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Abstract In the last decade, the use of phylogenetic networks to analyze the

evolution of species whose past is likely to include reticulation events, such as hor-

izontal gene transfer or hybridization, has gained popularity among evolutionary

biologists. Nevertheless, the evolution of a particular gene can generally be de-

scribed without reticulation events and therefore be represented by a phylogenetic
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tree. While this is not in contrast to each other, it places emphasis on the necessity

of algorithms that analyze and summarize the tree-like information that is con-

tained in a phylogenetic network. We contribute to the toolbox of such algorithms

by investigating the question of whether or not a phylogenetic network embeds a

tree twice and give a quadratic-time algorithm to solve this problem for a class of

networks that is more general than tree-child networks.

Keywords Displaying · phylogenetic network · phylogenetic tree · tree-child ·

tree-path · tree-sibling.

1 Introduction

Although phylogenetic networks are becoming increasingly important in studying

the evolution of present-day species whose past includes reticulation events, phylo-

genetic trees remain to play a fundamental role in phylogenetic analyses since the

evolutionary history of a single gene can, in most cases, be described by a tree. It

is therefore not surprising that investigating the tree-like content of phylogenetic

networks is often an important first step in analyzing and interpreting such net-

works. For example, one might be interested in deciding if a phylogenetic network

embeds a given phylogenetic tree or in counting the number of trees embedded

in a network. The latter problem is related to calculating the parsimony score of

a network [9] which, given the popularity of parsimony tree reconstruction algo-

rithms, is likely to become a standard tool in computing a phylogenetic network

directly from sequence data. While deciding if a tree is embedded in a network is

polynomial-time solvable for certain special classes of phylogenetic networks [5],

the problem is NP-complete in its general form [6]. Similarly, counting the number

of phylogenetic trees that are embedded in an arbitrary phylogenetic network is

also known to be a computationally hard problem [7].
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In this paper, we investigate a related problem. Given a phylogenetic network

N , this problem asks whether or not there exists a phylogenetic tree with the same

leaf set asN that is embedded more than once inN . If such a tree exists, then there

are two distinct sets of edges in N that yield the same tree. It is known that if N is

binary and has k reticulations (detailed definitions are deferred to Section 2), then

the maximum number of possible trees embedded in N is 2k. While it was shown

independently that the upper bound of 2k is sharp for so-called “normal networks”

in [5, Theorem 1] and [12, Corollary 3.4], little is known about the properties of

a phylogenetic network that guarantee it embeds the maximum number of trees.

Here, we present the first such characterization for a class of networks that lies

strictly between tree-child and tree-sibling networks. This characterization is based

on a certain type of underlying cycle in a network that will be formally introduced

in Section 3. Moreover, we will show that such cycles are recognizable in quadratic

time, leading to the following theorem, where, for now, displaying a tree twice

implies that there are two distinct embeddings for the same tree.

Theorem 1 Let N be a rooted binary phylogenetic network with leaf set X and

suppose that, for each reticulation of N , at least one of its parents is connected to

a leaf of N via a directed path that does not contain a reticulation. Then it takes

time quadratic in the size of |X| to decide whether or not N displays a rooted

phylogenetic tree with leaf set X twice.

It is worth pointing out that for a network N with the property described in

Theorem 1, the number of leaves in N does not bound the total number of vertices

in N . Hence, for a fixed set X, the class of networks with leaf set X that we

consider in this paper contains infinitely many networks (for example, see Figure 1,

where the directed path from the root of the network to the leaf labeled 1 can be

arbitrarily long). In contrast, for a fixed set X, the number of tree-child networks

with leaf set X is finite [8].
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Fig. 1 A phylogenetic network for which each reticulation has a parent connected to the leaf

labeled 1 via a directed path that does not contain a reticulation.

The remainder of the paper is organized as follows. The next section contains

notation and terminology that is used throughout the paper. In Section 3, we

introduce the concepts of switchings, and avoidable vertices and cycles. We also

derive several lemmas and observations in this section that are important in estab-

lishing the above-mentioned characterization, which is presented in Section 4. In

Section 5, we establish Theorem 1. The last section contains a remark on tree-child

and normal networks.

2 Preliminaries

This section provides notation and terminology that is used in the remainder of

the paper. Throughout the paper, X denotes a finite set.

Phylogenetic trees. A rooted phylogenetic X-tree T is a rooted tree in which

the root has degree at least two and all other interior vertices have degree at least

three, and whose leaf set is X. In addition, T is binary if, apart from the root which

has degree two, all interior vertices have degree three. Since we are interested only

in rooted binary phylogenetic X-trees throughout the paper, we will almost always

refer to such a tree as a tree on X.

Phylogenetic networks. A phylogenetic network N on X is a rooted acyclic

digraph that satisfies the following three properties:

(i) the root has out-degree two,
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(ii) each vertex with out-degree zero has in-degree one, and the set of vertices with

out-degree zero is X, and

(iii) all other vertices either have in-degree one and out-degree two, or in-degree

two and out-degree one.

We will refer to N as a network on X or, simply, as a network if X plays no

particular role. Such networks are commonly referred to as binary phylogenetic

networks. An example of a network on {1, 2, 3, 4} is shown in the left of Figure 2,

where the vertex labels u, u′, v, and v′ are ignored for the moment. Here, as well as

in all other figures, edges are directed down the page. Furthermore, we will assume

that networks have no parallel edges. For a network N , vertices with in-degree two

and out-degree one are called reticulations and all other vertices are called tree

vertices. In addition, edges directed into a reticulation are called reticulation edges

and all other edges are called tree edges. Similar to rooted phylogenetic trees,

vertices with out-degree zero are referred to as leaves. Indeed, a rooted binary

phylogenetic tree is a phylogenetic network with no reticulations.

Biologically, like phylogenetic trees, phylogenetic networks illustrate the evolu-

tionary history of a collection of present-day species. Such species are represented

by the leaves, while all other vertices represent (hypothetical) ancestors. A retic-

ulation represents, for example, a hybrid species.

Let u and v be two vertices of a network N on X. If there is a directed path

(resp. a directed path that contains at least one edge) from u to v, then u is an

ancestor (resp. strict ancestor) of v, and v is a descendant (resp. strict descendant)

of u. More particularly, if (u, v) is an edge in N , then u is a parent of v, and v is a

child of u. Furthermore, if two vertices have a common parent, then they are said

to be siblings. We use Du to denote the subset of X whose elements are precisely

the descendants of u.

Let T be a tree on X, and let N be a network on X. We say that N displays

T if T can be obtained from N by deleting edges and vertices, and contracting
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Fig. 2 Left: A phylogenetic network N that displays three trees. Middle: A phylogenetic tree

that is displayed twice by N . Right: A phylogenetic network N ′ that displays four trees. While

N and N ′ are both tree-sibling, only N ′ also satisfies the stronger tree-child condition.

vertices with in-degree one and out-degree one. Intuitively, T is displayed by N if

all of the ancestral information inferred by T is also inferred by N . Note that if

T is displayed by N , then T is necessarily binary.

Tree-child and tree-sibling networks are two prominent types of networks aris-

ing in the literature. Let N be a network on X. A vertex v of N has the tree-path

property if there exists a leaf ` such that there is a directed path P from v to `

containing no reticulations, except for possibly v. If such a path exists, then each

edge of P is a tree edge and P is the unique directed path from v to ` in N .

For example, except for the parent common to v and v′, each vertex of the net-

work shown on the left-hand side in Figure 2 has the tree-path property. We say

that N is tree-child (e.g. see [2]) if each vertex of N has the tree-path property.

Equivalently, N is tree-child if each non-leaf vertex u of N has a child v such

that v is a tree vertex. Biologically, such networks guarantee that all species that

arise from a speciation event (represented by a tree vertex) or a reticulation event

exist for a certain period of time before evolving any further. Furthermore, N is

tree-sibling (e.g. see [1]) if each reticulation has a sibling that is a tree vertex. For

example, the network shown on the left-hand side of Figure 2 is tree-sibling but

not tree-child, while the network shown on the right-hand side of the same figure

is tree-child (and, hence, also tree-sibling). Observe that, for a fixed set X, the

class of tree-child networks on X is a proper subclass of tree-sibling networks on

X. A class of networks on X that is nested strictly between these two classes is the

class which has the property that, for each reticulation, at least one of its parents

has the tree-path property. It is this later class that is the subject of Theorem 1.
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3 Switchings and Avoidability

In the first part of this section, we introduce the concept of switchings in a network

to describe precisely what it means for a tree to be displayed twice. In the second

part, we describe a certain type of cycle and establish several lemmas that play a

role in the characterization of the next section.

Switchings. Let N be a network on X. A subset S of reticulation edges of N

is a switching of N if, for each reticulation v of N , the set S contains precisely

one of the two reticulation edges directed into v. Now, let S be a switching of

N . If we delete each reticulation edge in N that is not in S, then the resulting

directed graph contains no underlying cycle and, for each leaf ` ∈ X, it is easily

checked that there is a directed path from the root of this directed graph to `. If we

now repeatedly contract each resulting vertex with in-degree one and out-degree

one and delete each degree-1 vertex that is not in X, it is easily seen that we

obtain a tree T on X. We say that S yields T . Note that T is well-defined and,

by construction, T is displayed by N . Conversely, observe that, if T is a tree on

X displayed by N , then there exists a switching that yields T . In summary, this

leads to the following observation, which we will freely use throughout the paper.

Observation 1 A network N on X displays a tree T on X if and only if there

exists a switching S of N that yields T .

With Observation 1 in hand, we say that N displays a tree twice if there exist

two distinct switchings of N each of which yields (up to isomorphism) the same

tree on X. For example, for the network N shown on the left in Figure 2, it is

easily verified that the tree shown in the middle of the same figure is displayed

twice by N . Also, referring back to a comment made in the introduction, it follows

from Observation 1 that if N is a network on X with exactly k reticulations, then

N displays at most 2k distinct trees on X.
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Fig. 3 A phylogenetic network that has the tree-path property for at least one parent of each

reticulation and with an avoidable reticulation v.

Avoidable vertices. Let N be a network on X, and let v be a vertex of N . We

say that v is avoidable if, for each ` ∈ X, there exists a directed path from the

root of N to ` that avoids v. Otherwise, v is unavoidable. In particular, if v is

unavoidable, then there exists a leaf ` such that every directed path from the root

of N to ` contains v. To illustrate, Figure 3 shows a network with an avoidable

reticulation v. Note that the definition of an unavoidable reticulation coincides

with that of a so-called visible reticulation in [4].

The next lemma gives a sufficient, but not a necessary, condition for guaran-

teeing that a network displays a tree twice.

Lemma 1 Let N be a network on X. If N has an avoidable reticulation, then N

displays a tree on X twice.

Proof Let v be an avoidable reticulation of N , and let e1 and e2 be the two

reticulation edges that are incident with v. Since v is avoidable, there exists, for

each ` ∈ X, a directed path P` from the root of N to ` that avoids v. Let T

be a tree on X that is displayed by N and, up to degree-2 vertices, whose edge

set is a subset of
⋃

`∈X P`. It is easily seen that such a T always exists. Now, let

S be a switching of N that yields T . It follows that the two distinct switchings

(S−{e1, e2})∪{e1} and (S−{e1, e2})∪{e2} both yield T and, hence, N displays

a tree on X twice. ut

Avoidable cycles. We now extend the concept of avoidability to cycles of a

network. Let N be a network on X, and let v be a reticulation of N . Let u be a

tree vertex of N such that there exist two directed paths P1 and P2 from u to v
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Fig. 4 A 2-path cycle C of a network N on X = X1 ∪ X2 ∪ X3 with source u and sink v.

Note that {v, v1} is a hitting set of C because X can be partitioned into three sets X1, X2,

and X3 such that, for each `1 ∈ X1, there exists a directed path from ρ to `1 that avoids every

vertex in C, and, for each `2 ∈ X2 (resp. `3 ∈ X3), there exists a directed path from ρ to `2

(resp. `3) for which the last vertex on that path that meets a vertex in C is v (resp. v1). Thus

C is an avoidable cycle. Except for the edge joining v1 and v, lines indicate directed paths in

N . Furthermore, the three triangles indicate subnetworks of N . While omitted for the sake of

simplicity, these subnetworks as well as C may be further interwoven among themselves and

among each other.

whose vertex sets, apart from u and v, are disjoint. We call the underlying cycle

induced by the union of the vertex sets of P1 and P2 a 2-path cycle of N , where u

is the source vertex and v is the sink vertex. It is easily seen that each reticulation

of N is the sink of at least one 2-path cycle in N .

Let C be a 2-path cycle of N with source u and sink v. Let H be a subset of

the vertex set of C such that, for each leaf ` ∈ X, at least one of the following

holds:

(i) there is a directed path from the root of N to ` which avoids every vertex in

C, or

(ii) there is a directed path from the root of N to ` for which the last vertex in

the path meeting C is contained in H.
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We refer to H as a hitting set of C. Furthermore, H is minimum if C has no

hitting set H ′ with |H ′| < |H|. If there exists a hitting set of C with at most

two elements, we say that C is avoidable. A simplified phylogenetic network that

has an avoidable cycle and summarizes the basic idea of such a cycle is shown

in Figure 4. Moreover, for a more explicit example, the network shown on the

left-hand side of Figure 2 has a 2-path cycle C with source u and sink v that is

avoidable, and a 2-path cycle with source u′ and sink v′ that is unavoidable. Note

that C is avoidable because there exist directed paths from the root of the network

to leaves 3 and 4 that do not meet C.

The next lemma gives another sufficient, but again not a necessary, condition

for guaranteeing that a network displays a tree twice.

Lemma 2 Let N be a network on X, and let v be a reticulation of N . If v is the

sink of an avoidable cycle, then N displays a tree on X twice.

Proof Suppose that v is the sink of an avoidable cycle C. Then there is a hitting

set H of C such that |H| ≤ 2. Furthermore, for each ` ∈ X, there is a directed

path P` in N from the root to ` such that either P` avoids every vertex of C or

the last vertex of P` meeting C is an element of H.

Now, let T be a tree on X displayed by N whose edge set, up to degree-2

vertices, is a subset of
⋃

`∈X P`. Since H contains at most two elements, T has a

subtree that can be detached by deleting a single edge and whose leaf set contains

precisely each element ` ∈ X for which the last vertex of P` meeting C is an

element of H. Let e1 and e2 denote the reticulation edges incident with v, and let

S be a switching of N that yields T . By construction, it is now easily seen that

the two switchings (S − {e1, e2}) ∪ {e1} and (S − {e1, e2}) ∪ {e2} both yield T .

Hence N displays a tree on X twice. ut

The converse of Lemma 2 does not hold. For example, Figure 5 shows a network

that has no avoidable cycle, but displays a tree twice.



Phylogenetic networks that display a tree twice 11

2

4

v3

v2

v1

h2

h1

h3

1 2 3 41

3

Fig. 5 A phylogenetic network (left) that displays the tree shown on the right twice. Moreover,

N has no avoidable cycle because each 2-path cycle of N with sink vi, for i ∈ {1, 2, 3}, has a

minimum hitting set of size at least three. For example, {h1, h2, v3} and {h1, h3, v3} are the

two unique minimum hitting sets of the 2-path cycle of N with sink v3.

We end this section with a concept and an observation that is used in the rest

of the paper. Let N be a network, and let v be a reticulation of N . A parent of

v is a distinguished parent if it has the tree-path property and, if both parents

of v have the tree-path property, then it is not an ancestor of the other parent.

Note that, if v has a parent that has the tree-path property, then v has at least

one distinguished parent. Moreover, if v has two distinguished parents, then v is

not the sink of an avoidable cycle in N . Referring back to Figure 2, each of the

two reticulations in the network shown on the left has exactly one distinguished

parent, while each of the two reticulations in the network shown on the right of

the same figure has two distinguished parents.

The following observation immediately follows from the definition of an avoid-

able cycle and recalling that such a cycle has a hitting set of size at most two.

Observation 2 Let N be a network with no avoidable reticulation, and let v be a

reticulation of N . If v has a distinguished parent, say v1, and v is the sink of an

avoidable cycle C in N , then {v1, v} is the unique minimum hitting set of C.
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4 Characterization

In this section, we characterize when a network with at least one parent of each

reticulation having the tree-path property displays a tree twice. This characteri-

zation is in terms of avoidable reticulations and avoidable cycles. We will see in

the next section that this result leads naturally to a quadratic-time algorithm that

decides whether or not such a network displays a tree twice.

We start by describing an operation that involves a deletion of a reticulation

in a network. Let N be a network with no avoidable reticulation and, for each

reticulation, at least one of its parents has the tree-path property. Let ρ be the root

of N , and let v be a reticulation of N whose strict descendants are all tree vertices.

Since N is acyclic such a reticulation exists. Obtain a rooted acyclic digraph N ′

from N by deleting v and contracting any resulting vertex of in-degree one and

out-degree one. Such vertices correspond to v1 and v2 and, provided neither is ρ,

there are two contractions. If v1 or v2 is ρ, then delete ρ as well. We say that N ′

is obtained from N by a reticulation deletion relative to v. The next lemma shows

that N ′ preserves the two properties of N that distinguish it.

Lemma 3 Let N be a network on X with no avoidable reticulation. Suppose that

N has the tree-path property for at least one parent of each reticulation. Let N ′

be the rooted acyclic digraph obtained from N by a reticulation deletion relative to

a reticulation v. Then N ′ is a network on X −Dv with no avoidable reticulation

and, for each reticulation, at least one of its parents has the tree-path property.

Proof Let ρ denote the root of N . Furthermore, let v1 and v2 denote the parents

of v. Without loss of generality, we may assume that v1 is a distinguished parent

of v. Let m denote a leaf in N with the property that there is a tree-path from

v1 to m. Now, since each reticulation in N is unavoidable, v1 and v2 are tree

vertices. Using this fact, as well as the property that at least one parent of each
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reticulation has the tree-path property in N , it is easily checked that N ′ is indeed

a phylogenetic network on X −Dv (with no parallel edges).

We next show that each reticulation in N ′ is unavoidable, and at least one

parent of each reticulation in N ′ has the tree-path property. The latter certainly

holds as no such tree-path in N contains either (v1, v) or (v2, v). Now, let w be a

reticulation in N ′. If w is avoidable in N ′, then, as w is unavoidable in N , there is

a leaf ` ∈ Dv such that every directed path in N from ρ to ` meets w. Moreover,

there is a directed path Pm from ρ to m in N avoiding w. Since Pm extends the

unique tree-path from v1 to m, it follows that, by making use of the first part

of Pm from ρ to v1, we can construct a directed path from ρ to ` that uses the

edge (v1, v) and avoids w in N ; a contradiction. Thus each reticulation in N ′ is

unavoidable. ut

The next theorem is the aforementioned characterization. For the purpose of

its proof, we need an additional definition. Let T be a tree on X, and let a, b,

and c be three distinct elements in X. We say that T contains the triple ab|c (or,

equivalently, ba|c) if, in T , the path connecting a and b does not intersect the path

from the root to c.

Theorem 2 Let N be a network on X. Suppose that at least one parent of each

reticulation in N has the tree-path property. Then N displays a tree on X twice if

and only if N contains an avoidable reticulation or an avoidable cycle.

Proof Let ρ denote the root of N . If N contains an avoidable reticulation or an

avoidable cycle, then, by Lemmas 1 and 2, N displays a tree on X twice.

Now, suppose that N contains neither an avoidable reticulation nor an avoid-

able cycle. Let k be the number of reticulations in N . We will show by induction

on k that N does not display a tree on X twice. If k = 0, then N is a tree on

X and the result holds. Now assume that k ≥ 1 and that the result holds for all

networks with k − 1 reticulations. Let v be a reticulation of N whose strict de-
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scendants are all tree vertices, and let v1 and v2 be the two parents of v. Without

loss of generality, assume that v1 is a distinguished parent of v. Furthermore, let

m denote a leaf in N with the property that there is a tree-path from v1 to m.

Let N ′ be the rooted acyclic digraph obtained from N by applying a reticulation

deletion relative to v. It follows by Lemma 3 that N ′ is a network on X − Dv

with no avoidable reticulation and, for each reticulation, at least one parent has

the tree-path property.

To apply the induction assumption, we next show thatN ′ contains no avoidable

cycles. Suppose to the contrary that N ′ has an avoidable cycle C′ with sink t. Let

t1 and t2 denote the parents of t and, without loss of generality, assume that t1 is

a distinguished parent of t. By Observation 2, it follows that {t1, t} is the unique

minimum hitting set H ′ of C′. Let C denote the 2-path cycle in N induced by

C′ in N ′. Since each tree vertex in N and N ′ has out-degree exactly 2, and t1

has the tree-path property in N ′, it follows that t1 is not contained in {v1, v2},

so (t1, t) is an edge in C′ and C. Now, let P ′m be a directed path from the root

of N ′ to m such that either P ′m avoids C′ or the last vertex of P ′m that meets C′

is contained in H ′. As C′ is an avoidable cycle in N ′, such a path exists. Now,

if v2 = ρ and (v2, v1) is an edge in N , let vp denote the child of v1 in N such

that vp 6= v; otherwise, let vp denote the parent of v1 in N . Note that the unique

directed path from vp to m in N ′ is a subpath of P ′m.

We next consider two cases. First, assume that the subpath of P ′m in N ′ from

vp to m either avoids every vertex in C′ or vp ∈ {t1, t}. By the existence of P ′m

in N ′, we have that, for each leaf ` ∈ Dv, there exists a directed path P` from ρ

to ` in N that uses the edge (v1, v) such that P` avoids every vertex of C or the

last vertex of P` that meets C is contained in {t1, t}. Furthermore, as (t1, t) is an

edge in C, we have that H ′ is a hitting set of C in N . In particular, as C′ is an

avoidable cycle in N ′, it follows that C is an avoidable cycle in N ; a contradiction.

Second, assume that the subpath of P ′m from vp to m in N ′ does not avoid

every vertex in C′ and vp /∈ {t1, t}. As C is unavoidable in N , v1 is either a vertex
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of C or the source of C is a strict descendant of v1. In the latter case, it is easily

checked that, as C′ is avoidable in N ′, C is avoidable in N ; a contradiction. We

may therefore assume that v1 is a vertex of C. If there is an element ` ∈ Dv

for which there is a directed path in N from ρ to ` through v2 such that either

it avoids C, or it meets C and the last vertex it meets in C is t or t1, then all

elements in Dv have such a path. In turn, this implies that C is avoidable in N ;

a contradiction. Hence, for all ` ∈ Dv, every directed path from ρ to ` through v2

meets a vertex of C and the last such vertex is neither t nor t1. Let r denote such a

vertex of C, and let Pr denote a directed path from r to v2 in N . We may assume

that r is the only vertex of Pr meeting C. Potentially, Pr may consist of the single

vertex v2. Now, let D be the unique 2-path cycle in N with sink v whose vertex

set is the union of V (Pr) ∪ {v} and a subset of the vertices in C, and whose edge

set is E(Pr)∪{(v1, v), (v2, v)} a subset of the edges in C, where V (Pr) and E(Pr)

are the vertex and edge sets of Pr, respectively. Let Xv1 denote the subset of X

such that p ∈ Xv1 precisely if p ∈ Dv or there is a path from v1 to p that avoids D

except for v1. Since v is not the sink of an avoidable cycle in N , the set X −Xv1

is non-empty. In particular, there exists a leaf q ∈ X−Xv1 with the property that

every directed path from ρ to q in N meets D and the last vertex meeting D is

neither v nor v1. Moreover, since C′ is avoidable in N ′, at least one such path,

say Pq, does not meet a vertex of C in N or the last vertex meeting C in N is an

element in {t1, t}. If the last vertex of Pq that meets C in N is either t1 or t, it

is easily checked that there is a path from ρ to q such that the last vertex on this

path meeting D is v1; a contradiction. We may therefore assume that Pq does not

meet a vertex of C. Hence, V (Pr)−{r} is non-empty and, in particular, Pq meets

D in a vertex of V (Pr) − {r}. But then there is a directed path in N from ρ to

` using Pq that avoids every vertex in C, in which case, C is avoidable in N ; a

contradiction.

We now proceed with the induction. Since N ′ has k−1 reticulations, it follows

by the induction assumption that N ′ does not display a tree on X−Dv twice. Let

T ′ be a tree on X − Dv that is displayed by N ′, and let S′ be a switching that
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yields T ′. Now consider the two switchings S1 = S′ ∪ {e1} and S2 = S′ ∪ {e2},

where e1 = (v1, v) and e2 = (v2, v). For completeness, if S′ contains an edge

(w1, w), where w1 is the parent of v2 and w is a child of v2 in N , then replace

(w1, w) with (v2, w) in S1 and S2. Let C be a 2-path cycle in N whose sink is v.

It is easily checked that C exists. Furthermore, let ` be an element in Dv, and let

q be an element in X such that the last vertex of each directed path from ρ to

q in N that meets C is neither v nor v1. As C is not avoidable, such a q exists.

Then S1 yields a tree T1 on X that contains the triple `m|q while S2 yields a tree

T2 on X that contains the triple `q|m or qm|` and, thus, T1 � T2. Applying this

argument to each of the trees on X −Dv displayed by N ′, it follows that N does

not display a tree on X twice; thereby completing the proof of the theorem. ut

5 Quadratic-Time Algorithm

Making use of the characterization Theorem 2, in this section we establish Theo-

rem 1. If N is a network with n vertices, then, as each vertex of N has degree at

most three, the number of edges in N is at most 3
2n. We will implicitly use this

fact throughout the section.

We start by showing that the total number of vertices in a certain type of

networkN on X is bounded by a function that is linear in the size of X. Eventually,

this will enable us to get the overall running time to be quadratic in |X|.

Lemma 4 Let N be a network on X with no avoidable reticulation, and suppose

that N has the tree-path property for at least one parent of each reticulation. Let

k be the number of reticulations in N , and let n be the total number of vertices in

N . Then k ≤ |X| and, in particular, n < 4|X|.

Proof If k = 0, then the result clearly holds. So assume that the result holds for

all networks with fewer than k reticulations. Let N ′ be a network obtained from
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N by applying a reticulation deletion relative to a reticulation v in N . It follows

by Lemma 3 that N ′ is a network on X −Dv with no avoidable reticulation and,

for each reticulation, at least one parent has the tree-path property. Moreover, N ′

has k − 1 reticulations and at most |X| − 1 leaves. Therefore, by induction,

k − 1 ≤ |X −Dv| ≤ |X| − 1,

and so k ≤ |X|. To establish the second part, we use a result from [8, Equation 5]

whose authors have shown that |X|+ k = n+1
2 . Since k ≤ |X|, it follows that

n = 2(|X|+ k)− 1 ≤ 4|X| − 1 < 4|X|,

thereby establishing the second inequality of the lemma. ut

Corollary 1 Let N be a network on X that has the tree-path property for at least

one parent of each reticulation. If N has at least 4|X| vertices, then N displays a

tree on X twice.

Proof It follows by the contrapositive of Lemma 4 that N has an avoidable retic-

ulation. Hence, by Lemma 1, N displays a tree on X twice. ut

Following on from Corollary 1, the next lemma shows that we can decide

quickly if a network on X has at least 4|X| vertices.

Lemma 5 Let N be a network on X. It takes time linear in |X| to decide if N

has at least 4|X| vertices.

Proof The result follows by applying a breadth-first search traversal to N that

keeps track of the number of previously visited distinct vertices in N and either

returns the number n of vertices in N if n < 4|X| or stops if 4|X| distinct vertices

have been traversed. Since the running time of a breadth-first search algorithm

applied to N is O(3
2n+ n) [3], the lemma now follows. ut
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We next establish a lemma on avoidable cycles and then state an algorithm

that recognizes whether or not a reticulation is the sink of an avoidable cycle in

a network with no avoidable reticulations and, for each reticulation, at least one

parent has the tree-path property.

Lemma 6 Let N be a network with no avoidable reticulation, and suppose that

at least one parent of each reticulation in N has the tree-path property. Let v be a

reticulation in N with parents v1 and v2 say, where v1 is a distinguished parent of

v. If v is the sink of an avoidable cycle C, and P1 and P2 are the two directed paths

whose union is C with vi lying on Pi, then, apart from v, the path P1 contains at

most one reticulation and the path P2 contains no reticulations. Moreover, C is

the unique avoidable cycle with sink v.

Proof Let ρ denote the root of N . It follows by Observation 2 that {v, v1} is the

unique hitting set of C. We first show that P2 contains no reticulations except

for v. Assume that w is a reticulation lying on P2 such that w 6= v. Amongst all

such reticulations, choose w so that the only reticulation in P2 after w is v. Since

w is unavoidable, there exists a leaf q such that every directed path from ρ to q

contains w. In particular, there exists a directed path from ρ to q, say Pq, such

that, as C is avoidable, the last vertex of Pq meeting C is either v or v1. But then,

as w is not the source of C, there is a directed path from ρ to q using P1 that

avoids w; a contradiction. Thus P2 contains no reticulations except v.

We next show that P1 contains at most one reticulation except for v. Assume

that w is a reticulation lying on P1 such that w 6= v. Like above, choose w so

that amongst all such reticulations the only reticulation after w in P1 is v. Let

w1 and w2 be the parents of w in N . Without loss of generality, we may assume

that w1 is a distinguished parent of w. Since w1 has the tree-path property, there

is a leaf q with the property that there is a tree-path from w1 to q. Since C is

avoidable and {v, v1} is the unique hitting set of C, it follows that w1 does not

lie on P1; otherwise, a hitting set of C has size at least three. Thus w2 lies on P1.
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Now assume that P1 contains a reticulation t other than v and w. Choose t so

that the only reticulations after t in P1 are w and v. Since t is unavoidable, there

exists a leaf r such that every directed path from ρ to r contains t. Moreover, as C

is avoidable, there exists at least one such path, say Pr, such that the last vertex

of Pr meeting C is either v or v1. Now, let Pq be a directed path from ρ to q

and observe that Pq contains as a subpath the tree-path from w1 to q. Since N is

acyclic and C is avoidable, Pq does not meet C. But then there is a directed path

from ρ to r using Pq to w1, the unique path from w1 to v1, and the subpath of Pr

from v1 to r. In particular, this path avoids t; a contradiction. Hence, P1 contains

at most one reticulation other than v.

To see that C is the unique avoidable cycle with sink v in N , first note that

P2 contains no reticulations except v. Furthermore, P1 contains at most one retic-

ulation (other than v) and, if it contains such a reticulation w, then P1 has no

choice with regards to which parent of w it meets. Since no 2-path cycle of N with

sink v that contains v, v1, and a parent of w that has the tree-path property is

avoidable, the uniqueness of C now follows. ut

The previous lemma provides insights into how to decide whether or not a

reticulation is the sink of an avoidable cycle in a networkN on X with no avoidable

reticulation and for which the tree-path property holds for at least one parent of

each reticulation. We next summarize these insights in the form of an algorithm,

called AvoidableCycle. Subsequently, we will establish that AvoidableCycle

works correctly and that its running time is linear in the size of X.

Algorithm: AvoidableCycle

Input: A networkN onX with no avoidable reticulation and, for each reticulation,

at least one parent has the tree-path property. A reticulation v of N with parents

v1 and v2 say, where v1 is a distinguished parent of v.

Output: Return ‘yes’ if v is the sink of an avoidable cycle in N ; otherwise, return

‘no’.
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Step 1 Set P2 = u1, u2, . . . , ul to be the (unique) maximal directed path in N

with ul−1 = v2 and ul = v such that, except for v, each vertex on P2 is a

tree vertex.

Step 2 Set P1 = w1, w2, . . . , wm to be the (unique) maximal directed path in N

with wm−1 = v1 and wm = v such that the following three properties are

satisfied: (i) w1 is a tree vertex, (ii) P1 contains at most one reticulation

other than v, and (iii) except for v1 and, possibly v2, no vertex on P1 that

is a parent of a reticulation in N , has the tree-path property.

Step 3 If P1 and P2 have no common tree vertex, then return ‘no’. Otherwise,

let C be the 2-path cycle of N induced by subpaths of P1 and P2 with

source u and sink v, where u is the last tree vertex in P1 and P2 common

to both paths.

Step 4 Let X ′ be the subset of X such that ` ∈ X ′ if and only if there is a

directed path from either v1 or v to ` avoiding all other vertices of C.

Step 5 For each leaf q in X − X ′, check whether there is a directed path from

the root of N to q avoiding all vertices of C. Return ‘yes’ if there exists

such a path for all q; otherwise, return ‘no’.

Lemma 7 Let N be a network on X with no avoidable reticulation. Suppose that

at least one parent of each reticulation in N has the tree-path property. Let v

be a reticulation in N . Calling AvoidableCycle for N and v returns ‘yes’ if

and only if v is the sink of an avoidable cycle. Furthermore, the running time of

AvoidableCycle in this call is linear in the number of vertices in N .

Proof Let ρ denote the root of N , and let v1 and v2 denote the parents of v.

Without loss of generality, we may assume that v1 is a distinguished parent of v.

Furthermore, let n denote the number of vertices in N . Throughout the proof, we

use the same notation as in the description of AvoidableCycle.

We first show that AvoidableCycle works correctly. Suppose that C′ is an

avoidable cycle of N with sink v. Then, by Lemma 6, C′ is unique. Applying
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AvoidableCycle to N and v, it follows by Lemma 6 and the construction de-

scribed in AvoidableCycle that C′ is the 2-path cycle C constructed in Step 3

of the algorithm. By the definition of an avoidable cycle, Step 5 returns ‘yes’. Now

suppose that N has no avoidable cycle with sink v. Applying AvoidableCycle to

N and v, there are two cases to consider depending on whether or not P1 and P2

meet in Step 3. If P1 and P2 do not meet at a tree vertex, then Step 3 returns ‘no’.

Therefore, assume that P1 and P2 do meet at a tree vertex. Then, as v is not the

sink of an avoidable cycle in N , there is some leaf q ∈ X−X ′ such that every path

from ρ to q meets C, in which case Step 5 returns ‘no’. Hence, AvoidableCycle

correctly determines if v is the sink of an avoidable cycle in N .

We now turn to the running time of AvoidableCycle. Starting at v2 and

traversing edges in the opposite direction to determine P2 takes time linear in

n. Similarly, determining P1 takes time linear in n. However, if P1 contains a

reticulation v′, distinct from v, then one has additionally to determine which of its

two parents, say v′1 and v′2, have the tree-path property. A naive way to do this is

the following. Let (r1, r2, . . . , r|X|) be an ordering on the leaves of N . In turn, for

each ri, let Pri be the unique maximal directed path in N that ends in ri such that

each vertex on Pr is a tree vertex and, except for the first vertex of Pri no vertex

is contained in a path Prj with 1 ≤ j < i ≤ |X|. If there exists an ri such that

Pri meets v′k with k ∈ {1, 2}, then v′k has the tree-path property. Collectively, this

takes time linear in n. Clearly, Step 3 can be done in time linear in n and, so, it

remains to check the running time of Steps 4 and 5. For Step 4, delete the vertices

in C that are neither v nor v1, and then determine, for each leaf `, if there is a

directed path from v1 to ` in the resulting directed graph, in which case, ` ∈ X ′.

Here we can, for example, use a depth-first search traversal [3] starting at v1 and,

so, this step takes time linear in n. An analogous approach can be done for Step 5.

We conclude that the running time of AvoidableCycle is linear in n. ut

We are now in a position to prove Theorem 1 which we restate in the language

of Section 2.
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Theorem 1 Let N be a network on X and suppose that N has the tree-path

property for at least one parent of each reticulation. It takes time quadratic in the

size of X to decide if N displays a tree on X twice.

Proof. First, by Lemma 5, we can decide in time linear in |X| if N has at least 4|X|

vertices. If N has at least that many vertices, then, by Corollary 1, N displays a

tree on X twice. We may therefore assume that N has at most 4|X| vertices.

We complete the proof by showing that it takes time quadratic in |X|, to decide

whether or not N has an avoidable reticulation or an avoidable cycle which is, by

Theorem 2, a necessary and sufficient condition for N to display a tree on X twice.

Let v be a reticulation in N . Deciding if v is avoidable is easily checked in time that

is linear in the size of N , which is at most 4|X|. For example, one way is to simply

delete v from N and then use a depth-first search [3], whose running time is linear

in |X|, to decide whether there is a directed path from the root to each vertex in X

in the resulting directed graph. Since the number of reticulations in N is at most

|X| (see Lemma 4), deciding whether or not N has an avoidable reticulation takes

time quadratic in |X|. Now we may assume that N has no avoidable reticulation.

It then follows by Lemma 7 that it takes time linear in the number of vertices

in N and, hence, by Lemma 5, time linear in |X|, to decide if v is the sink of

an avoidable cycle in N using AvoidableCycle. Applying this algorithm to each

reticulation in N to decide if there exists a reticulation that is the sink of an

avoidable cycle takes time quadratic in |X|. The theorem now follows. ut

6 Remark on Tree-Child and Normal Networks

As tree-child networks are a subclass of the networks in which each reticulation

has at least one parent that satisfies the tree-path property, it immediately follows

by Theorem 1 that it can be decided quickly whether or not a tree-child network

displays a tree twice. Curiously, since each vertex of a tree-child network N has

the tree-path property, it is tempting to assume that N never displays a tree twice
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and therefore has no avoidable cycles. However, this is not necessarily true. To

see this, consider a reticulation v of N and its two parents v1 and v2. If v1 has

the tree-path property and v2 is an ancestor of v1, then it is possible for v to be

contained in an avoidable cycle. In [11], Willson refers to a tree-child network that

does not have a reticulation for which one parent is an ancestor of the other parent

as a normal network. Noting that a normal network does not have an avoidable

cycle as every 2-path cycle has a minimum hitting set of size at least three, the

next corollary is now an immediate result of Theorem 2.

Corollary 2 Let N be a normal network on X. Then N does not display a tree

on X twice.
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