_{m}\) ) be the resulting \(k\)-path.
                Call BackwardSweep \(\left(M,\left(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\right), \mathcal{F}\right)\).
                Find the path realisation \(T_{i}^{\prime}\) of resulting generalised \(k\)-path.
                Identify the vertex \(X_{0} \cup Z_{1}\) of \(T_{i}^{\prime}\) with the vertex \(B\) of \(T_{i-1}\),
                label the resulting composite vertex \(Z_{1}\), and, if \(Z_{1}=\emptyset\) and
                \(Z_{1}\) has degree two, then suppress this vertex. Let \(T_{i}\) be the
                resulting tree, where each bag vertex originating from the path
                realisation, including the identified vertex, is unmarked.
            else \(\quad \triangleright\) There is no such \(k\)-separation \((Y, Z)\)
                Mark \(B\).
            output \(T_{i}\).
    else
                    \(\triangleright\) There is no such \(k\)-separation \((U, V)\)
            Mark \(E\) and output \(T_{0}\).
```

```
Algorithm \(2 \operatorname{ForwardSwEep}\left(M,\left(X_{0} \cup X_{1}, X_{2}\right), \mathcal{F}\right)\)
    Input: A \(k\)-connected matroid \(M\) with ground set \(E\) and \(|E| \geq 8 k-15\),
    a \(k\)-path ( \(X_{0} \cup X_{1}, X_{2}\) ) of \(M\), and the collection \(\mathcal{F}\) of maximal sequential
    \(k\)-separating sets of \(M\).
    Output: A \(k\)-path \(\left(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\right)\) of \(M\) that is a refinement of
    \(\left(X_{0} \cup X_{1}, X_{2}\right)\).
    Let \(\tau_{0}=\left(X_{0} \cup X_{1}, X_{2}\right)\), set \((i, s, m)=(0,1,2)\), and set \(\left(X_{1}^{\prime}, X_{2}^{\prime}\right)=\)
    \(\left(X_{1}, X_{2}\right)\).
    while \(s \leq m\), do
                    \(\triangleright\) See if we can refine \(X_{s}^{\prime}\) in \(\tau_{i}=\left(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\right)\)
        if \(s=1\) and \(X_{0}=\emptyset\), then
            Find a \(k\)-separation \((Y, Z)\) such that \(Y\) contains a \(k\)-element sub-
            set \(Y^{\prime}\) of \(X_{1}^{\prime}\) with no member of \(\mathcal{F}\) containing \(Y^{\prime}\), and \(Z\) contains
            \(X_{2}^{\prime} \cup \cdots \cup X_{m}^{\prime}\) and an element \(z\) of \(X_{1}^{\prime}\) with \(z \notin \mathrm{fcl}_{k}\left(X_{2}^{\prime} \cup \cdots \cup\right.\)
            \(\left.X_{m}^{\prime}\right) \cup Y^{\prime}\).
        else if \(s=1\) and \(X_{0} \neq \emptyset\), then
            Find a \(k\)-separation \((Y, Z)\) such that \(Y\) contains \(\mathrm{fcl}_{k}\left(X_{0}\right)\), and \(Z\)
                contains \(X_{2}^{\prime} \cup \cdots \cup X_{m}^{\prime}\) and an element \(z\) of \(X_{1}^{\prime}\) with \(z \notin \operatorname{fcl}_{k}\left(X_{2}^{\prime} \cup\right.\)
                \(\left.\cdots \cup X_{m}^{\prime}\right)\).
        else if \(s<m\), then
            Find a \(k\)-separation \((Y, Z)\) such that \(Y\) contains \(X_{0} \cup X_{1}^{\prime} \cup \cdots \cup\)
            \(X_{s-1}^{\prime}\) and an element \(y\) of \(X_{s}^{\prime}-\operatorname{fcl}_{k}\left(X_{0} \cup X_{1}^{\prime} \cup \cdots \cup X_{s-1}^{\prime}\right)\), and
            \(Z\) contains \(X_{s+1}^{\prime} \cup \cdots \cup X_{m}^{\prime}\) and an element \(z\) of \(X_{s}^{\prime}\) with \(z \notin\)
            \(\operatorname{fcl}_{k}\left(X_{s+1}^{\prime} \cup \cdots \cup X_{m}^{\prime}\right) \cup\{y\}\).
        else \(\quad \triangleright s=m\)
            Find a \(k\)-separation \((Y, Z)\) such that \(Y\) contains \(X_{0} \cup X_{1}^{\prime} \cup \cdots \cup\)
        \(X_{s-1}^{\prime}\) and an element \(y\) of \(X_{s}^{\prime}-\operatorname{fcl}_{k}\left(X_{0} \cup X_{1}^{\prime} \cup \cdots \cup X_{s-1}^{\prime}\right)\), and \(Z\)
        contains a \(k\)-element subset \(Z^{\prime}\) of \(X_{s}^{\prime}-\mathrm{fcl}_{k}\left(X_{0} \cup X_{1}^{\prime} \cup \cdots \cup X_{s-1}^{\prime}\right)-\)
        \(\{y\}\) with no member of \(\mathcal{F}\) containing \(Z^{\prime}\).
        if there exists such a \(k\)-separation \((Y, Z)\), then
            Increase \(m\) by 1 and, for each \(t>s\), set \(X_{t}^{\prime}\) to be \(X_{t+1}^{\prime}\).
            Set \(X_{s+1}^{\prime}\) to be \(X_{s}^{\prime} \cap\left(E-\mathrm{fcl}_{k}(Y)\right)\) and set \(X_{s}^{\prime}\) to be \(X_{s}^{\prime} \cap \mathrm{fcl}_{k}(Y)\).
            Increase \(i\) by 1 and set \(\tau_{i}\) to be ( \(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\) ).
        else
            Increase \(s\) by 1 .
    output \(\tau_{i}\).
```


BaCkwardSweep is

$$
\left(V_{3},\left[\left(V_{2}, V_{1}\right),\left(V_{4}\right)\right], L,[(X, Z)],\left[\left(Y_{1}, Y_{2}\right)\right], Y_{3}\right) .
$$

Comparing the k-path and the generalised k-path, both $V_{2} \cup V_{3}$ and $Y_{2} \cup Y_{3}$ are split parts. The splitting of $Y_{2} \cup Y_{3}$ and $V_{2} \cup V_{3}$ is the result of end moves performed due to k-separations being found as described in lines 21 and 55 of

```
Algorithm 3 BackwardSweep \(\left(M,\left(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\right), \mathcal{F}\right)\)
    Input: A \(k\)-connected matroid \(M\) with ground set \(E\) and \(|E| \geq 8 k-15\),
    a left-justified maximal \(k\)-path \(\left(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) of \(M\), where \(m \geq 2\),
    and the collection \(\mathcal{F}\) of maximal sequential \(k\)-separating sets of \(M\).
    Output: A generalised \(k\)-path of \(M\).
    if \(m=2\), then
        if \(X_{0}\) is empty and there exists a \(k\)-separation \((U, V)\) for which \(U\)
        contains a subset \(U^{\prime}\) and \(V\) contains a subset \(V^{\prime}\) such that no member
        of \(\mathcal{F}\) contains \(U^{\prime}\) or \(V^{\prime}\), and \(\left|U^{\prime} \cap Z_{1}\right|=\left|U^{\prime} \cap Z_{2}\right|=\left|V^{\prime} \cap Z_{1}\right|=\)
        \(\left|V^{\prime} \cap Z_{2}\right|=k-1\), then
\(\triangleright\) See if \(Z_{2}\) breaks into three petals. if there exists a \(k\)-separation \((S, T)\) for which \(S\) contains \(U \cap Z_{2}\) and an element \(s^{\prime} \in Z_{2}-\mathrm{fcl}_{k}\left(U \cap Z_{2}\right)\), and \(T\) contains \(Z_{1}\) and \(\left|T \cap Z_{2}\right| \geq k-1\); and there exists a \(k\)-separation \(\left(S_{1}, T_{1}\right)\) for which \(S_{1}\) contains \(S\) and an element \(s \in Z_{1}-\operatorname{fcl}_{k}(S)\), and \(T_{1}\) contains a subset \(T^{\prime}\) such that no member of \(\mathcal{F}\) contains \(T^{\prime}\) and \(\left|T^{\prime} \cap Z_{1}\right|=\left|T^{\prime} \cap Z_{2}\right|=k-1\), then
Set \(\tau_{2}=\left(Z_{1},\left[\left(U \cap Z_{2}, S_{1} \cap V\right)\right], T_{1} \cap Z_{2}\right)\).
else if there exists a \(k\)-separation \((S, T)\) for which \(T\) contains \(V \cap Z_{2}\) and an element \(t^{\prime} \in Z_{2}-\mathrm{fcl}_{k}\left(V \cap Z_{2}\right)\), and \(S\) contains \(Z_{1}\) and \(\left|S \cap Z_{2}\right| \geq k-1\); and there exists a \(k\)-separation \(\left(S_{1}, T_{1}\right)\) for which \(T_{1}\) contains \(T\) and an element \(t \in Z_{1}-\mathrm{fcl}{ }_{k}(T)\), and \(S_{1}\) contains a subset \(S^{\prime}\) such that no member of \(\mathcal{F}\) contains \(S^{\prime}\) and \(\left|S^{\prime} \cap Z_{1}\right|=\left|S^{\prime} \cap Z_{2}\right|=k-1\), then
Set \(\tau_{2}=\left(Z_{1},\left[\left(S_{1} \cap Z_{2}, T_{1} \cap U\right)\right], V \cap Z_{2}\right)\).
else
Set \(\tau_{2}=\left(Z_{1},\left[\left(U \cap Z_{2}\right)\right], V \cap Z_{2}\right)\). Let \(\tau_{2}=\left(Z_{1},\left[\left(P_{1}, \ldots, P_{p}\right)\right], Q\right)\) with \(p \in\{1,2\}\), and \(P=\bigcup_{i=1}^{p} P_{i}\). \(\triangleright\) See if \(Z_{1}\) breaks into three petals.
10: \(\quad\) if there exists a \(k\)-separation \((S, T)\) such that \(S\) contains both \(V-P\) and an element \(s \in Z_{1}-\mathrm{fcl}_{k}(V-P)\); and \(T\) contains \(P\), an element \(t \in Z_{1}-\left(\operatorname{fcl}_{k}(P) \cup\{s\}\right)\), and a \(k\)-element subset \(T^{\prime}\) such that no member of \(\mathcal{F}\) contains \(T^{\prime}\), then
\(\triangleright(S, T)\) non-sequential, so corresponding flower irredundant.
11: \(\quad\) output \(\left(V \cap Z_{1},\left[\left(S \cap U, T \cap Z_{1}, P_{1}, \ldots, P_{p}\right)\right], Q\right)\).
12: \(\quad\) else if there exists a \(k\)-separation \((S, T)\) such that \(S\) contains both \(\left(Z_{1} \cap U\right) \cup P_{1}\) and an element \(s \in Z_{1}-\operatorname{fcl}_{k}\left(\left(Z_{1} \cap U\right) \cup P_{1}\right)\); and \(T\) contains \(Z_{2}-P_{1}\), an element \(t \in Z_{1}-\left(\operatorname{fcl}_{k}\left(Z_{2}-P_{1}\right) \cup\{s\}\right)\), and a \(k\)-element subset \(T^{\prime}\) such that no member of \(\mathcal{F}\) contains \(T^{\prime}\), then
13: output \(\left(T \cap Z_{1},\left[\left(S \cap V, U \cap Z_{1}, P_{1}, \ldots, P_{p}\right)\right], Q\right)\).



Figure 3. A \(k\)-tree for \(M\).
```

 \(\triangleright\) See if \(Z_{1}\) breaks into at least two petals.
 55: \quad if X_{0} is empty, and $\tau_{2}=\left(Z_{1},\left[\left(P_{1}, \ldots, P_{p}\right),\left(Q_{1}, \ldots, Q_{q}\right)\right], \ldots\right)$ for
some $p \geq 1$ and $q \geq 0$, and there exists a k-separation (U, V) for
which U contains P_{1} and an element $u \in Z_{1}-\mathrm{fcl}_{k}\left(E-Z_{1}\right)$, and V
contains both $E-\left(Z_{1} \cup P_{1}\right)$ and an element $v \in Z_{1}-\left(\operatorname{fcl}_{k}\left(E-Z_{1}\right) \cup\right.$
$\{u\}$), then
\triangleright Ensure that the corresponding flower will be irredundant.
if there exists a k-separation $\left(U_{1}, V_{1}\right)$ such that U_{1} contains both
U and a k-element subset U^{\prime}, and V_{1} contains a k-element subset
V^{\prime} and an element $v \in Z_{1}-\mathrm{fcl}_{k}\left(E-Z_{1}\right)$, where no member of \mathcal{F}
contains U^{\prime} or V^{\prime}, then
\triangleright See if Z_{1} breaks into three petals.
if there exists a k-separation (S, T) such that S contains both
$U_{1} \cap\left(Z_{1} \cup P_{1}\right)$ and an element $s \in Z_{1}-\left(\operatorname{fcl}_{k}\left(U_{1} \cap\left(Z_{1} \cup P_{1}\right)\right) \cup\right.$
$\left.\mathrm{fcl}_{k}\left(E-Z_{1}\right)\right)$, and T contains both $E-\left(Z_{1} \cup P_{1}\right)$ and an element
$t \in Z_{1}-\left(\operatorname{fcl}_{k}\left(E-Z_{1}\right) \cup\{s\}\right)$, then
output $\left(T \cap Z_{1},\left[\left(S \cap V_{1} \cap Z_{1}, U_{1} \cap Z_{1}, P_{1}, \ldots, P_{p}\right)\right.\right.$,
$\left.\left.\left(Q_{1}, \ldots, Q_{q}\right)\right], \tau_{2}\left(Z_{1}^{++}\right)\right)$.
else if there exists a k-separation (S, T) such that S con-
tains both an element $s \in\left(U_{1} \cap Z_{1}\right)-\operatorname{fcl}_{k}\left(E-Z_{1}\right)$ and a
k-element subset S^{\prime}, and T contains both an element $t \in$
$\left(U_{1} \cap Z_{1}\right)-\left(\mathrm{fcl}_{k}\left(E-Z_{1}\right) \cup\{s\}\right)$ and a k-element subset T^{\prime},
where no member of \mathcal{F} contains S^{\prime} or T^{\prime}, then
60 :
output $\left(V_{1} \cap Z_{1},\left[\left(S \cap U_{1} \cap Z_{1}, T \cap U_{1} \cap Z_{1}, P_{1}, \ldots, P_{p}\right)\right.\right.$,
$\left.\left.\left(Q_{1}, \ldots, Q_{q}\right)\right], \tau_{2}\left(Z_{1}^{++}\right)\right)$.
else $\quad \triangleright$ No such (S, T) exists
output $\left(V_{1} \cap Z_{1},\left[\left(U_{1} \cap Z_{1}, P_{1}, \ldots, P_{p}\right),\left(Q_{1}, \ldots, Q_{q}\right)\right]\right.$,
$\left.\tau_{2}\left(Z_{1}^{++}\right)\right)$.
else
\triangleright No non-sequential $\left(U_{1}, V_{1}\right)$ where $U \subseteq U_{1}$ and $V \cap Z_{1} \subseteq V_{1}$.
output τ_{2}.
else
\triangleright Either X_{0} non-empty, τ_{2} not of the
correct form, or no such (U, V) exists
output τ_{2}.

```

BackwardSweep, respectively. The path realization \(T_{1}\) of this generalised \(k\)-path, produced in line 6 of \(k\)-Tree, is shown in Figure 4, where we note that \(X\) and \(Z\) are petals of an anemone. The algorithm now enters the loop in line 7 of \(k\)-Tree.

Since all bag vertices in \(T_{1}\) are unmarked, line 9 of \(k\)-Tree selects a bag vertex and, depending on whether it is a non-terminal or terminal bag, attempts to find a particular type of \(k\)-separation. If there is no such \(k\) separation, such as when one of the bag vertices labelled \(V_{1}, V_{2}, V_{3}, V_{4}, L\),


Figure 4. The path realization \(T_{1}\).


Figure 5. The \(\pi\)-labelled tree \(T_{2}\).
\(Y_{1}, Y_{2}\), or \(Y_{3}\) is selected, the bag vertex is marked at line 19 of \(k\)-Tree. On the other hand, if there is such a \(k\)-separation, such as when one of the bag vertices labelled \(X\) or \(Z\) is selected, then lines 1317 are invoked, so \(k\)-TREE calls ForwardSweep, BackwardSweep, and then updates the current \(\pi\)-labelled tree. For example, assume the bag vertex labelled \(X\) is selected before the bag vertex labelled \(Z\). When this happens, \(k\)-Tree finds an appropriate \(k\)-separation in line 9, and then, in line 14 , calls ForwardSweep using this \(k\)-separation. The subroutine BACKWARDSWEEP is subsequently called and a possible generalised \(k\)-path returned by this call is
\[
\left(E-X,\left[\left(X_{1}, X_{2}\right)\right], X_{3}\right)
\]

A path realization of this generalised \(k\)-path is then merged with the current \(\pi\)-labelled tree, in this case \(T_{1}\), in line 17 of \(k\)-TREE to produce the \(\pi\)-labelled tree \(T_{2}\) shown in Figure 5. This process continues until all bag vertices are marked. The \(k\)-tree finally returned by \(k\)-Tree is as shown in Figure 3 ,

\section*{7. Correctness of the Algorithm}

Let \(M\) be a \(k\)-connected matroid where \(|E(M)| \geq 8 k-15\), and let \(T\) be the \(\pi\)-labelled tree returned by \(k\)-TREE when applied to \(M\). In this section we prove that \(T\) is a \(k\)-tree for \(M\), and that \(k\)-Tree runs in time
polynomial in \(|E(M)|\). The crux is Lemma 7.4 , where we prove that \(T\) is a conforming tree. Lemma 7.5 demonstrates that, additionally, each flower vertex of \(T\) corresponds to a tight, irredundant flower. Collectively, these lemmas generalise [9, Lemma 6.3], but a number of technicalities crop up in the proofs that are not present in the case where \(k=3\). Subsequently, for \(T\) to be a partial \(k\)-tree it remains to show that each flower vertex corresponds to a maximal flower. Again, the situation is more complex for general \(k\), but we prove, as Theorem 7.10 , that \(T\) is indeed a partial \(k\)-tree. Finally, we prove Theorem 2.1 by showing that every non-sequential \(k\)-separation of \(M\) is equivalent to a \(k\)-separation displayed by \(T\), so \(T\) is a \(k\)-tree, and that the algorithm runs in polynomial time.

Lemmas 7.1 and 7.2 are straightforward generalisations of [9, Lemmas 6.1 and 6.2], while Lemma 7.3 follows directly from [4, Lemmas 5.5 and 5.9].

Lemma 7.1. Let \(M\) be a \(k\)-connected matroid with \(|E(M)| \geq 8 k-15\). Let \(\left(X_{0} \cup X_{1}, X_{2}\right)\) be a \(k\)-path in \(M\) with \(X_{0} \cup X_{1}\) fully closed and let \(\mathcal{F}\) be the set of maximal sequential \(k\)-separating sets of \(M\). Let \(\left(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\right)\) be the output of ForwardSweep when applied to \(\left(M,\left(X_{0} \cup X_{1}, X_{2}\right), \mathcal{F}\right)\). Then \(\left(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\right)\) is a left-justified maximal \(X_{0}\)-rooted \(k\)-path of \(M\).

Lemma 7.2. Let \(M\) be a \(k\)-connected matroid with \(|E(M)| \geq 8 k-15\). Let \(T_{i}\) and \(T_{i+1}\) be \(\pi\)-labelled trees constructed by \(k\)-Tree ( \(M\) ) in line 6 or 17 , where \(i \geq 0\). Suppose that \(T_{i}\) is a conforming tree for \(M\), and \(T_{i+1}\) satisfies (F1) (F4) but is not a conforming tree for M. Let \(\left(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\right)\) be the \(k\)-path returned when ForwardSweep is applied in line 5 or 14 of \(k\)-Tree depending on whether \(i=0\) or \(i\) is positive. Let \((R, G)\) be a non-sequential \(k\)-separation in \(M\) that does not conform with \(T_{i+1}\) for which \(X_{0}\) is monochromatic and no equivalent \(k\)-separation in which \(X_{0}\) is monochromatic has fewer bichromatic parts in \(\left(X_{0} \cup X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{m}^{\prime}\right)\). Then \(X_{0} \cup X_{1}^{\prime}\) is monochromatic unless \(i=0\). In the exceptional case, either \(X_{1}^{\prime}\) is monochromatic, or both \(R \cap X_{1}^{\prime}\) and \(G \cap X_{1}^{\prime}\) are sequential \(k\)-separating sets with \(\left|R \cap X_{1}^{\prime}\right|,\left|G \cap X_{1}^{\prime}\right| \geq k-1\).

Lemma 7.3. Let \(\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)\) be a tight \(k\)-flower of order at least three in a \(k\)-connected matroid \(M\). Let \((R, G)\) be a non-sequential \(k\)-separation such that \(P_{1}\) is bichromatic, \(P_{2}\) is red, and no equivalent \(k\) separation has fewer bichromatic petals. Then, there is a tight \(k\)-flower \(\left(G \cap P_{1}, R \cap P_{1}, P_{2}, \ldots, P_{n}\right)\) that refines \(\Phi\).

The next two lemmas collectively generalise [9, Lemma 6.3]. When proving the result for arbitrary \(k\), the main difference is that we have to deal with the possibility of end parts breaking into three and not just two petals. In the proof of Lemma 7.4 , these are the cases where (7.4.1)(ii) or (7.4.2)(rii) hold. In Lemma 7.5, the last two paragraphs of (7.5.1) handle this possibility. Recall that a \(k\)-flower \(\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)\) is irredundant if \(\Phi\) is a \(k\)-daisy and, for all \(i \in\{1,2, \ldots, n\}\), there is a non-sequential \(k\)-separation
( \(X, Y\) ) displayed by \(\Phi\) with \(P_{i} \subseteq X\) and \(P_{i+1} \subseteq Y\); or \(\Phi\) is a \(k\)-anemone and, for all distinct \(i, j \in\{1,2, \ldots, n\}\), there is a non-sequential \(k\)-separation ( \(X, Y\) ) displayed by \(\Phi\) with \(P_{i} \subseteq X\) and \(P_{j} \subseteq Y\). As we are interested in the non-sequential \(k\)-separations of a matroid, it is most efficient for the tree to display irredundant flowers. Whereas every tight 3 -flower is irredundant, the same cannot be said of tight \(k\)-flowers for arbitrary \(k\). However, in (7.5.2) we show that every \(k\)-flower corresponding to a flower vertex of the tree returned by \(k\)-Tree is irredundant.

Lemma 7.4. Let \(M\) be a \(k\)-connected matroid with \(|E(M)| \geq 8 k-15\). The tree returned by \(k\)-Tree, when applied to \(M\), is a conforming tree for \(M\).

Proof. Let \(E\) denote the ground set of \(M\). We prove the lemma by showing that each of the \(\pi\)-labelled trees \(T_{p}\) constructed in lines 6 and 17 of \(k\)-Tree is a conforming tree for \(M\). Since \(T_{0}\) consists of a single bag vertex labelled \(E\), the result holds trivially if \(p=0\). Now suppose that \(p \geq 0\) and \(T_{p}\) is a conforming tree for \(M\). We will eventually show that \(T_{p+1}\) is a conforming tree for \(M\). The structure of the proof is as follows. First we show that \(T_{p+1}\) satisfies (F1) (F4). Then, we suppose towards a contradiction that \((R, G)\) is a non-sequential \(k\)-separation that does not conform with \(T_{p+1}\). End moves require special attention: we show, as (7.4.1) and (7.4.2), that when one is performed we can assume the end part breaks into two or three petals in a flower displayed by \(T_{p+1}\), and these petals are monochromatic with respect to \((R, G)\). To derive the contradiction, we handle the cases where \(p \geq 1\) and \(p=0\) separately, as (7.4.3) and (7.4.4) respectively.

It follows by induction, Lemma 7.1, and the construction in BACKwardSweep that \(T_{p+1}\) satisfies (F1) in the definition of a conforming tree. Furthermore, \(T_{p+1}\) trivially satisfies (F2) in this definition. To see that (F3) and (F4) hold for \(T_{p+1}\), let \(\Phi=\left(Q_{1}, Q_{2}, \ldots, Q_{k}\right)\) be a \(k\)-flower in \(M\) corresponding to a flower vertex \(v\) in the path realisation of the generalised \(k\)-path returned by BackwardSweep in the construction of \(T_{p+1}\) from \(T_{p}\). By induction, to show that (F3) and (F4) hold for \(T_{p+1}\), it suffices to show that \(v\) satisfies either (F3) or (F4) depending upon whether it is labelled \(A\) or \(D\), respectively. Without loss of generality, we may assume that, relative to this generalised \(k\)-path, \(Q_{1}\) is the entry petal. By construction, each petal of \(\Phi\) is \(k\)-separating and, apart from at most one of \(Q_{1} \cup Q_{2}\) and \(Q_{1} \cup Q_{k}\), each pair of consecutive petals is \(k\)-separating. Thus, by symmetry, it suffices to check that \(Q_{1} \cup Q_{2}\) is \(k\)-separating. This check is done by induction by showing, for all \(i\) in \(\{3,4, \ldots, k\}\), that \(Q_{3} \cup Q_{4} \cup \cdots \cup Q_{i}\) is \(k\)-separating. In particular, this will show that \(Q_{3} \cup Q_{4} \cup \cdots \cup Q_{k}\) is \(k\)-separating, so \(Q_{1} \cup Q_{2}\) is \(k\)-separating. Clearly, \(Q_{3}\) and \(Q_{3} \cup Q_{4}\) are \(k\)-separating. Now let \(i \geq 5\) and assume that \(Q_{3} \cup Q_{4} \cup \cdots \cup Q_{i-1}\) is \(k\)-separating. As \(Q_{i-1} \cup Q_{i}\) is also \(k\)-separating, and \(Q_{i-1}\) contains at least \(k-1\) elements, it follows by uncrossing that \(Q_{3} \cup Q_{4} \cup \cdots \cup Q_{i}\) is \(k\)-separating, as desired.

To complete the proof that \(T_{p+1}\) is a conforming tree for \(M\), suppose there is a non-sequential \(k\)-separation \(\left(R^{\prime}, G^{\prime}\right)\) that does not conform with
\(T_{p+1}\). Because this \(k\)-separation does conform with \(T_{p}\), it is equivalent to a \(k\) separation \((R, G)\) such that \(R\) or \(G\) is contained in a bag of \(T_{p}\). Only one bag of \(T_{p}\) is affected in the construction of \(T_{p+1}\), so we may assume that \(R\) or \(G\) is contained in this bag \(B\). As \(X_{0}=E-\pi(B)\), which may be empty, we deduce that, with respect to \((R, G)\), the set \(X_{0}\) is monochromatic. Thus \((R, G)\) is a non-sequential \(k\)-separation that does not conform with \(T_{p+1}\) and has \(X_{0}\) monochromatic. From among the collection of choices for \((R, G)\) satisfying these conditions, choose one such that no equivalent \(k\)-separation in which \(X_{0}\) is monochromatic has fewer bichromatic parts with respect to the \(X_{0^{-}}\) rooted \(k\)-path ( \(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\) ) returned by ForwardSweep during the construction of \(T_{p+1}\) from \(T_{p}\). By Lemma 7.1 , the \(k\)-path is left-justified and maximal. By Lemma 7.2, we may further assume that if \(p \geq 1\), then \(X_{0} \cup Z_{1}\) is monochromatic and if \(p=0\), in which case \(X_{0}\) is empty, then either \(Z_{1}\) is monochromatic, or \(\left|R \cap Z_{1}\right|,\left|G \cap Z_{1}\right| \geq k-1\) and each of \(R \cap Z_{1}\) and \(G \cap Z_{1}\) is a sequential \(k\)-separating set.

Shortly, we handle the case where \(X_{0} \cup Z_{1}\) is monochromatic, as (7.4.3), First, we show that when \(m \geq 3\) and \(Z_{m}\) or \(Z_{1}\) is bichromatic, then we can assume the generalised \(k\)-path returned by BackwardSweep during the construction of \(T_{p+1}\) from \(T_{p}\) breaks \(Z_{m}\) or \(Z_{1}\), respectively, into monochromatic petals.
7.4.1. Consider the call to BACKWARDSWEEP while constructing \(T_{p+1}\) from \(T_{p}\). If \(Z_{m}\) and \(Z_{m}^{-}\)are bichromatic and \(Z_{m-1}\) is monochromatic, where \(m \geq\) 3, then, up to recolouring elements of \(Z_{m}\) to give a \(k\)-separation equivalent to \((R, G)\), the generalised \(k\)-path \(\tau_{m-1}\) is of the form
(i) \(\left(\ldots,\left[\left(Z_{m-1}, X\right)\right], Y\right)\), where \((X, Y)\) is a partition of \(Z_{m}\) such that \(X\) and \(Y\) are monochromatic, or
(ii) \(\left(\ldots,\left[\left(Z_{m-1}, A, B\right)\right], C\right)\), where \((A, B, C)\) is a partition of \(Z_{m}\) such that \(A, B\), and \(C\) are monochromatic.

As \(\left|G \cap Z_{m}^{-}\right| \geq k-1\), by Lemma 3.15 , and both \(Z_{m}\) and \(R\) are \(k\)-separating, the set \(R \cap Z_{m}\) is \(k\)-separating by uncrossing. Now, if \(\left|G \cap Z_{m}\right| \leq k-2\), then \(G \cap Z_{m} \subseteq \operatorname{fcl}_{k}\left(R \cap Z_{m}\right)\), and we can recolour \(G \cap Z_{m}\) red to obtain a \(k\)-separation equivalent to ( \(R, G\) ) with fewer bichromatic parts; a contradiction. Thus \(\left|G \cap Z_{m}\right| \geq k-1\). A similar argument shows that \(\left|R \cap Z_{m}\right| \geq k-1\).

We next show that line 21 of BackwardSweep is invoked. If \(Z_{m-1} \subseteq R\), then, as \(R\) and \(Z_{m-1} \cup Z_{m}\) are both \(k\)-separating and \(\left|G \cap Z_{m-1}^{-}\right| \geq k-1\), the set \(R \cap\left(Z_{m-1} \cup Z_{m}\right)\) is \(k\)-separating by uncrossing. As \(\left|G \cap Z_{m}\right| \geq k-1\), it follows that \(Z_{m-1}\) is \(k\)-separating by uncrossing \(R \cap\left(Z_{m-1} \cup Z_{m}\right)\) and \(Z_{m}^{-}\). Using the fact that \(Z_{m}^{-}\)is bichromatic, the same argument shows that \(Z_{m-1}\) is \(k\)-separating when \(Z_{m-1} \subseteq G\). Thus line 21 is invoked. Furthermore, as \(Z_{m-1} \cup\left(R \cap Z_{m}\right)\) is \(k\)-separating if \(Z_{m-1} \subseteq R\) and, similarly, \(Z_{m-1} \cup\left(G \cap Z_{m}\right)\) is \(k\)-separating if \(Z_{m-1} \subseteq G\), it follows that BACKwardSweep finds a \(k\) separation \((U, V)\) as described in this line.

Suppose both \(U \cap Z_{m}\) and \(V \cap Z_{m}\) are monochromatic in an \((R, G)\) equivalent \(k\)-separation obtained by recolouring elements of \(Z_{m}\). Then, since
\((R, G)\) is non-sequential, BACKWARDSWEEP finds a \(k\)-separation \(\left(U_{1}, V_{1}\right)\) as described in line 22. It follows that \(\tau_{m-1}\) is of the form \(\left(\ldots,\left[\left(Z_{m-1}, U \cap\right.\right.\right.\) \(\left.\left.\left.Z_{m}\right)\right], V \cap Z_{m}\right)\) or \(\left(\ldots,\left[\left(Z_{m-1}, A, B\right)\right], C\right)\), where either \((A, B \cup C)=(U \cap\) \(\left.Z_{m}, V \cap Z_{m}\right)\) or \((A \cup B, C)=\left(U \cap Z_{m}, V \cap Z_{m}\right)\). Thus (i) or (ii) holds.

Now we may assume that no recolouring of elements in \(Z_{m}\) gives a \(k\)-separation equivalent to \((R, G)\) such that both \(U \cap Z_{m}\) and \(V \cap Z_{m}\) are monochromatic. First, we show that BACKWARDSwEEP finds a nonsequential \(k\)-separation \(\left(U_{1}, V_{1}\right)\) as described in line 22 . If \(U\) is nonsequential, then \((U, V)\) is such a \(k\)-separation \(\left(U_{1}, V_{1}\right)\), so let \(U\) be \(k\) sequential. Without loss of generality we may assume that \(Z_{m-1}\) is red. Suppose that no recolouring of elements in \(Z_{m}\) gives an \((R, G)\)-equivalent \(k\) separation such that \(U \cap Z_{m}\) is monochromatic. Since \(Z_{m}^{-}\)is bichromatic, it follows that \(|G \cap V| \geq k-1\) by Lemma 3.15. By uncrossing and Lemma 3.2, \(R \cap U\) and \(U \cap Z_{m}\) are sequential \(k\)-separating sets. If \(\left|R \cap U \cap Z_{m}\right| \leq k-2\), then, since \(R \cap U\) is \(k\)-separating, \(R \cap U \cap Z_{m} \subseteq \mathrm{fcl}_{k}\left(Z_{m-1}\right)\); a contradiction. It follows, by Lemma 5.6, that since no recolouring of elements of \(Z_{m}\) gives an \((R, G)\)-equivalent \(k\)-separation where \(U \cap Z_{m}\) is monochromatic, either \(Z_{m-1} \subseteq \mathrm{fcl}_{k}\left(R \cap U \cap Z_{m}\right)\) or \(R \cap U \cap Z_{m} \subseteq \mathrm{fcl}_{k}\left(Z_{m-1}\right)\). But if the former holds, then \(Z_{m-1} \subseteq \mathrm{fcl}_{k}\left(Z_{m}\right)\); a contradiction. If the latter holds, then \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is not a left-justified \(k\)-path; a contradiction. Now we may assume that \(U \cap Z_{m}\) is monochromatic. If \(U\) is monochromatic, then the non-sequential \(k\)-separation \((R, G)\) satisfies the requirements of \(\left(U_{1}, V_{1}\right)\) in line 22 , so we may assume that \(U \cap Z_{m}\) is green. Recall that, as \(Z_{m-1} \subseteq R\), the set \(R \cap\left(Z_{m-1} \cup Z_{m}\right)\) is \(k\)-separating. Thus \(U \cup\left(R \cap Z_{m}\right)\) is \(k\)-separating by uncrossing \(U\) and \(R \cap\left(Z_{m-1} \cup Z_{m}\right)\). Suppose \(U \cup\left(R \cap Z_{m}\right)\) is \(k\)-sequential. Then \(R \cap\left(Z_{m-1} \cup Z_{m}\right)\) and \(U\) are \(k\)-sequential by Lemma 3.2 . Thus, we can apply Lemma 5.6. However, since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a \(k\) path, \(Z_{m-1} \nsubseteq \mathrm{fcl}_{k}\left(R \cap Z_{m}\right)\) and \(Z_{m-1} \nsubseteq \operatorname{fcl}_{k}\left(U \cap Z_{m}\right)\). Moreover, if either \(R \cap Z_{m} \subseteq \operatorname{fcl}_{k}\left(Z_{m-1}\right)\) or \(U \cap Z_{m} \subseteq \mathrm{fcl}_{k}\left(Z_{m-1}\right)\), then the \(k\)-path is not leftjustified; a contradiction. We deduce that \(U \cup\left(R \cap Z_{m}\right)\) is non-sequential, so a \(k\)-separation \(\left(U_{1}, V_{1}\right)\) is found as described in line 22 .

By Lemma 3.20, \(R \cap Z_{m}\) and \(G \cap Z_{m}\) are sequential \(k\)-separating sets. If \(V_{1} \cap Z_{m}\) is non-sequential, then, as \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a left-justified maximal \(k\)-path, \(U_{1} \cap Z_{m} \subseteq \mathrm{fcl}_{k}\left(V_{1} \cap Z_{m}\right) \subseteq \mathrm{fcl}_{k}\left(V_{1}\right)\). But then, by Corollary 3.7(i), \(U_{1} \cap Z_{m} \subseteq \mathrm{fcl}_{k}\left(U_{1}-Z_{m}\right)\); a contradiction. It follows that \(V_{1} \cap Z_{m}\) is \(k\)-sequential and, by a similar argument, \(U_{1} \cap Z_{m}\) is \(k\)-sequential. By Lemma 5.8, we may assume, by recolouring elements of \(Z_{m}\) if necessary, that one of \(U_{1} \cap Z_{m}\) and \(V_{1} \cap Z_{m}\) is monochromatic and the other is bichromatic. Suppose, up to swapping \(R\) and \(G\), that \(U_{1} \cap Z_{m}\) is red and \(V_{1} \cap Z_{m}\) is bichromatic. Since \(\left|V_{1} \cap Z_{m-1}^{-}\right| \geq k-1\), as \(V_{1} \cap Z_{m}\) is \(k\)-sequential, and \(\left|U_{1} \cap Z_{m}\right| \geq k-1\), it follows, by two applications of uncrossing, that \(Z_{m-1} \cup\left(R \cap Z_{m}\right)\) is \(k\)-separating. Moreover, \(R \cap Z_{m}\) has an element not in \(\mathrm{fcl}_{k}\left(U_{1}-Z_{m-1}^{-}\right)\), by Lemma 5.5. since no \((R, G)\)-equivalent recolouring of elements in \(Z_{m}\) has both \(U \cap Z_{m}\) and \(V \cap Z_{m}\) monochromatic.

As \(\left|G \cap Z_{m}\right| \geq k-1\), it follows that BackwardSweep finds a \(k\)-separation \((S, T)\) as described in line 23 .

Now we show that \((S, T)\) is non-sequential. By Corollary \(3.3, T\) is nonsequential as it contains \(Z_{m-1}^{-}\). Suppose that \(S\) is \(k\)-sequential, and let \(U_{2}=U_{1}-Z_{m-1}^{-}\). Then \(U_{2}\) and \(S \cap Z_{m}\) are also \(k\)-sequential by Lemma 3.2 . Next, we will apply Lemma 5.6. If \(U_{2}-Z_{m} \subseteq \operatorname{fcl}_{k}\left(U_{2} \cap Z_{m}\right)\), then \(U_{2}\) \(Z_{m} \subseteq \operatorname{fcl}_{k}\left(Z_{m}\right)\) where \(U_{2}-Z_{m}=Z_{m-1}\); a contradiction. By line 23 of BackwardSweep, \(S-U_{2} \nsubseteq \operatorname{fcl}_{k}\left(U_{2} \cap Z_{m}\right)\). Since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a left-justified \(k\)-path, \(U_{2} \cap Z_{m} \nsubseteq \operatorname{fcl}_{k}\left(U_{2}-Z_{m}\right)\). Moreover, if \(U_{2} \cap Z_{m} \subseteq\) \(\mathrm{fcl}_{k}\left(S-U_{2}\right)\), then \(U_{2} \cap Z_{m} \subseteq \operatorname{fcl}_{k}\left(V_{2} \cap Z_{m}\right)\), so, by Corollary 3.7)(i), \(U_{2} \cap Z_{m} \subseteq\) \(\mathrm{fcl}_{k}\left(Z_{m}^{-}\right)\); a contradiction. We deduce that \(S\) is also non-sequential.

By applying Lemma 3.20 , but with \((S, T)\) in the role of \((R, G)\), we deduce that \(S \cap Z_{m}\) and \(T \cap Z_{m}\) are \(k\)-sequential sets. It follows, by Corollary 5.9 , that \(\Phi=\left(V_{1}-Z_{m}, U_{1}-Z_{m}, U_{1} \cap Z_{m}, S \cap V_{1} \cap Z_{m}, T \cap Z_{m}\right)\) is a tight \(k\)-flower. If possible, recolour elements of \(V_{1} \cap Z_{m}\) to give a \(k\)-separation equivalent to ( \(R, G\) ) such that \(\Phi\) has fewer bichromatic petals. Now, if \(S \cap V_{1} \cap Z_{m}\) is bichromatic, then, by Lemma 7.3 , there exists a tight refinement \(\Phi^{\prime}=\) \(\left(V_{1}-Z_{m}, U_{1}-Z_{m}, U_{1} \cap Z_{m}, R \cap S \cap V_{1} \cap Z_{m}, G \cap S \cap V_{1} \cap Z_{m}, T \cap Z_{m}\right)\) of \(\Phi\). But \(V_{1} \cap Z_{m}\) is sequential, so \(\Phi^{\prime}\) has three consecutive petals whose union is a sequential set, contradicting Corollary 5.7. Thus \(S \cap V_{1} \cap Z_{m}\) is monochromatic and, by the same argument, \(T \cap Z_{m}\) is monochromatic. We deduce, by line 24 of BackwardSweep, that (ii) holds.

Now suppose, up to swapping \(R\) and \(G\), that \(U_{1} \cap Z_{m}\) is bichromatic and \(V_{1} \cap Z_{m}\) is green. By Corollary 5.9, and a reversal and cyclic shift of the petals, \(\Phi=\left(V_{1}-Z_{m}, U_{1}-Z_{m}, R \cap U_{1} \cap Z_{m}, G \cap U_{1} \cap Z_{m}, V_{1} \cap Z_{m}\right)\) is a tight \(k\) flower. It follows, by Lemma 7.3 , that if there is a \(k\)-separation as described in line 23 of BackwardSweep, then \(\Phi\) has a tight refinement with three consecutive petals, \(G \cap U_{1} \cap Z_{m}, S \cap V_{1} \cap Z_{m}\), and \(T \cap V_{1} \cap Z_{m}\), whose union is the sequential set \(G \cap Z_{m}\); a contradiction. Therefore, the algorithm reaches line 25 . If \(Z_{m-1} \subseteq R\), then \((R, G)\) is a \(k\)-separation that satisfies the requirements of this line, while if \(Z_{m-1} \subseteq G\), then \((G, R)\) is such a \(k\)-separation; so the algorithm finds a \(k\)-separation \((S, T)\) as described. Suppose \(S \cap Z_{m}\) is non-sequential. Since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a left-justified maximal \(k\)-path, \(T \cap Z_{m} \subseteq \operatorname{fcl}_{k}\left(S \cap Z_{m}\right) \subseteq \operatorname{fcl}_{k}(S)\). It follows, by Corollary 3.7)(i), that \(T \cap Z_{m} \subseteq \operatorname{fcl}_{k}\left(T-Z_{m}\right)\); a contradiction. Thus \(S \cap Z_{m}\) is non-sequential. By a similar argument, \(T \cap Z_{m}\) is also non-sequential. If, up to recolouring elements of \(Z_{m}\) to give an \((R, G)\)-equivalent \(k\)-separation, \(S \cap Z_{m}\) and \(T \cap Z_{m}\) are monochromatic, then (ii) holds, so assume otherwise. By applying Corollary 5.9 with \(\left(V_{1}, U_{1}\right)\) and \((S, T)\) in the roles of \((U, V)\) and \((R, G)\) respectively, we deduce that \(\Phi^{\prime}=\left(U_{1}-Z_{m}, V_{1}-Z_{m}, V_{1} \cap Z_{m}, S \cap U_{1} \cap Z_{m}, T \cap U_{1} \cap Z_{m}\right)\) is a tight \(k\)-flower. If possible, recolour elements of \(U_{1} \cap Z_{m}\) to give an \((R, G)\) equivalent \(k\)-separation such that \(\Phi^{\prime}\) has fewer bichromatic petals. Now, if \(S \cap U_{1} \cap Z_{m}\) is bichromatic, then, by Lemma 7.3 , there exists a tight refinement of \(\Phi^{\prime}\) with three consecutive petals \(G \cap S \cap U_{1} \cap Z_{m}, R \cap S \cap U_{1} \cap Z_{m}\), and \(T \cap U_{1} \cap Z_{m}\). But the union of these petals, \(U_{1} \cap Z_{m}\), is sequential,
contradicting Corollary 5.7. So \(S \cap U_{1} \cap Z_{m}\) is monochromatic and, by a similar argument, \(T \cap U_{1} \cap Z_{m}\) is monochromatic. We deduce, by line 26 of BACKWARDSWEEP, that (ii) holds in this case, completing the proof of (7.4.1).
7.4.2. Consider the call to BACKWARDSWEEP while constructing \(T_{1}\) in line 6 of \(k\)-TREE. If \(Z_{1}\) and \(E-Z_{1}\) are bichromatic, \(m \geq 3\), and \(\tau_{2}\) starts with \(\left(Z_{1},\left[\left(P_{1}, \ldots, P_{s}\right),\left(Q_{1}, \ldots, Q_{t}\right)\right], \ldots\right)\) where \(s \geq 1, t \geq 0\), and \(P_{1}\) is monochromatic, then, up to recolouring elements of \(Z_{1}\) to give a \(k\) separation equivalent to \((R, G)\), BACKWARDSWEEP returns a generalised \(k\)-path that starts with either
(i) \(\left(X,\left[\left(Y, P_{1}, \ldots, P_{s}\right),\left(Q_{1}, \ldots, Q_{t}\right)\right], \ldots\right)\), where \((X, Y)\) is a partition of \(Z_{1}\) such that \(X\) and \(Y\) are monochromatic, or
(ii) \(\left(A,\left[\left(B, C, P_{1}, \ldots, P_{s}\right),\left(Q_{1}, \ldots, Q_{t}\right)\right], \ldots\right)\), where \((A, B, C)\) is a partition of \(Z_{1}\) such that \(A, B\) and \(C\) are monochromatic.

As \(P_{1}\) is monochromatic, and \(Z_{1}\) and \(E-Z_{1}\) are bichromatic, it follows, by uncrossing, that the call to BACKWARDSWEEP reaches line 55 and finds a \(k\) separation \((U, V)\) as described in that line. If we can recolour elements of \(Z_{1}\) to give an \((R, G)\)-equivalent \(k\)-separation where both \(U \cap Z_{1}\) and \(V \cap Z_{1}\) are monochromatic, then, since \((R, G)\) is non-sequential, a \(k\)-separation is found as described in line56. It follows that the generalised \(k\)-path returned by BACKWARDSWEEP starts with \(\left(V \cap Z_{1},\left[\left(U \cap Z_{1}, P_{1}, \ldots, P_{s}\right),\left(Q_{1}, \ldots, Q_{t}\right)\right]\right.\), \(\ldots)\) or \(\left(A,\left[\left(B, C, P_{1}, \ldots, P_{s}\right),\left(Q_{1}, \ldots, Q_{t}\right)\right], \ldots\right)\), where either \((A, B \cup C)=\) \(\left(V \cap Z_{1}, U \cap Z_{1}\right)\) or \((A \cup B, C)=\left(V \cap Z_{1}, U \cap Z_{1}\right)\), in which case (i) or (ii) holds.

Now we may assume that there is no \(k\)-separation equivalent to \((R, G)\) such that both \(U \cap Z_{1}\) and \(V \cap Z_{1}\) are monochromatic. First, we show that BACKWARDSWEEP finds a non-sequential \(k\)-separation \(\left(U_{1}, V_{1}\right)\) as described in line 56. If \(U\) is non-sequential, then \((U, V)\) is such a \(k\)-separation \(\left(U_{1}, V_{1}\right)\), so let \(U\) be \(k\)-sequential. Without loss of generality we may assume that \(P_{1}\) is red. Suppose that no recolouring of elements in \(Z_{1}\) gives an \((R, G)\) equivalent \(k\)-separation such that \(U \cap Z_{1}\) is monochromatic. By uncrossing and Lemma 3.2, \(R \cap U\) and \(U \cap Z_{1}\) are sequential \(k\)-separating sets. Towards a contradiction, suppose that \(R \cap U \cap Z_{1} \subseteq \mathrm{fcl}_{k}\left(P_{1}\right)\). Then, by the construction of \(U\) in line 55 of BACKWARDSWEEP, \(G \cap U \cap Z_{1} \nsubseteq \mathrm{fcl}_{k}\left(P_{1}\right)\) and, in particular, \(\left|G \cap U \cap Z_{1}\right| \geq k-1\). If \(\left|R \cap V \cap Z_{1}\right| \leq k-2\), then \(R \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(R-Z_{1}\right)\), so \(R \cap Z_{1} \subseteq \operatorname{fcl}_{k}(G)\) by Corollary 3.7)(i); a contradiction. Hence, by uncrossing, \(V \cup\left(R \cap Z_{1}\right)\) is \(k\)-separating. Thus \(R \cap U \cap Z_{1} \subseteq \mathrm{fcl}_{k}\left(U-\left(R \cap Z_{1}\right)\right)\). Ву applying Lemma 5.5 with \(\left(Z_{1}, E-Z_{1}\right)\) in the role of \((R, G)\), we deduce that \(R \cap U \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(G \cap U \cap Z_{1}\right) \subseteq \mathrm{fcl}_{k}(G) ;\) a contradiction. So \(R \cap U \cap Z_{1} \nsubseteq\) \(\mathrm{fcl}_{k}\left(P_{1}\right)\). It follows that \(\left|R \cap U \cap Z_{1}\right| \geq k-1\). Now we can apply Lemma 5.6 with \(R \cap U\) and \(U \cap Z_{1}\) in the roles of \(A\) and \(B\) respectively. Since no \((R, G)\)-equivalent \(k\)-separation has \(U \cap Z_{1}\) monochromatic, it follows that \(P_{1} \subseteq \mathrm{fcl}_{k}\left(R \cap U \cap Z_{1}\right)\). Thus, \(P_{1} \subseteq \mathrm{fcl}_{k}\left(Z_{1}\right)\); a contradiction.

Now suppose that there is a recolouring of elements in \(Z_{1}\) which results in an \((R, G)\)-equivalent \(k\)-separation such that \(U \cap Z_{1}\) is monochromatic. If \(U\) is monochromatic, then the non-sequential \(k\)-separation \((R, G)\) satisfies the requirements of \(\left(U_{1}, V_{1}\right)\) in line 56 , so we may assume that \(U \cap Z_{1}\) is green. As \(P_{1}\) is red, the set \(P_{1} \cup\left(R \cap Z_{1}\right)\) is \(k\)-separating by uncrossing \(Z_{1} \cup P_{1}\) and \(R\). Thus \(U \cup\left(R \cap Z_{1}\right)\) is \(k\)-separating by uncrossing. Suppose \(U \cup\left(R \cap Z_{1}\right)\) is \(k\)-sequential. Then \(P_{1} \cup\left(R \cap Z_{1}\right)\) and \(U\) are \(k\)-sequential by Lemma 3.2, Thus, we can apply Lemma 5.6. However, since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a leftjustified \(k\)-path, \(P_{1} \nsubseteq \operatorname{fcl}_{k}\left(R \cap Z_{1}\right)\) and \(P_{1} \nsubseteq \operatorname{fcl}_{k}\left(U \cap Z_{1}\right)\), and, moreover, \(U \cap Z_{1} \nsubseteq \mathrm{fcl}_{k}\left(P_{1}\right)\) by the construction of \(U\) in line 55 of BackwardSweep. Therefore, \(R \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(P_{1}\right)\), in which case \(R \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(R-Z_{1}\right)\), so, by Corollary 3.7](i), we can recolour \(R \cap Z_{1}\) green to give an \((R, G)\)-equivalent \(k\)-separation where \(U \cap Z_{1}\) and \(V \cap Z_{1}\) are monochromatic; a contradiction. We deduce that \(U \cup\left(R \cap Z_{1}\right)\) is non-sequential, so a \(k\)-separation \(\left(U_{1}, V_{1}\right)\) is found as described in line 56,

By Lemma 7.2, \(R \cap Z_{1}\) and \(G \cap Z_{1}\) are sequential \(k\)-separating sets. If \(V_{1} \cap Z_{1}\) is non-sequential, then, as \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a left-justified maximal \(k\)-path, \(U_{1} \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(V_{1} \cap Z_{1}\right) \subseteq \operatorname{fcl}_{k}\left(V_{1}\right)\). Thus, by Corollary 3.7](i), \(U_{1} \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(U_{1}-Z_{1}\right)\), contradicting the construction of \(U\) and \(U_{1}\) in lines 55 and 56. Thus \(V_{1} \cap Z_{1}\) is \(k\)-sequential, and, by a similar argument, \(U_{1} \cap Z_{1}\) is \(k\)-sequential. We may assume, by Lemma 5.8 , that, up to recolouring elements of \(Z_{1}\) to give an ( \(R, G\) )-equivalent \(k\)-separation, one of \(U_{1} \cap Z_{1}\) and \(V_{1} \cap Z_{1}\) is monochromatic and the other is bichromatic. Suppose, up to swapping \(R\) and \(G\), that \(U_{1} \cap Z_{1}\) is red and \(V_{1} \cap Z_{1}\) is bichromatic. Since \(\left|V_{1}-\left(Z_{1} \cup P_{1}\right)\right| \geq k-1\), as \(V_{1} \cap Z_{1}\) is \(k\)-sequential, and \(\left|U_{1} \cap Z_{1}\right| \geq k-1\), it follows, by uncrossing \(U_{1}\) and \(Z_{1} \cup P_{1}\), and then uncrossing \(U_{1} \cap\left(Z_{1} \cup P_{1}\right)\) and \(R \cap Z_{1}\), that \(P_{1} \cup\left(R \cap Z_{1}\right)\) is \(k\)-separating. If \(G \cap Z_{1} \subseteq \mathrm{fcl}_{k}\left(E-Z_{1}\right)\), then, by Corollary 3.7](i), \(G \cap Z_{1}\) can be recoloured red in an \((R, G)\)-equivalent \(k\)-separation; a contradiction. Likewise, if \(R \cap V_{1} \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(U_{1} \cap\left(Z_{1} \cup P_{1}\right)\right)\), then, by Lemma 5.5, \(R \cap V_{1} \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(R \cap U_{1} \cap\left(Z_{1} \cup P_{1}\right)\right) \subseteq \operatorname{fcl}_{k}\left(R-\left(V_{1} \cap\right.\right.\) \(\left.Z_{1}\right)\) ), so \(R \cap V_{1} \cap Z_{1} \subseteq \operatorname{fcl}_{k}(G)\) by Corollary \(\left.3.7 \mid(\mathrm{i})\right\}\) a contradiction. Thus BackwardSweep finds a \(k\)-separation \((S, T)\) as described in line 57 .

Now we show that \((S, T)\) is non-sequential. By Corollary \(3.3, T\) is nonsequential as it contains \(Z_{m}\). Suppose that \(S\) is \(k\)-sequential. Let \(\left(U_{2}, V_{2}\right)=\) \(\left(U_{1} \cap\left(Z_{1} \cup P_{1}\right), V_{1} \cup\left(E-\left(Z_{1} \cup P_{1}\right)\right)\right)\). Then \(U_{2}\) and \(S \cap Z_{1}\) are also \(k\) sequential by Lemma 3.2 . By lines 55 and \(57, U_{2} \cap Z_{1} \nsubseteq \mathrm{fcl}_{k}\left(U_{2}-Z_{1}\right)\) and \(S-U_{2} \nsubseteq \operatorname{fcl}_{k}\left(U_{2} \cap Z_{1}\right)\), and, since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a left-justified \(k\)-path, \(U_{2}-Z_{1} \nsubseteq \operatorname{fcl}_{k}\left(U_{2} \cap Z_{1}\right)\). Hence, by Lemma 5.6. \(U_{2} \cap Z_{1} \subseteq \mathrm{fcl}_{k}(S-\) \(\left.U_{2}\right) \subseteq \operatorname{fcl}_{k}\left(V_{2} \cap Z_{1}\right)\). By Corollary 3.7(i), \(U_{2} \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(E-Z_{1}\right)\). By an application of Lemma 5.5 with \(\left(U_{2}, V_{2}\right)\) in the role of \((R, G)\), we deduce that \(U_{2} \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(U_{2}-Z_{1}\right)\); a contradiction. Hence \(S\) is also non-sequential.

Next we show that \(S \cap Z_{1}\) and \(T \cap Z_{1}\) are \(k\)-sequential. Suppose \(S \cap Z_{1}\) is non-sequential. Since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is maximal and left-justified, we deduce that \(T \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(S \cap Z_{1}\right)\), so \(T \cap Z_{1} \subseteq \operatorname{fcl}_{k}(S)\). As \(T\) is non-sequential, it follows, by Corollary 3.7(i), that \(T \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(T-Z_{1}\right)\), contradicting the
construction of \((S, T)\) in line 57 . We deduce that \(S \cap Z_{1}\) is \(k\)-sequential and, by a similar argument, \(T \cap Z_{1}\) is also \(k\)-sequential. Thus, by Corollary 5.9, \(\Phi=\left(T \cap Z_{1}, S \cap V_{1} \cap Z_{1}, U_{1} \cap Z_{1}, U_{1}-Z_{1}, V_{1}-Z_{1}\right)\) is a \(k\)-flower where the first three petals are tight, and thus \(\Phi\) is tight. If possible, recolour elements of \(V_{1} \cap Z_{1}\) to give a \(k\)-separation equivalent to \((R, G)\) such that \(\Phi\) has fewer bichromatic petals. Now, if \(S \cap V_{1} \cap Z_{1}\) is bichromatic, then, by Lemma 7.3 , there exists a refinement of \(\Phi\) with consecutive tight petals \(T \cap Z_{1}, G \cap S \cap V_{1} \cap Z_{1}\) and \(R \cap S \cap V_{1} \cap Z_{1}\). The union of these three petals, \(V_{1} \cap Z_{1}\), is \(k\)-sequential, contradicting Corollary 5.7. So \(S \cap V_{1} \cap Z_{1}\) is monochromatic and, by a similar argument, \(T \cap Z_{1}\) is monochromatic. We deduce, by line 58 of BackwardSweep, that (ii) holds.

Now suppose, up to swapping \(R\) and \(G\), that \(U_{1} \cap Z_{1}\) is bichromatic and \(V_{1} \cap Z_{1}\) is green. By Corollary 5.9, \(\Phi=\left(V_{1}-Z_{1}, U_{1}-Z_{1}, R \cap U_{1} \cap Z_{1}, G \cap\right.\) \(\left.U_{1} \cap Z_{1}, V_{1} \cap Z_{1}\right)\) is a tight \(k\)-flower. It follows, by Lemma 7.3, that if there is a \(k\)-separation as described in line 57 , then \(\Phi\) has a tight refinement with three consecutive petals \(G \cap U_{1} \cap Z_{1}, S \cap V_{1} \cap Z_{1}\) and \(T \cap V_{1} \cap Z_{1}\) whose union is \(G \cap Z_{1}\), contradicting Corollary 5.7. Thus, the algorithm reaches line 59. If \(P_{1} \subseteq R\), then \((R, G)\) is a non-sequential \(k\)-separation that satisfies the requirements of line 59, while if \(P_{1} \subseteq G\), then \((G, R)\) is such a \(k\)-separation; so a \(k\)-separation \((S, T)\) is found as described. If \(S \cap Z_{1}\) is non-sequential, then \(T \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(S \cap Z_{1}\right)\), since \(\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) is a maximal \(k\)-path. But then \(T \cap Z_{1} \subseteq \operatorname{fcl}_{k}(S)\), so \(T \cap Z_{1} \subseteq \operatorname{fcl}_{k}\left(T-Z_{1}\right)\) by Corollary 3.7|(i), contradicting the construction of \((S, T)\) in line59. So \(S \cap Z_{1}\) and, similarly, \(T \cap Z_{1}\) are \(k\)-sequential. If, up to recolouring elements of \(Z_{1}\) to give an \((R, G)\)-equivalent \(k\)-separation, \(S \cap Z_{1}\) and \(T \cap Z_{1}\) are monochromatic, then (ii) holds by line 60, so assume otherwise. By applying Corollary 5.9, \(\Phi^{\prime}=\left(E-\left(Z_{1} \cup P_{1}\right), P_{1}, S \cap U_{1} \cap Z_{1}, T \cap U_{1} \cap Z_{1}, V_{1} \cap Z_{1}\right)\) is a tight \(k\) flower. If possible, recolour elements of \(U_{1} \cap Z_{1}\) to give an \((R, G)\)-equivalent \(k\)-separation such that \(\Phi^{\prime}\) has fewer bichromatic petals. Now, if \(T \cap U_{1} \cap Z_{1}\) is bichromatic, then, by Lemma 7.3 , there exists a refinement of \(\Phi^{\prime}\) with three consecutive petals \(S \cap U_{1} \cap Z_{1}, R \cap T \cap U_{1} \cap Z_{1}\) and \(G \cap T \cap U_{1} \cap Z_{1}\). But the union of these petals, \(U_{1} \cap Z_{1}\) is \(k\)-sequential, contradicting Corollary 5.7. So \(T \cap U_{1} \cap Z_{1}\) is monochromatic and, by the same argument, \(S \cap U_{1} \cap Z_{1}\) is monochromatic. Thus (7.4.2) holds.
7.4.3. If \(X_{0} \cup Z_{1}\) is monochromatic, then \(T_{p+1}\) displays \((R, G)\).

Suppose \(X_{0} \cup Z_{1}\) is monochromatic. Without loss of generality, we may assume that \(X_{0} \cup Z_{1} \subseteq G\). Let \(b\) be the number of bichromatic parts amongst \(Z_{2}, \ldots, Z_{m}\). Assume \(b \geq 2\) and let \(Z_{i}\) be the bichromatic part with the smallest subscript. If \(Z_{i}^{-} \cap R\) is non-empty, then, by Lemmas 3.14 and 3.15. \(Z_{i}\) is monochromatic; a contradiction. Therefore \(Z_{i}^{-} \subseteq G\). But then, by Lemma 3.17, \(Z_{i}^{+}\)is monochromatic; a contradiction. Thus \(b \in\{0,1\}\).

Assume \(b=1\) and \(Z_{i}\) is bichromatic. We first consider \(i \neq m\). If \(Z_{i}^{+}\)is bichromatic, then, by Lemma 3.17, \(Z_{i}^{-}\)is bichromatic, and so, by Lemma 3.15, \(\left|R \cap Z_{i}^{-}\right|,\left|G \cap Z_{i}^{-}\right|,\left|R \cap Z_{i}^{+}\right|,\left|G \cap Z_{i}^{+}\right| \geq k-1\). But then, by

Lemma 3.14, \(Z_{i}\) is monochromatic; a contradiction. Thus we may assume that \(Z_{i}^{+}\)is monochromatic.

Suppose \(Z_{i}^{-}\)is monochromatic. As \(X_{0} \cup Z_{1} \subseteq G\), we have \(Z_{i}^{-} \subseteq G\). Then, by Lemma 3.17, \(Z_{i}^{+} \subseteq G\), so \(R \subseteq Z_{i}\). The only lines in BackwardSweep that do not leave \(Z_{i}\) intact are lines 34 and 52 . As \((R, G)\) does not conform with \(T_{p+1}\), we may assume that one of these is invoked. Then both \(R \cap\left(Z_{i}-\right.\) \(\left.\mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right)\)and \(R \cap\left(Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right)\)are non-empty. But, as \(R \cap\left(Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right) \subseteq\) \(\mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\), it follows that \(R \cap\left(Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right) \subseteq \mathrm{fcl}_{k}(G)\). Therefore we can recolour all the elements in \(R \cap\left(Z_{i} \cap \operatorname{fcl}_{k}\left(Z_{i}^{+}\right)\right)\)green thereby obtaining an equivalent \(k\)-separation in which all the red elements are in \(Z_{i}-\mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\), a single bag of \(T_{p+1}\). This contradiction implies that \(Z_{i}^{-}\)is bichromatic.

By Lemma 3.15, \(\left|R \cap Z_{i}^{-}\right|,\left|G \cap Z_{i}^{-}\right| \geq k-1\). Without loss of generality, we may assume that \(Z_{i}^{+} \subseteq R\). By Lemma 3.19, \(R \cap Z_{i} \subseteq \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\). Furthermore, by recolouring if necessary, we may assume that \(R \cap Z_{i}=Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\). Since \(\left|R \cap Z_{i}^{-}\right| \geq k-1\), it follows, by uncrossing \(G\) and \(Z_{i} \cup Z_{i}^{+}\), that \(G \cap Z_{i}\) is \(k\)-separating. Moreover, by Lemma 3.16, \(Z_{i}\) is not \(k\)-separating. Therefore the generalised \(k\)-path \(\tau_{i}\) at the end of the iteration of BACKwardSweep in which \(Z_{i}\) is considered is
\[
\tau_{i}=\left(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{i-1},\left[\left(Z_{i}-\operatorname{fcl}_{k}\left(Z_{i}^{+}\right)\right)\right], Z_{i} \cap \operatorname{fcl}_{k}\left(Z_{i}^{+}\right), \tau_{i+1}\left(Z_{i}^{+}\right)\right) .
\]

Now \(Z_{i}-\mathrm{fcl}_{k}\left(Z_{i}^{+}\right) \subseteq G\) and \(\left(Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right) \cup Z_{i}^{+} \subseteq R\). Let \(h\) be the smallest index for which \(Z_{h}^{-} \subseteq G\), but \(Z_{h} \subseteq R\). Since \(X_{0} \cup Z_{1} \subseteq G\) and \(\left|R \cap Z_{i}^{-}\right| \geq\) \(k-1\), we have \(2 \leq h \leq i-1\). By applying Lemma 3.18 to the \(k\)-path \(\left(Z_{h}^{-}, Z_{h}, Z_{h+1}, \ldots, Z_{i-1}, Z_{i}-\mathrm{fcl}_{k}\left(Z_{i}^{+}\right),\left(Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right) \cup Z_{i}^{+}\right)\), we deduce that \(M\) has a \(k\)-flower in which the parts of the \(k\)-path are petals of the flower. It now follows by Lemma 3.18 and the construction in BackwardSweep that \(T_{p+1}\) displays \((R, G)\), so (7.4.3) is satisfied when \(b=1\) and \(i \neq m\).

Now consider \(i=m\). If \(Z_{m}^{-}\)is monochromatic, that is, \(Z_{m}^{-} \subseteq G\), then either ( \(X_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\) ) is not left-justified or it is not maximal; a contradiction. Therefore \(Z_{m}^{-}\)is bichromatic, and so \(m \geq 3\). Let \(h\) denote the smallest index for which \(Z_{h}^{-} \subseteq G\), but \(Z_{h} \subseteq R\). Then, by Lemma 3.18, \(M\) has a flower with petals \(Z_{h}^{-}, Z_{h}, Z_{h+1}, \ldots, Z_{m-1}, Z_{m}^{\prime}, Z_{m}^{\prime \prime}\), where \(\left\{Z_{m}^{\prime}, Z_{m}^{\prime \prime}\right\}=\left\{Z_{m} \cap R, Z_{m} \cap G\right\}\). Thus, by Lemma 3.18, (7.4.1), and the construction in BackwardSweep, \(T_{p+1}\) displays \((R, G)\).

We may now assume that \(b=0\). Let \(h\) denote the smallest index for which \(Z_{h}^{-} \subseteq G\), but \(Z_{h} \subseteq R\). Say \(Z_{h} \cup Z_{h}^{+}\)is bichromatic. Let \(h^{\prime}\) denote the largest index for which \(Z_{h^{\prime}} \cup Z_{h^{\prime}}^{+}\)is not monochromatic, but \(Z_{h^{\prime}}^{+}\)is monochromatic. Note that \(h^{\prime} \geq h\). Then it follows by Lemma 3.18 that each of the sets \(Z_{h}, Z_{h+1}, \ldots, Z_{h^{\prime}}\) is \(k\)-separating and so, by the construction in BackwardSweep and Lemma 3.18, \(T_{p+1}\) displays \((R, G)\) as the petals of a \(k\)-flower. Now say \(Z_{h} \cup Z_{h}^{+}\)is monochromatic. It follows from the construction in BackwardSweep that if \((R, G)\) does not conform with \(T_{p+1}\), then \(h \geq 3\) and line 52 of BACKWARDSWEEP is invoked when \(Z_{h-1}\) is considered.

But then we can recolour all the elements in \(Z_{h-1} \cap \mathrm{fcl}_{k}\left(Z_{h} \cup Z_{h}^{+}\right)\)red, resulting in a \(k\)-separation equivalent to \((R, G)\), so \(T_{p+1}\) displays \((R, G)\). This completes the proof of (7.4.3).
7.4.4. If \(p=0\), then \(T_{1}\) displays \((R, G)\).

Suppose \(p=0\), in which case \(X_{0}\) is empty. If \(Z_{1}\) is monochromatic, then \((7.4 .4)\) holds by (7.4.3). Thus we may assume that \(Z_{1}\) is bichromatic, in which case both \(R \cap Z_{1}\) and \(G \cap Z_{1}\) are sequential \(k\)-separating sets consisting of at least \(k-1\) elements. Let \(b\) denote the number of bichromatic parts amongst \(Z_{1}, \ldots, Z_{m}\). By Lemmas 3.14 and \(3.15, b \in\{1,2\}\).

First assume that \(b=2\), and let \(Z_{i}\) denote the bichromatic part with \(i>1\). Say \(i \neq m\). By Lemmas 3.14 and 3.15, \(Z_{i}^{+}\)is monochromatic. Without loss of generality, we may assume that \(Z_{i}^{+} \subseteq R\). By Lemma 3.16, \(Z_{i}\) is not \(k\) separating. Furthermore, by Lemma 3.19, \(R \cap Z_{i} \subseteq \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\). By recolouring elements of \(X_{i}\), if necessary, we may assume that \(R \cap Z_{i}=Z_{i} \cap \operatorname{fcl}_{k}\left(Z_{i}^{+}\right)\). Since \(\left|R \cap Z_{i}^{-}\right| \geq k-1\), it follows, by uncrossing \(G\) and \(Z_{i} \cup Z_{i}^{+}\), that \(G \cap Z_{i}\), which equals \(Z_{i}-\mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\), is \(k\)-separating. Thus, by the construction in BACKWARDSWEEP, the generalised \(k\)-path \(\tau_{i}\) at the end of the iteration in which \(Z_{i}\) is considered is
\[
\tau_{i}=\left(Z_{1}, Z_{2}, \ldots, Z_{i-1},\left[\left(Z_{i}-\mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right)\right], Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right), \tau_{i+1}\left(Z_{i}^{+}\right)\right)
\]

Now \(Z_{i}-\operatorname{fcl}_{k}\left(Z_{i}^{+}\right) \subseteq G\) and \(\left(Z_{i} \cap \operatorname{fcl}_{k}\left(Z_{i}^{+}\right)\right) \cup Z_{i}^{+} \subseteq R\) and so, by Lemma 3.18, \(M\) has a flower with petals \(R \cap Z_{1}, G \cap Z_{1}, Z_{2}, \ldots, Z_{i-1}, Z_{i}-\) \(\mathrm{fcl}_{k}\left(Z_{i}^{+}\right),\left(Z_{i} \cap \mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right) \cup Z_{i}^{+}\). It follows, by the construction in BACKWARDSWEEP, that \(\tau_{2}\) is eventually constructed and is of the form
\[
\tau_{2}=\left(Z_{1},\left[\left(P_{1}, \ldots, P_{p}\right),\left(Q_{1}, \ldots, Q_{q}\right)\right], Z_{i} \cap \operatorname{fcl}_{k}\left(Z_{i}^{+}\right), \tau_{i+1}\left(Z_{i}^{+}\right)\right)
\]
where \(\left\{P_{1}, \ldots, P_{p}, Q_{1}, \ldots, Q_{q}\right\}=\left\{Z_{2}, \ldots, Z_{i-1}, Z_{i}-\mathrm{fcl}_{k}\left(Z_{i}^{+}\right)\right\}\). Therefore, by Lemma \(3.18,(7.4 .2)\), and construction, \((R, G)\) is displayed by \(T_{p+1}\). So (7.4.4) holds when \(Z_{1}\) and \(Z_{i}\) are bichromatic, for \(i \in\{2,3, \ldots, m-1\}\).

Now say \(i=m\). There are two cases depending upon whether \(m=2\) or \(m \geq 3\). If \(m \geq 3\), then \(Z_{m-1}\) is monochromatic. Lemma 3.18 implies that \(M\) has a flower with petals \(R \cap Z_{1}, G \cap Z_{1}, Z_{2}, \ldots, Z_{m-1}, R \cap Z_{m}, G \cap Z_{m}\). It follows, by the construction in BACKWARDSWEEP and (7.4.1), that eventually we construct \(\tau_{2}\) and it is of the form \(\left(Z_{1},\left[\left(P_{1}, \ldots, P_{p}\right),\left(Q_{1}, \ldots, Q_{q}\right)\right], W\right)\), where either \(\left\{P_{1}, \ldots, P_{p}, Q_{1}, \ldots, Q_{q}, W\right\}=\left\{Z_{2}, \ldots, Z_{m-1}, X, Y\right\}\), or \(\left\{P_{1}, \ldots, P_{p}, Q_{1}, \ldots, Q_{q}, W\right\}=\left\{Z_{2}, \ldots, Z_{m-1}, A, B, C\right\}\), for some partition \((X, Y)\), or \((A, B, C)\) respectively, of \(Z_{m}\) with monochromatic parts. As \(P_{1}\) is monochromatic, we can apply (7.4.2). It follows that \(Z_{1}\) either breaks into two petals or three petals, each of which is monochromatic. Thus \((R, G)\) is displayed by \(T_{p+1}\).

Consider the case where \(m=2\). Since \(\left|G \cap Z_{1}\right| \geq k-1\), it follows by uncrossing that \(R \cap Z_{2}\) is \(k\)-separating. If \(\left|G \cap Z_{2}\right| \leq k-2\), then \(Z_{2} \subseteq \mathrm{fcl}_{k}(R \cap\) \(Z_{2}\) ), in which case we can recolour \(G \cap Z_{2}\) red thereby obtaining an \((R, G)\) equivalent \(k\)-separation with fewer bichromatic parts; a contradiction. Hence
\(\left|G \cap Z_{2}\right| \geq k-1\) and, by symmetry, \(\left|R \cap Z_{2}\right| \geq k-1\). As \((R, G)\) is nonsequential, it follows, by Lemma 4.3, that BackwardSweep finds a \(k\) separation \((U, V)\) as described in line 22. If, up to a \(k\)-separation equivalent to ( \(R, G\) ), the sets \(U \cap Z_{1}, V \cap Z_{1}, U \cap Z_{2}\), and \(V \cap Z_{2}\) are monochromatic, then, as lines 215 output a refinement of \(\left(V \cap Z_{1}, U \cap Z_{1}, U \cap Z_{2}, V \cap Z_{2}\right)\) up to a cyclic shift, \((R, G)\) is displayed by \(T_{p+1}\).

We may now assume that there is no \(k\)-separation equivalent to \((R, G)\) such that both \(U \cap Z_{i}\) and \(V \cap Z_{i}\) are monochromatic for some \(i \in\{1,2\}\). By Lemma 5.8, we can assume, for such an \(i\), that one of \(U \cap Z_{i}\) and \(V \cap Z_{i}\) is monochromatic and the other is bichromatic. Suppose \(U \cap Z_{2}\) is monochromatic; without loss of generality, we may assume \(U \cap Z_{2}\) is red. Recall that \(R \cap Z_{2}\) is \(k\)-separating. If \(R \cap V \cap Z_{2} \subseteq \operatorname{fcl}_{k}\left(U \cap Z_{2}\right)\), then \(R \cap V \cap Z_{2} \subseteq \operatorname{fcl}_{k}\left(R-\left(V \cap Z_{2}\right)\right)\), in which case, by Corollary 3.7](i), \(R \cap V \cap Z_{2} \subseteq \operatorname{fcl}_{k}(G)\); a contradiction. So \(R \cap V \cap Z_{2}\) contains an element not in \(\mathrm{fcl}_{k}\left(U \cap Z_{2}\right)\). Since \((R, G)\) is non-sequential, BackwardSweep finds a \(k\)-separation as described in line 3. By Corollaries 5.7 and 5.9, it follows that, up to an equivalent recolouring of \((R, G)\), the last three petals of the generalised \(k\)-path output by BACKWARDSWEEP are monochromatic. If \(V \cap Z_{2}\) is monochromatic, a similar argument applies where line 5 of BACKwardSweep is invoked instead of line 3. Likewise, a similar argument applies when \(V \cap Z_{1}\) or \(U \cap Z_{1}\) is monochromatic and the other is bichromatic, where line 10 or 12 of BACKWARDSWEEP, respectively, is invoked in this case. As each of the petals in the generalised \(k\)-path returned by BackWARDSWEEP is monochromatic, we deduce that \((R, G)\) is displayed by \(T_{p+1}\). So (7.4.4 holds when \(Z_{1}\) and \(Z_{m}\) are bichromatic, and, more generally, when \(b=2\).

Now assume that \(b=1\), so \(Z_{1}\) is the only bichromatic part. Since \(R \cap Z_{1}\) and \(G \cap Z_{1}\) are sequential \(k\)-separating sets and \((R, G)\) is non-sequential, we deduce that \(Z_{1}^{+}\)is bichromatic and \(m \geq 3\). Let \(h\) denote the largest index for which \(Z_{h} \cup Z_{h}^{+}\)is not monochromatic, but \(Z_{h}^{+}\)is monochromatic. By Lemma 3.18, \(M\) has a flower with petals \(R \cap Z_{1}, G \cap Z_{1}, Z_{2}, \ldots, Z_{h}, Z_{h}^{+}\). Therefore, by construction and Lemma 3.18, \(\tau_{2}\) is eventually constructed and begins with \(\tau_{2}=\left(Z_{1},\left[\left(P_{1}, \ldots, P_{p}\right),\left(Q_{1}, \ldots, Q_{q}\right)\right], \ldots\right)\), where \(\left\{P_{1}, \ldots, P_{p}, Q_{1}, \ldots, Q_{q}\right\}=\left\{Z_{2}, \ldots, Z_{h}\right\}\). Since \(P_{1}\) is monochromatic, we can apply (7.4.2). Thus \(T_{p+1}\) displays \((R, G)\), completing the proof of (7.4.4).

When \(p \geq 1, X_{0} \cup Z_{1}\) is monochromatic so, by (7.4.3), \(T_{p+1}\) displays \((R, G)\); a contradiction. Otherwise, \(p=0\) and we can apply (7.4.4); again we derive the contradiction that \(T_{p+1}\) displays \((R, G)\). Thus we deduce that \(T_{p+1}\) is a conforming tree for \(M\). By induction, this completes the proof of the lemma.

Lemma 7.5. Let \(M\) be a \(k\)-connected matroid with \(|E(M)| \geq 8 k-15\), and let \(T\) be the conforming tree returned by \(k\)-Tree when applied to \(M\). If \(v\) is a flower vertex of \(T\), then the flower corresponding to \(v\) is tight and irredundant.

Proof. Let \(E\) denote the ground set of \(M\). We prove the lemma by showing that each of the \(\pi\)-labelled trees \(T_{p}\) constructed in lines 6 and 17 of \(k\)-Tree has the property that the flower corresponding to each flower vertex is tight and irredundant. Since \(T_{0}\) consists of a single bag vertex labelled \(E\), the result holds trivially if \(p=0\). Now suppose that \(p \geq 0\) and \(T_{p}\) has the property that if \(v\) is a flower vertex of \(T_{p}\), then the flower corresponding to \(v\) is tight and irredundant. We will show, as (7.5.1) and (7.5.2), that the flower corresponding to each flower vertex of \(T_{p+1}\) is tight and irredundant, respectively.
7.5.1. If \(v\) is a flower vertex of \(T_{p+1}\), then the flower corresponding to \(v\) is tight.

By induction, \(T_{p}\) has this property on its flower vertices. Therefore, by construction, it suffices to consider only the flower vertices in the path realisation \(T_{p+1}^{\prime}\) of the generalised \(k\)-path returned by BackWARDSWEEP in the construction of \(T_{p+1}\) from \(T_{p}\), in line 16 of \(k\)-Tree. Let ( \(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\) ) be the left-justified maximal \(X_{0}\)-rooted \(k\)-path returned by ForwardSweep in the construction of \(T_{p+1}\) from \(T_{p}\) in \(k\)-Tree. Let \(v\) be a flower vertex of \(T_{p+1}^{\prime}\) and let \(\Phi\) be the flower corresponding to \(v\). Suppose that \(\Phi\) is not tight. By construction, we may assume that \(v\) has degree at least three. For clarity, we shall assume that line 52 in BackwardSweep is not invoked in the construction of \(\Phi\). The straightforward extension of the proof below to include the case when this line is invoked is omitted.

It follows from the description of BackwardSweep that if no end moves are performed, then, for some \(i\) and \(j\) with \(1 \leq i \leq j \leq m\), the entry and exit petals of \(\Phi\) are \(X_{i}^{-}\)and \(X_{j}^{+}\)respectively, and the union of the set of clockwise petals and the set of anticlockwise petals of \(\Phi\) is \(\left\{X_{i}, X_{i+1}, \ldots, X_{j}\right\}\). Ignoring the possibility of end moves for now, if \(X_{i}^{-}\)is loose, then \(X_{i}^{-} \subseteq \operatorname{fcl}_{k}\left(X_{i} \cup X_{i}^{+}\right)\), and so \(\left(X_{i}^{-}, X_{i} \cup X_{i}^{+}\right)\)is sequential; a contradiction. Similarly, we get a contradiction if \(X_{j}^{+}\)is loose. Assume that for some \(i \leq s \leq j\), the petal \(X_{s}\) is loose. Since, by construction, the clockwise and anticlockwise petals are each subsequences of \(\left\{X_{i}, X_{i+1}, \ldots, X_{j}\right\}\) that induce a partition of this set, there is a cyclic shift of the petals of \(\Phi\) that results in a flower \(\Phi^{\prime}\) equivalent to \(\Phi\) with a concatenation \(\left(X_{s}^{-}, X_{s}, X_{s}^{+}\right)\). Thus, by Lemma 3.12, either \(X_{s} \subseteq \mathrm{fcl}_{k}\left(X_{s}^{-}\right)\)or \(X_{s} \subseteq \operatorname{fcl}_{k}\left(X_{s}^{+}\right)\), contradicting the fact that ( \(X_{0} \cup\) \(X_{1}, X_{2}, \ldots, X_{m}\) ) is a \(k\)-path.

Now consider the possibility of end moves. First suppose that \(m \geq 3\). If \(X_{m}\) breaks into two petals \(Y_{m}\) and \(Y_{m}^{\prime}\) in BackwardSweep, then the algorithm finds a \(k\)-separation as described in line 21. It follows, by Lemma 3.20, that \(Y_{m}\) and \(Y_{m}^{\prime}\) are both sequential. If \(Y_{m} \subseteq \operatorname{fcl}_{k}\left(Y_{m}^{\prime}\right)\), then \(Y_{m} \subseteq \operatorname{fcl}_{k}\left(E-X_{m}\right)\) by Corollary \(3.7\left(\right.\) i), so \(X_{m}\) is sequential; a contradiction. Thus, by Lemma 3.12, \(Y_{m}\) is tight and, by symmetry, \(Y_{m}^{\prime}\) is also tight. Similarly, if \(X_{1}\) breaks into two petals \(Y_{1}\) and \(Y_{1}^{\prime}\), then BackwardSweep finds a non-sequential \(k\)-separation \(\left(U_{1}, V_{1}\right)\) as described on line 56 , where
\(\left\{U_{1} \cap X_{1}, V_{1} \cap X_{1}\right\}=\left\{Y_{1}, Y_{1}^{\prime}\right\}\). If \(U_{1} \cap X_{1}\) is non-sequential, then, since \(\left(X_{1}, X_{2}, \ldots, X_{m}\right)\) is a left-justified maximal \(k\)-path, \(V_{1} \cap X_{1} \subseteq \operatorname{fcl}_{k}\left(U_{1} \cap X_{1}\right) \subseteq\) \(\mathrm{fcl}_{k}\left(U_{1}\right)\). Thus, by Corollary \(3.7(\mathrm{i}), V_{1} \cap X_{1} \subseteq \operatorname{fcl}_{k}\left(V_{1}-X_{1}\right)\), contradicting the construction of \(V_{1}\) in line 56. Thus \(U_{1} \cap X_{1}\) is \(k\)-sequential and, by a similar argument \(V_{1} \cap X_{1}\) is \(k\)-sequential. Since \(Y_{1}\) and \(Y_{1}^{\prime}\) are sequential, \(Y_{1}\) and \(Y_{1}^{\prime}\) are tight by the same argument as for \(Y_{m}\) and \(Y_{m}^{\prime}\). If \(X_{m}\) breaks into three petals, then line 23 or line 25 is invoked and a \(k\)-separation \((S, T)\) is found as described on that line. It follows, by Corollary 5.9, that the three petals, whose union is \(X_{m}\), are tight. The same argument applies if \(X_{1}\) breaks into three petals, where, in this case, the \(k\)-separation \((S, T)\) is found at line 57 or line 59 of BackwardSweep.

It remains to consider end moves when \(m=2\) and \(X_{0}\) is empty. In this case, line 2 of BackwardSweep is invoked and a \(k\)-separation \((U, V)\) is found as described in that line. It follows by Lemma 3.21 that \(U \cap X_{1}\), \(V \cap X_{1}, U \cap X_{2}\) and \(V \cap X_{2}\) are sequential. Since ( \(X_{1}, X_{2}\) ) is non-sequential, neither \(U \cap X_{2}\) nor \(V \cap X_{2}\) is a subset of \(\operatorname{fcl}_{k}\left(X_{1}\right)\), and so, by Lemma 3.12, if \(U \cap X_{2}\) and \(V \cap X_{2}\) are petals of \(\Phi\), then they are tight. Similarly, if \(U \cap X_{1}\) and \(V \cap X_{1}\) are petals of \(\Phi\), then they are tight. We deduce that when line 8 is invoked the last two petals of \(\Phi\) are tight, and when line 15 is invoked the first two petals of \(\Phi\) are tight. If line 3 or 5 is invoked and the condition is satisfied, then the last three petals of \(\Phi\) are tight by Corollary 5.9. Similarly, if line 10 or 12 is invoked and the condition is satisfied, then the first three petals of \(\Phi\) are tight by Corollary 5.9. This completes the proof of (7.5.1).
7.5.2. If \(v\) is a flower vertex of \(T_{p+1}\), then the flower corresponding to \(v\) is irredundant.

By induction, \(T_{p}\) has this property on its flower vertices. Hence, it suffices to consider only the flower vertices in the path realisation \(T_{p+1}^{\prime}\) of the generalised \(k\)-path returned by BackwardSweep in the construction of \(T_{p+1}\) from \(T_{p}\) in line 16 of \(k\)-Tree. Let \(\left(X_{0} \cup X_{1}, X_{2}, \ldots, X_{m}\right)\) be the left-justified maximal \(X_{0}\)-rooted \(k\)-path returned by ForwardSweep in the construction of \(T_{p+1}^{\prime}\) in line 14 of \(k\)-Tree. Let \(v\) be a flower vertex of \(T_{p+1}^{\prime}\) and let \(\Phi\) be the flower corresponding to \(v\).

First, assume that no end moves are performed in the construction of the generalised \(k\)-path. It follows from the description of BackwardSweep that if line 52 in BackwardSweep is not invoked, then, for some \(i\) and \(j\) with \(1 \leq i \leq j \leq m\), the entry and exit petals of \(\Phi\) are \(X_{i}^{-}\)and \(X_{j}^{+}\)respectively, and the clockwise petals ( \(X_{a, 1}, X_{a, 2}, \ldots, X_{a, p}\) ) and anticlockwise petals \(\left(X_{b, 1}, X_{b, 2}, \ldots, X_{b, q}\right)\) of \(\Phi\) are subsequences of ( \(X_{i}, X_{i+1}, \ldots, X_{j}\) ) that induce a partition of \(\left\{X_{i}, X_{i+1}, \ldots, X_{j}\right\}\). For any \(l\) such that \(i-1 \leq l \leq j\), the non-sequential \(k\)-separation \(\left(X_{i}^{-} \cup\left(\bigcup_{s=i}^{l} X_{s}\right),\left(\bigcup_{s=l+1}^{j} X_{s}\right) \cup X_{j}^{+}\right)\)is displayed by \(\Phi\). Since \(\Phi=\left(X_{i}^{-}, X_{a, 1}, X_{a, 2}, \ldots, X_{a, p}, X_{j}^{+}, X_{b, 1}, X_{b, 2}, \ldots, X_{b, q}\right)\), it follows that \(\Phi\) is irredundant. When line 52 in BackwardSweep is
invoked,
\[
\Phi=\left(X_{i}^{-}, X_{a, 1}, X_{a, 2}, \ldots, X_{a, p},\left(X_{j} \cap \operatorname{fcl}_{k}\left(X_{j}^{+}\right)\right) \cup X_{j}^{+}, X_{b, 1}, X_{b, 2}, \ldots, X_{b, q}\right)
\]
where ( \(X_{a, 1}, X_{a, 2}, \ldots, X_{a, p}\) ) and ( \(X_{b, 1}, X_{b, 2}, \ldots, X_{b, q}\) ) are subsequences of \(\left(X_{i}, X_{i+1}, \ldots, X_{j-1}, X_{j}-\operatorname{fcl}_{k}\left(X_{j}^{+}\right)\right)\). By the same argument, \(\Phi\) is irredundant.

Now consider the possibility of end moves. First suppose that \(m \geq 3\) and that \(X_{m}\) comprises at least two petals of \(\Phi\). Then the algorithm reaches line 21 of BackwardSweep, and finds both a \(k\)-separation \((U, V)\) as described on that line, and a \(k\)-separation \(\left(U_{1}, V_{1}\right)\) as described on line 22 , By Lemma 4.3. \(\left(U_{1}, V_{1}\right)\) is non-sequential. Let \(\Phi=\left(P_{1}, P_{2}, \ldots, P_{n}\right)\). Since \(\left(X_{m}, X_{m}^{-}\right)\)is a non-sequential \(k\)-separation displayed by \(\Phi\), it suffices to show that for each pair of distinct petals \(A, B\) contained in \(X_{m}\), there is a non-sequential \(k\)-separation \(\left(A^{\prime}, B^{\prime}\right)\) displayed by \(\Phi\) such that \(A \subseteq A^{\prime}\) and \(B \subseteq B^{\prime}\). By construction, there exists an index \(i \in\{n-2, n-1\}\) such that \(P_{i} \subseteq U_{1} \cap X_{m} \subseteq U_{1}\) and \(P_{i+1} \subseteq V_{1} \cap X_{m} \subseteq V_{1}\). If a \(k\) separation \((S, T)\) is found at line 23 , then it follows that \(\Phi\) has a concatenation ( \(X_{m-1}^{-}, X_{m-1}, U_{1} \cap X_{m}, S \cap V_{1} \cap X_{m}, T \cap X_{m}\) ) that is tight, by (7.5.1), As \(T\) contains \(X_{m-1}^{-}\)and \(S\) contains \(X_{m-1} \cup\left(U_{1} \cap X_{m}\right)\), the \(k\)-separation \((S, T)\) is non-sequential by Corollary 5.7. If, instead, line 25 of BackwardSweep is invoked and a \(k\)-separation \((S, T)\) is found as described, then \((S, T)\) is non-sequential by Lemma 4.3. Thus, for distinct petals \(A, B\) of \(\Phi\) contained in \(X_{m}\), there is a non-sequential \(k\)-separation \(\left(A^{\prime}, B^{\prime}\right)\) displayed by \(\Phi\) such that \(A \subseteq A^{\prime}\) and \(B \subseteq B^{\prime}\).

We can argue in a similar fashion when \(X_{1}\) comprises at least two petals of \(\Phi\). In this case, \(k\)-separations \((U, V)\) and \(\left(U_{1}, V_{1}\right)\) are found as described in lines 55 and 56 of BackwardSweep, respectively. Furthermore, \(\left(U_{1}, V_{1}\right)\) and ( \(X_{1}, X_{1}^{+}\)) are non-sequential. If line 57 is invoked and a \(k\)-separation ( \(S, T\) ) is found as described on that line, then \((S, T)\) is non-sequential by (7.5.1) and Corollary 5.7. If, instead, line 59 of BACKwARDSWEEP is invoked and a \(k\)-separation \((S, T)\) is found as described on that line, then \((S, T)\) is non-sequential by Lemma 4.3. It now follows that when \(m \geq 3\) and an end move, or end moves, is performed, the flower \(\Phi\) is irredundant.

It remains to consider when \(m=2\) and, in particular, line 2 of BACKWARDSWEEP is invoked and a non-sequential \(k\)-separation \((U, V)\) is found as described in that line. If the algorithm reaches lines 8 and 15 of BackwardSweep, and so \(\Phi\) has four petals, then \(\Phi\) is irredundant. Otherwise, at least one of \(X_{1}\) and \(X_{2}\) breaks into three petals of \(\Phi\).

First we consider when \(X_{2}\) breaks into three petals. Suppose line 3 is invoked, and \(k\)-separations \((S, T)\) and \(\left(S_{1}, T_{1}\right)\) are found as described. Thus \(\Phi=\left(\ldots, P_{n-2}, P_{n-1}, P_{n}\right)=\left(\ldots, U \cap X_{2}, S_{1} \cap V, T_{1} \cap X_{2}\right)\). Now, by construction, the non-sequential \(k\)-separation \((U, V)\) is displayed by \(\Phi\) with \(P_{n-2} \subseteq U\) and \(P_{n-1} \subseteq V\). Moreover, \(\left(S_{1}, T_{1}\right)\) is a \(k\)-separation with \(P_{n-2} \cup P_{n-1} \subseteq S_{1}\) and \(P_{n} \subseteq T_{1}\); we will show that ( \(S_{1}, T_{1}\) ) is a non-sequential \(k\)-separation displayed by \(\Phi\). By Corollary 5.9, ( \(X_{1}, U \cap X_{2}, S_{1} \cap V \cap X_{2}, T_{1} \cap X_{2}\) ) is a tight
flower. It follows, by Lemma 7.3, that \(\left(T_{1} \cap X_{1}, S_{1} \cap X_{1}, U \cap X_{2}, S_{1} \cap V \cap X_{2}\right.\), \(T_{1} \cap X_{2}\) ) is a tight flower where \(U \cap X_{2} \subseteq S_{1}\). Thus, by Corollary 5.7, the set \(S_{1}\) is non-sequential. If \(T_{1}\) is sequential, then, by Corollary 3.4, it is contained in a member \(F\) of \(\mathcal{F}\). It follows that any subset \(T^{\prime}\) of \(T_{1}\) will also be contained in \(F\), contradicting the construction of \(T_{1}\) in line 3. So \(\left(S_{1}, T_{1}\right)\) is non-sequential. Since \(\left(S_{1}, T_{1}\right)\) conforms with \(\Phi\), by Lemma 7.4 , either \(\left(S_{1}, T_{1}\right)\) is displayed by \(\Phi\) or \(\left(S_{1}, T_{1}\right)\) is equivalent to a \(k\)-separation ( \(S_{2}, T_{2}\) ) where \(S_{2}\) or \(T_{2}\) is contained in a petal of \(\Phi\). Suppose the latter. Then such a petal is non-sequential by Corollary 3.3. But \(\Phi\) is a refinement of ( \(V \cap X_{1}, U \cap X_{1}, U \cap X_{2}, V \cap X_{2}\) ) where each part of this partition is sequential by Lemma 3.21, a contradiction. We deduce that ( \(S_{1}, T_{1}\) ) conforms with \(\Phi\).

Suppose instead that line 5 is invoked and \(k\)-separations \((S, T)\) and \(\left(S_{1}, T_{1}\right)\) are found as described; so \(\Phi=\left(\ldots, P_{n-2}, P_{n-1}, P_{n}\right)=\left(\ldots, S_{1} \cap\right.\) \(\left.X_{2}, T_{1} \cap U, V \cap X_{2}\right)\). Then \((U, V)\) is a non-sequential \(k\)-separation displayed by \(\Phi\) such that \(P_{n-1} \subseteq U\) and \(P_{n} \subseteq V\), and, by a similar argument as in the previous paragraph, \((S, T)\) is a non-sequential \(k\)-separation such that \(P_{n-2} \subseteq S\) and \(P_{n-1} \cup P_{n} \subseteq T\).

Now we consider two cases where \(X_{1}\) breaks into three petals. First we suppose that line 10 is invoked and a \(k\)-separation \((S, T)\) is found as described; so \(\Phi=\left(P_{1}, P_{2}, P_{3}, \ldots\right)=\left(V \cap X_{1}, S \cap U, T \cap X_{1}, \ldots\right)\). Since \(T \cap\) \(X_{1} \subseteq U\), the non-sequential \(k\)-separation ( \(U, V\) ) displayed by \(\Phi\) has \(P_{1} \subseteq V\) and \(P_{2} \subseteq U\). Moreover, the \(k\)-separation \((S, T)\) has \(P_{1} \cup P_{2} \subseteq S\) and \(P_{3} \subseteq T\); we will show that this \(k\)-separation is non-sequential and is displayed by \(\Phi\). By Corollary 5.9 and Lemma 7.3 , ( \(\left.V \cap X_{1}, S \cap U, T \cap X_{1}, T \cap X_{2}, S \cap X_{2}\right)\) is a tight \(k\)-flower. Since \(V \cap X_{1} \subseteq S\), the set \(S\) is non-sequential by Corollary 5.7. If \(T\) is sequential, then, by Corollary 3.4 , the subset \(T^{\prime}\) of \(T\) is contained in a member of \(\mathcal{F}\); a contradiction. Hence \((S, T)\) is non-sequential and, since \(T_{p+1}\) is conforming by Lemma 7.4, is displayed by \(\Phi\). Suppose instead that line 12 is invoked and a \(k\)-separation \((S, T)\) is found as described. Now \(\Phi=\left(P_{1}, P_{2}, P_{3}, \ldots\right)=\left(T \cap X_{1}, S \cap V, U \cap X_{1}, \ldots\right)\). Then \((U, V)\) is a nonsequential \(k\)-separation displayed by \(\Phi\) such that \(P_{2} \subseteq V\) and \(P_{3} \subseteq U\), and, by a similar argument as earlier in the paragraph, \((S, T)\) is a non-sequential \(k\)-separation displayed by \(\Phi\) such that \(P_{1} \subseteq T\) and \(P_{2} \cup P_{3} \subseteq S\). Finally, since \(\left(X_{1}, X_{2}\right)\) is also a non-sequential \(k\)-separation, we deduce that \(\Phi\) is irredundant when \(X_{1}\) or \(X_{2}\) is the union of three petals of \(\Phi\). So (7.5.2) holds, thus completing the proof of the lemma.

The next lemma is a straightforward consequence of the way in which flowers are constructed in \(k\)-Tree.

Lemma 7.6. Let \(M\) be a \(k\)-connected matroid with \(|E(M)| \geq 8 k-15\). The tree \(T\) returned by \(k\)-Tree \((M)\) has the property that every \(k\)-flower corresponding to a flower vertex in \(T\) displays at least two inequivalent nonsequential \(k\)-separations.

It now follows by Lemmas 7.47 .6 that if \(T\) is the \(\pi\)-labelled tree returned by \(k\) - \(\operatorname{Tree}(M)\), then \(T\) is conforming, and every flower \(\Phi_{v}\) corresponding to a flower vertex \(v\) of \(T\) is tight, irredundant, and displays at least two inequivalent non-sequential \(k\)-separations. The following lemma, which is implicit in [9, Lemma 6.5], says that, when \(k=3\), these are sufficient conditions for each \(\Phi_{v}\) to be a maximal flower, in which case \(T\) is a partial 3 -tree.

Lemma 7.7. Let \(M\) be a 3-connected matroid and let \(T\) be a conforming 3tree for \(M\). If, for every flower vertex \(v\) of \(T\), the 3 -flower corresponding to \(v\) is tight and displays at least two inequivalent non-sequential 3 -separations, then \(T\) is a partial 3-tree for \(M\).

When \(k \geq 4\), however, a conforming tree \(T\), where every flower \(\Phi_{v}\) corresponding to a flower vertex \(v\) of \(T\) is tight and displays at least two inequivalent non-sequential \(k\)-separations, is not necessarily a partial \(k\)-tree. This remains the case even if, additionally, each \(\Phi_{v}\) is irredundant, as illustrated in the next example. In this example, we construct a 4 -flower by truncating a 3 -flower, in a similar manner to Example 5.3 .
Example 7.8. Let \(\Psi\) be the free \((4,3)\)-swirl with \(x_{i}, y_{i}, z_{i} \in E(\Psi)\) such that \(r\left(\left\{x_{i}, y_{i}, z_{i}\right\}\right)=2\) and \(r\left(\left\{x_{i}, y_{i}, z_{i}, x_{i+1}, y_{i+1}, z_{i+1}\right\}\right)=3\), for all \(i \in\{1,2,3,4\}\), where the subscripts are interpreted modulo four. Let \(\Psi^{\prime}\) be the coextension of \(\Psi\) by an element \(e\) where \(\left\{x_{3}, y_{3}, x_{4}, y_{4}\right\}\) is the only dependent flat not containing \(e\) in the coextension. Take the direct sum of \(\Psi^{\prime} \backslash e\) with a copy of \(U_{2,2}\) having ground set \(\left\{w_{1}, w_{2}\right\}\). Then, for each \(i \in\{1,2\}\), freely add the elements \(s_{i}, t_{i}, u_{i}\), and \(v_{i}\), in turn, to the flat spanned by \(\left\{w_{i}, x_{i}, y_{i}, z_{i}\right\}\). The resulting rank- 7 matroid \(M\) is 4 -connected, and \(\Phi^{\prime}=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)\) is a swirl-like 4-flower, where \(Q_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}\) for \(i \in\{3,4\}\), and \(Q_{i}=\left\{s_{i}, t_{i}, \ldots, z_{i}\right\}\) for \(i \in\{1,2\}\). An illustration of \(M\) is given in Figure 6, where the elements in \(Q_{1}\) and \(Q_{2}\) are suppressed. Note that as \(\left\{x_{3}, y_{3}, x_{4}, y_{4}\right\}\) is 4 -separating in \(M\), the set \(Q_{3} \cup Q_{4}\) is 4 -sequential.


Figure 6. The 4-connected rank-7 matroid \(M\).
Let \(T\) be a tree consisting of a single flower vertex, labelled \(D\), with corresponding 4-flower \(\Phi=\left(Q_{1} \cup Q_{4}, Q_{2}, Q_{3}\right)\). Then \(T\) is a conforming 4-tree,
and \(\Phi\) is tight, irredundant, and displays the inequivalent non-sequential 4separations \(\left(Q_{1} \cup Q_{4}, Q_{2} \cup Q_{3}\right)\) and \(\left(Q_{2}, E(M)-Q_{2}\right)\). However \(\Phi\) is not maximal since \(\Phi^{\prime}\) is a 4-flower that displays all the non-sequential 4-separations displayed by \(\Phi\), as well as the non-sequential 4-separation \(\left(Q_{1}, E(M)-Q_{1}\right)\).

Fortunately, all tight irredundant non-maximal flowers displaying at least two inequivalent non-sequential \(k\)-separations that arise have the same predominant structure as the 4 -flower \(\Phi\) in Example 7.8 . We make this more precise in the next lemma.

We say that a \(k\)-separation \((X, Y)\) crosses a \(k\)-separation \((U, V)\) if each of \(X \cap U, X \cap V, Y \cap U, Y \cap V\) is non-empty.

Lemma 7.9. Let \(M\) be a \(k\)-connected matroid with ground set \(E\) and let \(T\) be a conforming \(k\)-tree for \(M\). Suppose that, for every flower vertex \(v\) of \(T\), the \(k\)-flower corresponding to \(v\) is tight, irredundant, and displays at least two inequivalent non-sequential \(k\)-separations. Then, either
(i) \(T\) is a partial \(k\)-tree for \(M\) or
(ii) there is a flower vertex of \(T\) whose corresponding \(k\)-flower is of the form \(\left(Q_{1} \cup Q_{4}, Q_{2}, Q_{3}\right)\), but \(\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)\) is a maximal tight irredundant \(k\)-flower and the only non-sequential \(k\)-separations displayed by this maximal \(k\)-flower are \(\left(Q_{1}, E-Q_{1}\right),\left(Q_{2}, E-Q_{2}\right)\), and \(\left(Q_{1} \cup Q_{4}, Q_{2} \cup Q_{3}\right)\).
Proof. Let \(\Phi\) be a \(k\)-flower corresponding to a flower vertex \(v\) of \(T\). By hypothesis, \(\Phi\) is tight, irredundant, and displays at least two inequivalent non-sequential \(k\)-separations. Assume that \(\Phi\) is not maximal. We will show that \(v\) satisfies (ii). Since \(\Phi\) is not maximal, there exists a tight, irredundant, maximal \(k\)-flower \(\Phi^{\prime}\) that displays, up to \(k\)-equivalence, all non-sequential \(k\)-separations that are displayed by \(\Phi\), as well as at least one non-sequential \(k\)-separation \((R, G)\) that, up to \(k\)-equivalence, is not displayed by \(\Phi\). In particular, for every union \(U\) of petals of \(\Phi\) such that \((U, E-U)\) is a nonsequential \(k\)-separation in \(M\), there is a union \(U^{\prime}\) of petals of \(\Phi^{\prime}\) such that \((U, E-U)\) is \(k\)-equivalent to \(\left(U^{\prime}, E-U^{\prime}\right)\).

We may assume that \(\Phi^{\prime}=\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)\), where \(R=Q_{1} \cup Q_{2} \cup \cdots \cup Q_{l}\) for some \(1 \leq l \leq n-1\). Let \(\Phi=\left(P_{1}, P_{2}, \ldots, P_{m}\right)\). As \(T\) is a conforming \(k\)-tree for \(M\), there is an \((R, G)\)-equivalent \(k\)-separation \(\left(R^{\prime}, G^{\prime}\right)\) that conforms with \(T\) and, without loss of generality, we may assume \(R^{\prime}\) is properly contained in some petal \(P_{r}\) of \(\Phi\). By Corollary \(3.3, P_{r}\) is non-sequential. If \(E-P_{r}\) is sequential, then it follows by Lemma 3.2 that \(\Phi\) displays no non-sequential \(k\)-separations; a contradiction. Hence \(\left(P_{r}, E-P_{r}\right)\) is non-sequential and \(\Phi^{\prime}\) displays an equivalent \(k\)-separation \(\left(\bigcup_{i \in I} Q_{i}, \bigcup_{j \in\{1,2, \ldots, n\}-I} Q_{j}\right)\) for some proper subset \(I\) of \(\{1,2, \ldots, n\}\), where \(\mathrm{fcl}_{k}\left(P_{r}\right)=\mathrm{fcl}_{k}\left(\bigcup_{i \in I} Q_{i}\right)\).
7.9.1. There are no non-sequential \(k\)-separations displayed by \(\Phi^{\prime}\) that cross \(\left(\bigcup_{i \in I} Q_{i}, \bigcup_{j \in\{1,2, \ldots, n\}-I} Q_{j}\right)\).

Suppose there is a non-sequential \(k\)-separation \((Q, E-Q)\) displayed by \(\Phi^{\prime}\) such that \(Q\) contains the petals \(Q_{i_{1}}\) and \(Q_{j_{1}}\), and \(E-Q\) contains the
petals \(Q_{i_{2}}\) and \(Q_{j_{2}}\), for some \(i_{1}, i_{2} \in I\) and \(j_{1}, j_{2} \in\{1,2, \ldots, n\}-I\). Now \((Q, E-Q)\) is \(k\)-equivalent to a non-sequential \(k\)-separation \(\left(Q^{\prime}, E-Q^{\prime}\right)\), where \(\operatorname{fcl}_{k}(Q)=\mathrm{fcl}_{k}\left(Q^{\prime}\right)\), that conforms with \(T\). Hence either
(I) \(\left(Q^{\prime}, E-Q^{\prime}\right)\) is displayed by \(\Phi\), or
(II) \(Q^{\prime}\) or \(E-Q^{\prime}\) is contained in a petal of \(\Phi\).

Recall that \(\operatorname{fcl}_{k}\left(P_{r}\right)=\mathrm{fcl}_{k}\left(\bigcup_{i \in I} Q_{i}\right)\). Suppose that (I) holds. Then we may assume that \(Q^{\prime}=\bigcup_{i \in K} P_{i}\) for some proper subset \(K\) of \(\{1,2, \ldots, m\}\). Now \(\mathrm{fcl}_{k}\left(Q^{\prime}\right)\) contains the petal \(Q_{i_{1}}\), so \(\mathrm{fcl}_{k}\left(E-Q^{\prime}\right)\) does not contain \(Q_{i_{1}}\) by Corollary 3.11. But \(Q_{i_{1}} \subseteq \operatorname{fcl}_{k}\left(P_{r}\right)\), so \(P_{r} \subseteq Q^{\prime}\). Then \(Q_{i_{2}} \subseteq \mathrm{fcl}_{k}\left(P_{r}\right) \subseteq\) \(\mathrm{fcl}_{k}\left(Q^{\prime}\right)=\mathrm{fcl}_{k}(Q)\). Since \(Q_{i_{2}} \subseteq E-Q\), it follows by Corollary 3.9 that \(Q_{i_{2}}\) is loose; a contradiction. Thus we deduce that (II) holds.

Without loss of generality, either \(Q^{\prime} \subseteq P_{1}\) or \(E-Q^{\prime} \subseteq P_{1}\). First assume that \(Q^{\prime} \subseteq P_{1}\). Then \(Q_{j_{1}} \subseteq \mathrm{fcl}_{k}(Q)=\mathrm{fcl}_{k}\left(Q^{\prime}\right) \subseteq \operatorname{fcl}_{k}\left(P_{1}\right)\). But \(Q_{j_{1}} \subseteq\) \(\mathrm{fcl}_{k}\left(E-P_{r}\right)\), so \(Q_{j_{1}} \nsubseteq \mathrm{fcl}_{k}\left(P_{r}\right)\) by Corollary 3.11 . Hence \(P_{r} \neq P_{1}\). As \(Q^{\prime} \subseteq P_{1}\) and \(R^{\prime} \subseteq P_{r} \subseteq E-P_{1}\), it follows by Corollary 3.3 that \(\left(P_{1}, E-P_{1}\right)\) is nonsequential. Thus, there is a union \(\bigcup_{w \in W} Q_{w}\) of petals of \(\Phi^{\prime}\) such that ( \(P_{1}, E-\) \(\left.P_{1}\right)\) is equivalent to \(\left(\bigcup_{w \in W} Q_{w}, \bigcup_{w \in\{1,2, \ldots, n\}-W} Q_{w}\right)\), where \(\mathrm{fcl}_{k}\left(P_{1}\right)=\) \(\mathrm{fcl}_{k}\left(\bigcup_{w \in W} Q_{w}\right)\). Now \(Q_{i_{1}} \subseteq \operatorname{fcl}_{k}(Q)=\operatorname{fcl}_{k}\left(Q^{\prime}\right) \subseteq \operatorname{fcl}_{k}\left(P_{1}\right)=\operatorname{fcl}_{k}\left(\bigcup_{w \in W} Q_{w}\right)\) and \(Q_{i_{1}} \subseteq \operatorname{fcl}_{k}\left(P_{r}\right) \subseteq \operatorname{fcl}_{k}\left(E-P_{1}\right) \subseteq \operatorname{fcl}_{k}\left(\bigcup_{w \in\{1,2, \ldots, n\}-W} Q_{w}\right)\), contradicting Corollary 3.11.

Thus, we may assume that \(E-Q^{\prime} \subseteq P_{1}\). Suppose that \(P_{r} \neq P_{1}\). Then \(P_{r} \subseteq Q^{\prime}\), so \(Q_{i_{2}} \subseteq \mathrm{fcl}_{k}\left(P_{r}\right) \subseteq \operatorname{fcl}_{k}\left(Q^{\prime}\right)=\mathrm{fcl}_{k}(Q)\). Hence, by Corollary 3.9, \(Q_{i_{2}}\) is loose; a contradiction. We deduce that \(P_{r}=P_{1}\). Thus \(Q_{j_{2}} \subseteq \mathrm{fcl}_{k}(E-\) \(\left.Q^{\prime}\right) \subseteq \operatorname{fcl}_{k}\left(P_{r}\right)=\mathrm{fcl}_{k}\left(\bigcup_{i \in I} Q_{i}\right)\), so, by Corollary 3.9 again, \(Q_{j_{2}}\) is loose; a contradiction. This completes the proof of (7.9.1),
7.9.2. \(\Phi^{\prime}=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)\) and the only non-sequential \(k\)-separations displayed by \(\Phi^{\prime}\) are \(\left(Q_{1}, E-Q_{1}\right),\left(Q_{2}, E-Q_{2}\right)\) and \(\left(Q_{1} \cup Q_{4}, Q_{2} \cup Q_{3}\right)\).

Suppose \(|I|=n-1\). By assumption, \(\Phi\) displays a non-sequential \(k\) separation \((O, E-O)\) that is not equivalent to \(\left(P_{r}, E-P_{r}\right)\). As \(P_{r}\) is a petal of \(\Phi\), it follows that \(\mathrm{fcl}_{k}\left(P_{r}\right)\) is a proper subset of either fcl \({ }_{k}(O)\) or \(\mathrm{fcl}_{k}(E-O)\). Let ( \(O^{\prime}, E-O^{\prime}\) ) be the \(k\)-separation displayed by \(\Phi^{\prime}\) that is equivalent to \((O, E-O)\). Since \(\Phi^{\prime}\) has only one petal \(Q_{j}\) such that \(j \notin I\), either \(O^{\prime}\) or \(E-O^{\prime}\) is contained in \(\bigcup_{i \in I} Q_{i}\). Hence \(\mathrm{fcl}_{k}\left(\bigcup_{i \in I} Q_{i}\right)\) contains fcl \({ }_{k}\left(O^{\prime}\right)\) or \(\mathrm{fcl}_{k}\left(E-O^{\prime}\right)\), so \(\mathrm{fcl}_{k}\left(P_{r}\right)\) contains \(\mathrm{fcl}_{k}(O)\) or \(\mathrm{fcl}_{k}(E-O)\); a contradiction. Thus \(|I| \leq n-2\).

Since fcl \(k(R)=\operatorname{fcl}_{k}\left(Q_{1} \cup Q_{2} \cup \cdots \cup Q_{l}\right)=\operatorname{fcl}_{k}\left(R^{\prime}\right) \subseteq \operatorname{fcl}_{k}\left(\bigcup_{i \in I} Q_{i}\right)\) and \(\Phi^{\prime}\) is a tight flower, it follows, by corollary 3.9, that \(\{1,2, \ldots, l\} \subseteq I\). Moreover, \(I\) must contain at least one element in \(\{l+1, l+2, \ldots, n\}\) since no \(k\)-separation equivalent to \((R, G)\) is displayed by \(\Phi\). Thus we may assume that
\[
I=\{n-s+1, \ldots, n, 1,2, \ldots, l, l+1, \ldots, l+t\}
\]
where \(s \geq 1\) and \(l+t \leq n-s-2\), and thus \(n \geq 4\).
Let \((Q, E-Q)=\left(Q_{1} \cup Q_{2} \cup \cdots \cup Q_{l+t+1}, Q_{l+t+2} \cup \cdots \cup Q_{n}\right)\). Since \(\{1, n\} \subseteq I\) and \(\{l+t+1, l+t+2\} \subseteq\{1,2, \ldots, n\}-I\), the \(k\)-separation
\((Q, E-Q)\) crosses \(\left(\bigcup_{i \in I} Q_{i}, \bigcup_{j \in\{1,2, \ldots, n\}-I} Q_{j}\right) . \mathrm{By}(7.9 .1)\), and since \(\mathrm{fcl}_{k}(Q)\) contains \(\mathrm{fcl}_{k}(R)\), the set \(E-Q\) is \(k\)-sequential. Thus, by Corollary 5.7, we may assume that \(l+t+1=n-2\) and \(Q_{n-1} \cup Q_{n}\) is \(k\)-sequential.

Since \(\Phi^{\prime}\) is irredundant, there exists a non-sequential \(k\)-separation ( \(Q^{\prime}, E-\) \(Q^{\prime}\) ) displayed by \(\Phi^{\prime}\), where \(Q_{l+t+1}=Q_{n-2} \subseteq Q^{\prime}\) and \(Q_{n-1} \subseteq E-Q^{\prime}\). If \(Q_{n} \subseteq Q^{\prime}\), then we obtain a contradiction to (7.9.1) unless \(Q_{1} \cup Q_{2} \cup \cdots \cup\) \(Q_{l+t} \subseteq Q^{\prime}\), in which case \(Q_{n-1}\) is non-sequential. But then \(Q_{n-1} \cup Q_{n}\) is non-sequential by Corollary 3.3, a contradiction. Thus we may assume \(Q_{n} \subseteq E-Q^{\prime}\). But now the existence of ( \(Q^{\prime}, E-Q^{\prime}\) ) contradicts (7.9.1) unless \(Q_{1} \cup Q_{2} \cup \cdots \cup Q_{l+t} \subseteq E-Q^{\prime}\), in which case \(Q_{n-2}\) is non-sequential. In the exceptional case, when \(n \geq 5\), the \(k\)-separation \(\left(Q_{2} \cup \cdots \cup Q_{n-2}, Q_{n-1} \cup Q_{n} \cup\right.\) \(\left.Q_{1}\right)\) is non-sequential by Corollary 5.7, again contradicting (7.9.1). In the remaining case, \(\Phi^{\prime}=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)\) and the \(k\)-separations \(\left(Q_{2}, E-Q_{2}\right)\) and \(\left(Q_{1} \cup Q_{4}, Q_{2} \cup Q_{3}\right)\) are non-sequential, but \(Q_{3} \cup Q_{4}\) is \(k\)-sequential. Since \(\Phi^{\prime}\) is irredundant, there exists a non-sequential \(k\)-separation \((U, V)\) displayed by \(\Phi^{\prime}\) with \(Q_{1} \subseteq U\) and \(Q_{4} \subseteq V\). Since \(Q_{3} \cup Q_{4}\) is \(k\)-sequential, either \((U, V)=\left(Q_{1} \cup Q_{3}, Q_{2} \cup Q_{4}\right)\) or \((U, V)=\left(Q_{1}, E-Q_{1}\right)\). But if the former, then \((U, V)\) crosses \(\left(\bigcup_{i \in I} Q_{i}, \bigcup_{j \in\{1,2, \ldots, n\}-I} Q_{j}\right)\), contradicting (7.9.1). Thus \(\left(Q_{1}, E-Q_{1}\right)\) is a non-sequential \(k\)-separation, and \(\Phi\) displays no other nonsequential \(k\)-separations apart from \(\left(Q_{2}, E-Q_{2}\right)\) and \(\left(Q_{1} \cup Q_{4}, Q_{2} \cup Q_{3}\right)\). This completes the proof of (7.9.2).

Since \(T\) is a conforming tree and \(\Phi\) displays at least two inequivalent nonsequential \(k\)-separations, the \(k\)-separation \((R, G)\) displayed by \(\Phi^{\prime}\), but not \(\Phi\), is either ( \(Q_{1}, E-Q_{1}\) ) or ( \(Q_{2}, E-Q_{2}\) ). Thus, up to swapping \(Q_{1}\) and \(Q_{2}, \Phi\) displays the same non-sequential \(k\)-separations as \(\left(Q_{1} \cup Q_{4}, Q_{2}, Q_{3}\right)\). Hence, when \(\Phi\) is not maximal, (ii) holds. This completes the proof of the lemma.

Theorem 7.10. Let \(M\) be a \(k\)-connected matroid with \(|E(M)| \geq 8 k-15\). The tree returned by \(k\)-Tree \((M)\) is a partial \(k\)-tree for \(M\).

Proof. By Lemma 7.4 , the tree \(T\) returned by \(k\) - \(\operatorname{Tree}(M)\) is a conforming tree for \(M\) and, by Lemmas 7.5 and 7.6 , for each flower vertex \(u\) of \(T\), the flower corresponding to \(u\) is tight and irredundant, and displays at least two inequivalent non-sequential \(k\)-separations. Suppose \(T\) is not a partial \(k\)-tree for \(M\). Then, by Lemma 7.9, \(T\) has a flower vertex for which the corresponding \(k\)-flower \(\Phi\) is ( \(\left.Q_{1} \cup Q_{4}, Q_{2}, Q_{3}\right)\). Furthermore, the nonsequential \(k\)-separations displayed by this \(k\)-flower are precisely ( \(Q_{2}, E-Q_{2}\) ) and \(\left(Q_{1} \cup Q_{4}, Q_{2} \cup Q_{3}\right)\), but ( \(Q_{1}, E-Q_{1}\) ) is also a non-sequential \(k\)-separation.

By construction, the algorithm \(k\)-Tree at some stage invokes BackWARDSWEEP, either in line 6 or line 15 , at which point a generalised \(k\)-path \(\tau\) is returned with a concatenation \(\tau^{\prime}\) that is, up to a reversal of the parts, one of \(\left(Q_{3},\left[\left(Q_{1} \cup Q_{4}\right)\right], Q_{2}\right),\left(Q_{1} \cup Q_{4},\left[\left(Q_{2}\right)\right], Q_{3}\right)\), and \(\left(Q_{2},\left[\left(Q_{3}\right)\right], Q_{1} \cup Q_{4}\right)\). Since \(Q_{3}\) is \(k\)-sequential and no other petal is \(k\)-sequential, it follows that \(Q_{3}\) is not an entry or exit petal of \(\Phi\). Thus \(\tau^{\prime}=\left(Q_{2},\left[\left(Q_{3}\right)\right], Q_{1} \cup Q_{4}\right)\) or \(\tau^{\prime}=\left(Q_{1} \cup Q_{4},\left[\left(Q_{3}\right)\right], Q_{2}\right)\).

Let \(\left(Z_{0} \cup Z_{1}, Z_{2}, \ldots, Z_{m}\right)\) be the left-justified maximal \(k\)-path provided to the call to BackwardSweep. Firstly, assume that \(\tau^{\prime}=\) \(\left(Q_{2},\left[\left(Q_{3}\right)\right], Q_{1} \cup Q_{4}\right)\). Since \(\left(Q_{1}, E-Q_{1}\right)\) conforms with \(T\), and \(Q_{4}\) is \(k\)-sequential, it follows, by BackwardSweer, that, up to equivalence, \(\tau\) is a refinement of \(\left(Q_{2},\left[\left(Q_{3}\right)\right], Q_{4}, Q_{1}\right)\). Suppose \(\tau=\) \(\left(\ldots,\left[\left(Q_{3}\right)\right],\left[\left(S_{1}, \ldots, S_{s}\right),\left(T_{1}, \ldots, T_{t}\right)\right], \ldots\right)\), where \(s \geq 1\) and \(t \geq 0\). Then \(Q_{3}=Z_{j}\) for some \(j \in\{2,3, \ldots, m-1\}\). By construction, \(\left(Q_{4} \cup Q_{1}\right)-S_{1}\) and \(\left(Q_{4} \cup Q_{1}\right)-T_{1}\) are \(k\)-separating and, up to equivalence, either \(S_{1}\) or \(T_{1}\) is a subset of \(Q_{4}\). If \(S_{1}\) is a subset of \(Q_{4}\), then, by uncrossing \(\left(Q_{4} \cup Q_{1}\right)-S_{1}\) and \(Q_{1} \cup Q_{2}\), we deduce that \(\left(Q_{4}-S_{1}\right) \cup Q_{1} \cup Q_{2}\) is \(k\)-separating, hence \(Q_{3} \cup S_{1}\) is \(k\)-separating. Then, line 41 of BackwardSweep is invoked when \(i=j\), so \(\tau\) is of the form \(\left(\ldots,\left[\left(Q_{3}, S_{1}, \ldots, S_{s}\right),\left(T_{1}, \ldots, T_{t}\right)\right], \ldots\right)\); a contradiction. Otherwise, \(T_{1}\) is a subset of \(Q_{4}\), and, similarly, \(Q_{3} \cup T_{1}\) is \(k\)-separating, so line 43 is invoked; a contradiction. Now suppose \(\tau=\left(\ldots,\left[\left(Q_{3}\right)\right], Z_{j+1}, \ldots\right)\). Then, up to equivalence, \(Z_{j+1} \subseteq Q_{4}\). Hence line 54 of BackwardSweep is invoked when \(i=j+1\), so \(Z_{j+1}\) is not \(k\)-separating. But \(Q_{2} \cup Q_{3} \cup Z_{j+1}\) is \(k\)-separating by construction, and it follows, by uncrossing \(Q_{2} \cup Q_{3} \cup Z_{j+1}\) and \(Q_{4}\), that \(Z_{j+1}\) is \(k\)-separating; a contradiction.

Now assume that \(\tau^{\prime}=\left(Q_{1} \cup Q_{4},\left[\left(Q_{3}\right)\right], Q_{2}\right)\). Since \(\left(Q_{1}, E-Q_{1}\right)\) conforms with \(T\), and \(Q_{4}\) is \(k\)-sequential, \(\tau\) is a refinement of ( \(\left.Q_{1}, Q_{4},\left[\left(Q_{3}\right)\right], Q_{2}\right)\), up to equivalence. Consider the construction of \(\tau_{i}\) in BackwardSweep where \(i \in\{2,3, \ldots, m-2\}\) such that \(\tau_{i+1}\left(Z_{i}^{+}\right)=\left(\left[\left(Q_{3}\right)\right], \ldots\right)\). The algorithm reaches line 38 of BACKwARDSwEEP and \(Z_{i} \subseteq Q_{4}\). Since \(Z_{i} \cup Q_{3} \cup Q_{2}\) and \(Q_{4}\) are \(k\)-separating, \(Z_{i}\) is \(k\)-separating by uncrossing. Moreover, by uncrossing \(Z_{i} \cup Q_{3} \cup Q_{2}\) and \(Q_{4} \cup Q_{3}\), we deduce that \(Z_{i} \cup Q_{3}\) is \(k\)-separating. Hence line 41 is invoked, and \(\tau_{i}\) is of the form \(\left(\ldots,\left[\left(Z_{i}, Q_{3}\right)\right], \ldots\right)\); a contradiction. Thus \(T\) has no flower vertex of the form described by Lemma 7.9(ii), so \(T\) is a partial \(k\)-tree as required.

The proof of Theorem 2.1 is a simple upgrade of 9, Theorem 2.2].
Proof of Theorem 2.1. To prove the theorem, we show that \(k\)-Tree is a polynomial-time algorithm for finding a \(k\)-tree for \(M\). Let \(T\) be the tree returned by a call to \(k\) - Tree \((M)\). Then every vertex of \(T\) is marked. Moreover, by Theorem 7.10, \(T\) is a partial \(k\)-tree for \(M\). Now \(T\) is a \(k\)-tree for \(M\) unless there is a non-sequential \(k\)-separation of \(M\) with the property that no equivalent \(k\)-separation is displayed by \(T\). So assume there is such a \(k\)-separation \((R, G)\). Since \(T\) is conforming, we may assume, by taking an equivalent \(k\)-separation if necessary, that \(G\) is contained in a bag \(B\) of \(T\). If \(T\) consists of the single bag vertex \(B\), then line 3 of \(k\)-Tree would have found a non-sequential \(k\)-separation \((Y, Z)\) of \(M\); a contradiction. So assume that \(T\) consists of at least two vertices. Then line 9 of \(k\)-Tree would have found a non-sequential \(k\)-separation \((Y, Z)\) of \(M\) with the property that \(Z \subseteq \pi(B)\), contradicting the fact that \(B\) is marked. Hence \(T\) is a \(k\)-tree for \(M\).

We next show that \(k\)-Tree runs in polynomial time in the size \(n\) of \(E(M)\). By Lemma 4.1, the collection \(\mathcal{F}\) of maximal sequential \(k\)-separating sets of \(M\) can be constructed in polynomial time in \(n\), and, by Theorem 4.2, for fixed disjoint subsets \(Y^{\prime}\) and \(Z^{\prime}\) of \(E(M)\), we can find a \(k\)-separation \((Y, Z)\) with \(Y^{\prime} \subseteq Y\) and \(Z^{\prime} \subseteq Z\), if one exists, in polynomial time in \(n\). Thus, by Lemma 4.3, we can find a non-sequential \(k\)-separation by iterating over all \(k\)-element subsets of \(E(M)\) not contained in a member of \(\mathcal{F}\). As there are \(O\left(n^{k}\right)\) such subsets, where \(k\) is fixed, this can be done in polynomial time in \(n\). Extending this, whenever \(k\)-Tree, or one of the two subroutines, is called upon to find a \(k\)-separation where each part contains particular subsets, it either finds such a \(k\)-separation or correctly determines that there is no such \(k\)-separation in time polynomial in \(n\). Therefore, as every \(k\)-path of \(M\) has length \(O(n)\), it follows that each call to ForwardSweep takes time polynomial in \(n\).

Now consider a call from \(k\)-Tree to the subroutine BackwardSweep. When \(m \geq 3\), this subroutine considers each of the following subsets of \(E(M)\) in turn: the subsets \(Z_{m}\) and \(Z_{m-1}\), a subset \(Z_{i}\) where \(i \in\{m-\) \(2, m-3, \ldots, 2\}\), and finally the subset \(X_{0} \cup Z_{1}\). For each of the subsets \(Z_{2}, Z_{3}, \ldots, Z_{m-2}\), it is clear that their consideration takes polynomial time in \(n\). Note that finding the full closure of a subset \(X\) of \(E(M)\), as in line 51 of BackwardSweep, takes time \(O\left(n^{k-1}\right)\). For the subsets \(Z_{m}\) and \(X_{0} \cup\) \(Z_{1}\), BackwardSweep may, up to five times, attempt to find \(k\)-separations where each part contains particular subsets. As mentioned above, each call takes time polynomial in \(n\), so the time taken for BackwardSweep to consider each of \(Z_{m}\) and \(X_{0} \cup Z_{1}\) is also polynomial in \(n\). Since \(m \leq n\), it follows that, when \(m \geq 3\), BackwardSweep takes time polynomial in \(n\). Similarly, the subroutine takes time polynomial in \(n\) when \(m=2\), so each call to BackwardSweep takes time polynomial in \(n\).

At the completion of each call to BackwardSweep, the algorithm \(k\) Tree extends the current \(\pi\)-labelled tree to a new \(\pi\)-labelled tree in polynomial time in \(n\). This extension is non-trivial in that at least one new edge is created. Since the terminal bags of each such constructed \(\pi\)-labelled tree contain at least \(k-1\) elements of \(E(M)\) and there is no empty bag vertex of degree two, the number of edges of each constructed \(\pi\)-labelled tree is linear in \(n\), and so the total number of calls to ForwardSweep and BackwardSweep from \(k\)-Tree is \(O(n)\). As marked bags are never reconsidered, we deduce that \(k\)-Tree terminates in time polynomial in \(n\). This completes the proof of the theorem.

\section*{8. Some Observations}

In this section, we explain why the condition that \(|E(M)| \geq 8 k-15\) is necessary in Theorem 2.1, and why the approach taken in the proof of Theorem 1.1 [4, Theorem 7.1] does not lend itself to an algorithm for constructing a \(k\)-tree.

An Example. We now give a generic example to demonstrate that the constraint that \(|E(M)| \geq 8 k-15\), in Theorems 1.1 and 2.1, is sharp. Clark and Whittle [4, Section 5] showed that for each \(k>3\) there is a polymatroid that has a tangle \(\mathcal{T}\) of order \(k\) with a non-sequential \(k\)-separation that does not conform with a tight maximal \(k\)-flower in \(\mathcal{T}\). Restricting our attention to \(k\)-connected matroids, we show that for each \(k \geq 3\) there is a \(k\)-connected matroid \(M\) with \(8 k-16\) elements that has a non-sequential \(k\)-separation that does not conform with a tight maximal \(k\)-flower of \(M\). This is consistent with other examples in the literature: the 8 -element 3 -connected matroid \(R_{8}\) given in [10, Section 9] and the 16 -element 4 -connected matroid \(H_{16}\) given in [2, Section 4].


Figure 7. The rank-4 binary affine 3 -cube.


Figure 8. The rank-5 binary affine 4 -cube.
Let \(H_{8 k-16}\) be the ( \(8 k-16\) )-element binary affine \(k\)-dimensional hypercube, or \(k\)-cube, of rank \(k+1\). The matroid \(H_{8 k-16}\) is \(k\)-connected. For \(k \in\{3,4\}\), these matroids are illustrated in Figures 7 and 8 . When \(k=4\), this matroid coincides with the aforementioned example in [2]. A representation of \(H_{8 k-16}\) can be constructed as follows. Let \(H_{8}^{\prime}\) be the matrix
\[
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
\]
over \(G F(2)\). Let \(H_{8}^{\prime} J\) be the matrix
\[
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
\]
over \(G F(2)\) that is obtained by reversing the order of the columns of \(H_{8}^{\prime}\). Recursively, for all \(k \geq 3\), define \(H_{8(k+1)-16}^{\prime}\) to be the matrix
\[
\left(\begin{array}{cc}
H_{8 k-16}^{\prime} & H_{8 k-16}^{\prime} J \\
\mathbf{0}^{T} & \mathbf{1}^{T}
\end{array}\right)
\]
over \(G F(2)\) where \(H_{8 k-16}^{\prime} J\) is the matrix obtained from \(H_{8 k-16}^{\prime}\) by reversing the order of the columns. Label the columns of \(H_{8 k-16}^{\prime}\) from \(e_{1}\) to \(e_{8 k-16}\). We denote, for all \(k \geq 2\), the vector matroid arising from \(H_{8 k-16}^{\prime}\) by \(H_{8 k-16}\). Then, the partition \(\Phi=\left(\left\{e_{1}, e_{2}, \ldots, e_{2 k-4}\right\},\left\{e_{2 k-3}, \ldots, e_{4 k-8}\right\}\right.\), \(\left.\left\{e_{4 k-7}, \ldots, e_{6 k-12}\right\},\left\{e_{6 k-11}, \ldots, e_{8 k-16}\right\}\right)\) is an irredundant tight \(k\)-flower. However, letting
\[
X=\left\{e_{1}, e_{2}, \ldots, e_{k-2}, e_{3 k-5}, e_{3 k-4}, \ldots, e_{5 k-10}, e_{7 k-13}, e_{7 k-12}, \ldots, e_{8 k-16}\right\}
\]
the non-sequential \(k\)-separation \(\left(X, E\left(H_{8 k-16}\right)-X\right)\) does not conform with \(\Phi\). For example, when \(k=3\), the non-sequential 3separation \(\left(\left\{e_{1}, e_{4}, e_{5}, e_{8}\right\},\left\{e_{2}, e_{3}, e_{6}, e_{7}\right\}\right)\) does not conform with the 3flower \(\left(\left\{e_{1}, e_{2}\right\},\left\{e_{3}, e_{4}\right\},\left\{e_{5}, e_{6}\right\},\left\{e_{7}, e_{8}\right\}\right)\); when \(k=4\), the non-sequential 4 -separation
\[
\left(\left\{e_{1}, e_{2}, e_{7}, e_{8}, e_{9}, e_{10}, e_{15}, e_{16}\right\},\left\{e_{3}, e_{4}, e_{5}, e_{6}, e_{11}, e_{12}, e_{13}, e_{14}\right\}\right)
\]
does not conform with the 4 -flower
\[
\left(\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\},\left\{e_{5}, e_{6}, e_{7}, e_{8}\right\},\left\{e_{9}, e_{10}, e_{11}, e_{12}\right\},\left\{e_{13}, e_{14}, e_{15}, e_{16}\right\}\right)
\]

An Alternative Approach. It was noted earlier that the proof of Theorem 1.1 [4, Theorem 7.1] does not appear to yield an efficient algorithm for finding a \(k\)-tree for a \(k\)-connected matroid. We now describe the approach taken in this proof, and the difficulty in using this approach to obtain an algorithm for constructing a \(k\)-tree.

Let \(M\) be a \(k\)-connected matroid. A tight irredundant maximal \(k\)-flower is a partial \(k\)-tree \(T\) for \(M\) [4, Lemma 5.10]. If there exists a \(k\)-separation that is not equivalent to a \(k\)-separation displayed by \(T\), we can modify \(T\) to obtain a partial \(k\)-tree \(T^{\prime}\) where \(T \preccurlyeq T^{\prime}\), and \(T^{\prime}\) displays a \(k\)-separation not displayed by \(T\) [4, Lemma 6.3]. Thus, we can eventually obtain a \(k\)-tree for \(M\). The difficulty in using a similar approach to obtain an algorithm for constructing a \(k\)-tree lies in finding a tight irredundant maximal \(k\)-flower for \(M\). As described in [9, Section 7], given a 3 -separation \((X, Y)\), it seems difficult to detect in polynomial time whether it can be refined to a 3 -flower with at least three petals. Similarly, it is not clear whether a \(k\)-separation \((X, Y)\) can be refined to a \(k\)-flower with at least three petals.

\section*{References}
[1] J. Aikin and J. Oxley. The structure of crossing separations in matroids. Adv. Appl. Math., 41(1):10-26, 2008.
[2] J. Aikin and J. Oxley. The structure of the 4 -separations in 4-connected matroids. Adv. Appl. Math., 48:1-24, 2012.
[3] J. M. Aikin. The structure of 4-separations in 4-connected matroids. Ph.D. dissertation, Louisiana State University, 2009.
[4] B. Clark and G. Whittle. Tangles, trees, and flowers. J. Combin. Theory Ser. B, 103(3):385-407, 2013.
[5] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Matroid Intersection. In Combinatorial Optimization, pages 287-294. Wiley, New York, 1998.
[6] W. H. Cunningham. A combinatorial decomposition theory. Ph.D. dissertation, University of Waterloo, 1973.
[7] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and Their Applications, pages 69-87. Gordon and Breach, New York, 1970.
[8] J. Oxley. Matroid Theory. Oxford University Press, New York, second edition, 2011.
[9] J. Oxley and C. Semple. Constructing a 3-tree for a 3-connected matroid. Adv. Appl. Math., 50(1):176-200, 2013.
[10] J. Oxley, C. Semple, and G. Whittle. The structure of the 3 -separations of 3-connected matroids. J. Combin. Theory Ser. B, 92(2):257-293, 2004.
[11] J. Oxley, C. Semple, and G. Whittle. An upgraded Wheels-and-Whirls Theorem for 3-connected matroids. J. Combin. Theory Ser. B, 102(3):610-637, 2012.

Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

E-mail address: nick.brettell@pg.canterbury.ac.nz
Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

E-mail address: charles.semple@canterbury.ac.nz```

