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Abstract

Phylogenetic networks are now frequently used to explain the evolutionary
history of a set of species for which a collection of gene trees, reconstructed
from genetic material of different parts of the species’ genomes, reveal in-
consistencies. However, in the context of hybridization, the reconstructed
networks are often not temporal. If a hybridization network is temporal,
then it satisfies the time constraint of instantaneously occurring hybridiza-
tion events; i.e. all species that are involved in such an event coexist in time.
Furthermore, although a collection of phylogenetic trees can often be merged
into a hybridization network that is temporal, many algorithms do not nec-
essarily find such a network since their primary optimization objective is
to minimize the number of hybridization events. In this paper, we present
a characterization for when two rooted binary phylogenetic trees admit a
temporal hybridzation network. Furthermore, we show that the underlying
optimization problem is APX-hard and, therefore, NP-hard. Thus, unless
P=NP, it is unlikely that there are efficient algorithms for either computing
an exact solution or approximating it within a ratio arbitrarily close to one.
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1. Introduction

In the process of slowly drifting away from the tradition of representing
evolution by means of a phylogenetic tree, phylogenetic networks are now
becoming increasingly important for investigating the evolutionary history
of a set of species. This change in concept consequently necessitates the
development of algorithms that analyze non-tree-like reticulation processes,
such as horizontal gene transfer, hybridization, and recombination, in a way
that is best suited to the many biological constraints. Recently, a num-
ber of tools have become available that reconstruct a phylogenetic network
from a collection of phylogenetic trees, clusters, or rooted triplets so as to
quantify the extent of reticulation (e.g. see [1, 6, 8, 11, 10], and [9] for an
analysis of the relationship among these approaches). In particular, in terms
of two phylogenetic trees, the following optimization problem has attracted
considerable interest. Suppose that we are given two rooted phylogenetic
trees that correctly represent the evolutionary history of a set of present-day
species for two distinct genetic markers. What is the minimum number of
hybridization events that is needed to explain the evolution of the species
under consideration? We call this problem Minimum Hybridization.

Despite the NP-hardness of Minimum Hybridization, several exact
algorithms exist that solve many biological problem instances reasonably
quickly [1, 6, 8]. Instead of directly minimizing the number of hybridization
events over all hybridization networks that explain two phylogenetic trees,
most of these algorithms make use of the concept of agreement forests [2].
Roughly speaking, an agreement forest for two rooted phylogenetic trees T
and T ′ on the same set of species is a smallest collection of non-overlapping
subtrees that are common to T and T ′. Having calculated an agreement
forest for T and T ′, the polynomial-time algorithm HybridPhylogeny [3]
can then be applied to reconstruct a hybridization network that explains T
and T ′, where the number of hybridization events is at most the size of the
forest minus one (precise definitions are given in the next section). In such
a network, each vertex that has more than one incoming arc is referred to as
a hybridization vertex and represents a hybridization event. As an example,
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Figure 1: A hybridization network N with three hybridization vertices and hybridization
arcs drawn horizontally.

Figure 1 shows a hybridization network with three hybridization vertices.

However, as pointed out in [13, 14], although a hybridization network
might explain conflicting signals in a data set, there may be no process
with instantaneously occurring hybridization events that realizes this net-
work. This is due to the fact that the three species that are involved in a
hybridization event, i.e. a hybrid species and its two parental species, do
not coexist in time. We say that a hybridization network is temporal if each
hybridization event can be realized between coexisting species. Baroni et
al. [3] and Moret et al. [14] showed that a non-temporal hybridization net-
work can always be transformed into a temporal one by adding extinct or
unsampled species. Linz et al. [12] showed that determining the minimum
number of such extinct or unsampled species is an NP-hard task. Never-
theless, with or without this hardness result, it is natural to reconstruct a
temporal hybridization network for a given data set without allowing for ad-
ditional species. An immediate question is the following. Suppose that we
are given two rooted phylogenetic trees T and T ′ that correctly represent the
evolutionary history of a set of present-day species for two distinct genetic
markers. Does there exist a temporal hybridization network that explains T
and T ′? In this paper, we present a characterization to answer this ques-
tion in terms of so-called temporal forests and, subsequently, investigate the
problem of minimizing the number of hybridization events needed to merge
two rooted phylogenetic trees into a temporal hybridization network if such
a network exists. We refer to the latter optimization problem as Minimum

Temporal Hybridization. While it is a restricted version of Minimum

Hybridization, we will see that it remains computationally hard; in par-
ticular, it is APX-hard. Note that if two rooted phylogenetic trees admit a
temporal hybridization network, then the minimum number of hybridization
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events is always at least as big as the solution to Minimum Hybridization

for the same instance. Moreover, while each pair of rooted phylogenetic trees
admits a hybridization network it does not necessarily also admit a temporal
hybridization network. An example for two trees that cannot be merged into
the latter type of network is shown in Figure 2.

The paper is organized as follows. The next section contains some no-
tation and terminology that is used throughout this paper. In Section 3,
we present a characterization for when two rooted binary phylogenetic trees
admit a temporal hybridization network and, if so, show how to calculate
the minimum number of hybridization vertices in such a network. Using
this characterization, we show in Section 4 that Minimum Temporal Hy-

bridization is APX-hard and, thus, NP-hard. Unless otherwise stated, the
notation and terminology in this paper follow [17].

We end this section with two remarks. First, we expect the characteriza-
tion of Minimum Temporal Hybridization in terms of temporal agree-
ment forests to become equally important for the development of ‘efficient’
algorithms as the characterization of Minimum Hybridization in terms
of agreement forests. In particular, we will show in a forthcoming paper,
that temporal agreement forests are a useful tool to show that Minimum

Temporal Hybridization is fixed-parameter tractable. Thus, although
being NP-hard, the problem is likely to be tractable for many biological data
sets even for a large set of taxa. Second, the results presented in this paper
cannot be directly applied to the reconstructing of a phylogenetic network
that explains two gene trees whose evolutionary past is likely to include hor-
izontal gene transfer events instead of hybridization events. The reason for
this is that, for the former type of event to be temporal, only two species,
one of which is the reticulate species, need to coexist in time (as opposed to
three for hybridization). For example, the two trees shown in Figure 2 can
be explained by invoking two temporal horizontal gene transfer events.

2. Phylogenetic Trees, Networks, and Agreement Forests

This section provides preliminary definitions which are used throughout
the rest of the paper.
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Figure 2: Two rooted binary phylogenetic trees that do not admit a temporal hybridization
network.
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Figure 3: Two planted binary phylogenetic X-trees T and T ′.

Phylogenetic trees. Let X be a finite set. A rooted binary phylogenetic

X-tree T is a rooted tree with leaf set X and, apart from the root which
has degree two, all interior vertices have degree three. The set X is often
referred to as the label set of T and denoted by L(T ). For technical reasons,
we frequently view the root of T as a vertex that is adjoined to the original
root via a new pendant edge, in which case, T is a planted binary phylogenetic

X-tree. Ignoring the labels of the internal vertices for the moment, Figure 3
shows two planted binary phylogenetic trees T and T ′ with root label ρ0 and
L(T ) = L(T ′) = {a, b, . . . , h}.

Now, let T be a rooted phylogenetic X-tree, and let U be a subset of its
vertex set, i.e. U ⊆ V (T ). The minimal rooted subtree of T that connects
all vertices in U is denoted by T (U). Furthermore, the rooted tree obtained
from T (U) by contracting all non-root degree-2 vertices is the restriction of

T to U and is denoted by T |U . Typically, U is a subset of X . Lastly, a
rooted phylogenetic tree S is pendant in T if S can be detached from T by
deleting a single edge.

Now, let T be a rooted phylogenetic X-tree, and let X ′ be a subset of X .
We call X ′ a cluster of T if there is a vertex v in T whose set of descendants
in X is precisely X ′. We denote this cluster by CT (v). Furthermore, the
most recent common ancestor of X ′ is the vertex v in T with X ′ ⊆ CT (v)
such that there exists no vertex v′ with X ⊆ CT (v′) and CT (v′) ⊂ CT (v). We
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denote v by mrcaT (X
′).

Temporal hybridization networks. A hybridization networkN on a finite
set X is a rooted acyclic digraph with the following properties:

(i) the root has in-degree 0 and out-degree 2;

(ii) X is the set of leaves of the network, that is, the vertices with out-
degree 0 and in-degree 1;

(iii) all remaining vertices are interior vertices, and each such vertex either
has in-degree 1 and out-degree 2 or is a hybridization vertex that has
in-degree 2 and out-degree 1;

(iv) arcs ending in a hybridization vertex are hybridization arcs, while all
other arcs in the network are tree arcs; and

(v) every interior vertex has at least one outgoing tree arc.

Similar to the definition of a phylogenetic tree, the set X is often referred to
as the label set of N and denoted by L(N ).

We remark that the above definition of a hybridization network coincides
with that of a so-called tree-child phylogenetic network, introduced by Car-
dona et al. [5]. Furthermore, property (v) in the definition of a hybridization
network guarantees that a species that arises from either a speciation or a
hybridization event exists for a certain amount of time before possibly going
extinct. Hence, assuming that each hybrid species and its two parents coexist
in time, no ancestral species yields two new hybrid species and simultaneously
becomes extinct.

Now, letN be a hybridization network onX , and let T be a rooted binary
phylogenetic X ′-tree with X ′ ⊆ X . We say that N displays T if T can be
obtained from N by a sequence of arc and vertex deletions, and degree-2
vertex contractions. Intuitively, if N displays T , then all of the ancestral
relationships visualized by T are visualized by N .

Again, let N be a hybridization network on X , and let V be the set of
vertices of N . Let t : V → R

+ be a map such that, for all u, v ∈ V , we have
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Figure 4: A temporal hybridization network N . For each internal vertex v a temporal
labeling t(v) is given next to v. Note that N is a minimum temporal hybridization network
for the two phylogenetic trees shown in Figure 3.

t(u) = t(v) whenever (u, v) is a hybridization arc, and t(u) < t(v) whenever
there is a directed path from u to v that contains a tree arc. Then t is a
temporal labeling ofN , in which case, N is said to be temporal. An example of
a temporal hybridization network is shown in Figure 4, where arcs directed
horizontally are hybridization arcs while arcs directed downwards are tree
arcs.

For a temporal hybridization network N , we denote by ht(N ) the number
of hybridization vertices of N . Furthermore, if T and T ′ are rooted binary
phylogenetic X-trees, we set

ht(T , T
′) = min{ht(N ) : N is a temporal hybridization network on X that displays T and T ′}.

A temporal hybridization network N on X that displays two rooted binary
phylogenetic X-trees T and T ′ and has the property ht(N ) = ht(T , T ′) is
said to be a minimum temporal hybridization network for T and T ′.

Temporal-agreement forests. Let T and T ′ be two rooted binary phylo-
genetic X-trees. For the purposes of defining an agreement forest, we view
T and T ′ as planted with root vertex ρ0. An agreement forest for T and T ′

is a collection F = {T0, T1, . . . , Tk} of planted binary phylogenetic trees with
root labels ρ0, ρ1, . . . , ρk and label sets L0,L1, . . . ,Lk, respectively, such that
the following properties are satisfied:

(i) the label sets L0,L1, . . . ,Lk partition X ;

(ii) for all i ∈ {0, 1, . . . , k}, Ti
∼= T |Li

∼= T ′|Li; and
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Figure 5: A temporal-agreement forest F for the two phylogenetic trees T and T ′ that
are shown in Figure 3.

(iii) there are one-to-one maps

ψ : {ρ0, ρ1, . . . , ρk} → V (T ) and ψ′ : {ρ0, ρ1, . . . , ρk} → V (T ′)

so that the trees in

{T (Li ∪ {ψ(ρi)}) : i ∈ {0, 1, . . . , k}}

and
{T ′(Li ∪ {ψ′(ρi)}) : i ∈ {0, 1, . . . , k}}

are edge-disjoint rooted subtrees of T and T ′, respectively.

Ignoring the integer labels of the internal vertices, Figure 5 shows an agree-
ment forest for the two phylogenetic trees depicted in Figure 3.

It is a straightforward consequence of the definition that if F is an agree-
ment forest for T and T ′, then {E0, E1, . . . , Ek} and {E ′

0, E
′
1, . . . , E

′
k} are

partitions of the edge sets of T and T ′, respectively, where Ei is the edge
set of T (Li ∪ {ψ(ρi)}) and E ′

i is the edge set of T ′(Li ∪ {ψ′(ρi)}) for all
i ∈ {0, 1, . . . , k}. Furthermore, there are natural bijections θ and θ′ from
the union V (F) of the vertex sets of the trees in F to the vertex sets of
each of T and T ′, respectively. In particular, define θ : V (F) → V (T ) as
follows. If v ∈ X , set θ(v) = v, while if v = ρi for some i ∈ {0, 1, . . . , k}, set
θ(v) = ψ(ρi). Otherwise, v = mrcaTi(a, b) for some unique i ∈ {0, 1, . . . , k},
where a, b ∈ X and a 6= b, set θ(v) = mrcaT (a, b). The bijection θ′ is defined
analogously. Both θ and θ′ are well-defined.

Let F = {T0, T1, . . . , Tk} be an agreement forest for two rooted binary
phylogenetic X-trees T and T ′. We say that F is a temporal-agreement forest

for T and T ′ if there exists, for each i ∈ {0, 1, . . . , k}, a temporal labeling
ti of Ti such that the map t : V (T ) → R

+ defined by setting t(u) to be the
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temporal labeling of θ−1(u) induces a temporal labeling of T , and the map
t′ : V (T ′) → R

+ defined by setting t′(u) to be the temporal labeling of θ′−1(u)
induces a temporal labeling of T ′. In this case, we refer to {t0, t1, . . . , tk} as
a verification set for F , the maps t and t′ as the temporal labelings of T and
T ′ induced by F , respectively, and the maps θ and θ′ as temporal embeddings

of F in T and T ′, respectively. Moreover, if F contains the smallest number
of components amongst all temporal-agreement forests for T and T ′, we call
F a maximum-temporal-agreement forest for T and T ′, in which case, we
denote the value of k by mt(T , T ′). As an example, a temporal-agreement
forest F for the two phylogenetic trees T and T ′ shown in Figure 3 is shown
in Figure 5. In fact, it is easily checked that F is a maximum-temporal-
agreement forest for T and T ′. Furthermore, the temporal embeddings of F
in T and T ′ are shown in Figure 3.

Remark. For readers familiar with acyclic-agreement forests, we end this
section with the following note. If F is a temporal-agreement forest for two
rooted binary phylogenetic X-trees, then it is easily seen that F is also an
acyclic-agreement forest for T and T ′. However, the converse does not hold.

3. Characterizing the temporal hybridization number

In this section, we state and prove a characterization for when two rooted
binary phylogenetic X-trees T and T ′ admit a temporal hybridization net-
work on X that displays T and T ′. This characterization is stated in terms of
agreement forests, and as a consequence we show that ht(T , T ′) = mt(T , T ′).

Let N be a hybridization network on X , and view the root ρ0 of N as a
vertex adjoined to the original root via a new arc. Let F be a forest of planted
binary phylogenetic trees obtained from N by labeling each hybridization
vertex with a distinct ρi, where ρi 6= ρ0 for all i, deleting each hybridization
arc ofN , and then suppressing all resulting degree-two vertices. As the forest
is unique up to assigning root labels to the roots of each of the trees in F ,
we refer to F as the forest induced by N .

Proposition 3.1. Let T and T ′ be two rooted binary phylogenetic X-trees,

and suppose that N is a temporal hybridization network on X that displays
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T and T ′. Then the forest induced by N is a temporal-agreement forest for

T and T ′.

Proof. Let N be a temporal hybridization network on X that displays
T and T ′, and let t denote the temporal labeling of N . The proof is by
induction on ht(N ). If ht(N ) = 0, then, up to the assignment of temporal
labels, N is isomorphic to each of T and T ′. Thus the forest induced by
N consists of N itself, and so the proposition holds. Now suppose that the
proposition holds for all pairs of rooted binary phylogenetic X ′-trees with a
temporal hybridization network N ′ on X ′ that displays both trees and for
which ht(N ′) < ht(N ).

Let v denote a hybridization vertex of N for which the assigned temporal
labeling t(v) is maximized. Let u and u′ denote the parents of v in N .
Observe that the arc directed into u and the arc directed out of u (other
than (u, v)) are both tree arcs. An analogous observation can also be made
for u′. Furthermore, by the maximality of t(v) and as N is temporal, no
hybridization vertex is a descendant of v, u, or u′. Let Lk denote the subset
of X that contains precisely the descendants of v, and let X ′ = X − Lk.
Let N ′ be the temporal hybridization network on X ′ that is obtained from
N by deleting the arcs (u, v) and (u′, v), suppressing the resulting degree-
two vertices, and ignoring the component, Tk say, containing v. Since N
displays T and T ′ and since Tk is a pendant subtree of T and T ′, it follows
by the maximality of t(v) that N ′ is a temporal hybridization network that
displays T |X ′ and T ′|X ′. Therefore, as ht(N ′) < ht(N ), it follows by the
induction assumption that the forest F ′ = {T0, T1, . . . , Tk−1} induced by N ′

is a temporal-agreement forest for T |X ′ and T ′|X ′. Labeling v, the root
vertex of Tk appropriately, let F = F ′ ∪ {Tk}. Note that F is the forest
induced by N . Clearly, F is an agreement forest for T and T ′. We complete
the proof by showing that F is a temporal-agreement forest for T and T ′.

Let (w1, u) and (u, w2), where w2 6= v, and (w′
1, u

′) and (u′, w′
2), where

w′
2 6= v, be arcs in N . By the observations in the previous paragraph, both

of the arcs (w1, w2) and (w′
1, w

′
2) must be used in displaying each of T |X ′ and

T ′|X ′ in N ′ (with u and u′ being suppressed). Thus, in displaying each of T
and T ′ in N all of the arcs (w1, u), (u, w2), (w

′
1, u

′), and (u′, w′
2), and exactly

one of (u, v) and (u′, v), are used. Note that it is possible in displaying T
and T ′ that only one of the arcs (u, v) and (u′, v) is used. It now follows that
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the temporal labeling of N induces a temporal labeling of Tk so that F is
a temporal-agreement forest for T and T ′. This completes the proof of the
proposition. ✷

Proposition 3.1 provides one direction of the characterization (Theo-
rem 3.3). The other direction is given by the next proposition. Let F1 and
F2 be two temporal-agreement forests for two rooted binary phylogenetic
X-trees T and T ′. Furthermore, let t1 and t2 be the temporal labelings of
T induced by the temporal embeddings θ1 and θ2 of F1 and F2, respectively,
in T . Similarly, let t′1 and t′2 be the temporal labelings of T ′ induced by the
temporal embeddings θ′1 and θ′2 of F1 and F2, respectively, in T ′. Then F2

is a refinement of F1 precisely if t1 = t2, t
′
1 = t′2, and for each Ti ∈ F2 there

exists a Tj ∈ F1 such that L(Ti) ⊆ L(Tj).

Proposition 3.2. Let T and T ′ be two rooted binary phylogenetic X-trees,

and suppose that F is a temporal-agreement forest for T and T ′. Then there

exists a temporal hybridization network N on X that displays T and T ′ such

that F is a refinement of the forest induced by N .

Proof. Let F = {T0, T1, T2, . . . , Tk} be a temporal-agreement forest for T
and T ′. The proof is by induction on k. If k = 0, then, up to isomorphism,
T and T ′ are identical, and so T0 is temporal hybridization network with
the desired properties. Now suppose that the proposition holds for all pairs
of rooted binary phylogenetic trees on the same label sets with a temporal-
agreement forest of size at most k.

Without loss of generality, we may assume that, amongst all temporal
labelings of the root vertices of the trees in F , the temporal labeling of the
root vertex of Tk is maximized. Thus Tk is a pendant subtree of T and T ′.
Let X ′ = X−L(Tk), and let F ′ = F−{Tk}. Then it is easily seen that F ′ is a
temporal-agreement forest for T |X ′ and T ′|X ′. Therefore, by the induction
assumption, there is a temporal hybridization network N ′ that displays T |X ′

and T ′|X ′ such that F ′ is a refinement of the forest induced by N ′. We next
construct a network on X with the desired properties.

Let N be the network on X that is obtained from N ′ as follows. Since
Tk is a pendant subtree of T , we can obtain T from T |X ′ by subdividing an
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(unique) edge, (uk, vk) say, of T |X ′ and identifying the root of Tk, labeled
ρk, with the new vertex. The edge (uk, vk) corresponds to an edge of a tree
in F ′ in which, under the temporal labeling of T |X ′ induced by F ′, the end
vertices are assigned temporal labelings t(uk) and t(vk), respectively, where t
is the temporal map of T that is induced by F . Since N ′ displays T |X ′ and
F ′ is a refinement of the forest induced by N ′, there is a tree arc of N ′ whose
end vertices are assigned temporal labelings t(uk) and t(vk). Subdividing this
tree arc and adding a new arc joining the root ρk of Tk with the new vertex
assigned temporal labeling tk(ρk), where tk is the temporal labeling of Tk

in F , the resulting network is a temporal hybridization network on X that
displays T . Repeating this construction for T ′, let N denote the resulting
temporal hybridization network on X . Note that, as the forest induced by
N ′ is a refinement of F ′, all descendant arcs of the two vertices created by
the two subdivisions are tree arcs. By construction, the forest induced by N
is a refinement of F . This completes the proof of the proposition. ✷

The next theorem combines Propositions 3.1 and 3.2 and completes the
characterization.

Theorem 3.3. Let T and T ′ be two rooted binary phylogenetic X-trees.

Then there exists a temporal hybridization network on X that displays T and

T ′ if and only if there exists a temporal-agreement forest for T and T ′, in

which case,

ht(T , T
′) = mt(T , T

′).

Proof. If there exists a temporal hybridization network on X that displays
T and T ′, then, by Proposition 3.1, there is a temporal-agreement forest for
T and T ′. Furthermore, by Proposition 3.1, ht(T , T ′) ≥ mt(T , T ′). On
the other hand, if there is a temporal-agreement forest for T and T ′, then,
by Proposition 3.2, there is a temporal hybridization network on X that
displays T and T ′. Moreover, it follows by Proposition 3.2 that ht(T , T ′) ≤
mt(T , T ′). In particular,

ht(T , T
′) = mt(T , T

′).

✷
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4. Minimum Temporal Hybridization is APX-Hard

In this section, we show that the minimization problem Minimum Tem-

poral Hybridization is APX-hard and thus also NP-hard. In particular,
this means that, unless P=NP, there is some fixed constant c strictly bigger
than 1 for which there is no polynomial-time approximation algorithm such
that, for each instance, the output of a feasible solution is at most c times
the size of its optimal solution.

Minimum Temporal Hybridization

Instance: A finite set X , and two rooted binary phylogenetic X-trees T
and T ′.
Goal: Find a temporal hybridization network N on X that displays T and
T ′ with minimum hybridization number if such a network exists.
Measure: The value of ht(N ).

We obtain the above hardness result in two steps. For the first step,
we show that the following optimization problem is APX-hard using an L-
reduction from a restricted version of Maximum 4-Dimensional Match-

ing. Briefly, L-reductions were introduced by Papadimitriou and Yannakakis
[16] and preserve approximability. They play a similar role in the study of
approximability of optimization problems as polynomial-time reductions in
the study of decision problems and their complexity. For more details, we
refer the interested reader to [15, 16]. Having established an L-reduction to
Minimum Temporal Hybridization, the second step is an almost imme-
diate consequence of Theorem 3.3.

Maximum-Temporal-Agreement Forest

Instance: A finite set X , and two rooted binary phylogenetic X-trees T
and T ′.
Goal: Find a maximum-temporal-agreement forest F for T and T ′ if such
a forest exists.
Measure: The number of components in F minus one.

Maximum 4-Dimensional Matching (Max-4DM)
Instance: 4 disjoint sets W,X, Y, Z, and a subset Q of W ×X × Y × Z.
Goal: Find a maximum-sized subset M of Q with the property that no
members of M agree in any coordinate.

13



Measure: The cardinality of M .

Chleb́ık and Chleb́ıková [7] proved an explicit inapproximability ratio for
the restricted version of Max-4DM when each element of W ∪ X ∪ Y ∪ Z
appears in exactly two 4-tuples in Q. Denoting this restriction by Max-

4DM-2, we will show that there is an L-reduction from Max-4DM-2 to
Maximum-Temporal-Agreement Forest.

The construction and key lemma, Lemma 4.1, used to established this
L-reduction is similar to that used by Bordewich and Semple [4] to show
that the non-temporal version of Minimum Temporal Hybridization

is APX-hard. However, the temporal constraints mean that modifications
and additions are required for the construction. For this reason, we have
included the details of the construction and lemma in full, but the details of
the remaining part of the L-reduction have been suppressed.

Let W,X, Y, Z and Q ⊆W ×X×Y ×Z be an instance I of Max-4DM-2.
Let |W | = p. Since each element of W ∪X ∪ Y ∪ Z appears in exactly two
members of Q, we have

p = |W | = |X| = |Y | = |Z| = |Q|/2.

We next construct an instance ofMaximum-Temporal-Agreement For-

est based on I.

Let

Q = {(w1, x1, y1, z1), (w2, x2, y2, z2), . . . , (w2p, x2p, y2p, z2p)}.

Let T and T ′ be the two rooted binary phylogenetic X-trees shown in Fig-
ure 6 and Figure 7, respectively, where, for the moment, we ignore the (tem-
poral) labelings assigned to the interior vertices. In Figure 6, each subtree
Ai of T , where i ∈ {1, 2, . . . , 2p}, corresponds to exactly one tuple in Q. In
Figure 7, each subtree Br of T ′, where r ∈ {1, 2, . . . , 4p}, corresponds to
exactly one element r in W ∪X ∪ Y ∪Z, while each subtree Ci of T ′, where
i ∈ {1, 2, . . . , 2p}, corresponds to exactly one tuple in Q. Note that the edge
incident with the pendant root in Ai is not part of the subtree Ai (and is
only shown in Figure 6 for convenience) but in fact the edge joining Ai to
the rest of T . Analogous comments hold for the subtrees Br and Ci that are
shown in Figures 7, 8, and 9. Furthermore, for each Br, the indices i and

14



s18p

T

t1

t72p2−1

s36p2

wi

vi,wi

Ai

ui,xi
xi

vi,xi

ui,wi

s36p2−18p

A1

s1

A2

A2p

s18p+2s18p+1

s36p2−18p+1

t72p2

q1

q2

q2pq2p−1

f1

f2

f18p

f18p+1

f0

f18p+2

f36p2−18p

f36p2−18p+1

f36p2

f36p2+1

f36p2+72p2

f36p2+72p2−1

f36p2+72p2+1

f36p2+72p2+2

f36p2+72p2+2p−1

gW

gW

gW

gW

gX

gY

gZ

hZ
i,1

hZ
i,2

hY
i,2

hY
i,1

hX
i,1

hX
i,2

hW
i,2

hW
i,1

gX

gX

gX

vi,zi
ziui,zi

ui,yi yi

vi,yi

s2

Figure 6: The tree T and its subtrees Ai that are used in the proof of Lemma 4.1.

j are used to identify the two tuples in Q in which r occurs. Throughout
the statement and proof of Lemma 4.1, T and T ′ refer to the rooted binary
phylogenetic trees shown in Figures 6 and 7.

Before stating and proving the key lemma, Lemma 4.1, we describe
an equivalent way of showing that two rooted binary phylogenetic X-trees
have a temporal-agreement forest. This equivalence is used in the proof of
Lemma 4.1. Let T be a planted phylogenetic X-tree with root ρ0, and let
t be a temporal labeling of T . Let S be a pendant subtree of T , and let
e = (u1, u2) be the edge of T attaching S to T . The edge separation of e is
performed by deleting e, contracting the resulting non-root degree-two ver-
tex, adjoining a pendant root to u2, and assigning the new root the temporal
label t(u1). Now let T and T ′ be two rooted binary phylogenetic X-trees.
Viewing T and T ′ as planted with a root vertex ρ0, it is easily seen that T
and T ′ have a temporal-agreement forest of size k + 1 if and only if there
are temporal labelings t and t′ of T and T ′, respectively such that there is a
sequence of k edge separations in each of T and T ′ that result in the same
forest.
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Figure 7: The tree T ′ and its subtrees Br and Ci that are used in the proof of Lemma 4.1.

Lemma 4.1. The set Q contains a 4-dimensional matching of size k if and

only if there is a temporal-agreement forest for T and T ′ of size

1 + 8k + 9(2p− k) = 18p− k + 1.

In particular, mt(T , T ′) = 18p − opt(Q), where opt(Q) denotes the size of

an optimal 4-dimensional matching of Q.

Proof. First suppose that Q contains a 4-dimensional matching M of size
k. To show that T and T ′ have a temporal-agreement forest F of size
18p− k + 1, we first give a temporal labeling of T and T ′, and then specify
the edge separations in both T and T ′ that result in a temporal-agreement
forest of this size. Observe that it suffices to assign temporal labels to only
the interior vertices of T and T ′.

Let t : V̊ (T ) → R
+ be the map that assigns positive real values to the
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interior vertices of T as shown in Figure 6, where

f0 < f1 < · · · < f36p2+72p2+2p−1 < gW < gX < gY < gZ

< hWi,1 < hWj,1 < hWi,2 < hWj,2 < hXi,1 < hXj,1 < · · · < hZi,2 < hZj,2.

For clarification, consider an element in W . This element appears in exactly
two 4-tuples, corresponding to Ai and Aj say. For Ai, we assign the temporal
labelings hWi,1 and hWi,2 and, for Aj , we assign the temporal labelings hWj,1 and
hWj,2 appropriately. This extends analogously to all elements inW ∪X∪Y ∪Z.

Clearly, t is a temporal labeling of T . Now let t′ : V̊ (T ′) → R
+ be the map

that assigns positive real values to the interior vertices v of T ′ as follows.
If a vertex v in V̊ (T ′) is on the path from the root of T ′ to the vertex
labeled f36p2+72p2+2p−1, then assign v the value as shown in Figure 7. For the
interior vertices that are part of the subtrees Br and Ci and their respective
parents, their assigned values depend upon whether or not the element r is
in a tuple in M and whether or not the tuple corresponding to Ci is in M .
In particular, we make the following assignments, where R in the superscript
of the temporal labels assigned to the subtrees Br and their parent vertices
equates to W , X , Y , or Z depending upon whether r is an element of W ,
X , Y , or Z, respectively:

(i) If neither ri nor rj is in a tuple in M , then the interior vertices of Br

and its parent are assigned values as shown in Figure 7.

(ii) If ri is in a tuple in M and so rj is not in a tuple in M , then the
interior vertices of Br and its parent are assigned values as shown in
Figure 8(a).

(iii) If rj is in a tuple in M and so ri is not in a tuple in M , then the
interior vertices of Br and its parent are assigned values as shown in
Figure 8(b).

(iv) If M does not contain the tuple corresponding to Ci, then the interior
vertices of Ci and its parent are assigned values as shown in Figure 7.

(v) Lastly, if M contains the tuple corresponding to Ci, then the interior
vertices of Ci and its parent are assigned values as shown in Figure 9.

17



hR
j,1

gR

hR
i,2

(a) (b)

vj,rj

vi,ri

ui,ri uj,rj

hR
i,1

hR
j,1

hR
j,2

gR

vj,rj

vi,ri

ui,ri uj,rj

hR
i,1

Figure 8: The temporal labeling of the subtree Br if (a) ri is contained in a tuple of M
and (b) rj is contained in a tuple of M .
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Figure 9: The temporal labeling of the subtree Ci for when M contains the 4-tuple corre-
sponding to Ci.

It is easily checked that t′ is a temporal labeling of T ′.

We next specify a set of edge separations for T and T ′. For T , we make
the following edge separations:

(I) For each i, separate the edge attaching Ai to the rest of T .

(II) For each i in which Ai corresponds to a tuple inM , separate each of the
pendant edges attaching wi, xi, yi, and zi, and then separate, in turn,
the edges attaching the subtrees containing ui,zi and vi,zi, ui,yi and vi,yi ,
and ui,xi

and vi,xi
. In this case, Ai is broken into 8 components.

(III) For each i in which Ai corresponds to a tuple not in M , separate each
of the pendant edges attaching ui,wi

, vi,wi
, ui,xi

, vi,xi
, ui,yi, vi,yi, ui,zi, vi,zi.

In this case, Ai is broken into 9 components.

Altogether, this process breaks T into 1 + 8k + 9(2p − k) = 18p − k + 1
components. For T ′, we make the following edge separations:

(I′) For each r and i, separate the edge attaching Br and Ci to the rest of
T ′.
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(II′) For each r ∈ W ∪ X ∪ Y ∪ Z, if neither ri nor rj is in a tuple in
M , then separate, in turn, the pendant edges attaching uj,rj , ui,ri, and
vj,rj , so that Br is broken into 4 components. If ri is in a tuple in M ,
then separate the pendant edges attaching uj,rj and vj,rj , so that Br

is broken into 3 components. If rj is in a tuple in M , then separate
the pendant edges attaching ui,ri and vi,ri, so that Br is broken into
3 components.

(III′) For each i, if the tuple corresponding to Ci is not inM , then it remains
as 1 component. If the tuple corresponding to Ci is inM , then separate
the pendant edges attaching zi, yi, and xi, so that Ci is broken into 4
components.

Collectively, this process breaks T ′ into 1+4(4p−4k)+3 ·4k+(2p−k)+4k =
18p− k + 1. Thus the two processes break T and T ′ into the same number
of components. Furthermore, a routine check shows that the two sets of
components are identical. It now follows that the resulting set of components
is a temporal-agreement forest for T and T ′.

For the converse, let F be a temporal-agreement forest for T and T ′ of
size at most 18p+1. Note that the temporal labelings assigned to the interior
vertices of T and T ′ play no role in this part of the proof. Let

S = {s1, s2, . . . , s36p2, t1, t2, . . . , t72p2, q1, q2, . . . , q2p}.

We first show that if Tj ∈ F and, for some i, the intersection L(Tj) ∩ L(Ai)
is non-empty, then L(Tj) ⊆ L(Ai). Furthermore, we also show that if Tj ∈ F
and, for some r, the intersection L(Tj) ∩ L(Br) is non-empty, then L(Tj) ⊆
L(Br).

Suppose that Tj ∈ F and L(Tj) ∩ L(Ai) is non-empty. Let ℓ ∈ L(Tj)
such that ℓ 6∈ L(Ai). Assume ℓ ∈ L(Ai′) for some i′ 6= i. Then, as F is an
agreement forest for T and T ′, at least 18p members of {s1, s2, . . . , s36p2−18p}
appear as planted singletons in F . By property (iii) in the definition of
an agreement forest, no label set of a component of F contains L(Ai), and
so F has at least 18p + 2 components; a contradiction. Now assume that
ℓ /∈ L(Ai′). Thus ℓ ∈ S. If ℓ ∈ S − {s1, s2, . . . , s36p2}, then either each of the
18p elements in {s36p2−18p+1, . . . , s36p2} if i = 2p or each of the 18p elements
in {s36p2−18p, s36p2−18p+2, . . . , s36p2} if i 6= 2p appear as planted singletons in
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F . Since no label set of a component in F contains L(Ai), this implies that F
contains at least 18p+ 2 components; a contradiction. Thus we may assume
that ℓ ∈ {s1, s2, . . . , s36p2}, in which case, it is easily checked that at least
18p − 1 members of {s36p2−18p+1, . . . , s36p2} appear as planted singletons in
F . However, L(Ai) is not contained in the label set of a single component
and, by property (iii) in the definition of an agreement forest, the label set of
no component other than Tj has a non-empty intersection with L(Ai) and a
non-empty intersection with S−{s1, s2, . . . , s36p2}. Thus F contains at least
18p+2 components. This last contradiction now implies that L(Tj) ⊆ L(Ai).
With this in hand, it is now easily seen that if L(Tj) ∩ L(Br) is non-empty
for some r, then L(Tj) ⊆ L(Br).

Now suppose that F is a temporal-agreement forest of size 1+8k+9(2p−
k) = 18p− k+ 1. By the above argument, for each i and r, there is a subset
of components of F for which the union of the label sets equates to L(Ai)
and L(Br), respectively. It is now easily seen that, for each i, the number
of components of F in such a subset for which the union of the label sets
equates to L(Ai) is at least 8. Moreover, it is precisely 8 if the partition of
L(Ai) induced by these label sets is
{

{wi}, {xi}, {yi}, {zi}, {ui,wi
, vi,wi

}, {ui,xi
, vi,xi

}, {ui,yi, vi,yi}, {ui,zi, vi,zi}
}

.

As F has size 1 + 8k + 9(2p − k), it follows that at least k of the Ais are
‘partitioned’ in this way. Let Ai and Aj be two such subtrees in T , and let
(wi, xi, yi, zi) and (wj, xj , yj, zj) be the two 4-tuples associated with Ai and
Aj. Assume that the first coordinates agree, that is wi = wj. The label
sets of two components of F are {ui,wi

, vi,wi
} and {uj,wj

, vj,wj
}. However,

as wi = wj, this implies that the third condition of an agreement forest is
violated in the corresponding subtree Br; a contradiction. Hence the first
coordinate does not agree and, similarly, the other coordinates do not agree.
We deduce that Q has a 4-dimensional matching of size at least k, thereby
completing the proof of the lemma. ✷

Despite the modifications and additions in the above construction, the
relationship between the size of a 4-dimensional matching in Q and the size
of a temporal-agreement forest for T and T ′ as described in Lemma 4.1 is
precisely the same as that for the key lemma in [4] for showing that the
non-temporal version of Minimum Temporal Hybridization is APX-
hard, where the type of agreement forest involved is more general. As a
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consequence, the proofs of the remaining results in this section are essentially
identical to the analogous results in [4], and are thus omitted.

Theorem 4.2. The optimization problemMaximum-Temporal-Agreement

Forest is APX-hard. In particular, unless P=NP, there is no polynomial-

time approximation scheme for Maximum-Temporal-Agreement For-

est.

Chleb́ık and Chleb́ıková [7] showed that, unless P=NP, there is no polynomial-
time approximation algorithm for Max-4DM-2 with an approximation ratio
better than 48

47
. Using this result, one can establish the next corollary.

Corollary 4.3. Unless P=NP, there is no polynomial-time approximation

algorithm for Maximum-Temporal-Agreement Forest with an approx-

imation ratio better than 2113

2112
.

It immediately follows from Theorem 3.3 that there is no polynomial-time
approximation algorithm with ratio c forMaximum-Temporal-Agreement

Forest if and only if there is no polynomial-time approximation algorithm
with ratio c for Minimum Temporal Hybridization. Combining Theo-
rem 4.2 and Corollary 4.3, we have the following result.

Corollary 4.4. The optimization problemMinimum Temporal Hybridiza-

tion is APX-hard. In particular, unless P=NP, there is no polynomial-time

approximation algorithm for Minimum Temporal Hybridization with an

approximation ratio better than 2113

2112
.
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