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Abstract Recently, we have shown that calculating the minimum-temporal-hy-

bridization number for a set P of rooted binary phylogenetic trees is NP-hard and

have characterized this minimum number when P consists of exactly two trees. In

this paper, we give the first characterization of the problem for P being arbitrarily
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large. The characterization is in terms of cherries and the existence of a particular

type of sequence. Furthermore, in an online appendix to the paper, we show that

this new characterization can be used to show that computing the minimum-

temporal hybridization number for two trees is fixed-parameter tractable.

Keywords cherry · fixed-parameter tractability · phylogenetic network ·

phylogenetic tree · temporal network

1 Introduction

While the construction of phylogenetic networks from phylogenetic trees has re-

cently attracted much attention from a mathematical and computational viewpoint

(e.g. [3,7,12,13,15]), the biological meaningfulness of the resulting networks is of-

ten questioned. Indeed, the reconstruction of rooted phylogenetic networks is still

not widely used by biologists and the development of tools that are biologically

significant and computationally tractable remains challenging [11]. In this paper,

we investigate rooted phylogenetic networks—called temporal networks—that sat-

isfy the following two time constraints. First, speciation events occur successively

and, second, reticulation events, such as horizontal gene transfer, hybridization or

recombination, occur instantaneously. Hence, the three species that are involved

in a reticulation event, i.e. the new species resulting from this event and its two

distinct parents, must coexist in time. While these constraints are biologically

well-motivated, they are often neglected in theoretical work. Yet, if two vertices

(resp. species) in a phylogenetic network N do not coexist in time, then their

genomes can only be combined to create a new species when explained by an ad-

ditional evolutionary event that is not present in N . In the following, we consider

hybridization as representative of reticulation and, therefore, refer to a reticulation

event as a hybridization event.
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Emphasizing that a set of rooted phylogenetic trees can always simultane-

ously be embedded into a rooted phylogenetic network, but not necessarily into

a temporal network, we state the following decision problem. Suppose that we

are given a positive integer k and a set P of rooted binary phylogenetic trees

that correctly represent the evolutionary history of a set of present-day species

for |P| distinct genetic markers, where |P| is the number of elements (i.e. trees)

in P. Can the elements of P be merged into a temporal network with fewer than

k hybridization events? We call this problem Minimum-Temporal Hybridiza-

tion (resp. 2-Minimum-Temporal Hybridization for the restricted case when

|P| = 2). Furthermore, if k is the smallest value for which Minimum-Temporal

Hybridization returns the answer ‘yes’, then k − 1 is said to be the minimum-

temporal-hybridization number for P. This minimum number indicates the sig-

nificance with which hybridization has influenced the evolutionary history of the

species under consideration. In an earlier paper [10], we showed that the corre-

sponding optimization version of 2-Minimum-Temporal Hybridization is APX-

hard and thus also NP-hard. Unless P=NP, it is therefore unlikely that an efficient

and exact algorithm exists to solve Minimum-Temporal Hybridization.

In this paper, we give a novel characterization of the minimum-temporal-

hybridization number for an arbitrary sized set P of rooted binary phylogenetic

trees. This characterization is based on a particular type of sequence of the leaves of

the trees in P and is unrelated to the popular concept of agreement forests that is

frequently employed to quantify hybridization (see below). We call such a sequence

a cherry-picking sequence for P. Without time constraints, Minimum-Temporal

Hybridization becomes the well-known problem Hybridization Number [1,6,

7,14,15,17] for which an analogous characterization remains elusive despite the

attempts of a number of independent collaborations within the last ten years. The

reason for wanting to establish such a characterization is that, for the instance of

Hybridization Number when |P| = 2, there exists a characterization in terms

of agreement forests and it is precisely this characterization that yields the exact

algorithms [3,6,7,15,17] for this particular instance. However, this characteriza-
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tion does not appear to extend to when |P| > 2. An analogous situation occurs

for Minimum-Temporal Hybridization. In [10], we established an agreement

forest characterization for the minimum-temporal hybridization number for two

rooted binary phylogenetic trees, but, again, this characterization does not appear

to generalize to an arbitrary sized set of rooted binary phylogenetic trees. The only

available algorithms for Hybridization Number for when |P| > 2 are described

in [5,16] but these are simply heuristics that compute lower and upper bounds on

the exact solution.

Fixed-parameter algorithms have proven to be a useful tool for solving many

NP-hard problems exactly. Roughly speaking, a decision problem is fixed-parameter

tractable if there exists an algorithm that solves it in time O(f(k)p(n)), where

f is some function, k is a parameter of the input, p is some fixed polynomial,

and n is the size of the input. Thus, if k is reasonably small, the problem may

be tractable even for large n. For fixed-parameter algorithms in the context of

phylogenetics, we refer the interested reader, for example, to [7–9]. In the online

appendix to this paper, we show that 2-Minimum-Temporal Hybridization

is fixed-parameter tractable. We present a fixed-parameter algorithm—called 2-

MinTempHybrid—that exactly computes the minimum-temporal-hybridization

number for two rooted binary phylogenetic trees T and T ′ or determines that

they cannot be merged into a temporal network. In particular, by making use of

the aforementioned characterization of the minimum-temporal-hybridization num-

ber in terms of a cherry-picking sequence for T and T ′ and using two previously

established reduction rules [3], we reduce the size (i.e. the number of leaves) of T

and T ′ so that it is linear in the minimum-temporal-hybridization number for T

and T ′.

The remainder of the paper is organized as follows. The next section con-

tains notation and terminology that is used throughout the rest of the paper.

In Section 3, we establish the above-mentioned characterization of the minimum-

temporal-hybridization number in terms of cherry-picking sequences for an ar-
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Fig. 1 Two trees T and T 0 on X = {a, b, . . . , h}.

bitrarily large set of rooted binary phylogenetic trees. Section 4 briefly outlines

an approach to establish fixed-parameter tractability for 2-Minimum-Temporal

Hybridization in terms of cherry-picking sequences. Full details (including for-

mal proofs) of this result are given in the online appendix to this paper. Lastly,

Section 5 finishes o↵ with a brief conclusion.

2 Preliminaries

This section provides notation and terminology that is used throughout the rest

of the paper.

2.1 Phylogenetic trees

Throughout this paper, we use [k] to refer to the set {1, 2, . . . , k} and X to denote

a finite set with |X| = n. A rooted binary phylogenetic X-tree T is a rooted tree

with leaf set X and, apart from the root which has degree two, all interior vertices

have degree three. To ease reading, we refer to a rooted binary phylogenetic X-tree

as a tree on X. Furthermore, in the remainder of this section and Section 3, we

use P to denote a set of trees on X, where |P| = m. The set X is often said to be

the label set of T and is denoted by L(T ). Furthermore, a pair of leaves {a, b} of

T is called a cherry if a and b are leaves that are adjacent to a common vertex of

T . Figure 1 shows two trees T and T 0 on L(T ) = L(T 0) = {a, b, . . . , h}, where T

has the two cherries {d, e} and {f, g}

Fig. 1 Two trees T and T ′ on X = {a, b, . . . , h}.

bitrarily large set of rooted binary phylogenetic trees. Section 4 briefly outlines

an approach to establish fixed-parameter tractability for 2-Minimum-Temporal

Hybridization in terms of cherry-picking sequences. Full details (including for-

mal proofs) of this result are given in the online appendix to this paper. Lastly,

Section 5 finishes off with a brief conclusion.

2 Preliminaries

This section provides notation and terminology that is used throughout the rest

of the paper.

2.1 Phylogenetic trees

Throughout this paper, we use [k] to refer to the set {1, 2, . . . , k} and X to denote

a finite set with |X| = n. A rooted binary phylogenetic X-tree T is a rooted tree

with leaf set X and, apart from the root which has degree two, all interior vertices

have degree three. To ease reading, we refer to a rooted binary phylogenetic X-tree

as a tree on X. Furthermore, in the remainder of this section and Section 3, we

use P to denote a set of trees on X, where |P| = m. The set X is often said to be

the label set of T and is denoted by L(T ). Furthermore, a pair of leaves {a, b} of

T is called a cherry if a and b are leaves that are adjacent to a common vertex of

T . Figure 1 shows two trees T and T ′ on L(T ) = L(T ′) = {a, b, . . . , h}, where T

has the two cherries {d, e} and {f, g}
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Now, let T be a tree on X, and let X ′ = {x1, x2, . . . , xk} be a subset of

X. The minimal rooted subtree of T that connects all vertices in X ′ is de-

noted by T (X ′). Furthermore, the rooted tree obtained from T (X ′) by con-

tracting all non-root degree-2 vertices is the restriction of T to X ′ and is de-

noted by T |X ′. We also write T [−x1, x2, . . . , xk] or T [−X ′] for short to denote

T |(X − X ′). For a set P = {T1, T2, . . . , Tm} of trees on X, we sometimes write

P|X ′ (resp. P[−X ′]) when referring to the set {T1|X ′, T2|X ′, . . . , Tm|X ′} (resp.

{T1[−X ′], T2[−X ′], . . . , Tm[−X ′]}). Lastly, a rooted phylogenetic tree is pendant

in P if it can be detached from each tree in P by deleting a single edge.

2.2 Temporal networks

A network N on a finite set X is a rooted acyclic digraph with the following

properties:

(i) the root has in-degree 0 and out-degree at least 2;

(ii) X is the set of leaves of the network, that is, the vertices with out-degree 0

and in-degree 1;

(iii) all remaining vertices are interior vertices, and each such vertex either has in-

degree 1 and out-degree at least 2 or is a hybridization vertex that has in-degree

at least 2 and out-degree 1;

(iv) arcs ending in a hybridization vertex are hybridization arcs, while all other arcs

in the network are tree arcs; and

(v) every interior vertex has at least one outgoing tree arc.

We note that the above definition of a network coincides with that of a so-called

tree-child network which was introduced by Cardona et al. [4].

Now, let N be a network on X, and let P be a set of trees on X ′ with X ′ ⊆ X.

We say that N displays P if each tree in P can be obtained from N by a sequence

of arc and vertex deletions, and degree-2 vertex contractions.
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Fig. 2 A temporal network N . For each internal vertex v a temporal labeling t(v) is given

next to v. Note that N is a minimum-temporal network for the two trees shown in Figure 1.

Again, let N be a network on X, and let V be the set of vertices of N . Let

t : V ! R+ be a map such that, for all u, v 2 V , we have t(u) = t(v) whenever

(u, v) is a hybridization arc, and t(u) < t(v) whenever (u, v) is a tree arc. Then t

is a temporal labeling of N , in which case N is said to be temporal. An example

of a temporal network is shown in Figure 2, where arcs directed horizontally are

hybridization arcs while arcs directed downwards are tree arcs.

For a temporal network N , the temporal-hybridization number of N is defined

as

ht(N ) =
X

v 6=⇢

(d�(v)� 1),

where d�(v) denotes the in-degree of v. Furthermore, for a set P of trees on X,

we define the minimum-temporal-hybridization number as follows:

ht(P) = min{ht(N ) : N is a temporal network on X that displays P}.

A temporal network N on X that displays a set P of trees on X and has the

property ht(N ) = ht(P) is said to be a minimum-temporal network for P. Note

that there are instances of P for which no such temporal network displays P [10].

Furthermore, we will sometimes write ht(T , T 0) instead of ht(P), in which case

P contains exactly two trees T and T 0 on X. In such a case, the in-degree of any

vertex of a minimum-temporal network N for P is at most 2 and, so, ht(N ) is

simply the number of hybridization vertices of N . In contrast to Lemma 2 of [12],

we emphasize that, due to property (v) in the definition of a network, a temporal-

hybridization network N that has a hybridization vertex whose in-degree is greater

Fig. 2 A temporal network N . For each internal vertex v a temporal labeling t(v) is given

next to v. Note that N is a minimum-temporal network for the two trees shown in Figure 1.

Again, let N be a network on X, and let V be the set of vertices of N . Let

t : V → R+ be a map such that, for all u, v ∈ V , we have t(u) = t(v) whenever

(u, v) is a hybridization arc, and t(u) < t(v) whenever (u, v) is a tree arc. Then t

is a temporal labeling of N , in which case N is said to be temporal. An example

of a temporal network is shown in Figure 2, where arcs directed horizontally are

hybridization arcs while arcs directed downwards are tree arcs.

For a temporal network N , the temporal-hybridization number of N is defined

as

ht(N ) =
∑

v 6=ρ
(d−(v)− 1),

where d−(v) denotes the in-degree of v. Furthermore, for a set P of trees on X,

we define the minimum-temporal-hybridization number as follows:

ht(P) = min{ht(N ) : N is a temporal network on X that displays P}.

A temporal network N on X that displays a set P of trees on X and has the

property ht(N ) = ht(P) is said to be a minimum-temporal network for P. Note

that there are instances of P for which no such temporal network displays P [10].

Furthermore, we will sometimes write ht(T , T ′) instead of ht(P), in which case

P contains exactly two trees T and T ′ on X. In such a case, the in-degree of any

vertex of a minimum-temporal network N for P is at most 2 and, so, ht(N ) is

simply the number of hybridization vertices of N . In contrast to Lemma 2 of [12],

we emphasize that, due to property (v) in the definition of a network, a temporal-

hybridization network N that has a hybridization vertex whose in-degree is greater
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than 2 cannot be transformed into a temporal-hybridization network N ′ such that

each hybridization vertex of N ′ has in-degree 2 and ht(N ) = ht(N ′).

We next state the decision problem Minimum-Temporal Hybridization that

was informally described in the introduction of this paper.

Minimum-Temporal Hybridization

Instance. A set P of trees on X and a positive integer k.

Question. Does there exist a temporal network on X that displays P, and has

fewer than k hybridization vertices?

In the remainder of this paper, we sometimes consider Minimum-Temporal Hy-

bridization for when m = 2 in which case we refer to it as 2-Minimum-Temporal

Hybridization. It was shown in [10] that 2-Minimum-Temporal Hybridization

is NP-hard and, thus, Minimum-Temporal Hybridization remains computa-

tionally hard for an arbitrary sized set P.

Remark. As mentioned in the introduction, by weakening the question of Min-

imum-Temporal Hybridization so that it asks whether or not there exists a

network on X that displays P and has fewer than k hybridization vertices, we de-

rive a second decision problem—called Hybridization Number—that was intro-

duced by Bordewich and Semple [3] and since then has been investigated in many

subsequent studies for when |P| = 2. Analogously to the definition of ht(T , T ′),

we define the minimum-hybridization number for two trees T and T ′ on X, de-

noted by h(T , T ′), as the minimum number of hybridization vertices of a so-called

hybridization network that displays T and T ′. In comparison with networks as de-

fined at the beginning of this subsection, a hybridization network is more general

and, in particular, may or may not be temporal. However, by slightly modifying

the proof of [2, Theorem 2], one can show that, if there exists a hybridization net-

work N that displays T and T ′, and h(N ) = k, then there also exists a tree-child

network N ′ that displays T and T ′, and h(N ′) ≤ k.
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Fig. 3 Three trees on X for which � = (f, g, d, b, a, e, c) is a cherry-picking sequence with

weight w(�) = 5.

For the reader familiar with the notion of agreement forests, we end this section

by loosely describing a characterization for when two trees T and T 0 on X admit

a temporal network and, if so, how the size of a so-called “maximum-temporal-

agreement forest” for T and T 0 is related to the minimum-temporal-hybridization

number for T and T 0. Roughly speaking, a maximum-temporal-agreement forest

for T and T 0 is an agreement forest for T and T 0 of smallest size whose subtrees

satisfy certain time constraints. Humphries et al. [10] showed that there exists

a temporal network on X that displays T and T 0 if and only if there exists a

so-called “temporal-agreement forest” for T and T 0, in which case,

ht(T , T 0) = |F| � 1,

where |F| is the size of a maximum-temporal-agreement forest F for T and T 0.

For details, see [10].

3 Cherry-Picking Sequences

In this section, we establish a novel characterization of ht(P) for a set P of trees

on X and show how it can be used to compute this minimum.

Let � = (x1, x2, . . . , xp) be an arbitrary sequence. For i, j 2 [p] with i  j,

we call the sequence (xi, xi+1, . . . , xj) a substring of �. We say that an order-

ing of the elements in X, say (x1, x2, . . . , xn), is a cherry-picking sequence for P

precisely if each xi with i 2 [n � 1] labels a leaf of a cherry in each tree that

is contained in P[�x1, x2, . . . , xi�1]. For example, Figure 3 shows three trees for

which (f, g, d, b, a, e, c) is a cherry-picking sequence.

Fig. 3 Three trees on X for which σ = (f, g, d, b, a, e, c) is a cherry-picking sequence with

weight w(σ) = 5.

For the reader familiar with the notion of agreement forests, we end this section

by loosely describing a characterization for when two trees T and T ′ on X admit

a temporal network and, if so, how the size of a so-called “maximum-temporal-

agreement forest” for T and T ′ is related to the minimum-temporal-hybridization

number for T and T ′. Roughly speaking, a maximum-temporal-agreement forest

for T and T ′ is an agreement forest for T and T ′ of smallest size whose subtrees

satisfy certain time constraints. Humphries et al. [10] showed that there exists

a temporal network on X that displays T and T ′ if and only if there exists a

so-called “temporal-agreement forest” for T and T ′, in which case,

ht(T , T ′) = |F| − 1,

where |F| is the size of a maximum-temporal-agreement forest F for T and T ′.

For details, see [10].

3 Cherry-Picking Sequences

In this section, we establish a novel characterization of ht(P) for a set P of trees

on X and show how it can be used to compute this minimum.

Let σ = (x1, x2, . . . , xp) be an arbitrary sequence. For i, j ∈ [p] with i ≤ j,

we call the sequence (xi, xi+1, . . . , xj) a substring of σ. We say that an order-

ing of the elements in X, say (x1, x2, . . . , xn), is a cherry-picking sequence for P

precisely if each xi with i ∈ [n − 1] labels a leaf of a cherry in each tree that
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Fig. 4 Setup of N in the proof of Lemma 1.

The first theorem in this section, which requires the following lemma, charac-

terizes whether or not there exists a temporal network that displays a set of trees

on X.

Lemma 1 Let P be a set of trees on X, and suppose that there is a temporal

network N on X that displays P. Then there exists an element of X that labels a

leaf of a cherry in each tree of P.

Proof Let N be a temporal network on X that displays P and whose temporal

labeling is t. Let v be a hybridization vertex for which the assigned temporal

labeling is maximized. Furthermore, let (v, w0) be the unique tree arc of N that is

incident with v, and, for each j 2 [m], let (uj , v) be a hybridization arc of N that

is used to display Tj 2 P in N . Note that, for j, j0 2 [m], we may have uj = uj0 .

Now, for each j 2 [m], obtain the subnetwork Nj with root wj by deleting the

tree arc (uj , wj), and obtain the subnetwork N0 with root w0 by deleting the tree

arc (v, w0) (see Figure 4). For any i 2 {0, 1, 2, . . . , m}, note that, by property (v)

in the definition of a network and the maximality of t(v), the aforementioned tree

arc exists and each Ni is a rooted binary phylogenetic tree that is pendant in P.

Now, if there exists an Ni in the multiset {N0, N1, N2, . . . , Nm} that contains at

least two leaves, the claim clearly follows. Therefore, we may assume that each Ni

consists of a single leaf labeled xi. As (uj , v) is used to display Tj in N , it follows

that {x0, xj} is a cherry of Tj for each j. Hence, x0 is a leaf of a cherry in each

tree of P. This completes the proof of the lemma. ut

Fig. 4 Setup of N in the proof of Lemma 1.

is contained in P[−x1, x2, . . . , xi−1]. For example, Figure 3 shows three trees for

which (f, g, d, b, a, e, c) is a cherry-picking sequence.

The first theorem in this section, which requires the following lemma, charac-

terizes whether or not there exists a temporal network that displays a set of trees

on X.

Lemma 1 Let P be a set of trees on X, and suppose that there is a temporal

network N on X that displays P. Then there exists an element of X that labels a

leaf of a cherry in each tree of P.

Proof Let N be a temporal network on X that displays P and whose temporal

labeling is t. Let v be a hybridization vertex for which the assigned temporal

labeling is maximized. Furthermore, let (v, w0) be the unique tree arc of N that is

incident with v, and, for each j ∈ [m], let (uj , v) be a hybridization arc of N that

is used to display Tj ∈ P in N . Note that, for j, j′ ∈ [m], we may have uj = uj′ .

Now, for each j ∈ [m], obtain the subnetwork Nj with root wj by deleting the

tree arc (uj , wj), and obtain the subnetwork N0 with root w0 by deleting the tree

arc (v, w0) (see Figure 4). For any i ∈ {0, 1, 2, . . . ,m}, note that, by property (v)

in the definition of a network and the maximality of t(v), the aforementioned tree

arc exists and each Ni is a rooted binary phylogenetic tree that is pendant in P.

Now, if there exists an Ni in the multiset {N0,N1,N2, . . . ,Nm} that contains at
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least two leaves, the claim clearly follows. Therefore, we may assume that each Ni
consists of a single leaf labeled xi. As (uj , v) is used to display Tj in N , it follows

that {x0, xj} is a cherry of Tj for each j. Hence, x0 is a leaf of a cherry in each

tree of P. This completes the proof of the lemma. ut

Theorem 1 Let P be a set of trees on X. There exists a temporal network that

displays P if and only if there exists a cherry-picking sequence for P.

Proof First, suppose that there exists a temporal network N that displays P.

To show that there exists a cherry-picking sequence for P, we use induction on

n. If X = {x1}, then (x1) is a cherry-picking sequence for P. Now, assume that

n ≥ 2 and that the result holds for all sets of trees on X ′ with |X ′| < n for

which a temporal network exists that displays them. By Lemma 1, there exists

an element x1 ∈ X that labels a leaf of a cherry in each element of P. Let P ′ =

{Tj [−x1] : Tj ∈ P}. Furthermore, let N ′ be the network obtained from N by

deleting the vertex labeled x1 and suppressing any resulting degree-2 vertex. By

property (v) in the definition of a network, N ′ is indeed a network. Since N is a

temporal network that displays P, it is easily seen that N ′ is a temporal network

that displays P ′. Thus, by the induction assumption, there exists a cherry-picking

sequence (x2, x3 . . . , xn) for P ′. Since x1 labels a leaf of a cherry in each element

of P, it is then easily checked that (x1, x2, x3, . . . , xn) is a cherry-picking sequence

for P.

Second, suppose that P has a cherry-picking sequence. We show by induction

on n that there exists a temporal network N that displays P. If X = {x1}, then

(x1) is a cherry-picking sequence for P and a single vertex labeled x1 is a temporal

network that displays P. Now assume that n ≥ 2 and that the result holds for

all sets of trees on X ′ with |X ′| < n for which a cherry-picking sequence exists.

Let (x1, x2, . . . , xn) be a cherry-picking sequence for P. Furthermore, let P ′ =

{Tj [−x1] : Tj ∈ P}. Evidently, (x2, x3, . . . , xn) is a cherry-picking sequence for P ′.

It now follows from the induction assumption that there exists a temporal network
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N ′ that displays P ′. For each j ∈ [m], let {x1, zj} be the cherry of Tj ∈ P that

contains x1, and let ej = (uj , zj) be the arc in N ′ that is directed into the leaf zj .

Note that for j, j′ ∈ [m], we may have zj = zj′ . Now, let S = {(uj , zj) : j ∈ [m]}.

If S contains precisely one element, say e = (ui, xi), then obtain a network N from

N ′ by subdividing e with a new vertex v and adjoining v to a new vertex labeled

x1 with a new arc. By setting t(ui) < t(v) < t(xi), it follows that N is a temporal

network that displays T and T ′. Otherwise, if |S| > 1, then obtain a network

N from N ′ by creating a new vertex v and, for each ei ∈ S with ei = (ui, xi),

subdividing ei with a new vertex vi and adjoining vi and v with a new arc. Lastly,

adjoin v to a new vertex labeled x1 with a new arc. Again, by construction, N

displays P. Furthermore, set

t(v) = t(v1) = t(v2) = · · · = t(v|S|)

so that

max{t(u1), . . . , t(u|S|)} < t(v) < min{t(x1), . . . , t(x|S|)}.

As the temporal labelings of the leaves x1, x2, . . . , x|S| of N can arbitrarily be

adjusted, such a temporal assignment exists, it follows that N is also temporal.

ut

Now, let σ = (x1, x2, . . . , xn) be a cherry-picking sequence for P. For each

i ∈ [n− 1], let

ci(σ) =

∣∣∣∣∣∣

m⋃

j=1

{{xi, zj}}

∣∣∣∣∣∣
− 1,

where {xi, zj} is the cherry of Tj ∈ P[−x1, x2, . . . , xi−1] that contains xi, and let

cn(σ) = 0. We refer to ci(σ) as the cherry count associated with xi. Note that

cn−1(σ) = cn(σ). Furthermore, we refer to

w(σ) =
n∑

i=1

ci(σ)

as the weight of σ and call σ a minimum-cherry-picking sequence for P if w(σ)

is minimized over all cherry-picking sequences for P. We denote this minimum

number by s(P). Referring back to Figure 3 the cherry-picking sequence σ =
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(f, g, d, b, a, e, c) for the three trees shown in this figure has the following cherry

counts: c3(σ) = c6(σ) = c7(σ) = 0, c2(σ) = c4(σ) = c5(σ) = 1, and c1(σ) = 2.

Thus, the weight of σ is w(σ) = 5.

The next theorem characterizes the temporal-hybridization number for a set

P of trees if P admits a temporal network.

Theorem 2 Let P be a set of trees on X such that there exists a temporal network

that displays P. Then ht(P) = s(P).

Proof We first show that ht(P) ≥ s(P). Let N be a temporal network that

displays P. The proof is by induction on ht(N ). If ht(N ) = 0, then all trees in P are

isomorphic and the result clearly follows. Now assume that ht(N ) = k > 0 and that

the result holds for all sets of trees that can be displayed by a temporal network

whose temporal-hybridization number is less than k. Let v be a hybridization

vertex of N whose temporal labeling is maximized over all such vertices in N .

Furthermore, let Lv be the subset ofX that precisely contains the elements that are

descendants of v in N . Now, delete v in N and its incident arcs and, subsequently,

suppress all resulting vertices with in-degree and out-degree 1. Let N ′ be the

component that results from these operations and contains the original root of N .

Furthermore, let N ′′ be the other resulting component. It is easily checked that

N ′ is a temporal network for P ′ = P[−Lv] with ht(N ′) = ht(N ) − (d−(v) − 1),

and N ′′ is a temporal network for P ′′ = P|Lv with ht(N ′′) = 0. Since d−(v) ≥ 2,

it now follows by the induction assumption that s(P ′) ≤ ht(P ′) ≤ ht(N ′) and,

trivially, that s(P ′′) ≤ ht(P ′′) ≤ ht(N ′′).

By Theorem 1, there exist cherry-picking sequences for P, P ′, and P ′′. Let

σ′ = (x1, x2, . . . , xl) be a minimum-cherry-picking sequence for P ′, and let σ′′ =

(y1, y2, . . . , yl′) be a minimum-cherry-picking sequence for P ′′. It now follows that

σ = (y1, y2, . . . , yl′−1, x1, x2, . . . , xi−1, yl′ , xi, xi+1, . . . , xl)
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is a cherry-picking sequence for P, where i ∈ [l] such that yl′ labels a leaf of a

cherry in each tree of P[−y1, y2, . . . , yl′−1, x1, x2, . . . , xi−1]. Furthermore, as N is

temporal and displays P, we have c(l′−1)+(i−1)+1(σ) ≤ d−(v)−1 while each other

element of σ has the same cherry count in σ as in σ′ and σ′′, respectively. Thus,

ht(N ) = ht(N ′) + d−(v)− 1 ≥ s(P ′) + ci(σ) ≥ s(P).

Choosing N to be a minimum-temporal-hybridization network for P establishes

the first direction of the proof and, hence, ht(P) ≥ s(P).

To complete the proof, let σ = (x1, x2, . . . , xn) be a cherry-picking sequence

for P. We show by induction on w(σ) that ht(P) ≤ s(P). If w(σ) = 0, then it is

easily seen that all trees in P are isomorphic and so the result holds. Now assume

that w(σ) = k > 0 and that the result holds for all sets of trees that have a cherry-

picking sequence whose weight is less than k. Let i ∈ [n] be the smallest index

of an element in σ such that ci(σ) ≥ 1. Furthermore, let P ′ = P[−x1, x2, . . . , xi].

As σ is a cherry-picking sequence for P, it follows that σ′ = (xi+1, xi+2, . . . , xn)

is such a sequence for P ′ and thus w(σ′) = w(σ) − ci(σ). It now follows by the

induction assumption that ht(P ′) ≤ s(P ′) ≤ w(σ′).

Let N ′ be a minimum-temporal network that displays P ′. Note that ht(N ′) ≤

w(σ′). Furthermore, by the definition of the cherry count ci(σ), there exist precisely

ci(σ) + 1 distinct cherries containing xi among the trees in P[−x1, x2, . . . , xi−1].

For each l ∈ [ci(σ)+1], let {xi, zl} be such a cherry. We next construct a temporal

network that displays P and whose temporal-hybridization number is w(σ). First,

obtain N ′′ from N ′ by creating new vertices v and xi that are joined via a new arc

(v, xi), and then, for each l ∈ [ci(σ) + 1], subdividing the arc (wl, zl) incident with

the leaf labeled zl with a new vertex ul and adding the arc (ul, v). Since ci(σ) + 1

distinct pendant arcs have been subdivided to obtain N ′′ from N ′, it follows that,

by setting t(v) = t(u1) = t(u2) = . . . = t(uci(σ)+1) so that

max
l∈[ci(σ)+1]

{t(wl)} < t(v) < min
l∈[ci(σ)+1]

{t(zl)},
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N ′′ is a temporal network that displays P[−x1, x2, . . . , xi−1]. Note that d−(v) =

ci(σ) + 1. Second, obtain a temporal network from N ′′ by attaching a vertex

labeled xi−1 to a new vertex that subdivides a pendant arc of N ′′ via a new arc

such that the resulting network displays P[−x1, x2, . . . , xi−2]. Since ci−1(σ) = 0,

this is always possible. Continuing in this way and in order for the vertices labeled

xi−2, xi−3, . . . , x1, we eventually obtain a temporal network N that displays P.

Moreover, we have

w(σ) = w(σ′) + ci(σ) ≥ ht(N ′) + d−(v)− 1 ≥ ht(P).

Now, by choosing σ to be a minimum-cherry-picking sequence for P, it follows

that ht(P) ≤ s(P), thereby establishing the theorem. ut

4 Fixed-parameter tractability of 2-Minimum-Temporal Hybridization

In this section, we give a brief overview on how to establish a fixed-parameter algo-

rithm for 2-Minimum-Temporal Hybridization. For the details of this algorithm

and two extensions of it that are likely to have a positive impact on practical run-

ning times, we refer the interested reader to the online appendix to this paper,

which can be accessed from the journal’s website. The approach taken for establish-

ing fixed-parameter tractability of 2-Minimum-Temporal Hybridization follows

that of Bordewich and Semple [3], who showed that Hybridization Number is

fixed-parameter tractable for when |P| = 2. Building on this result, an improved

kernel size has recently been described in [13]. It is possible to mimic the result

of [3]—by using the agreement forest characterization established in [10]—to ob-

tain a fixed-parameter algorithm for 2-Minimum-Temporal Hybridization by

considering a new outcome that arises in one of the key lemmas [3, Lemma 3.1.2].

However, rather than using agreement forests, it is also possible to establish a fixed-

parameter algorithm by using the more intuitive and potentially more efficient

(e.g. when the input trees only have a small number of cherries) characterization

in terms of cherry-picking sequences. In particular, it can be shown that reducing
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two trees T and T ′ on the same label set by repeated applications of the previously

employed subtree reduction and the weighted version of the chain reduction [3] re-

sult in two trees S and S′ whose label set size is linear in ht(T , T ′). Furthermore,

without going into detail, the “weight” of a minimum-cherry-picking sequence for

S and S′ is the same as the “weight” of a minimum-cherry-picking sequence for

T and T ′. In summary, these results can be used to establish a fixed-parameter

algorithm for 2-Minimum-Temporal Hybridization that is parameterized by

ht(T , T ′). Unfortunately, despite the characterization of the minimum-temporal-

hybridization number for an arbitrary sized set of rooted binary phylogenetic trees

in terms of cherry-picking sequences, it remains an open problem to establish a

fixed-parameter algorithm for Minimum-Temporal Hybridization.

We end this section by noting why it appears to be not possible to upgrade

the approach taken by Bordewich and Semple [3, Lemma 3.3] to an arbitrarily

large set P of trees on X in order to show that Hybridization Number (resp.

Minimum-Temporal Hybridization) is fixed-parameter tractable. Their result

bounds the number of leaves in a pair of reduced trees (that result from repeated

applications of the aforementioned subtree and chain reduction to two trees T and

T ′ on X) by a function that is linear in h(T , T ′). However, using the same strategy

for P results in a function that is linear in h(P) and m. Since this function depends

on m and, therefore, the size of the input, this approach is unlikely to be a key

ingredient in establishing a fixed-parameter tractability result for Hybridization

Number (resp. Minimum-Temporal Hybridization) unless m is bounded.

5 Conclusion

In this paper, we have presented the first characterization to compute the minimum-

temporal-hybridization number for an arbitrarily large set P of trees. This char-

acterization is based on the novel concept of cherry-picking sequences that are

sequences of the leaves of the elements in P. Furthermore, we have shown that
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cherry-picking sequences can be used to establish fixed-parameter tractability of

2-Minimum-Temporal Hybridization. A natural follow-up question is to inves-

tigate whether or not cherry-picking sequences can also be used to establish a

fixed-parameter algorithm for Minimum-Temporal Hybridization for when m

is unbounded. Moreover, it is worth noting that, if a temporal network exists for

two trees T and T ′ on X, then ht(T , T ′) and h(T , T ′) are not necessarily equal.

For example, for the two trees T and T ′ shown in Figure 1, we have ht(T , T ′) = 3

and h(T , T ′) = 2. Furthermore, while two trees always admit a hybridization net-

work, they do not necessarily also admit a temporal network. It would therefore

be interesting to investigate whether or not it is computationally hard to decide

if two trees have a cherry-picking sequence and, consequently, admit a temporal

network.
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Appendix A.1: Fixed-parameter tractability of 2-Minimum-Temporal Hy-

bridization

In this appendix, we provide full details of how to establish the fixed-parameter

tractability of 2-Minimum-Temporal Hybridization. In fact, we prove the fol-

lowing theorem.

Theorem 3 The decision problem 2-Minimum-Temporal Hybridization, pa-

rameterized by ht(T , T ′), is fixed-parameter tractable.

The appendix is organized as follows. We start by providing some notation

and terminology that is needed to establish Theorem 3. Subsequently, we describe

two reductions that are used to reduce the size of an instance of 2-Minimum-

Temporal Hybridization and establish three results that play an important

role in showing that the algorithm 2-MinTempHybrid, which is presented there-

after, is correct. We then investigate the running time of 2-MinTempHybrid from

which the fixed-parameter tractability of 2-Minimum-Temporal Hybridization

immediately follows. Lastly, we describe an improved version of the algorithm 2-

MinTempHybrid that yields a better theoretical running time and finish off with

an additional reduction that is likely to have a further positive impact on the

practical running time.

Let T be a tree on X. Let a be an element in X. The unique vertex u of

T such that {u, a} is an edge is called the parent of a and is denoted by pT (a).

Moreover, a tuple (a1, a2, . . . , at) of leaves of T with t ≥ 2 is called a chain of T

if the following two conditions are satisfied:

(1) either pT (a1) = pT (a2) or pT (a1) is a child of pT (a2);

(2) for each i ∈ {2, 3, . . . , t− 1}, pT (ai) is a child of pT (ai+1).

In particular, we call (a1, a2, . . . , at) a t-chain if t ≥ 3 and a 2-chain if t = 2. As

we will soon see, a reduction of each t-chain that is common to a pair of trees on
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a b

a1a2 at a1a2 at

a b

Fig. 5 Top: Two trees T and T 0 on X with a common t-chain (a1, a2, . . . , at). Bottom: Two

trees S and S0 that have been obtained from T and T 0, respectively, by applying a chain

reduction.

X to a 2-chain will play an important role in establishing Theorem 3. To make the

reduction work, it is necessary to keep track of the length of each original t-chain.

We describe how this will be achieved next.

Let T and T 0 be two trees on X. Furthermore, let P be a disjoint collection of

2-element subsets of X such that each pair {a, b} is a 2-chain that is common to

T and T 0. Let w : P ! Z+ be a weight function on the elements of P . We refer to

T and T 0 with associated set P and weight function w as a pair of weighted trees

on X.

We are now in a position to state two reductions that are crucial in establish-

ing the correctness of Theorem 3. We note that these reductions have been used

previously to establish fixed-parameter tractability of a related problem [3]. Let T

and T 0 be two weighted trees on X.

(i) Subtree Reduction. Replace any maximal pendant subtree of T and T 0 with

at least two leaves by a single leaf with a new label.

(ii) Chain Reduction. Replace any maximal t-chain of T and T 0 with a two chain

(a, b) and add the 2-element set {a, b} to P with weight w({a, b}) = t� 2.

Figure 5 illustrates an example of the chain reduction.

Fig. 5 Top: Two trees T and T ′ on X with a common t-chain (a1, a2, . . . , at). Bottom: Two

trees S and S′ that have been obtained from T and T ′, respectively, by applying a chain

reduction.

X to a 2-chain will play an important role in establishing Theorem 3. To make the

reduction work, it is necessary to keep track of the length of each original t-chain.

We describe how this will be achieved next.

Let T and T ′ be two trees on X. Furthermore, let P be a disjoint collection of

2-element subsets of X such that each pair {a, b} is a 2-chain that is common to

T and T ′. Let w : P → Z+ be a weight function on the elements of P . We refer to

T and T ′ with associated set P and weight function w as a pair of weighted trees

on X.

We are now in a position to state two reductions that are crucial in establish-

ing the correctness of Theorem 3. We note that these reductions have been used

previously to establish fixed-parameter tractability of a related problem [3]. Let T

and T ′ be two weighted trees on X.

(i) Subtree Reduction. Replace any maximal pendant subtree of T and T ′ with

at least two leaves by a single leaf with a new label.

(ii) Chain Reduction. Replace any maximal t-chain of T and T ′ with a two chain

(a, b) and add the 2-element set {a, b} to P with weight w({a, b}) = t− 2.
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Figure 5 illustrates an example of the chain reduction.

Let σ = (x1, x2, . . . , xn) be a cherry-picking sequence for a pair of weighted

trees T and T ′ on X. Since ci(σ) ≤ 1 for any i ∈ [n− 1], we say that xi is special

precisely if ci(σ) = 1 and sometimes refer to special and not special as the two

possible statuses of xi. Furthermore, we use s(σ) to denote the number of specials

in σ. Furthermore, we define the weight of σ, denoted by sw(σ), to be

sw(σ) = s(σ) +
∑

{a,b}∈P ;a is special in σ

w({a, b}),

and set sw(T , T ′) to be the minimum weight of a cherry-picking sequence for T

and T ′. Note that we always have sw(T , T ′) ≥ s(T , T ′) since the weight function

is non-negative and sw(T , T ′) = s(T , T ′) whenever P is empty. Lastly, if sw(σ) =

sw(T , T ′), we say that σ is a minimum-weight cherry-picking sequence.

Let T and T ′ be two weighted trees on X, and let A = {a1, a2, . . . , am} be

a subset of X. Furthermore, let σ be a cherry-picking sequence for T and T ′.

We say that O = (a′1, a
′
2, . . . , a

′
m) is the ordering of A induced by σ precisely if

(a′1, a
′
2, . . . , a

′
m) is a subsequence of σ. Typically, a1, a2, . . . , am are the elements

of a chain that is common to T and T ′, in which case it is important to note that

a′i is not necessarily equal to ai.

Lastly, let σ = (x1, x2, . . . , xm) be a sequence, and let xi be an element of σ

with i ∈ [m]. We denote the substring (x1, x2, . . . , xi−1) by X−i and the substring

(xi+1, xi+2, . . . , xm) by X+
i . For convenience, we sometimes write (X−i , xi, X

+
i )

when referring to σ. Note that, if i = 1, then X−i is empty while, if i = m, then

X+
i is empty.

Lemma 2 Let σ be cherry-picking sequence for two weighted trees T and T ′ on

X. Let A be the leaf set of a pendant subtree that is common to T and T ′ with

|A| = m, and let (a1, a2, . . . , am−1) be the ordering of the first m− 1 elements of

the subtree induced by σ. Then each element in A− {am} is not special in σ.
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Proof Since A is the leaf set of a pendant subtree of both T and T ′, it follows

that, for each i ∈ {1, 2, . . . ,m − 1}, ai is in a common cherry of T [−A−i ] and

T ′[−A−i ] and, therefore, not special in σ. ut

To prove a similar result (Lemma 4) for a common t-chain of two weighted

trees, requires a lemma and a corollary.

Lemma 3 Let σ be a minimum-weight-cherry-picking sequence for two trees T

and T ′ on X. Furthermore, let (a′1, a
′
2, . . . , a

′
t) be the ordering of the elements

of a common t-chain A of T and T ′ induced by σ. If σ = (A′−i , a′i, b, B
+) with

a′i ∈ {a′1, a′2, . . . , a′t−2} and b /∈ {a′1, a′2, . . . , a′t}, then σ′ = (A′−i , b, a′i, B
+) is a

minimum-weight-cherry-picking sequence for T and T ′ such that each element in

σ is special if and only if it is special in σ′.

Proof Let A = (a1, a2, . . . , at). We start with two observations that will implicitly

be used throughout the proof. First, since a′i /∈ {a′t−1, a
′
t} and at ∈ {a′t−1, a

′
t}, it

follows that a′i 6= at. Second, each element in X − {a′i, b} has the same status in

σ and σ′. Now, let {a′i, y} be a cherry of T [−A′−i ], and let {a′i, z} be a cherry

of T ′[−A′−i ]. Note that y and z may or may not be elements of A. The proof

partitions into two cases.

Case 1. If b /∈ {y, z}, then {a′i, y} is a cherry of T [−(A′−i ∪ {b})] and {a′i, z} is a

cherry of T ′[−(A′−i ∪{b})]. Hence, as σ is a cherry-picking sequence for T and T ′,

σ′ is also such a sequence. Furthermore, as each of a′i and b has the same status

in σ′ as in σ, it follows that σ′ is of minimum weight.

Case 2. Suppose that b ∈ {y, z}. Without loss of generality we may assume

that b = y. We next consider two subcases. First, assume that y = z. As a′i ∈

{a′1, a′2, . . . , a′t−2}, this implies that both a′i and b are not special in σ and σ′.

Thus, as σ′ is a cherry-picking sequence for T and T ′ and each of a′i and b has the

same status in σ′ as in σ, it follows that σ′ is of minimum weight. Second, assume
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that z 6= y. Then pT ′(b) is not a descendant of pT ′(a′t) and so each of b and a′i is

special in σ and σ′. Thus σ′ is also of minimum weight.

Combining both cases establishes the lemma. ut

Repeated applications of Lemma 3 result in the following corollary. In particu-

lar, let (a′1, a
′
2, . . . , a

′
t) be an ordering of the elements of a common t-chain of two

trees T and T ′. Then, for each a′i with i ∈ {1, 2, . . . , t − 2}, Lemma 3 is applied

once for each element b /∈ {a′1, a′2, . . . , a′t} that succeeds a′i and precedes a′t−1 in a

minimum-weight-cherry picking sequence for T and T ′.

Corollary 1 Let σ be a minimum-weight-cherry-picking sequence for two trees

T and T ′ on X. Furthermore, let (a′1, a
′
2, . . . , a

′
t) be the ordering of the elements

of a common t-chain of T and T ′ induced by σ. Then there exists a minimum-

weight-cherry-picking sequence σ′ for T and T ′ such that (a′1, a
′
2, . . . , a

′
t−1) is a

substring of σ′ and each element in σ is special if and only if it is special in σ′.

Lemma 4 Let σ be a minimum-weight-cherry-picking sequence for two weighted

trees T and T ′ on X. Let (a′1, a
′
2, . . . , a

′
t) be the ordering of a common t-chain of

T and T ′ induced by σ. Then all elements in A = {a′1, a′2, . . . , a′t−1} have the same

status in σ.

Proof Assume that the lemma does not hold. Thus, there exists an element a′i in

A that is special in σ, and there exists an element a′j in A that is not special in σ.

Without loss of generality, choose the indices i and j to be as small as possible.

By Corollary 1, there exists a cherry-picking sequence σ′ for T and T ′ of

minimum weight such that the status for each of a′i and a′j in σ′ is the same as

its status in σ and (a′1, a
′
2, . . . , a

′
t−1) is a substring of σ′. We next establish the

lemma for σ′, thereby establishing the lemma for σ. We consider two cases:

Case 1. If 1 = j < i, then σ′ is of the form

(A′−j , a′j , a
′
j+1, . . . , a

′
i−1, a

′
i, a
′
i+1, . . . , a

′
t−1, A

′+
t−1).
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Let {a′j , b} be a common cherry of T [−A′−j ] and T ′[−A′−j ]. If b /∈ A, then, as

(a′1, a
′
2, . . . , a

′
t−1) is a substring of σ′, the cherry {a′i, b} is common to T [−A′−i ]

and T ′[−A′−i ], contradicting a′i being special in σ′. On the other hand, if b ∈ A,

then, as i + 1 ≤ t, the cherry {a′i, a′i+1} is common to T [−A′−i ] and T ′[−A′−i ];

again a contradiction.

Case 2. If 1 = i < j, then σ′ is of the form

(A′−i , a′i, a
′
i+1, . . . , a

′
j−1, a

′
j , a
′
j+1, . . . , a

′
t−1, A

′+
t−1).

Let {a′i, b} be a cherry of T [−A′−i ], and let {a′i, b′} be a cherry of T ′[−A′−i ]. Note

that b 6= b′ and that at most one of b and b′ is an element of A ∪ {a′t}. Without

loss of generality, we may therefore assume by the choice of σ′ that b /∈ A′−j . Now,

since {a′i, b} is a cherry of T [−A′−i ], it follows that {a′j , b} is a cherry of T [−A′−j ].

Moreover, regardless of whether or not b′ ∈ A, {a′j , b} is not a cherry of T ′[−A′−j ],

contradicting a′j being not special in σ′.

Combining both cases establishes the lemma. ut

Now, let T and T ′ be a pair of trees on X for which a temporal network

exists that displays them. The next proposition shows that the minimum weight

of a cherry-picking sequence for T and T ′ is equal to the minimum weight of a

cherry-picking sequence for the two trees obtained from T and T ′, respectively,

by applying a subtree or chain reduction.

Proposition 1 Let T and T ′ be a pair of weighted trees on X for which a tem-

poral network exists that displays them. Furthermore, let S and S′ be a pair of

weighted trees obtained from T and T ′, respectively, by either a single subtree or

chain reduction. Then sw(T , T ′) = sw(S,S′).

Proof We first show that the lemma holds when S and S′ are obtained from T

and T ′, respectively, by a applying a subtree reduction; i.e. replacing a maximal

pendant subtree with leaf set A that is common to T and T ′ with a single leaf
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labeled a. Let |A| = m. First, let σ be a minimum-weight-cherry-picking sequence

for T and T ′, and let j be the maximum index of an element in σ such that xj ∈ A.

Obtain a sequence σ′ from σ by removing each element xi with xi ∈ A and i 6= j,

and replacing xj with a. It is easily checked that σ′ is a cherry-picking sequence

for S and S′. Furthermore, xj is special in σ if and only if a is special in σ′. By

Lemma 2, each element in A− {xj} is not special in σ and, thus,

sw(T , T ′) = sw(σ) = sw(σ′) ≥ sw(S,S′). (1)

Second, let σ′ be a minimum-weight-cherry-picking sequence for S and S′.

Obtain a sequence σ from σ′ by replacing a with the string (x1, x2, . . . , xm) that

contains precisely all the elements in A such that, for each i ∈ {1, 2, . . . ,m − 1},

xi labels a leaf of a common cherry in T |(A − {x1, x2, . . . , xi−1}) and T ′|(A −

{x1, x2, . . . , xi−1}). Since A is the leaf set of a pendant subtree of T and T ′, this

is always possible. Now, as σ′ is a cherry-picking sequence for S and S′, we have

that σ is such a sequence for T and T ′. Moreover, since a is special in σ′ if and

only if xm is special in σ, we have

sw(S,S′) = sw(σ′) = sw(σ) ≥ sw(T , T ′). (2)

Combining (1) and (2) establishes the proposition for a single application of the

subtree reduction.

We complete the proof of this lemma by showing that the result holds for when

S and S′ are obtained from T and T ′, respectively, by applying a chain reduction;

i.e. replacing a maximal common t-chain (a1, a2, . . . , at) of T and T ′ with the

2-chain (a, b) with weight w({a, b}) = t − 2. Let A = {a1, a2, . . . , at}. First, let

σ be a minimum-weight-cherry-picking sequence for T and T ′, and let j be the

maximum index of an element of A in σ. By Lemma 4, one of the following holds:

(i) each element of A− {aj} is not special in σ or

(ii) each element of A− {aj} is special in σ.
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Let i be the minimum index of an element of A in σ. Now, obtain a sequence σ′

from σ by replacing ai with a, replacing aj with b, and removing all elements in

A− {ai, aj}. Since σ is a cherry-picking sequence for T and T ′, it follows that σ′

is such a sequence for S and S′. Moreover, if σ satisfies (1), then a is not special in

σ′, and if σ satisfies (2), then a is special in σ′. Furthermore, recall that w({a, b})

contributes to sw(σ′) if and only if a is special in σ′. It now follows from the

definition of the weight of σ′ that, in both cases, the contribution of specials in A

to sw(σ) is precisely the same as the contribution of specials in {a, b} to sw(σ′).

Hence,

sw(T , T ′) = sw(σ) = sw(σ′) ≥ sw(S,S′). (3)

Second, let σ′ be a minimum-weight-cherry-picking sequence for S and S′.

Obtain a sequence σ from σ′ by replacing a with the string a1, a2, . . . , at−1 and b

with at. It is easily checked that, as σ′ is a cherry-picking sequence for S and S′,

we have that σ is such a sequence for T and T ′. Depending upon the status of

a and b, there are four cases to consider. First, if neither a nor b is special in σ′,

then no element in A is special in σ. Second, if a and b are both special in σ′, then

each element in A is special in σ. Third, if a is special in σ′ and b is not special

in σ′, then each element in A − {at} is special in σ while at is not special in σ.

Fourth, if a is not special in σ and b is special in σ′, then each element in A−{at}

is not special in σ while at is special in σ. It now follows from the definition of

the weight of a cherry-picking sequence that, in all four cases, the contribution of

specials in {a, b} to sw(σ′) is precisely the same as the contribution of specials in

A to sw(σ). Thus, we have

sw(S,S′) = sw(σ′) = sw(σ) ≥ sw(T , T ′). (4)

Combining (3) and (4) establishes the result for a single application of the chain

reduction, and thereby establishes the proposition. ut

We now give the pseudocode for the algorithm 2-MinTempHybrid that ex-

actly solves instances of 2-Minimum-Temporal Hybridization.
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We start with some new definitions. Let σ = (x1, x2, . . . , xp) be a sequence, and

let S be a set with |S| = p′. In the following, we write σ||S to denote the sequence

(x1, x2, . . . , xp, y1, y2, . . . , yp′), where the substring (y1, y2, . . . , yp′) is any ordering

of the elements in S. Furthermore, we denote the tree formed by replacing a

pendant subtree with leaf set A with a new leaf labeled a by T [A→ a]. Similarly,

we write T [(a1, a2, . . . , at) → (a, b)] for the tree obtained from T by replacing a

t-chain (a1, a2, . . . , at) with the 2-chain (a, b).

The algorithm 2-MinTempHybrid takes as input two trees T and T ′ on X and

a positive integer k, and outputs ht(T , T ′) precisely if ht(T , T ′) < k; otherwise

it outputs k. In particular, if no temporal network exists that displays T and

T ′, then the algorithm always returns k. To this end, the algorithm exhaustively

calculates all cherry-picking sequences for T and T ′ and, at each step, resets k to

be the current best minimum weight over all cherry-picking sequences for T and

T ′ that have previously been considered. For reasons of completeness, we include

the pseudocode for the subroutines SubtreeReduction and ChainReduction

that were first published in [2]. Furthermore, because of the chain reduction and

the necessity of a weight function w, we initialize this function to be zero for all

pairs of elements in X, which is indicated by w ← () in the pseudocode.
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Algorithm 5.1: 2-MinTempHybrid(T , T ′, k)

procedure SubtreeReduction(T , T ′, w)

A← maximal common pendant subtree of T and T ′

if |A| > 1

do





T ← T [A→ a]

T ′ ← T ′[A→ a]

(T , T ′, w)← SubtreeReduction(T , T ′, w)

return (T , T ′, w)

procedure ChainReduction(T , T ′, w)

(a1, . . . , at)← maximal common t-chain of T and T ′

if t ≥ 3

do





w(a, b)← t− 2

T ← (T [(a1, a2, . . . , at)→ (a, b)]

T ′ ← (T ′[(a1, a2, . . . , at)→ (a, b)]

(T , T ′, w)← ChainReduction(T , T ′, w)

return (T , T ′, w)

procedure CherryPicking(T , T ′, k, σ, w)

if |L(T )| = 2

then




σ ← σ||L(T )

return (sw(σ))

else





for each x ∈ L(T ) that labels a leaf of a cherry in T and T ′

do k ← min(k,CherryPicking(T [−x], T ′[−x], k, σ||{x}, w))

return (k)

main

w ← ()

(T , T ′, w)← SubtreeReduction(T , T ′, w)

(T , T ′, w)← ChainReduction(T , T ′, w)

if L(T ) ≥ 9k

then return (k)

else





σ ← ()

k ← CherryPicking(T , T ′, k, σ, w)

return (k)
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Remarks.

(1) Suppose that two trees T and T ′ on X can be displayed by a temporal network.

Then ht(T , T ′) is bounded from above by n−2. To see that this holds, let σ =

(x1, x2, ..., xn) be a cherry-picking sequence for T and T ′. Then neither xn−1

nor xn is special in σ because T |(xn−1, xn) and T ′|(xn−1, xn) are isomorphic

and, thus, ht(T , T ′) = s(T , T ′) ≤ n − 2, where the equality follows from

Theorem 2. Hence, calling 2-MinTempHybrid(T , T ′, n − 1) either outputs

ht(T , T ′) or n − 1 with the latter implying that no temporal network exists

that displays T and T ′.

(2) As it is currently written, 2-MinTempHybrid does not construct a minimum-

temporal network for T and T ′ if such a network exists. However, by simple

bookkeeping, one could construct a minimum-weight-cherry-picking sequence

σ = (x1, x2, . . . , xn) for T and T ′ and then use the algorithm Temporal-

Hybrid [3] to construct a minimum-temporal network for T and T ′. Briefly,

for each i ∈ [n], TemporalHybrid constructs a temporal network that dis-

plays T |{xi, xi+1, . . . , xn} and T ′|{xi, xi+1, . . . , xn}. Ultimately, this results in

a temporal network for T and T ′. In particular, note that TemporalHybrid

attaches each special element of σ via two new arcs to the previously recon-

structed network while each element that is not special in σ is attached via

a single arc. Hence, by Theorem 2, the reconstructed network is a minimum-

temporal network for T and T ′.

(3) 2-MinTempHybrid first applies the subtree reduction until no such reduction

is possible, then the chain reduction until no such reduction is possible, and

then immediately proceeds with the exhaustive search part of the algorithm.

The fact that this is indeed sufficient and that, after applying the chain reduc-

tion, no application of the subtree reduction is possible, follows from the next

lemma.

Lemma 5 Let T and T ′ be two trees on X that do not have any common pendant

subtree with at least two leaves, and let A be a maximal t-chain that is common
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to T and T ′. Furthermore, let S and S′ be the two trees that are obtained from T

and T ′ by reducing A to the 2-chain (a, b). Then, the following hold:

1. S and S′ do not have any common pendant subtree with at least two leaves,

and

2. S and S′ do not have a common chain with at least three leaves that contains

a or b.

Proof Let A = (a1, a2, . . . , at). The proof is by contradiction. First, assume that

S and S′ have a common subtree with leaf set A′ such that |A′| ≥ 2. Since T

and T ′ do not contain any such subtree, a or b is an element of A′. But then

A′ ∪ {a1, a2, . . . , at} is the leaf set of a common pendant subtree of T and T ′; a

contradiction. Now assume that S and S′ have a common chain with at least three

leaves such that one of them is labeled a or b. Then it is easily checked that A is

not maximal in S and S′; again a contradiction. This completes the proof of the

lemma. ut

The fact that 2-Minimum-Temporal Hybridization is fixed-parameter tracta-

ble (Theorem 3) is a direct consequence of the next theorem.

Theorem 4 Let T and T ′ be two trees on X, and let k be an integer. The algo-

rithm 2-MinTempHybrid returns ht(T , T ′) if and only if there exists a temporal

network that displays T and T ′ and ht(T , T ′) < k; otherwise, it returns k. Fur-

thermore, the running time of 2-MinTempHybrid is O((9k)9k + n3).

Proof The correctness of 2-MinTempHybrid immediately follows from Proposi-

tion 1, thereby establishing the first part of the theorem. We complete the proof

by showing that the running time of 2-MinTempHybrid is O((9k)9k + n3). Let

X ′ be the leaf set of the two trees S and S′ that are obtained from T and T ′,

respectively, by first applying the subtree reduction as many times as possible and

then the chain reduction as many times as possible. It follows from Lemma 5 that
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no further subtree or chain reduction can be applied to S and S′. Now, Kelk et

al. [13, Theorem 3.2] showed that |X ′| ≤ 9h(T , T ′), where h(T , T ′) is the mini-

mum number of hybridization vertices of any hybridization network that displays

T and T ′. Therefore, since each temporal network that displays T and T ′ is a

particular type of a hybridization network that displays T and T ′, it follows by

Theorem 2 that

|X ′| ≤ 9h(T , T ′) ≤ 9ht(T , T ′) = 9s(T , T ′),

Hence, since X ′ is at most 9ht(T , T ′), we declare ht(T , T ′) > k if |X ′| > 9k. Now,

suppose that |X ′| ≤ 9k. Since the procedure CherryPicking is recursively called

at most 9k times to compute a cherry-picking sequence for S and S′, each such call

branches into at most 9k new recursive calls, and the subtree and chain reduction

can both be computed in O(n3) [3], the running time of 2-MinTempHybrid is

O((9k)9k + n3). ut

We now describe an improved version of 2-MinTempHybrid whose input and

output are the same as those for 2-MinTempHybrid but whose theoretical worst-

case running time is reduced. This speed-up is inspired by the results that are

presented in [7]. Let T and T ′ be two trees on X for which a cherry-picking

sequence exists. We next algorithmically describe a sequence that is central to

what follows. Set i = 1, T0 = T , and T ′0 = T ′. Now obtain Ti and T ′i from Ti−1

and T ′i−1, respectively, by applying the subtree reduction until no such further

reduction is possible. If |L(Ti)| > 1, choose xi to be a leaf label of a cherry in Ti
and T ′i . Reset Ti to be Ti[−xi] and, similarly, reset T ′i to be T ′i [−xi]. Increment

i by 1, apply the subtree reduction until no such further reduction is possible,

and repeat this process. Otherwise, if |L(Ti)| = 1, stop. Eventually, we obtain a

sequence σ = (x1, x2, . . . , xp) of the chosen xi with 0 ≤ p ≤ n which we refer to as a

subtree-reduced-cherry-picking sequence. Note that xi is not necessarily an element

of X since the subtree reduction replaces each common subtree by a single leaf with

a new label. To illustrate, consider the two trees that are shown in Figure 1. Since

{d, e} is a cherry that is common to both of them, an application of the subtree
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reduction replaces this cherry with a single leaf with a new label, say {de}. The

resulting two trees do not have any other common subtree. Since a labels a leaf of a

cherry in both trees, we pick it to be the first element of a subtree-reduced-cherry-

picking sequence σ for the original two trees and delete leaf a in both trees. We now

repeat this process. Since we cannot apply the subtree reduction, we choose b to

be the second element of σ and, again, delete the corresponding leaf in both trees.

Since the resulting two trees have a common subtree whose label set is {c, de}, we

replace this subtree with a new leaf labeled {cde}. Continuing in this way until the

two trees have been reduced to a single vertex, we obtain σ = (a, b, {cde}, f, g, h).

Note that this sequence consists of only six elements.

Now, let T and T ′ be two trees on X. It follows from the definition of a

minimum-cherry-picking sequence that s(T , T ′) is equal to the length of a shortest

subtree-reduced-cherry-picking sequence σ for T and T ′ plus the weight of any 2-

chain (a, b) for which a is an element of σ. Calculating the minimum weight of

a subtree-reduced-cherry-picking sequence for T and T ′ instead of the minimum

weight of a cherry-picking sequence for T and T ′ by repeatedly applying the

subtree reduction as described in the last paragraph, and calling the resulting

algorithm 2-MinTempHybrid*, we derive the following corollary.

Corollary 2 The running time of 2-MinTempHybrid* is O((9k)kn3).

Proof The result can be established by following the argument in the proof of

Theorem 4 and considering that CherryPicking is recursively called at most

k times because each such call adds a special element to the subtree-reduced-

cherry-picking sequence, thereby increasing sw(σ) by at least 1, where σ is the

subtree-reduced-cherry picking sequence for T and T ′ that is considered in some

computational path of the algorithm. ut

We end the appendix with the description of the so-called cluster reduction

that splits an instance of 2-Minimum-Temporal Hybridization into a number
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of smaller and more tractable subproblems which is favorable for any exhaustive

search. The cluster reduction has originally been described in [1] to calculate the

(ordinary) minimum-hybridization number for two trees. Nevertheless, the next

theorem shows that the cluster reduction can also be used in the context of calcu-

lating the minimum-temporal-hybridization number and is therefore likely to have

a positive impact on practical running times, for example in combination with the

algorithm 2-MinTempHybrid.

Before stating the theorem, we need a new definition. Let T be a tree on X,

and let A be a subset of X. We call A a cluster of T if there is a vertex v in T

whose set of descendants in X is precisely A.

Theorem 5 Let T and T ′ be two trees on X, and let A ⊂ X be a cluster that is

common to T and T ′. Then

s(T , T ′) = s(T |A, T ′|A) + s(Ta, T ′a),

where Ta and T ′a are the trees obtained from T and T ′, respectively, by replacing

the pendant subtrees T |A and T ′|A with a new vertex labeled a.

Proof We first show that

s(T , T ′) ≤ s(T |A, T ′|A) + s(Ta, T ′a). (5)

Let σA = (x1, x2, . . . , xm) be a cherry-picking sequence for T |A and T ′|A, and let

σa = (y1, y2, . . . , ym′) be a cherry-picking sequence for Ta and T ′a . Furthermore,

let yi with i ∈ {1, 2, . . . ,m′} be the element of σa such that yi = a. Then it is

easily checked that

σ = (y1, y2, . . . , yi−1, x1, x2, . . . , xm, yi+1, . . . , ym′)

is a cherry-picking sequence for T and T ′. Furthermore, since A is the label set of

a pendant subtree of T and T ′, each element z in X − {xm} has the same status

in σ as it does in σA if z ∈ A and σa if z ∈ X −A, while xm has the same status

in σ as a has in σa. By recalling that a is not an element of σ, we deduce (5).
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We next show that

s(T , T ′) ≥ s(T |A, T ′|A) + s(Ta, T ′a). (6)

Let σ be a cherry-picking sequence for T and T ′. Furthermore, let σA = (x1, x2, . . . , xm)

be the subsequence of σ that contains precisely all elements of A. Let i be the max-

imum index of an element in σ such that xi ∈ A. Obtain σa = (y1, y2, . . . , ym′)

from σ by replacing xi with a and removing all elements in A − {xi}. Note that

xi is an element of σA (in particular, xi = xm) and σa (in particular, xi = a).

Now, since σ is a cherry-picking sequence for T and T ′ and A is a cluster common

to T and T ′, it follows that σA and σa are cherry-picking sequences for T |A and

T ′|A, and Ta and T ′a , respectively. Since A is the label set of a pendant subtree of

T and T ′, each element in A− {xi} has the same status in σA and σ while each

element in X − (A ∪ {xi}) has the same status in σa and σ. If xi is not special in

σ, then a is not special in σa. Moreover, xm is not special in σA because it is the

last element and, therefore, not special by definition. Thus (6) holds.

Combining (5) and (6) establishes the theorem. ut

For simplicity, we have presented the result of Theorem 5 for a pair of unweighted

trees. Nevertheless, it only requires a minor modification to make it also work

for a pair of weighted trees. Instead of considering an arbitrarily large common

cluster, one now has to consider a minimal common cluster A, which is favorable

in any case as it guarantees that the problem is broken up into as many smaller

subproblems as possible. It is then straightforward to check that A either intersects

any weighted 2-chain (a, b) that results from applying the chain reduction to a

(maximal) t-chain in either both elements a and b or neither.
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