
Displaying trees across two phylogenetic networks

Janosch Döckera, Simone Linzb, Charles Semplec

aDepartment of Computer Science, University of Tübingen, Germany

bSchool of Computer Science, University of Auckland, New Zealand

cSchool of Mathematics and Statistics, University of Canterbury, New Zealand

Abstract

Phylogenetic networks are a generalization of phylogenetic trees to leaf-labeled directed acyclic graphs that represent
ancestral relationships between species whose past includes non-tree-like events such as hybridization and horizontal
gene transfer. Indeed, each phylogenetic network embeds a collection of phylogenetic trees. Referring to the collection
of trees that a given phylogenetic network N embeds as the display set of N , several questions in the context of the
display set of N have recently been analyzed. For example, the widely studied Tree-Containment problem asks if a
given phylogenetic tree is contained in the display set of a given network. The focus of this paper are two questions
that naturally arise in comparing the display sets of two phylogenetic networks. First, we analyze the problem of
deciding if the display sets of two phylogenetic networks have a tree in common. Surprisingly, this problem turns out
to be NP-complete even for two temporal normal networks. Second, we investigate the question of whether or not the
display sets of two phylogenetic networks are equal. While we recently showed that this problem is polynomial-time
solvable for a normal and a tree-child network, it is computationally hard in the general case. In establishing hardness,
we show that the problem is contained in the second level of the polynomial-time hierarchy. Specifically, it is ΠP

2 -
complete. Along the way, we show that two other problems are also ΠP

2 -complete, one of which being a generalization
of Tree-Containment.

Keywords: Phylogenetic network, Tree-Containment, polynomial-time hierarchy, display set, temporal network,
normal network

1. Introduction

In trying to disentangle the evolutionary history of species, phylogenetic networks, which are leaf-labeled directed
acyclic graphs, are becoming increasingly important. From a biological as well as from a mathematical viewpoint,
phylogenetic networks are often regarded as a tool to summarize a collection of conflicting phylogenetic trees. Due to
processes such as hybridization and lateral gene transfer, the evolution at the species-level is not necessarily tree-like.
Nevertheless, individual genes or parts thereof are usually assumed to evolve in a tree-like way. It is consequently of
interest to construct phylogenetic networks that embed a collection of phylogenetic trees or, conversely, summarize
the phylogenetic trees that are embedded in a given phylogenetic network. These and related types of problems have
recently attracted considerable attention from the mathematical community as they lead to a number of challenging
questions. One of the most studied questions in this context is called Tree-Containment. Given a phylogenetic

Email addresses: janosch.doecker@uni-tuebingen.de (Janosch Döcker), s.linz@auckland.ac.nz (Simone Linz),
charles.semple@canterbury.ac.nz (Charles Semple)

Preprint submitted to Theoretical Computer Science September 9, 2019

networkN and a phylogenetic treeT , this problem asks whether or notN embedsT . While Tree-Containment is NP-
complete in general [7], it has been shown to be polynomial-time solvable for several popular classes of phylogenetic
networks, e.g. so-called tree-child and reticulation-visible networks [1, 6, 14]. Formal definitions of these classes
are given in the next section. Currently, the fastest algorithm that solves Tree-Containment for these latter types of
networks has a running time that is linear in the size of N [15]. Since the number of vertices in a tree-child and a
reticulation-visible network is linear in the number of leaves [1, 2], it follows that the running time is in fact linear in
the number of leaves of N .

Pushing Tree-Containment into a novel direction, Gunawan et al. [6] have recently posed the question of how one
can check if two reticulation-visible networks embed the same set of phylogenetic trees. Since the number of trees that
a phylogenetic networkN embeds grows exponentially with the number k of vertices inN whose in-degree is at least
two, there is no immediate check that can be performed in polynomial time. In particular, the number of phylogenetic
trees that N embeds is bounded above by 2k, and it was shown independently in [14, Theorem 1] and [17, Corollary
3.4] that this upper bound is sharp for the class of normal networks.

Referring to the collection of phylogenetic trees that a given phylogenetic network embeds as its display set
(formally defined in Section 2), we investigate two questions that naturally arise in comparing the display sets of
two phylogenetic networks. The first question asks if the display sets of two phylogenetic networks have a common
element. We call this problem Common-Tree-Containment and show in Section 3 that it is NP-complete even when
the two input networks are both temporal and normal. The class of temporal and normal networks is a strict subclass
of the class of tree-child and, hence, reticulation-visible networks for which Tree-Containment is polynomial-time
solvable. The second problem, which we refer to as Display-Set-Equivalence, is the problem of Gunawan et al. [6]
mentioned above that asks, without restricting to a particular class of phylogenetic networks, if the display sets of two
networks are equal. While we recently showed that this problem has a polynomial-time algorithm for when the input
consists of a normal and a tree-child network [3], we show in Section 4 that the problem is computationally hard for
two arbitrary phylogenetic networks. Specifically, we show that Display-Set-Equivalence is ΠP

2 -complete or, in other
words, complete for the second level of the polynomial-time hierarchy [13]. In particular, unless there is a collapse in
the polynomial hierarchy, such a problem has no polynomial-time reduction from itself to any NP-complete or co-NP-
complete problem. From a practical viewpoint, this means that the frequently-taken approach of applying SAT and
ILP solvers to find solutions to NP-complete problems is going to be of limited use when applied to a ΠP

2 -complete
problem. In establishing that Display-Set-Equivalence is ΠP

2 -complete, we also show that deciding if the display set
of one phylogenetic network is contained in the display set of another network is ΠP

2 -complete.

The paper is organized as follows. The next section contains preliminaries that are used throughout the paper, for-
mal statements of the decision problems that are mentioned in the previous paragraph, and some relevant details about
the polynomial-time hierarchy. Section 3 establishes NP-completeness of Common-Tree-Containment and Section 4
establishes ΠP

2 -completeness of Display-Set-Equivalence. Lastly, Section 5 contains some concluding remarks and
highlights two corollaries that follow from the results in Sections 3.

2. Preliminaries

This section provides notation and terminology that is used in the remaining sections. Throughout this paper, X
denotes a non-empty finite set. Let G be a directed acyclic graph. For two distinct vertices u and v in G, we say that u
is an ancestor of v and v is a descendant of u, if there is a directed path from u to v in G. If (u, v) is an edge in G, then
u is a parent of v and v is a child of u. Moreover, a vertex of G with in-degree one and out-degree zero is a leaf of G.

Phylogenetic networks and trees. A rooted binary phylogenetic networkN on X is a (simple) rooted acyclic digraph
that satisfies the following properties:

(i) the (unique) root has in-degree zero and out-degree two,

2

(ii) the set X is the set of vertices of out-degree zero, each of which has in-degree one, and

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and out-degree one.

The set X is the leaf set of N . Furthermore, the vertices of in-degree one and out-degree two are tree vertices, while
the vertices of in-degree two and out-degree one are reticulations. An edge directed into a reticulation is called a
reticulation edge while each non-reticulation edge is called a tree edge.

Let N be a rooted binary phylogenetic network on X. If N has no reticulations, then N is said to be a rooted
binary phylogenetic X-tree. To ease reading and since all phylogenetic networks considered in this paper are rooted
and binary, we refer to a rooted binary phylogenetic network (resp. a rooted binary phylogenetic tree) simply as a
phylogenetic network (resp. a phylogenetic tree).

Now let T be a phylogenetic X-tree. If Y = {y1, y2, . . . , ym} is a subset of X, then T [−y1, y2, . . . , ym] and, equiva-
lently, T |(X − Y) denote the phylogenetic tree with leaf set X − Y that is obtained from the minimal rooted subtree of
T that connects all leaves in X − Y by suppressing all vertices of in-degree one and out-degree one.

Remark. Throughout the paper, we frequently detail constructions of phylogenetic networks. To this end, we some-
times need labels of internal vertices. Their only purpose is to make references. Indeed, they should not be regarded
as genuine labels as those used for the leaves of a phylogenetic network.

Classes of phylogenetic networks. Let N be a phylogenetic network on X with vertex set V . An edge e = (u, v)
is a shortcut if there is a directed path from u to v whose set of edges does not contain e. A vertex v of N is called
visible if there exists a leaf ` ∈ X such that each directed path from the root of N to ` passes through v. Now N is
reticulation-visible if each reticulation in N is visible, and N is tree-child if each non-leaf vertex in N has a child
that is a leaf or a tree vertex. Lastly, N is normal if it is tree-child and does not contain any shortcuts. Clearly, by
definition, each normal network is also tree-child. Furthermore, it follows from the next well-known equivalence
result [2] that each tree-child network is also reticulation-visible.

Lemma 2.1. Let N be a phylogenetic network. Then N is tree-child if and only if each vertex of N is visible.

Thus, the class of normal networks is a subclass of tree-child networks. Furthermore, if there exists a map t : V → R+

that assigns a time stamp to each vertex of N and satisfies the following two properties:

(i) t(u) = t(v) whenever (u, v) is a reticulation edge and

(ii) t(u) < t(v) whenever (u, v) is a tree edge,

then we say that N is temporal, in which case we call t a temporal labeling of N . Note that, although normal net-
works have no shortcuts, a normal network need not be temporal. Tree-child, normal, and temporal networks were
first introduced by Cardona et al. [2], Willson [16], and Moret et al. [10], respectively.

Caterpillars. Let C be a phylogenetic tree with leaf set {`1, `2, . . . , `n}. Furthermore, for each i ∈ {1, 2, . . . , n} let pi

denote the parent of `i. Then C is called a caterpillar if n ≥ 2 and the elements in the leaf set of C can be ordered, say
`1, `2, . . . , `n, so that p1 = p2 and, for all i ∈ {3, 4, . . . , n}, we have (pi, pi−1) as an edge in C. In this case, we denote
C by (`1, `2, . . . , `n). Additionally, we say that a phylogenetic X-tree T contains a caterpillar C = (`1, `2, . . . , `n) if T
has a subtree that is a subdivision of C.

3

DISPLAYING TREES ACROSS TWO NETWORKS 5

4

3 4 1

N
T1

T4

T3

1 2 3 4

T5

4 3 122 3 1 4

T2

1 2 3 4 1 2 3

2

Figure 1. A phylogenetic network N and the display set of
N that consists of the five trees shown on the right-hand side.

ordered, say `1, `2, . . . , `n, so that p1 = p2 and, for all i 2 {3, 4, . . . , n}, we
have (pi, pi�1) as an edge in C. In this case, we denote C by (`1, `2, . . . , `n).
Additionally, we say that a phylogenetic X-tree T contains a caterpillar
C = (`1, `2, . . . , `n) if T has a subtree that is a subdivision of C.

Displaying. Let N be a phylogenetic network on X and let T be a phylo-
genetic Y -tree such that Y ✓ X. Then N displays T if, up to suppressing
vertices of in-degree one and out-degree one, T can be obtained from N
by deleting edges and vertices, in which case, the edge set, denoted by ET ,
of the resulting acyclic directed graph is called an embedding of T in N .
If N displays T , note that the root of an embedding of T in N does not
necessarily coincide with the root of N . In fact, throughout this paper, we
impose that the root of an embedding has in-degree zero and out-degree
two. Moreover, the display set of N , denoted by T (N), consists of all phylo-
genetic X-trees that are displayed by N . As mentioned in the introduction,
the size of T (N) is bounded above by 2k, where k is the number of reticu-
lations in N . To illustrate, Figure 1 shows a phylogenetic network N with
T (N) = {T1, T2, . . . , T5}, where the five trees in T (N) are shown on the
right-hand side of the same figure. In this as well as in all other figures
throughout the paper, edges are directed downwards.

Again, let N be a phylogenetic network on X, and let S be a subset of
the edges of N . Then S is a switching of N if, for each reticulation v of
N , S contains precisely one of the two reticulation edges that are directed
into v. Now, let S be a switching of N . If we delete each reticulation edge
in N that is not in S and, repeatedly, suppress each resulting vertex with
in-degree one and out-degree one, delete each vertex with in-degree one and
out-degree zero that is not in X, and delete each vertex with in-degree zero
and out-degree one, we obtain a phylogenetic X-tree T , in which case, we
say that S yields T . Note that T is displayed by N . Conversely, observe
that, if T is a phylogenetic X-tree that is displayed by N , then there
exists a switching of N that yields T . We summarize this in the following
observation.

Figure 1: A phylogenetic network N and the display set of N that consists of the five trees shown on the right-hand side.

Displaying. Let N be a phylogenetic network on X and let T be a phylogenetic Y-tree such that Y ⊆ X. Then N
displays T if, up to suppressing vertices of in-degree one and out-degree one, T can be obtained from N by deleting
edges and vertices, in which case, the edge set, denoted by ET , of the resulting acyclic directed graph is called an
embedding of T inN . Note that, ifN displays T , then the root of an embedding of T inN need not coincide with the
root ofN . Moreover, the display set ofN , denoted by T (N), consists of all phylogenetic X-trees that are displayed by
N . As mentioned in the introduction, the size of T (N) is bounded above by 2k, where k is the number of reticulations
in N . To illustrate, Figure 1 shows a phylogenetic network N with T (N) = {T1,T2, . . . ,T5}, where the five trees in
T (N) are shown on the right-hand side of the same figure. In this as well as in all other figures throughout the paper,
edges are directed downwards.

Again, let N be a phylogenetic network on X, and let S be a subset of the edges of N . Then S is a switching of
N if, for each reticulation v ofN , S contains precisely one of the two reticulation edges that are directed into v. Now,
let S be a switching of N . If we delete each reticulation edge in N that is not in S and, repeatedly, suppress each
resulting vertex with in-degree one and out-degree one, delete each vertex with in-degree one and out-degree zero
that is not in X, and delete each vertex with in-degree zero and out-degree one, we obtain a phylogenetic X-tree T , in
which case, we say that S yields T . Note that T is displayed by N . Conversely, observe that, if T is a phylogenetic
X-tree that is displayed by N , then there exists a switching of N that yields T . We summarize this in the following
observation.

Observation 2.2. A phylogenetic network N on X displays a phylogenetic X-tree T if and only if there exists a
switching of N that yields T .

Problem statements. Tree-Containment is a well known problem in the study of phylogenetic networks and its com-
putational complexity has extensively been analyzed for various network classes. In the language of this paper, it can
be stated as follows.

Tree-Containment
Input. A phylogenetic X-tree T and phylogenetic network N on X.
Question. Is T ∈ T (N)?

While Tree-Containment is concerned with a single display set, it is natural to compare display sets across phyloge-
netic networks, e.g. in the context of comparing networks. To make a first step in this direction, the focus of this paper
are the following three decision problems that compare the display sets of two phylogenetic networks.

Common-Tree-Containment
Input. Two phylogenetic networks N and N ′ on X.

4

Question. Is T (N) ∩ T (N ′) , ∅?

Display-Set-Containment
Input. Two phylogenetic networks N and N ′ on X.
Question. Is T (N) ⊆ T (N ′)?

Display-Set-Equivalence
Input. Two phylogenetic networks N and N ′ on X.
Question. Is T (N) = T (N ′)?

We note that Tree-Containment is a special case of both Display-Set-Containment and Common-Tree-Containment.
Hence, NP-hardness of the two latter problems follows immediately for whenN andN ′ are two arbitrary phylogenetic
networks. Nevertheless, as we will see in Sections 3 and 4, we pinpoint the complexity of Common-Tree-Containment
and Display-Set-Containment exactly. In particular, we will show that (i) Common-Tree-Containment is NP-complete
even for when N and N ′ are both temporal and normal and (ii) Display-Set-Containment is complete for the second
level of the polynomial-time hierarchy. This last result turns out to be a key ingredient in showing that Display-Set-
Equivalence is also complete for the second level of the polynomial-time hierarchy.

The polynomial hierarchy. An oracle for a complexity class A is a black box that, in constant time, outputs the answer
to any given instance of a decision problem contained in A. The polynomial-time hierarchy (or short, polynomial
hierarchy) [5, 13] consists of a system of nested complexity classes that are defined recursively and generalize the
classes P, NP, and co-NP. In particular, for any integer k ≥ 0, we have

ΣP
0 = ΠP

0 = P,

ΣP
k+1 = NPΣP

k and ΠP
k+1 = co-NPΣP

k ,

where a problem is in NPΣP
k (resp. co-NPΣP

k) if we can verify an appropriate certificate of a yes-instance (resp. no-
instance) in polynomial-time when given access to an oracle for ΣP

k . By definition, ΣP
1 = NP and ΠP

1 = co-NP, and
ΠP

2 = co-NPNP.

For all k ≥ 0, we say that the classes ΣP
k and ΠP

k are on the k-th level of the polynomial hierarchy. Although,
ΣP

k+1 (resp. ΠP
k+1) generalizes ΣP

k (resp. ΠP
k), it is an open problem whether ΣP

k = ΣP
k+1 or ΠP

k = ΠP
k+1 for any k ≥ 0.

Specifically, for k = 0, this is the fundamental P versus NP problem. If ΣP
k = ΣP

k+1 or ΠP
k = ΠP

k+1 for some k ≥ 0, then
this would result in a collapse of the polynomial hierarchy to the k-th level.

In Section 4, we show that Display-Set-Containment and Display-Set-Equivalence are both ΠP
2 -complete. Intu-

itively, problems that are complete for the second level of the polynomial hierarchy are more difficult than problems
that are complete for the first level. Recall that a decision problem is in co-NP if a no-instance can be verified in poly-
nomial time given an appropriate certificate. Now, similar to showing that a problem is co-NP-complete, a proof that
establishes ΠP

2 -completeness consists of two steps: (i) show that a problem is in ΠP
2 , and (ii) establish a polynomial-

time reduction from a problem that is known to be ΠP
2 -complete to the problem at hand. With regards to (i), a decision

problem is in ΠP
2 if a no-instance can be verified in polynomial time when one is given an appropriate certificate and

has access to an NP-oracle, that is, an oracle that can solve NP-complete problems in constant time.

3. Hardness of Common-Tree-Containment

As noted in the introduction, Tree-Containment is NP-complete in general, but polynomial-time solvable for sev-
eral popular classes of phylogenetic networks such as tree-child and reticulation-visible networks. In this section, we

5

8 JANOSCH DÖCKER, SIMONE LINZ, AND CHARLES SEMPLE

C2
j

Cj

x3
j

C1
jx1

j

r3
j

r1
j

x2
j

r2
j

C3
j C4

j

C5
j

C6
j

C3
j

C4
j

C5
j

C2
j

C6
j

C1
j

x3
j

x2
j

x1
j

r1
j

r2
j

r3
j

Cj

Figure 2. For a clause Cj = (x1
j _ x2

j _ x3
j), the

clause gadget GA
j (left) and the clause gadget GB

j

(right). Leaves are bijectively labeled with the elements
in {Cj , C

1
j , C2

j , . . . , C6
j , x1

j , x
2
j , x

3
j}. Furthermore, each gad-

get has three vertices of in-degree one and out-degree one
indicated by small squares labeled r1

j , r2
j , and r3

j .

of clauses such that each clause is a disjunction of exactly three literals and
each literal is an element in {vi, v̄i : i 2 {1, 2, . . . , n}}.
Question. Does there exist a truth assignment for V that satisfies each
clause Cj with j 2 {1, 2, . . . , m}?

Let I be an instance of 3-SAT, and let Cj = (x1
j _ x2

j _ x3
j) be a clause of

I for j 2 {1, 2, . . . , m}. Then, for some indices k, k0, and k00 in {1, 2, . . . , n},
we have x1

j 2 {vk, v̄k}, x2
j 2 {vk0 , v̄k0}, and x3

j 2 {vk00 , v̄k00}. Without loss of
generality, we impose the following two restrictions on I:

(R1) for each vi 2 V with i 2 {1, 2, . . . , n}, at most one element in {vi, v̄i}
is a literal of Cj and

(R2) k < k0 < k00.

Now, for each clause Cj , we construct the two clause gadgets GA
j and GB

j

that are shown in Figure 2. We next establish a simple lemma.

Lemma 3.1. Let GA
j and GB

j be the two clause gadgets that are shown in

Figure 2. Obtain two phylogenetic networks GA
j and GB

j from GA
j and GB

j ,

respectively, by suppressing the three vertices r1
j , r2

j , and r3
j of in-degree one

and out-degree one. Then T (GA
j) \ T (GB

b) = ;.

Figure 2: For a clause C j = (x1
j ∨ x2

j ∨ x3
j), the clause gadget GA

j (left) and the clause gadget GB
j (right). Leaves are bijectively labeled with the

elements in {C j,C1
j ,C

2
j , . . . ,C

6
j , x

1
j , x

2
j , x

3
j }. Furthermore, each gadget has three vertices of in-degree one and out-degree one indicated by small

squares labeled r1
j , r2

j , and r3
j .

show that no such dichotomy holds for Common-Tree-Containment. In particular, we will show that this problem is
NP-complete even if the input consists of two temporal normal networks. To establish the result, we use a reduction
from the classical computational problem 3-SAT.

3-SAT
Input. A set V = {v1, v2, . . . , vn} of variables, and a set {C1,C2, . . . ,Cm} of clauses such that each clause is a disjunc-
tion of exactly three literals and each literal is an element in {vi, v̄i : i ∈ {1, 2, . . . , n}}.
Question. Does there exist a truth assignment for V that satisfies each clause C j with j ∈ {1, 2, . . . ,m}?

Let I be an instance of 3-SAT, and let C j = (x1
j ∨ x2

j ∨ x3
j) be a clause of I for j ∈ {1, 2, . . . ,m}. Then, for some

indices k, k′, and k′′ in {1, 2, . . . , n}, we have x1
j ∈ {vk, v̄k}, x2

j ∈ {vk′ , v̄k′ }, and x3
j ∈ {vk′′ , v̄k′′ }. Without loss of generality,

we impose the following two restrictions on I:

(R1) for each vi ∈ V with i ∈ {1, 2, . . . , n}, at most one element in {vi, v̄i} is a literal of C j and

(R2) k < k′ < k′′.

Now, for each clause C j, we construct the two clause gadgets GA
j and GB

j that are shown in Figure 2. We next establish
a simple lemma.

Lemma 3.1. Let GA
j and GB

j be the two clause gadgets that are shown in Figure 2. Obtain two phylogenetic networks
GA

j and GB
j from GA

j and GB
j , respectively, by suppressing the three vertices r1

j , r2
j , and r3

j of in-degree one and out-
degree one. Then T (GA

j) ∩ T (GB
j) = ∅.

Proof. To see that T (GA
j) ∩ T (GB

j) = ∅, observe that each tree in T (GA
j) contains the caterpillar (x2

j , x
3
j , x

1
j), whereas

6

each tree in T (GB
j) contains the caterpillar (x1

j , x
3
j , x

2
j). 2

Following on from Lemma 3.1, let L = {x1
j , x

2
j , x

3
j }. Although GA

j and GB
j display no common phylogenetic tree

with leaf set {C j,C1
j ,C

2
j , . . . ,C

6
j } ∪ L, they do display a common phylogenetic with leaf set {C j,C1

j ,C
2
j , . . . ,C

6
j } ∪ L′

for each proper subset L′ of L. In the proof of Theorem 3.2, for some truth assignment β, the latter corresponds to at
least one literal in C j being satisfied by β, while the former corresponds to no literal in C j being satisfied by β.

Let S = (s1, s2, . . . , sn) be an arbitrary tuple, and let r be an element that is not contained in S . We write (r)||S
to denote the tuple (r, s1, s2, . . . , sn) obtained by concatenating r and S . With this definition in hand, we are now in a
position to establish the main result of this section.

Theorem 3.2. Common-Tree-Containment is NP-complete when the input consists of two temporal normal networks.

Proof. For two normal networks, van Iersel et al. [14] showed that the running time of Tree-Containment is polyno-
mial in the size of this leaf set. Hence, it follows that Common-Tree-Containment is in NP for two normal networks.

Let I be an instance of 3-SAT with n variables and m clauses. Using the same notation as in the formal statement
of 3-SAT, we construct two phylogenetic networks N and N ′ on

X =
{
C j,C1

j ,C
2
j , . . . ,C

6
j , x

1
j , x

2
j , x

3
j : j ∈ {1, 2, . . . ,m}

}⋃{
vi : i ∈ {1, 2, . . . , n}

}
as follows. Let T be the phylogenetic tree obtained by creating a vertex ρ, adding an edge that joins ρ with the root
of the caterpillar (v1, v2, . . . , vn), and adding an edge that joins ρ with the root of the caterpillar (c1, c2, . . . , cm). Now,
setting M = M′ = T , let N and N ′ be the two phylogenetic networks obtained from M and M′, respectively, by
applying the following four-step process.

1. For all j ∈ {1, 2, . . . ,m}, replace c j with GA
j inM and replace c j with GB

j inM′.

2. For all i ∈ {1, 2, . . . , n}, subdivide the edge directed into vi with a new vertex di inM andM′.

3. For each j ∈ {1, 2, . . . ,m} in increasing order, consider C j = (x1
j ∨ x2

j ∨ x3
j). Let vk` be the unique element in V

such that x`j ∈ {vk` , v̄k` } for each ` ∈ {1, 2, 3}. If x`j = vk` , subdivide the edge directed into vk` with a new vertex
u`j in M and subdivide the edge directed into dk` with a new vertex u`j in M′. Otherwise, subdivide the edge
directed into dk` with a new vertex u`j inM and subdivide the edge directed into vk` with a new vertex u`j inM′.
Add a new edge (u`j, r

`
j) inM andM′.

4. For each i ∈ {1, 2, . . . , n}, suppress the vertex di of in-degree one and out-degree one inM andM′.

To illustrate, Figure 3 gives a high-level overview of the construction of N and N ′. Observe that, for each j ∈
{1, 2, . . . ,m}, the three vertices r1

j , r2
j , and r3

j in N and N ′ are reticulations.

We next show that N and N ′ are both temporal and normal.

3.2.1. Both N and N ′ are temporal and normal.

Proof. We first show that N is temporal and normal. Let

Vr = {r`j : j ∈ {1, 2, . . . ,m} and ` ∈ {1, 2, 3}}.

7

10 JANOSCH DÖCKER, SIMONE LINZ, AND CHARLES SEMPLE

v1 v2 vn v1 v2 vn GB
mGB

2GB
1GA

1 GA
2 GA

m

va
ria

bl
e
sid

e
clause

side

va
ria

bl
e
sid

e
clause

side

N N 0

Figure 3. Overview of the construction of the two temporal
normal networks N and N 0 in the proof of Theorem 3.2.
Dangling edges on the clause and variable side of N and N 0,
respectively, are paired up depending on I. For details, see
Step (3) of the construction.

(4) For each i 2 {1, 2, . . . , n}, suppress the vertex di of in-degree one
and out-degree one in M and M0.

To illustrate, Figure 3 gives a high-level overview of the construction of N
and N 0. Observe that, for each j 2 {1, 2, . . . , m}, the three vertices r1

j , r2
j ,

and r3
j in N and N 0 are reticulations.

We next show that N and N 0 are both temporal and normal.

3.2.1. Both N and N 0 are temporal and normal.

Proof. We first show that N is temporal and normal. Let

Vr = {r`j : j 2 {1, 2, . . . , m} and ` 2 {1, 2, 3}}.

Furthermore, for each i 2 {1, 2, . . . , n}, let Vi consist of all vertices that lie
on the unique directed path from the root of N to vi, and let

Vv =

n[

i=1

Vi.

We begin by assigning a positive real-valued labeling t to each vertex in
Vv [Vr as follows. First, under t, each vertex in Vv is assigned a labeling
such that the following two properties are satisfied.

(i) If u, v 2 Vv and u is an ancestor of v, then t(u) < t(v).
(ii) For all i 2 {1, 2, . . . , n � 1}, the temporal labeling of each vertex in Vi

that is not contained in Vi+1 is smaller than the minimum temporal
labeling over all vertices that are contained in Vi+1 and not in Vi .

Figure 3: Overview of the construction of the two temporal normal networksN andN ′ in the proof of Theorem 3.2. Dangling edges on the clause
and variable side of N and N ′, respectively, are paired up depending on I. For details, see Step (3) of the construction.

Furthermore, for each i ∈ {1, 2, . . . , n}, let Vi consist of all vertices that lie on the unique directed path from the root of
N to vi, and let

Vv =

n⋃
i=1

Vi.

We begin by assigning a positive real-valued labeling t to each vertex in Vv ∪ Vr as follows. First, under t, each vertex
in Vv is assigned a labeling such that the following two properties are satisfied.

(i) If u, v ∈ Vv and u is an ancestor of v, then t(u) < t(v).

(ii) For all i ∈ {1, 2, . . . , n− 1}, the temporal labeling of each vertex in Vi that is not contained in Vi+1 is smaller than
the minimum temporal labeling over all vertices that are contained in Vi+1 and not in Vi .

By construction of N , note that such a labeling always exists. Second, under t, each vertex in Vr is assigned the same
labeling as its unique parent that is contained in Vv. Because of restrictions (R1) and (R2) that we have imposed on I
and the way we have assigned temporal labelings to the vertices in Vv, we have

t(r1
j) < t(r2

j) < t(r3
j)

for each j ∈ {1, 2, . . . ,m}. A routine check now shows that t can be extended to a temporal labeling ofN and, thus,N
is temporal.

Now, sinceN is temporal, it follows thatN has no shortcuts. Hence, to show thatN is normal, it suffices to show
that N is tree-child. It is straightforward to check that N has no edge (u, v) such that u and v are both reticulations.
Hence, each reticulation in N has a child that is a tree vertex or a leaf. Furthermore, by construction, each tree vertex
of N that is a vertex of some GA

j with j ∈ {1, 2, . . . ,m} has a child that is a tree vertex or a leaf. Lastly, for each
non-leaf vertex v of N that is neither a reticulation nor a vertex of some GA

j , consider a directed path P from v to an
element in {v1, v2, . . . , vn,C1,C2, . . . ,Cm}. By construction, P exists. It is now easily seen that the second vertex of P
is a child of v that is either a tree vertex or a leaf. This establishes thatN is normal. An analogous argument that uses
GB

j instead of GA
j can be used to show that N ′ is temporal and normal, thereby completing the proof of (3.2.1). 2

Since the number of vertices of a normal network is polynomial in the size of X [9] and |X| = 10m + n, it follows
that N and N ′ can be constructed in time polynomial in the size of X.

3.2.2. The instance I is a yes-instance if and only if T (N) ∩ T (N ′) , ∅.

8

DISPLAYING TREES ACROSS TWO NETWORKS 11

C4
jC5

jCjx1
jC6

jC5
jC3

j

(4) T F T T
j = T F T F

j [�x3
j]

(6) T T T F
j = T F T F

j [�x1
j]

CjC5
jC4

jx3
jC1

jC3
jC6

jC2
j x2

j C4
jC1

j x3
jC2

j

(1) T T F F
j (2) T F T F

j (3) T F F T
j

(5) T T F T
j = T F F T

j [�x1
j]

(7) T T T T
j = T F T F

j [�x1
j , x3

j]

Cjx1
jC1

jC6
jx2

jC2
jC3

j

Figure 4. The seven trees that are used in the proof of Theorem 3.2.

By construction of N , note that such a labeling always exists. Second, under
t, each vertex in Vr is assigned the same labeling as its unique parent that is
contained in Vv. Because of restrictions (R1) and (R2) that we have imposed
on I and the way we have assigned temporal labelings to the vertices in Vv,
we have

t(r1
j) < t(r2

j) < t(r3
j)

for each j 2 {1, 2, . . . , m}. A routine check now shows that t can be extended
to a temporal labeling of N and, thus, N is temporal.

Now, since N is temporal, it follows that N has no shortcuts. Hence,
to show that N is normal, it su�ces to show that N is tree-child. It is
straightforward to check that N has no edge (u, v) such that u and v are
both reticulations. Hence, each reticulation in N has a child that is a tree
vertex or a leaf. Furthermore, by construction, each tree vertex of N that is
a vertex of some GA

j with j 2 {1, 2, . . . , m} has a child that is a tree vertex
or a leaf. Lastly, for each non-leaf vertex v of N that is neither a reticulation
nor a vertex of some GA

j , consider a directed path P from v to an element in

{v1, v2, . . . , vn, C1, C2, . . . , Cm}. By construction, P exists. It is now easily
seen that the second vertex of P is a child of v that is either a tree vertex
or a leaf. This establishes that N is normal. An analogous argument that
uses GB

j instead of GA
j can be used to show that N 0 is temporal and normal,

thereby completing the proof of (3.2.1). ⇤

Since the number of vertices of a normal network is polynomial in the size
of X [10] and |X| = 10m + n, it follows that N and N 0 can be constructed
in time polynomial in the size of X.

3.2.2. The instance I is a yes-instance if and only if T (N) \ T (N 0) 6= ;.

Proof. First, suppose that I is a yes-instance. We construct a variable tree
Tv and a clause tree Tc that, joined together, result in a phylogenetic X-tree

Figure 4: The seven trees that are used in the proof of Theorem 3.2.

Proof. First, suppose that I is a yes-instance. We construct a variable treeTv and a clause treeTc that, joined together,
result in a phylogenetic X-tree that is displayed by N and N ′. Let β : V → {F,T } be a truth assignment that satisfies
each clause, and let

Y = {x`j : j ∈ {1, 2, . . . ,m} and ` ∈ {1, 2, 3}}.

Furthermore, for each i ∈ {1, 2, . . . , n}, let Yi (resp. Ȳi) be the tuple consisting of the elements in Y that equal vi (resp.
v̄i) such that, for any two elements x`j and x`

′

j′ in Yi (resp. Ȳi), x`j precedes x`
′

j′ precisely if j > j′. By construction,
note that the two caterpillars (vi)||Yi and (vi)||Ȳi are displayed by N and N ′. Now, obtain Tv from the caterpillar
(v1, v2, . . . , vn) by doing the following for each i ∈ {1, 2, . . . , n}. If β(vi) = T , replace vi with the caterpillar (vi)||Yi;
otherwise, replace vi with the caterpillar (vi)||Ȳi. Again, by construction, it is easily checked that Tv is displayed byN
andN ′. We next construct Tc. Consider a clause C j = (x1

j ∨ x2
j ∨ x3

j). For each ` ∈ {1, 2, 3}, set z` = T if x`j is satisfied
by β and, otherwise, set z` = F. Depending on which elements in {z1, z2, z3} equal F and T , respectively, and noting
that there exists some ` for which z` = T , we define the clause tree T z1z2z3

j relative to C j to be one of the seven trees
that are listed in Figure 4. Intuitively, x`j is a leaf in T z1z2z3

j precisely if z` = F. Now, obtain Tc from the caterpillar
(c1, c2, . . . , cm) by replacing, for each j ∈ {1, 2, . . . ,m}, the leaf c j with the clause tree relative to C j. As T z1z2z3

j is
displayed by the two phylogenetic networks obtained from GA

j and GB
j by suppressing the three vertices r1

j , r2
j , and r3

j
of in-degree one and out-degree one, it follows that T z1z2z3

j is also displayed by N and N ′. In turn, this implies that,
by construction, Tc is displayed by N and N ′. Lastly, we construct a phylogenetic tree T on X by creating a vertex
ρ, adding a new edge that joins ρ with the root of Tv, and a new edge that joins ρ with the root of Tc. As Tv and Tc

are displayed by N and N ′, it is easily checked that T is displayed by N and N ′, and so T (N) ∩ T (N ′) , ∅.

Second, suppose that T (N) ∩ T (N ′) , ∅. Let T be a phylogenetic X-tree that is displayed by N and N ′.
Furthermore, let j, j′ ∈ {1, 2, . . . ,m}, and let `, `′ ∈ {1, 2, 3}. For each reticulation r`j in N (resp. N ′), we say that T
picks x`j from the clause side of N (resp. N ′) if T has a vertex whose set of descendants contains x`j and C j but does
not contain any element in V; otherwise, we say that T picks x`j from the variable side of N (resp. N ′). Intuitively,
x`j is picked from the clause side of N (resp. N ′) precisely if the embedding of T in N (resp. N ′) contains the
reticulation edge directed into r`j whose two end vertices are vertices of GA

j (resp. GB
j). Note that, as T is displayed

by N and N ′, we have that T picks x`j from the variable side of N if and only if T picks x`j from the variable side of
N ′. We next make two observations:

(O1) For each clause C j = (x1
j ∨ x2

j ∨ x3
j), it follows from Lemma 3.1 that T picks at most two of x1

j , x2
j , and x3

j from
the clause side of N and N ′.

(O2) It follows from Step (3) in the construction of N and N ′, and the fact that T is displayed by N and N ′ that, if
T picks x`j from the variable side ofN andN ′, and x`j = vi for some i ∈ {1, 2, . . . , n}, then each x`

′

j′ with x`
′

j′ = v̄i

9

is picked from the clause side of N and N ′. Similarly, if T picks x`j from the variable side of N and N ′, and
x`j = v̄i for some i ∈ {1, 2, . . . , n}, then each x`

′

j′ with x`
′

j′ = vi is picked from the clause side of N and N ′.

Now, let β be the truth assignment that is defined as follows. For each i ∈ {1, 2, . . . , n}, we set vi = T if there exists
an element x`j with x`j = vi that is picked from the variable side of N and N ′. On the other hand, we set vi = F if
either there exists an element x`j with x`j = v̄i that is picked from the variable side of N and N ′ or there is no x`j with
x`j ∈ {vi, v̄i} that is picked from the variable side of N and N ′. Because of (O2), β is well defined. Moreover, by (O1)
it follows that β satisfies at least one literal of each clause and, hence, I is a yes-instance. 2

This completes the proof of Theorem 3.2. 2

The next corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let N and N ′ be two temporal normal networks on X. It is co-NP-complete to decide if T (N) ∩
T (N ′) = ∅.

4. Hardness of Display-Set-Equivalence

In this section, we show that Display-Set-Equivalence is ΠP
2 -complete, that is, the problem is complete for the

second level of the polynomial hierarchy. To establish this result, we use a chain of three polynomial-time reductions
that are described in Subsections 4.1, 4.2, and 4.3. Before detailing the reductions, we introduce two more decision
problems that play an important role in this section.

Recall the (ordinary) 3-SAT problem as introduced in Section 3. The input to an instance of 3-SAT consists of
a boolean formula over a set of variables. Importantly, each variable is existentially quantified since we are asking
whether or not there exists a truth assignment to each variable that satisfies each clause of the formula. In contrast, the
following quantified version of 3-SAT has two different types of variables, i.e. each variable is either existentially or
universally quantified.

∀∃ 3-SAT
Input. A quantified boolean formula

Ψ = ∀v1∀v2 · · · ∀vp∃vp+1∃vp+2 · · · ∃vn

m∧
j=1

C j

over a set of variables V = {v1, v2, . . . , vn} such that each clause C j is a disjunction of exactly three literals and each
literal is an element in {vi, v̄i : i ∈ {1, 2, . . . , n}}.
Question. For each truth assignment β∀ : {v1, v2, . . . , vp} → {F,T }, does there exist a truth assignment β∃ :
{vp+1, vp+2, . . . , vp} → {F,T } such that, collectively, β∀ and β∃ satisfy each clause in Ψ?

It was shown in [13] that ∀∃ 3-SAT is ΠP
2 -complete. Let I be an instance of ∀∃ 3-SAT. Note that each clause of

I has at least one literal that is an element in {xi, x̄i : i ∈ {p + 1, p + 2, . . . , n}} since, otherwise, I is a no-instance.
Furthermore, if all variables are existentially quantified, then I is an instance of the (ordinary) 3-SAT problem. Hence,
we may assume throughout this section that 1 ≤ p < n.

We next formally state a quantified version of the well-known NP-complete decision problem Directed-Disjoint-
Connecting-Paths [5, 11]. Let G be a directed graph with vertex set V , and let {(s1, t1), (s2, t2), . . . , (sk, tk)} be a

10

collection of disjoint pairs of vertices in V . In what follows, we write πi to denote a directed path in G from si to ti
with i ∈ {1, 2, . . . , k}.

∀∃ Directed-Disjoint-Connecting-Paths
Input. A directed graph G and two collections

P∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},

P∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

of disjoint pairs of vertices in G such that 1 ≤ p < k and, for each (si, ti) ∈ P∀, there exists a directed path from si to ti
in G.
Question. For each set Π∀ = {π1, π2, . . . , πp} of directed paths, does there exist a set Π∀ ∪ {πp+1, πp+2, . . . , πk} of
mutually vertex-disjoint directed paths in G?

4.1. ∀∃ Directed-Disjoint-Connecting-Paths is ΠP
2 -complete

To show that ∀∃Directed-Disjoint-Connecting-Paths is complete for the second level of the polynomial hierarchy,
we use a polynomial-time reduction from ∀∃ 3-SAT. This reduction constructs a special instance of ∀∃ Directed-
Disjoint-Connecting-Paths for which the input graph is a particular type of phylogenetic network.

Let N be a phylogenetic network on X, let S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} be two disjoint subsets of
the vertices of N such that T = X, and let p ∈ {1, 2, . . . , k}. We call N a caterpillar-inducing network with respect to
S if the network obtained from N by deleting each vertex that lies on a directed path from a child of a vertex in S to
a leaf of N is a caterpillar up to deleting all leaf labels. Moreover, we say that N has the two-path property relative
to p if, for each i ∈ {1, 2, . . . , p}, there are two directed paths, say πi and π′i , from si to ti such that the following three
properties are satisfied:

(i) πi and π′i are the only directed paths from si to ti in N ,

(ii) πi and π′i only have the three vertices si, ti, and the (unique) parent of ti as well as the edge directed into ti in
common, and

(iii) no path in {πi, π
′
i : i ∈ {1, 2, . . . , p}} intersects with any path in {π j, π

′
j : j ∈ {1, 2, . . . , p} − {i}}.

Using the same notation as in the statement of ∀∃ Directed-Disjoint-Connecting-Paths, we now introduce a similar
problem whose input graph is a phylogenetic network.

∀∃ Phylo-Directed-Disjoint-Connecting-Paths
Input. A phylogenetic networkN on X, two disjoint sets S = {s1, s2, . . . , sk} and T = X = {t1, t2, . . . , tk} of vertices of
N , and an integer p with 1 ≤ p < k such thatN is caterpillar-inducing with respect to S and has the two-path property
relative to p. Furthermore, the two collections

P∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},

P∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

of pairs of elements in S and T .
Question. For each set Π∀ = {π1, π2, . . . , πp} of directed paths, does there exist a set Π∀ ∪ {πp+1, πp+2, . . . , πk} of
mutually vertex-disjoint directed paths in N?

11

The next theorem establishes the ΠP
2 -completeness of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths. The reduc-

tion that we use for the proof has a flavor that is similar to that in [8, page 86].

Theorem 4.1. The decision problem ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is ΠP
2 -complete.

Proof. We first show that ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is in ΠP
2 . Using the same notation as in

the formal statement of this problem, let Π∀ = {π1, π2, . . . , πp} be a set of directed paths in N . Since N has the
two-path property relative to p, the paths in Π∀ are mutually vertex disjoint. Next obtain the directed graph G from
N by deleting all vertices that lie on a path in Π∀. Lastly, use an NP-oracle for the unquantified version of Directed-
Disjoint-Connecting-Paths to decide if there exists a set Π∃ = {πp+1, πp+2, . . . , πk} of mutually vertex-disjoint directed
paths in G. Since a given instance of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is a no-instance precisely if there
exists some set Π∀ for which no choice of Π∃ results in a set Π∀ ∪Π∃ of mutually vertex-disjoint directed paths inN ,
it follows that this problem is in co-NPNP = ΠP

2 .

We now establish a polynomial-time reduction from the quantified 3-SAT problem. Let I be an instance of ∀∃
3-SAT with boolean formula

Ψ = ∀v1∀v2 · · · ∀vp∃vp+1∃vp+2 · · · ∃vn

m∧
j=1

C j

over a set V = {v1, v2, . . . , vn} of variables. Throughout the proof, we use C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j) to refer to the three
literals in C j for each j ∈ {1, 2, . . . ,m}. Now, for each i ∈ {1, 2, . . . , n}, let J+

i be the set that consists of the indices of
the literals that are equal to vi and, similarly, let J−i be the set that consists of the indices of the literals that are equal
to v̄i. Without loss of generality, we may assume that J+

i , ∅ or J−i , ∅ since, otherwise, vi can be deleted from V .

For each variable vi, we construct a variable gadget Gv
i as follows:

1. Create three vertices sv
i , tv

i , and yi.

2. Create the (possibly empty) set of vertices
⋃

l∈J+
i
{pin

l , pout
l } and construct the directed path

π+
i = (sv

i , pin
l1 , pout

l1 , pin
l2 , pout

l2 , . . . , pin
lq , pout

lq , yi, tv
i)

with {l1, l2, . . . , lq} = J+
i .

3. Create the (possibly empty) set of vertices
⋃

k∈J−i
{nin

k , n
out
k } and construct the directed path

π−i = (sv
i , nin

k1
, nout

k1
, nin

k2
, nout

k2
, . . . , nin

kr
, nout

kr
, yi, tv

i)

with {k1, k2, . . . , kr} = J−i .

Note that, since we do not allow for parallel edges, the last edge (yi, tv
i) of π+

i and π−i only appears once in Gv
i .

Intuitively, the two paths π+
i and π−i correspond to the two possible truth assignments for the variable vi. To illustrate,

a generic variable gadget for vi is shown on the left-hand side of Figure 5. The additional edges in this figure that are
directed into vertices of the variable gadget and directed out of vertices of this gadget will be defined as part of the
clause gadget construction which we describe next.

For a clause C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j), let i j, i′j, and i′′j be the elements in {1, 2, . . . , n} such that x3 j−2 ∈ {vi j , v̄i j },
x3 j−1 ∈ {vi′j , v̄i′j }, and x3 j ∈ {vi′′j , v̄i′′j }. Now, for each j ∈ {1, 2, . . . ,m}, add the following vertices and edges to the
variable gadgets.

1. Create the vertices {sc
j, t

c
j , u j,w j,w′j}.

12

DISPLAYING TREES ACROSS TWO NETWORKS 17

sv
i sc

j

tvi tcj

yi

pin
l1

pout
l1

nin
k1

nout
k1

pin
lq

pout
lq

nin
kr

nout
kr

uj

wj

w0
j

pin
3j�2

pout
3j�2

nin
3j�1

nout
3j�1

pin
3j

pout
3j

Figure 5. Left: Variable gadget for a variable vi. Right:
Clause gadget for a clause Cj = (x3j�2 _ x3j�1 _ x3j), where
the second literal equals a negated variable and each of the
other two literals equals an unnegated variable. The three
thick edges are edges of a variable gadget. The complete
construction is detailed in the proof of Theorem 4.1.

For a clause Cj = (x3j�2 _ x3j�1 _ x3j), let ij , i0j , and i00j be the elements

in {1, 2, . . . , n} such that x3j�2 2 {vij , v̄ij}, x3j�1 2 {vi0j
, v̄i0j

}, and x3j 2
{vi00j

, v̄i00j
}. Now, for each j 2 {1, 2, . . . , m}, add the following vertices and

edges to the variable gadgets.

(1) Create the vertices {sc
j , t

c
j , uj , wj , w

0
j}.

(2) Add the edges in {(sc
j , uj), (wj , w

0
j), (w0

j , t
c
j)}.

(3) If x3j�2 = vij , add the edges (uj , p
in
3j�2) and (pout

3j�2, wj). Otherwise,

add the edges (uj , n
in
3j�2) and (nout

3j�2, wj).

(4) If x3j�1 = vi0j
, add the edges (uj , p

in
3j�1) and (pout

3j�1, wj). Otherwise,

add the edges (uj , n
in
3j�1) and (nout

3j�1, wj).

(5) If x3j = vi00j
, add the edges (sc

j , p
in
3j) and (pout

3j , w0
j). Otherwise, add

the edges (sc
j , n

in
3j) and (nout

3j , w0
j).

In what follows, we refer to the edges and vertices that get added in the
aforementioned 5-step construction relative to a given Cj as the clause gad-
get for Cj . For each clause Cj = (x3j�2 _ x3j�1 _ x3j), there are three

Figure 5: Left: Variable gadget for a variable vi. Right: Clause gadget for a clause C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j), where the second literal equals a
negated variable and each of the other two literals equals an unnegated variable. The three thick edges are edges of a variable gadget. The complete
construction is detailed in the proof of Theorem 4.1.

2. Add the edges in {(sc
j, u j), (w j,w′j), (w′j, t

c
j)}.

3. If x3 j−2 = vi j , add the edges (u j, pin
3 j−2) and (pout

3 j−2,w j). Otherwise, add the edges (u j, nin
3 j−2) and (nout

3 j−2,w j).

4. If x3 j−1 = vi′j , add the edges (u j, pin
3 j−1) and (pout

3 j−1,w j). Otherwise, add the edges (u j, nin
3 j−1) and (nout

3 j−1,w j).

5. If x3 j = vi′′j , add the edges (sc
j, pin

3 j) and (pout
3 j ,w

′
j). Otherwise, add the edges (sc

j, n
in
3 j) and (nout

3 j ,w
′
j).

In what follows, we refer to the edges and vertices that get added in the aforementioned five-step construction relative
to a given C j as the clause gadget for C j. For each clause C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j), there are three directed paths
from sc

j to tc
j each of which corresponds to one of the three literals in C j. For example, for the first literal x3 j−2, there

is a directed path from sc
j to tc

j that intersects with the edge (pin
3 j−2, pout

3 j−2) on π+
i j

if x3 j−2 = vi j and that intersects with
the edge (nin

3 j−2, n
out
3 j−2) on π−i j

if x3 j−2 = v̄i j . To illustrate, assume that x3 j−2 = vi j , x3 j−1 = v̄i′j , and x3 j = vi′′j . For this
specific case, the clause gadget for C j is shown on the right-hand side of Figure 5.

Now, let G be the directed graph that results from the construction of all variable and all clause gadgets. Observe
that G is acyclic. We next set up an instance I′ of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths. Let T be the
caterpillar (`v

1, `
v
2, . . . , `

v
n, `

c
1, `

c
2, . . . , `

c
m). We obtain a directed acyclic graph N from T and G by identifying `v

i with
sv

i for each i ∈ {1, 2, . . . , n} and identifying `c
j with sc

j for each j ∈ {1, 2, . . . ,m}. Clearly, N is connected and has
no parallel edges. Moreover, except for the root, since each vertex of G has in-degree one and out-degree two, in-
degree two and out-degree one, or in-degree one and out-degree zero, it follows that N is a phylogenetic network on
T = {tv

1, t
v
2, . . . , t

v
n, t

c
1, t

c
2, . . . , t

c
m}. Let S = {sv

1, s
v
2, . . . , s

v
n, s

c
1, s

c
2, . . . , s

c
m}. Since every vertex of G that is not contained

in S lies on a directed path from a child of a vertex in S to a leaf in N , it follows that N is caterpillar-inducing with
respect to S . Moreover, for each i ∈ {1, 2, . . . , n}, there are exactly two directed paths from sv

i to tv
i in Gv

i and, hence,
in N that only intersect in the vertices sv

i , tv
i , and yi, and the edge (yi, tv

i). Recalling that 1 ≤ p < n, it follows from the

13

construction that N has the two-path property relative to p, and that both P∀ and P∃ are non-empty. We now set

P∀ = {(sv
1, t

v
1), (sv

2, t
v
2), . . . , (sv

p, t
v
p)} and

P∃ = {(sv
p+1, t

v
p+1), (sv

p+2, t
v
p+2), . . . , (sv

n, t
v
n)} ∪ {(sc

1, t
c
1), (sc

2, t
c
2), . . . , (sc

m, t
c
m)}.

This completes the description of I′.

Since the number of vertices of G is 3n + 11m, the number of vertices of T is 2(n + m) − 1, and G and T have
n + m vertices in common, it follows that N has size O(n + m) and can be constructed in polynomial time.

We complete the proof by establishing the following sublemma.

4.1.1. The instance I is a yes-instance if and only if the instance I′ is a yes-instance.

Proof. First, suppose that I is a yes-instance. Let Π∀ = {πv
1, π

v
2, . . . , π

v
p} be a set of directed paths in N such that each

πv
i begins at sv

i and ends at tv
i . As p < n, we have πv

i ∈ {π
+
i , π

−
i }. Moreover, since N has the two-path property relative

to p, the paths in Π∀ are mutually vertex disjoint in N . Now, let β : V → {F,T } be a truth assignment that satisfies
each clause of Ψ such that, if πv

i = π+
i , then vi = F and, otherwise, vi = T for each i ∈ {1, 2, . . . , p}. Since I is a

yes-instance, β exists. We next construct a directed path for each pair of vertices in P∃ such that, collectively, these
paths together with the elements in Π∀ form a solution to I′. For each i ∈ {p + 1, p + 2, . . . , n}, set πv

i = π+
i if vi = F

and set πv
i = π−i if vi = T . Furthermore, for each j ∈ {1, 2, . . . ,m}, let x j′ , with j′ ∈ {3 j − 2, 3 j − 1, 3 j}, be a literal in

C j that is satisfied by β, and let i be the element in {1, 2, . . . , n} such that x j′ ∈ {vi, v̄i}. By construction of the clause
gadget, there is a directed path, say πc

j, from sc
j to tc

j in N such that one of the following properties applies.

(i) If x j′ = vi, then πc
j contains the edge (pin

j′ , pout
j′).

(ii) If x j′ = v̄i, then πc
j contains the edge (nin

j′ , n
out
j′).

In Case (i), as vi = T , we have πv
i = π−i , and it follows that πc

j does not intersect πv
i . Similar in Case (ii), as vi = F,

we have πv
i = π+

i , and it again follows that πc
j does not intersect πv

i . By construction of N , it is now straightforward to
check that

Π∀ ∪ {πv
p+1, π

v
p+2, . . . , π

v
n, π

c
1, π

c
2, . . . , π

c
m}

is a collection of mutually vertex-disjoint directed-paths in N that connect each pair of vertices in P∀ ∪ P∃. In
particular, since the argument presented in this paragraph applies to all choices of directed paths in Π∀, we conclude
that I′ is a yes-instance.

Second, suppose that I′ is a yes-instance. Let β∀ : {v1, v2, . . . , vp} → {F,T } be a truth assignment. Furthermore, let

Π = {πv
1, π

v
2, . . . , π

v
p} ∪ {π

v
p+1, π

v
p+2, . . . , π

v
n, π

c
1, π

c
2, . . . , π

c
m}

be a collection of mutually vertex-disjoint directed paths in N such that πv
i = π−i if vi = T and πv

i = π+
i if vi = F for

each i ∈ {1, 2, . . . , p}. Since I′ is a yes-instance, Π exists. Now, let β : V → {F,T } such that

(i) for each i ∈ {1, 2, . . . , p}, we have β(vi) = β∀(vi) and,

(ii) for each i ∈ {p + 1, p + 2, . . . , n}, we have β(vi) = F if πv
i = π+

i and, β(vi) = T if πv
i = π−i .

We next show that β satisfies each clause of Ψ. Let C j = (x3 j−2 ∨ x3 j−1 ∨ x3 j) be a clause of Ψ with j ∈ {1, 2, . . . ,m}.
Consider the directed path πc

j ∈ Π from sc
j to tc

j in N . Let j′ be the unique element in {3 j − 2, 3 j − 1, 3 j} such that πc
j

14

contains either the edge (pin
j′ , pout

j′) or the edge (nin
j′ , n

out
j′), and let i be the element in {1, 2, . . . , n} such that x j′ ∈ {vi, v̄i}.

First, assume that πc
j contains (pin

j′ , pout
j′). Then, as x j′ = vi and the paths in Π are mutually vertex disjoint in N , it

follows that πv
i = π−i . Hence β(vi) = T . Second, assume that πc

j contains (nin
j′ , n

out
j′). Then, as x j′ = v̄i and the paths in Π

are mutually vertex disjoint, it follows that πv
i = π+

i . Hence β(vi) = F. Under both assumptions, β satisfies C j because
β(x j′) = T . It now follows that β satisfies Ψ and, as the argument applies to all choices of truth assignments for the
elements in {v1, v2, . . . , vp}, we conclude that I is a yes-instance. 2

This completes the proof of Theorem 4.1. 2

While the next corollary is not needed for the remainder of the paper, it may be of independent interest in the
theoretical computer science community.

Corollary 4.2. The decision problem ∀∃ Directed-Disjoint-Connecting-Paths is ΠP
2 -complete.

Proof. Since every instance of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths is also an instance of ∀∃ Directed-
Disjoint-Connecting-Paths, it follows from Theorem 4.1 that the latter problem is ΠP

2 -hard. To establish that ∀∃
Directed-Disjoint-Connecting-Paths is in ΠP

2 , we use the same argument as in the first paragraph of the proof of
Theorem 4.1 and, additionally, check in polynomial time if the paths in Π∀ are vertex disjoint. 2

4.2. Display-Set-Containment is ΠP
2 -complete

In this section, we show that Display-Set-Containment is complete for the second level of the polynomial hierar-
chy. This problem is a generalization of the well-known NP-complete Tree-Containment problem [7].

Theorem 4.3. Display-Set-Containment is ΠP
2 -complete.

Proof. We first show that Display-Set-Containment is in ΠP
2 . Let N and N ′ be two phylogenetic networks on X.

To decide if T (N) ⊆ T (N ′), let S be a switching of N , and let T be the phylogenetic X-tree yielded by S . Then
use an NP-oracle for Tree-Containment to decide if T is displayed by N ′. Since N and N ′ form a no-instance
precisely if there exists some switching for N that yields a phylogenetic tree that is not displayed by N ′, it follows
that Display-Set-Containment is in co-NPNP = ΠP

2 .

To complete the proof, we establish a reduction from ∀∃ Phylo-Directed-Disjoint-Connecting-Paths. Using the
same notation as in the formal statement of ∀∃ Phylo-Directed-Disjoint-Connecting-Paths, let I be the following
instance of this problem. Let N be a phylogenetic network on X, let S = {s1, s2, . . . , sk} and T = X = {t1, t2, . . . , tk}
be two disjoint sets of vertices of N , and let p be an integer with 1 ≤ p < k such that N is caterpillar-inducing with
respect to S and has the two-path property relative to p. Furthermore, let

P∀ = {(s1, t1), (s2, t2), . . . , (sp, tp)},

P∃ = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}

be two collections of pairs of elements in S and T . This completes the description of I.

Now, letN1 be the phylogenetic network obtained from the caterpillar (t0, s1, s2, . . . , sp, tp+1, tp+2, . . . , tk) by adding
the following edges and vertices for each i ∈ {1, 2, . . . , p}. Create three vertices u1

i , u2
i , and u3

i and add the set

{(si, u1
i), (si, u2

i), (u1
i , u

3
i), (u2

i , u
3
i), (u3

i , ti), (u
1
i , t
′
i), (u

2
i , t
′′
i)}

15

DISPLAYING TREES ACROSS TWO NETWORKS 21

sp
tp+1 tk

tpt0p t00p

sp+1 sk

tp+1 tk

s1

t1

t01t
00
1

sp

tp

t0pt00p

N1 N2

s1

t1t01 t001

t0
t0u1

1 u2
1 u1

p u2
p

u3
1 u3

p

v01 v001 v0p v00p

u

Figure 6. The two phylogenetic networks N1 and N2 that
are constructed in the proof of Theorem 4.3. For reasons of
simplicity, not all edges of N2 are shown. In particular, each
squiggly line is a directed path and, depending on the given
instance of 89 Phylo-Directed-Disjoint-Connecting-
Paths, squiggly paths may intersect with each other and
may be further interconnected by paths that are not shown.

N is caterpillar-inducing with respect to S and has the two-path property
relative to p. Furthermore, let

P 8 = {(s1, t1), (s2, t2), . . . , (sp, tp)},

P 9 = {(sp+1, tp+1), (sp+2, tp+2), . . . , (sk, tk)}
be two collections of pairs of elements in S and T . This completes the
description of I.

Now, let N1 be the phylogenetic network obtained from the caterpillar
(t0, s1, s2, . . . , sp, tp+1, tp+2, . . . , tk) by adding the following edges and ver-
tices for each i 2 {1, 2, . . . , p}. Create three vertices u1

i , u2
i , and u3

i and add
the set

{(si, u
1
i), (si, u

2
i), (u

1
i , u

3
i), (u

2
i , u

3
i), (u

3
i , ti), (u

1
i , t

0
i), (u

2
i , t

00
i)}

of edges. Observe that the leaf set of N1 is

X 0 = {t0, t1, t2, . . . , tk} [{t0i, t
00
i : i 2 {1, 2, . . . , p}}.

The construction of N1 is shown on the left-hand side of Figure 6. We
complete the reduction to an instance of Display-Set-Containment by
describing a second phylogenetic network N2. For each i 2 {1, 2, . . . , p}, let
w0

i and w00
i be the two children of si in N . As N has the two-path property

relative to p, recall that there are exactly two directed paths from si to ti in
N , and these two paths only have si, ti, and the parent of ti in common. In
the remainder of the proof, we denote the directed path from si to ti that
contains w0

i with ⇡0
i and, similarly, we denote the directed path from si to ti

Figure 6: The two phylogenetic networks N1 and N2 that are constructed in the proof of Theorem 4.3. For reasons of simplicity, not all edges of
N2 are shown. In particular, each squiggly line is a directed path and, depending on the given instance of ∀∃ Phylo-Directed-Disjoint-Connecting-
Paths, squiggly paths may intersect with each other and may be further interconnected by paths that are not shown.

of edges. Observe that the leaf set of N1 is

X′ = {t0, t1, t2, . . . , tk} ∪ {t′i , t
′′
i : i ∈ {1, 2, . . . , p}}.

The construction of N1 is shown on the left-hand side of Figure 6. We complete the reduction to an instance of
Display-Set-Containment by describing a second phylogenetic network N2. For each i ∈ {1, 2, . . . , p}, let w′i and w′′i
be the two children of si in N . As N has the two-path property relative to p, recall that there are exactly two directed
paths from si to ti in N , and these two paths only have si, ti, and the parent of ti in common. In the remainder of the
proof, we denote the directed path from si to ti that contains w′i with π′i and, similarly, we denote the directed path
from si to ti that contains w′′i with π′′i . Lastly, we denote the parent of s1 with p1. Now, obtain N2 from N in the
following way.

(i) Subdivide the edge (p1, s1) with a new vertex u and add the edge (u, t0).

(ii) For each i ∈ {1, 2, . . . , p}, subdivide (si,w′i) with a new vertex v′i , subdivide (si,w′′i) with a new vertex v′′i , and
add the two edges (v′i , t

′
i) and (v′′i , t

′′
i).

Clearly, the leaf set of N2 is X′. To illustrate, N2 is shown on the right-hand side in Figure 6.

As the size of X′ is polynomial in the size of X, it follows that the size of N1 and N2 is polynomial in the size of
N . Furthermore, the construction of N1 and N2 takes polynomial time.

4.3.1. The instance I is a yes-instance if and only if T (N1) ⊆ T (N2).

Proof. First, suppose that I is a yes-instance. Let T ′ be a phylogenetic X′-tree that is displayed by N1. For each
i ∈ {1, 2, . . . , p}, note that T ′ contains one of the two caterpillars (ti, t′i , t

′′
i) or (ti, t′′i , t

′
i). Let J ′ be the set that consists

of each element i ∈ {1, 2, . . . , p} for which T ′ contains (ti, t′i , t
′′
i) and, similarly, let J ′′ be the set that consists of

each element i ∈ {1, 2, . . . , p} for which T ′ contains (ti, t′′i , t
′
i). Furthermore, let Π∀ = {π1, π2, . . . , πp} be the set of

directed paths in N such that πi = π′i if i ∈ J ′ and πi = π′′i if i ∈ J ′′. Since I is a yes-instance, there exists a set
Π = Π∀ ∪ {πp+1, πp+2, . . . , πk} of mutually vertex-disjoint directed paths in N , where π j is a directed path from s j to
t j for each j ∈ {p + 1, p + 2, . . . , k}. Moreover, as N is caterpillar-inducing with respect to S , it is straightforward to
check that there exists a phylogenetic X-tree T such that the following three properties are satisfied:

16

(i) T is displayed by N ,

(ii) T = T ′|X, and

(iii) there exists an embedding of T in N that contains all edges of paths in Π.

Let ET be an embedding of T inN that satisfies (iii). By construction ofN2 fromN , there exists an embedding of T
in N2 whose set of edges is

E′T = (ET − ({(p1, s1)} ∪ {(si,w′i) : i ∈ J ′} ∪ {(si,w′′i) : i ∈ J ′′})) ∪
{(p1, u), (u, s1)} ∪ {(si, v′i), (v

′
i ,w

′
i) : i ∈ J ′} ∪

{(si, v′′i), (v′′i ,w
′′
i) : i ∈ J ′′}.

For each i ∈ {1, 2, . . . , p}, let E′i be the subset {(v′i , t
′
i), (v

′′
i , t
′′
i), (si, v′′i)} of edges in N2 if i ∈ J ′, and the subset

{(v′′i , t
′′
i), (v′i , t

′
i), (si, v′i)} of edges in N2 if i ∈ J ′′. Since E′

T
is an embedding of T in N2, it now follows that

E′T ∪ E′1 ∪ E′2 ∪ · · · ∪ E′p ∪ {(u, t0)}

is an embedding of T ′ in N2. Hence, T (N1) ⊆ T (N2).

Second, suppose that I is a no-instance. Throughout this part of the proof, we use πi to denote a directed path
from si to ti in N for each i ∈ {1, 2, . . . , k}. Then, as N has the two-path property relative to p, there is a set
Π∀ = {π1, π2, . . . , πp} of mutually vertex-disjoint directed paths inN for which every set Π = Π∀∪{πp+1, πp+2, . . . , πk}

of directed paths in N contains two elements that are not vertex disjoint. For each i ∈ {1, 2, . . . , k}, let Ei be the set of
edges of πi in N . Furthermore, for each i ∈ {1, 2, . . . , p}, let E′i be the subset

(Ei − {(si,w′i)}) ∪ {(si, v′i), (v
′
i ,w

′
i), (v

′
i , t
′
i), (si, v′′i), (v′′i , t

′′
i)}

of edges in N2 if πi = π′i , and the subset

(Ei − {(si,w′′i)}) ∪ {(si, v′′i), (v′′i ,w
′′
i), (v′′i , t

′′
i), (si, v′i), (v

′
i , t
′
i)}

of edges in N2 if πi = π′′i , where π′i or π′′i are as described in the construction of N2 from N . Clearly, there is a
phylogenetic tree Tp with leaf set {ti, t′i , t

′′
i : i ∈ {1, 2, . . . , p}} for which there exists an embedding in N2 that contains

all edges in E′1 ∪ E′2 ∪ · · · ∪ E′p. Observe that Tp can be obtained from the caterpillar (`1, `2, . . . , `p) by replacing
each `i ∈ {`1, `2, . . . , `p} with the caterpillar (ti, t′i , t

′′
i) if πi = π′i and with the caterpillar (ti, t′′i , t

′
i) if πi = π′′i . By

construction, it now follows that N1 displays Tp. Let T be the unique phylogenetic X′-tree that is displayed by N1
such that T |{ti, t′i , t

′′
i : i ∈ {1, 2, . . . , p}} = Tp. We complete the argument by showing that T is not displayed by N2.

Towards a contradiction, assume that T is displayed by N2. Let E′
T

be an embedding of T in N2. Then, since T
contains (ti, t′i , t

′′
i) or (ti, t′′i , t

′
i) for each i ∈ {1, 2, . . . , p} and N satisfies the two-path property relative to p, it follows

from the construction of N2 that E′
T

contains all edges in E′1 ∪ E′2 ∪ · · · ∪ E′p. Furthermore, observe that there is a
unique directed path from the root, say ρ, ofN2 to t0, and so the edges on this path are elements of E′

T
. For each pair i

and i′ of distinct elements in {1, 2, . . . , k}, it therefore follows that the directed path from ρ to ti in E′
T

and the directed
path from ρ to ti′ in E′

T
only intersect in vertices that are ancestors of t0 in N2. Hence, as N2 is caterpillar-inducing

with respect to S , there exist directed paths π∗1, π
∗
2, . . . , π

∗
p, π
∗
p+1, . . . , π

∗
k in E′

T
such that the following three properties

are fulfilled.

(i) For each i ∈ {1, 2, . . . , p}, π∗i is the unique directed path from si to ti in N2 that contains v′i if πi = π′i and that
contains v′′i if πi = π′′i .

(ii) For each i ∈ {p + 1, p + 2, . . . , k}, π∗i is a directed path from si to ti in N2.

(iii) The elements in Π∗ = {π∗1, π
∗
2, . . . , π

∗
k, } are mutually vertex disjoint.

17

Now, by construction, observe that π∗i is also a directed path from si to ti in N for each i ∈ {p + 1, p + 2, . . . , k}. As
Π∗ is a set of mutually vertex-disjoint directed paths in N2, it now follows that, Π∀ ∪ {π∗p+1, π

∗
p+2, . . . , π

∗
k} is a set of

mutually vertex-disjoint directed paths in N . In turn, this implies that I is a yes-instance; a contradiction. Hence,
T < T (N2), and so T (N1) * T (N2). 2

This establishes Theorem 4.3. 2

We end this section with a brief discussion of the structural properties of the phylogenetic network N1 that is
constructed in the proof of Theorem 4.3. These properties will play an important role in the next section when we
establish ΠP

2 -completeness of Display-Set-Equivalence. Let N be a phylogenetic network on X. We say that N is a
caterpillar network if it can be obtained from a caterpillar (`1, `2, . . . , `k) with 2 ≤ k ≤ |X| by replacing each `i with a
phylogenetic network Ni on Xi such that the elements in {N1,N2, . . . ,Nk} are pairwise vertex disjoint and

k⋃
i=1

Xi = X.

By construction, N1 is a caterpillar network. Moreover, it is easily seen that N1 is temporal and tree-child.

The next corollary now immediately follows from Theorem 4.3.

Corollary 4.4. LetN1 be a temporal tree-child caterpillar network on X, and letN2 be a phylogenetic network on X.
Then deciding whether T (N1) ⊆ T (N2) is ΠP

2 -complete.

4.3. Display-Set-Equivalence is ΠP
2 -complete

With the result of Corollary 4.4 in hand, we are now in a position to establish the main result of Section 4 which
is the following theorem.

Theorem 4.5. Display-Set-Equivalence is ΠP
2 -complete.

Proof. Let N and N ′ be two phylogenetic networks on X. By Theorem 4.3, the problem of deciding whether or
not T (N) ⊆ T (N ′) is in ΠP

2 . Similarly, the problem of deciding whether or not T (N ′) ⊆ T (N) is in ΠP
2 . Hence,

Display-Set-Equivalence is in ΠP
2 .

We next establish a polynomial-time reduction from Display-Set-Containment to Display-Set-Equivalence. Let
N1 and N2 be two phylogenetic networks on X = {`1, `2, . . . , `n} that form the input to an instance of Display-Set-
Containment that asks if T (N1) ⊆ T (N2). By Corollary 4.4, we may assume that N1 is a caterpillar network. Then
there exist two vertex-disjoint phylogenetic networksM1 andM1′ with leaf sets W1 and W1′ , respectively, such that
W1 ∪ W1′ = X, and N1 can be obtained from the caterpillar {x1, x2} by replacing x1 with M1 and x2 with M1′ . To
ease reading, let N ′1 and N ′2 be the two phylogenetic networks on X′ = {`′1, `

′
2, . . . , `

′
n} that are obtained from N1 and

N2, respectively, by replacing `i with `′i in both networks for each i ∈ {1, 2, . . . , n}. Similarly, letM′1 andM′1′ be the
two phylogenetic networks obtained fromM1 andM1′ , respectively, by replacing `i with `′i in exactly one ofM1 and
M1′ for each i ∈ {1, 2, . . . , n}. If W ′1 (resp. W ′1′) denotes the leaf set ofM′1 (resp. M′1′), then W ′1 ∪W ′

1′ = X′.

Set T as well as T ′ to be the caterpillar (w1,w2, . . . ,w2n+3). Furthermore, let u2n+3, u2n+2, . . . , u2 be the directed
path in T (and T ′) such that, for all j ∈ {2, 3, . . . , 2n + 3}, u j is the parent of w j. Now, let G∗1 and G∗2 be the two
directed acyclic graphs that are obtained from T and T ′, respectively, by applying the following six-step process.

1. For all j ∈ {1, 2, . . . , n}, replace w j with N2 in T and T ′ by identifying w j with the root of N2.

18

DISPLAYING TREES ACROSS TWO NETWORKS 25

`02 `0n

N2 N2 N2 N1 M0
1 M0

10 N 0
2 N 0

2 N 0
2

w1 w2 wn wn+1 wn+2 wn+3 wn+4 wn+5 w2n+3

u2n+3

un+5

un+4

un+3

un+2

un+1

un

u2

`1 `2 `n `01

Figure 7. The phylogenetic network N ⇤
1 on X [X 0 as con-

structed in the proof of Theorem 4.5. Each of the squares
labeled N2, N1, M0

1, M0
10 , and N 0

2 refers to the network ob-
tained from its namesake phylogenetic network by deleting
all leaf labels. The dangling edges of each square are paired
up with the edges shown in the bottom part of the figure as
described in Step (6) of the construction in the proof of The-
orem 4.5.

of Display-Set-Containment that asks if T (N1) ✓ T (N2). By Corol-
lary 4.4, we may assume that N1 is a caterpillar network. Then there exist
two vertex-disjoint phylogenetic networks M1 and M10 with leaf sets W1 and
W10 , respectively, such that W1[W10 = X, and N1 can be obtained from the
caterpillar {x1, x2} by replacing x1 with M1 and x2 with M10 . To ease read-
ing, let N 0

1 and N 0
2 be the two phylogenetic networks on X 0 = {`01, `02, . . . , `0n}

that are obtained from N1 and N2, respectively, by replacing `i with `0i in
both networks for each i 2 {1, 2, . . . , n}. Similarly, let M0

1 and M0
10 be the

two phylogenetic networks obtained from M1 and M10 , respectively, by re-
placing `i with `0i in exactly one of M1 and M10 for each i 2 {1, 2, . . . , n}. If
W 0

1 (resp. W 0
10) denotes the leaf set of M0

1 (resp. M0
10), then W 0

1[W 0
10 = X 0.

Set T as well as T 0 to be the caterpillar (w1, w2, . . . , w2n+3). Furthermore,
let u2n+3, u2n+2, . . . , u2 be the directed path in T (and T 0) such that, for all
j 2 {2, 3, . . . , 2n + 3}, uj is the parent of wj . Now, let G⇤

1 and G⇤
2 be the

Figure 7: The phylogenetic networkN∗1 on X ∪ X′ as constructed in the proof of Theorem 4.5. Each of the squares labeledN2, N1,M′1,M′1′ , and
N ′2 refers to the network obtained from its namesake phylogenetic network by deleting all leaf labels. The dangling edges of each square are paired
up with the edges shown in the bottom part of the figure as described in Step (6) of the construction in the proof of Theorem 4.5.

2. Replace wn+1 with the root of N1 in T by identifying wn+1 with the root of N1, and replace wn+1 with the root
ofM1 in T ′ by identifying wn+1 with the root ofM1

3. Replace wn+2 with M′1 in T by identifying wn+2 with the root of M′1, and replace wn+2 with M1′ in T ′ by
identifying wn+2 with the root ofM1′

4. Replace wn+3 with M′1′ in T by identifying wn+3 with the root of M′1′ , and replace wn+3 with N ′1 in T ′ by
identifying wn+3 with the root of N ′1.

5. For all j ∈ {n + 4, n + 5, . . . , 2n + 3}, replace w j with N ′2 in T and T ′ by identifying w j with the root of N ′2.

6. For each i ∈ {1, 2, . . . , n}, identify all leaves labeled `i (resp. `′i) in T with a new vertex vi (resp. v′i), add a new
edge (vi, `i) (resp. (v′i , `

′
i)). Do the same for all leaves labeled `i (resp. `′i) in T ′.

To complete the construction, letN∗1 andN∗2 be two phylogenetic networks such that G∗1 and G∗2 can be obtained from
N∗1 and N∗2 , respectively, by contracting edges. Clearly, the leaf set of N∗1 and N∗2 is X ∪ X′. Moreover, the directed
path u2n+3, u2n+2, . . . , u2 of T and T ′ is also a directed path of N∗1 and N∗2 . We refer to this path as the backbone of
N∗1 and N∗2 . The phylogenetic networks N∗1 and N∗2 are shown in Figures 7 and 8, respectively. Lastly, observe that
the size of both N∗1 and N∗2 is O(n(|E1| + |E2|)), where E1 and E2 is the edge set of N1 and N2, respectively. Hence,
the construction of N∗1 and N∗2 takes polynomial time.

4.5.1. T (N1) ⊆ T (N2) if and only if T (N∗1) = T (N∗2).

19

26 JANOSCH DÖCKER, SIMONE LINZ, AND CHARLES SEMPLE

`02 `0n

w1 w2 wn wn+1 wn+2 wn+3 wn+4 wn+5 w2n+3

u2n+3

un+5

un+4

un+3

un+2

un+1

un

u2

N 0
1N2 N 0

2N 0
2N 0

2N2 N2 M10M1

`1 `2 `n `01

Figure 8. The phylogenetic network N ⇤
2 on X [X 0 as con-

structed in the proof of Theorem 4.5. Each of the squares
labeled N2, M1, M10 , N 0

1 and N 0
2 refers to the network ob-

tained from its namesake phylogenetic network by deleting
all leaf labels. The dangling edges of each square are paired
up with the edges shown in the bottom part of the figure as
described in Step (6) of the construction in the proof of The-
orem 4.5.

two directed acyclic graphs that are obtained from T and T 0, respectively,
by applying the following six-step process.

(1) For all j 2 {1, 2, . . . , n}, replace wj with N2 in T and T 0 by identi-
fying wj with the root of N2.

(2) Replace wn+1 with the root of N1 in T by identifying wn+1 with
the root of N1, and replace wn+1 with the root of M1 in T 0 by
identifying wn+1 with the root of M1

(3) Replace wn+2 with M0
1 in T by identifying wn+2 with the root of

M0
1, and replace wn+2 with M10 in T 0 by identifying wn+2 with the

root of M10

(4) Replace wn+3 with M0
10 in T by identifying wn+3 with the root of

M0
10 , and replace wn+3 with N 0

1 in T 0 by identifying wn+3 with the
root of N 0

1.

Figure 8: The phylogenetic network N∗2 on X ∪ X′ as constructed in the proof of Theorem 4.5. Each of the squares labeled N2,M1,M1′ , N ′1 and
N ′2 refers to the network obtained from its namesake phylogenetic network by deleting all leaf labels. The dangling edges of each square are paired
up with the edges shown in the bottom part of the figure as described in Step (6) of the construction in the proof of Theorem 4.5.

Proof. Throughout this proof, let U = {u2, u3, . . . , u2n+3} be the vertex set of the backbone of N∗1 and N∗2 , and let

EU = {(u2,w1), (u2,w2), (u3,w3), . . . , (u2n+3,w2n+3)}

be the set of edges in N∗1 and N∗2 that are directed from a vertex in U to a vertex not in U. Furthermore, for a vertex
v and an embedding E, we say that v is in E if there exists an edge in E that is incident with v. If v is in E, then we
denote this by v ∈ E.

First, suppose that T (N1) * T (N2). Let T1 be a phylogenetic X-tree such that T1 ∈ T (N1) and T1 < T (N2). Let
T ′1 be the phylogenetic X′-tree obtained from T1 by replacing `i with `′i for each i ∈ {1, 2, . . . , n}. Furthermore, let T
be the phylogenetic (X ∪ X′)-tree obtained from T1 and T ′1 by creating a new vertex ρ, adding an edge that joins ρ
with the root of T1, and adding an edge that joins ρ with the root of T ′1 . As N1 displays T1 and N ′1 displays T ′1 , it is
easy to check that an embedding of T in N∗2 can be obtained from adding edges of N∗2 to

{(un+3, un+2), (un+2, un+1), (un+1,wn+1), (un+2,wn+2), (un+3,wn+3)}

such that each element in X is a descendant of un+2, each element in X′ is a descendant of wn+3. Hence, T is displayed
by N∗2 .

We next show that T is not displayed by N∗1 . Towards a contradiction, assume that T is displayed by N∗1 . Let E1
be an embedding of T in N∗1 . Furthermore, let k be the maximum element in {1, 2, . . . , 2n + 3} such that wk ∈ E1. By
construction of T , either each element in X is a descendant of wk in E1 or each element in X′ is a descendant of wk

in E1. Thus, as N2 does not display T1 and N ′2 does not display T ′1 , we have k = n + 1. In particular, each element
in X is a descendant of wk in E1. But no element in X′ is a descendant of uk in E1; a contradiction. Hence, T is not
displayed by N∗1 , and so T (N∗1) , T (N∗2).

20

Second, suppose that T (N1) ⊆ T (N2). Let T be a phylogenetic (X ∪ X′)-tree that is displayed by N∗1 , and let E1
be an embedding of T in N∗1 . For each j ∈ {1, 2, . . . , 2n + 3} with w j ∈ E1, let Y j be the set that consists of all leaves
that are descendants of w j in E1, and let T j be the phylogenetic tree obtained from the minimal rooted subtree of E1
that connects all leaves in Y j by suppressing all vertices with in-degree one and out-degree one. If wn+1 ∈ E1, then,
by the pigeonhole principle, there exists an element j ∈ {1, 2, . . . , n} such that w j < E1. Similarly, if wn+3 ∈ E1, then
there exists an element j′ ∈ {n + 4, n + 5, . . . , 2n + 3} such that w j′ < E1. Without loss of generality, we may therefore
assume by the construction of N∗1 that E1 satisfies the following property.

(P) If wn+1 ∈ E1, then wn < E1 and, if wn+3 ∈ E1, then wn+4 < E1.

Intuitively, property (P) allows enough ‘play’ so that any embedding of a phylogenetic (X ∪ X′)-tree in N∗1 can be
replicated in N∗2 .

Since T (N1) ⊆ T (N2), each tree in T (N1) is displayed by N2, and so each tree in T (M′1) is displayed by N ′1, and
each tree in T (M′1′) is displayed by N ′2. Hence, there exists an embedding E2 of a phylogenetic (X ∪ X′)-tree in N∗2
such that the following conditions are satisfied:

(i) For each j ∈ {1, 2, . . . , n, n + 4, n + 5, . . . , 2n + 3}, if w j ∈ E1, then w j is the root of a subtree in E2 that is a
subdivision of T j.

(ii) If wn+1 ∈ E1 and so wn < E1, then wn is the root of a subtree in E2 that is a subdivision of Tn+1.

(iii) If wn+3 ∈ E1 and so wn+4 < E1, then wn+4 is the root of a subtree in E2 that is a subdivision of Tn+3.

(iv) If wn+2 ∈ E1, then wn+3 is the root of a subtree in E2 that is a subdivision of Tn+2.

Since E1 satisfies (P), E2 is well defined. By construction of N∗1 and N∗2 , it now follows that the edges in E2 are an
embedding of T in N∗2 . Thus T (N∗1) ⊆ T (N∗2).

Now, let T be a phylogenetic (X ∪ X′)-tree that is displayed by N∗2 . To see that T is displayed by N∗1 , we
can effectively use the same argument as the one to show that T (N∗1) ⊆ T (N∗2) even though the assumption that
T (N1) ⊆ T (N2) is not symmetric. In particular, let E2 be an embedding of T in N∗2 . For each j ∈ {1, 2, . . . , 2n + 3}
with w j ∈ E2, let Z j be the set that consists of all leaves that are descendants of w j in E2, and let T j be the phylogenetic
tree obtained from the minimal rooted subtree of E2 that connects all the leaves in Z j by suppressing all vertices
with in-degree one and out-degree one. If wn+1 ∈ E2, then, by the pigeonhole principle, there exists an element
j ∈ {1, 2, . . . , n} such that w j < E2. Similarly, if wn+3 ∈ E2, then there exists an element j′ ∈ {n + 4, n + 5, . . . , 2n + 3}
such that w j′ < E2. Thus, by construction, we may assume without loss of generality that

(P)′ if wn+1 ∈ E2, then wn < E2 and, if wn+3 ∈ E2, then wn+4 < E2.

As T (N1) ⊆ T (N2), each tree in T (M1) is displayed by N2, each tree in T (M1′) is displayed by N1, and each tree
in T (N ′1) is displayed by N ′2. Thus there exists an embedding E1 of a phylogenetic (X ∪ X′)-tree in N∗1 satisfying the
following conditions:

(i)′ For each j ∈ {1, 2, . . . , n, n + 4, n + 5, . . . , 2n + 3}, if w j ∈ E2, then w j is the root of a subtree in E1 that is a
subdivision of T j.

(ii)′ If wn+1 ∈ E2 and so wn < E2, then wn is the root of a subtree in E1 that is a subdivision of Tn+1.

(iii)′ If wn+3 ∈ E2 and so wn+4 < E2, then wn+4 is the root of a subtree of E1 that is a subdivision of Tn+3.

(iv)′ If wn+2 ∈ E2, then wn+1 is the root of a subtree in E1 that is a subdivision of Tn+2.

21

It is now easily checked that E1 is well defined and, by construction of N∗1 and N∗2 , is an embedding of T in N∗1 . So
T (N∗2) ⊆ T (N∗1). Combining both cases establishes that T (N∗2) = T (N∗1). 2

This completes the proof of Theorem 4.5. 2

5. Conclusion

We end this paper, with two corollaries that are implied by the results presented in Section 3 and two open
problems. In 2015, Francis and Steel [4] introduced tree-based networks. A phylogenetic network N on X is tree-
based if, up to suppressing vertices of in-degree one and out-degree one,N displays a phylogenetic X-tree T that can
be obtained by only deleting reticulation edges, in which case, T is a base tree of N . If N is tree-based, it is well
known that not every phylogenetic X-tree displayed byN is a base tree. However, noting that each tree-child network
is also a tree-based network, it is shown in [12] that a phylogenetic tree T is displayed by a tree-child network N if
and only if T is a base tree of N . Hence, for two tree-child networks N and N ′, the problem of deciding whether or
not T (N) ∩ T (N ′) , ∅ is equivalent to deciding whether or not N and N ′ have a common base tree.

Corollary 5.1. LetN andN ′ be two tree-based networks on X. Then deciding ifN andN ′ have a common base tree
is NP-complete.

Proof. Let S be a switching of N , and let T be a phylogenetic X-tree. We say that S is a base-tree switching if, for
each non-leaf vertex u in N that is the parent of only reticulations, there exists an edge (u, v) in S . By the definition
of a tree-based network it follows that T is a base tree of N if and only if there exists a base-tree switching S of N
that yields T . Now, let S be a switching ofN , and let S ′ be a switching ofN ′. If S is a base-tree switching ofN and
S ′ is a base-tree switching of N ′, and S and S ′ yield the same tree, then N and N ′ have a common base tree. Since
it can be checked in polynomial time if S (resp. S ′) is a base-tree switching of N (resp. N ′), and if S and S ′ yield
the same tree, it follows that deciding whether or notN andN ′ have a common base tree is in NP. The corollary now
follows from Theorem 3.2. 2

Using (ordinary) switchings instead of base-tree switching, ideas analogous to the ones described in the proof of
Corollary 5.1 can be used to show that Common-Tree-Containment is in NP for two arbitrary phylogenetic networks.
The next corollary is now an immediate consequence of Theorem 3.2.

Corollary 5.2. Common-Tree-Containment is NP-complete for two arbitrary phylogenetic networks.

In possible contrast to the last two corollaries and, in particular, Theorem 3.2, we leave it as an open problem to decide
on the complexity of Common-Tree-Containment for two level-one networks.

Lastly, let C be a class of phylogenetic networks for which Tree-Containment is solvable in polynomial time such
as tree-child or, more generally, reticulation-visible networks [1, 6, 14]. Furthermore, let N and N ′ be two networks
in C. Then deciding if T (N) = T (N ′) is in co-NP because, given a tree T that is displayed by N or N ′, it can be
checked in polynomial time, if T is also displayed by the other network. If this is not the case, thenN andN ′ form a
no-instance of Display-Set-Equivalence. Whether Display-Set-Equivalence for N and N ′ is co-NP-complete remains
an open problem. Nevertheless, it is unlikely that Display-Set-Equivalence for N and N ′ is ΠP

2 -complete since a
problem that is ΠP

2 -complete and in co-NP would imply that co-NP=ΠP
2 which, in turn, would result in a collapse of

the polynomial hierarchy to the first level.

22

Acknowledgements. We thank Britta Dorn for insightful discussions as well as the anonymous referees for their care-
ful reading of the paper. The second and third authors thank the New Zealand Marsden Fund for their financial support.

[1] M. Bordewich and C. Semple, Reticulation-visible networks, Advances in Applied Mathematics, 76 (2016), pp. 114–141.
[2] G. Cardona, F. Rosselló, and G. Valiente, Comparison of tree-child phylogenetic networks, IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 6 (2009), pp. 552–569.
[3] J. Döcker, S. Linz, and C. Semple, Display sets of normal and tree-child networks, submitted.
[4] A. Francis and M. Steel, Which phylogenetic networks are merely trees with additional arcs? Systematic Biology, 64 (2015), pp. 768–777.
[5] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman and Company, 1979.
[6] A. D. M. Gunawan, B. DasGupta, and L. Zhang, A decomposition theorem and two algorithms for reticulation-visible networks, Information

and Computation, 252 (2017), pp. 161–175.
[7] I. A. Kanj, L. Nakhleh, C. Than, and G. Xia, Seeing the trees and their branches in the network is hard, Theoretical Computer Science, 401

(2008), pp. 153–164.
[8] S. Khuller, Design and analysis of algorithms: course notes, Available at https://drum.lib.umd.edu/bitstream/handle/1903/592/

CS-TR-3113.ps?sequence=1, 1994
[9] C. McDiarmid, C. Semple, and D. Welsh, Counting phylogenetic networks, Annals of Combinatorics, 19 (2015), pp. 205–224.

[10] B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A. Padolina, J. Sun, and R. Timme, Phylogenetic networks: modeling,
reconstructibility, and accuracy, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1 (2004), pp. 13–23

[11] Y. Perl and Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, Journal of the Association for Computing
Machinery, 25 (1978), pp. 1–9.

[12] C. Semple, Phylogenetic networks with every embedded phylogenetic tree a base tree, Bulletin of Mathematical Biology, 78 (2016), pp.
132–137.

[13] L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science, 3 (1976), pp. 1–22.
[14] L. van Iersel, C. Semple, and M. Steel, Locating a tree in a phylogenetic network, Information Processing Letters, 110 (2010), pp. 1037–1043.
[15] M. Weller, Linear-time tree containment in phylogenetic networks, in Blanchette, M., Ouangraoua, A. (eds), RECOMB-CG 2018, Lecture

Notes in Computer Science, vol 11183. Springer, Cham.
[16] S. J. Willson, Properties of normal phylogenetic networks, Bulletin of Mathematical Biology, 72 (2010), pp. 340–358.
[17] S. J. Willson, Tree-average distances on certain phylogenetic networks have their weights uniquely determined, Algorithms for Molecular

Biology, 7 (2012):13.

23

https://drum.lib.umd.edu/bitstream/handle/1903/592/CS-TR-3113.ps?sequence=1
https://drum.lib.umd.edu/bitstream/handle/1903/592/CS-TR-3113.ps?sequence=1

	Introduction
	Preliminaries
	Hardness of Common-Tree-Containment
	Hardness of Display-Set-Equivalence
	 Directed-Disjoint-Connecting-Paths is 2P-complete
	Display-Set-Containment is 2P-complete
	Display-Set-Equivalence is 2P-complete

	Conclusion

