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Abstract. Calculating the rooted subtree prune and regraft (rSPR) distance

between two rooted binary phylogenetic trees is a frequently applied process in
various areas of molecular evolution. However, computing this distance is an
NP-hard problem and practical algorithms for computing it exactly are rare.
In this paper, a divide-and-conquer approach to calculating the rSPR distance
is established. This approach breaks the problem instance into a number of
smaller and more tractable subproblems. Two reduction rules which were
previously used to show that computing the rSPR distance is fixed-parameter
tractable can easily be used to complement this new theoretical result, and so
a significant positive impact on the running time of calculating this distance
in practice is likely.

1. Introduction

Since Charles Darwin’s first sketch of a phylogenetic (evolutionary) tree in 1837,
evolutionary biologists have been interested in the reconstruction of phylogenetic
trees which correctly represent the ancestral history of a set of taxa. In such a
tree, each leaf typically represents a present-day species and each interior vertex
corresponds to a hypothetical (extinct) ancestor, while the edges indicate the re-
lationship between distinct taxa. Due to the incompleteness of the fossil record,
researchers often rely upon sequence data of contemporary species—such as DNA
or protein sequences—to reconstruct phylogenetic trees. Depending on the data set
and the tree reconstruction method under consideration, the resulting trees, even
for the same set of present-day species, often reveal inconsistencies. Consequently,
it is a particularly natural and important task to quantify the dissimilarity between
two phylogenies.

A prominent tool for this quantification is that of the graph-theoretic operation
of rooted subtree prune and regraft (rSPR) (see [11]). Loosely speaking, this op-
eration cuts (prunes) a subtree and reattaches (regrafts) it to another part of the
tree. The dissimilarity of two phylogenies is quantified by the minimum number of
rSPR operations that transforms one tree into the other. This minimum number is
referred to as the rSPR distance and, as well as a measure of dissimilarity, it is often
used in the analysis of non-tree-like evolution (for example, see [3, 6, 12, 13, 15]).
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Such evolution is prevalently caused by evolutionary processes that include hori-
zontal gene transfer, hybridization, and recombination.

Computing the rSPR distance exactly is a computationally hard problem [7].
However, kernalizing the problem by repeatedly applying two particular reduction
rules that preserve the distance—subtree and chain rules—results in the problem
being fixed-parameter tractable [7]. Recently, a closely-related computational prob-
lem in evolutionary biology was analyzed using three reduction rules [8]. The first
two rules are analogues of the subtree and chain rules for computing the rSPR
distance, while the third rule is a divide-and-conquer rule that allows the problem
to be partitioned into a number of smaller problems. By applying the associated
algorithm to a grass data set, the performance of these three rules was analyzed
(see [8, Table 2]). It is clear from the investigations in [8] that it was the divide-and-
conquer rule that greatly aided the computational process. For example, for one
instance, the running time was 19 seconds using all three rules, while the running
time increased to about 37.5 hours using just the first two rules. In this paper, we
consider an analogous divide-and-conquer rule for rSPR and show how it can be
applied in conjunction with the subtree and chain rules for computing the rSPR
distance of two phylogenies. (Intuitively, the divide-and-conquer rule means that
the inevitable exhaustive search part of any fixed-parameter algorithm for finding
the rSPR distance can be applied to smaller instances than otherwise would have
been possible without it.) This divide-and-conquer rule for rSPR was considered
in [7] but, because of a potential difficulty, it appeared that it could not be used
in practice. The main purpose of this paper is to show that this difficulty can be
successfully overcome.

The paper is organized as follows. The next section contains some additional
background and preliminaries as well as a formal statement of the key result of
this paper. For the reader familiar with agreement forests, this result intuitively
characterizes the rSPR distance of two phylogenies T and T ′ in terms of the sum
of the sizes of agreement forests for pairs of subtrees of T and T ′. These pairs
of subtrees are the result of repeated applications of the divide-and-conquer rule
for rSPR. The proof of this result is shown in Section 3, while Section 4 describes
a practical algorithm for computing the rSPR distance between two phylogenies
based on this summation. The fact that the resulting algorithms works is given at
the end of Section 4. The last section contains some final remarks on the fixed-
parameter tractability of calculating the rSPR distance and shows how one can
make use of all three reduction rules to compute this distance. Throughout the
paper, notation and terminology follows [14].

2. Key Result

We begin this section with some preliminaries.

Phylogenetic trees. A rooted phylogenetic X-tree T is a rooted tree with no
degree-two vertices, except for the root which has degree at least two, and whose
leaf set is X . Furthermore, T is binary if its root has degree two and all other
interior vertices have degree three. For example, ignoring the pendant edges with



CLUSTER REDUCTION FOR RSPR 3

ρ

T1

1

ρ

T2

1 2 3 4

ρ

324

1 rSPR

1 rSPR

T

1 2 3 4

Figure 1. Each of T1 and T2 is obtained from T by a single rSPR operation.

end vertex ρ, each of the trees in Fig. 1 is a rooted binary phylogenetic tree. The
leaf set X is the label set of T and is frequently denoted by L(T ). A subset A of X

is a cluster of T if there is an edge e, or equivalently a vertex v, that has precisely
A as its set of descendant leaves. We denote this cluster by CT (e).

For a rooted phylogenetic X-tree T , several types of rooted subtrees will play an
important role in this paper. Let X ′ be a subset of X . The minimal rooted subtree

of T that connects all the leaves in X ′ is denoted by T (X ′). The restriction of T
to X ′, denoted by T |X ′, is the rooted phylogenetic X ′-tree obtained from T (X ′)
by contracting all degree-two vertices apart from the root. Lastly, a rooted subtree
of T is pendant if it can be detached from T by deleting a single edge.

rSPR and agreement forests. Let T and T ′ be two rooted binary phylogenetic
X-trees. For the purposes of the upcoming definitions and indeed much of the
paper, we view the roots of T and T ′ as a vertex ρ adjoined to the original root by
a pendant edge. Furthermore, we regard ρ as part of the label sets of T and T ′,
and so L(T ) = L(T ′) = X ∪ {ρ}.

Let e = {u, v} be any edge of T not incident with ρ, where u is the vertex on the
path from ρ to v. Let T ′ be the rooted binary phylogenetic X-tree obtained from
T by deleting e and reattaching the resulting rooted subtree containing v via a new
edge, f say, as follows. Subdivide an edge of the component that contains ρ with a
new vertex u′, join u′ and v with f , and then contract u. We say that T ′ has been
obtained from T by a rooted subtree prune and regraft (rSPR) operation. As an
example, in Fig. 1, each of T1 and T2 have been obtained from T by a single rSPR
operation. The rSPR distance between two arbitrary rooted binary phylogenetic
X-trees T and T ′ is the minimum number of rSPR operations that transforms T
into T ′. It is well known that one can always transform T into T ′ via a sequence
of single rSPR operations, so this distance is well-defined. We denote this distance
by drSPR(T , T ′).

Let T and T ′ be two arbitrary rooted binary phylogenetic X-trees. An agreement

forest F = {Lρ,L1, . . . ,Lk} for T and T ′ is a partition of X ∪{ρ} such that ρ ∈ Lρ

and the following properties are satisfied:

(i) for all i ∈ {ρ, 1, . . . , k}, we have T |Li
∼= T ′|Li, and
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Figure 2. Two rooted binary phylogenetic trees T and T ′ with
their roots labeled ρ.

(ii) the trees in {T (Li) : i ∈ {ρ, 1, . . . , k}} and {T ′(Li) : i ∈ {ρ, 1, . . . , k}} are
vertex-disjoint subtrees of T and T ′, respectively.

An agreement forest for T and T ′ is a maximum-agreement forest if, amongst all
agreement forests for T and T ′, it has the smallest number of parts, in which
case we denote this value of k by m(T , T ′). To illustrate, consider the two binary
phylogenetic trees shown in Fig. 2 where, for the moment, ignore the edge labels
e1, e2, e′1, and e′2. An agreement forest for these two trees is

{

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14}, {15, 16, ρ}
}

.

Bordewich and Semple [7] established the following characterization which ex-
presses the rSPR distance in terms of agreement forests. This characterization is
crucial to many of the computational results associated with computing the rSPR
distance.

Theorem 2.1. Let T and T ′ be two rooted binary phylogenetic X-trees. Then

drSPR(T , T ′) = m(T , T ′).
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Figure 3. A cluster sequence (T1, T ′
1 ), (T2, T ′

2 ), (Tρ, T ′
ρ) for T

and T ′ depicted in Fig. 2, where A1 = {1, 2, . . . , 6} and A2 =
{7, 8, . . . , 12} are the common clusters whose corresponding mini-
mal rooted subtrees have been replaced with a single vertex labeled
a1 and a2, respectively.

We remark here that one may view the key result of this paper as a generalization
of Theorem 2.1.

Cluster sequences. Let T and T ′ be two rooted binary phylogenetic X-trees. As
previously, view the roots of T and T ′ as a vertex ρ adjoined to the original root
by a pendant edge. We next describe algorithmically an associated sequence that is
central to this paper. Setting i = 1, let Ai be a cluster of size at least two common
to both T and T ′. Let Ti denote the rooted binary phylogenetic tree T |Ai (viewing
the root of Ti as a vertex ρi adjoined to the original root by a pendant edge) and
reset T to be the tree obtained from T by replacing T (Ai) with the new vertex
ai. Analogously, let T ′

i denote the rooted binary phylogenetic tree T ′|Ai (viewing
the root of T ′

i as a vertex ρi adjoined to the original root by a pendant edge) and
reset T ′ to be the tree obtained from T ′ by replacing T ′(Ai) with the vertex ai.
Increment i by 1 and repeat this process. Eventually, we obtain a sequence

(T1, T
′
1 ), (T2, T

′
2 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ )

of pairs of rooted binary phylogenetic trees, where Tρ and T ′
ρ denote the two trees

after the replacement of T (At) and T ′(At) with the vertex at. Observe that ρ is
the root of Tρ and T ′

ρ . We call this sequence a cluster sequence of T and T ′. An
example of a cluster sequence for the two rooted binary phylogenetic trees shown
in Fig. 2 is shown in Fig. 3.
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Figure 4. An agreement forest G for the cluster sequence shown
in Fig. 3, where F1 is an agreement forest for T1 and T ′

1 , and F2

and Fρ, respectively, are agreement forests for T2 and T ′
2 , and Tρ

and T ′
ρ .

Extending the definition of an agreement forest to cluster sequences, an agree-

ment forest for (T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ ) is a partition G of

X ∪ {ρ} ∪ {ρ1, ρ2, . . . , ρt} ∪ {a1, a2, . . . , at}

such that, for all i ∈ {1, . . . , t, ρ}, there exists a subset Fi of G that is an agreement
forest for Ti and T ′

i . The weight of G, denoted w(G), is defined to be

w(G) =

t
∑

i=1

|Fi| + |Fρ| − |{(ρi, ai) : {ρi}, {ai} ∈ G}| − t.

Note that
∑t

i=1 |Fi| + |Fρ| is simply |G| and that |{(ρi, ai) : {ρi}, {ai} ∈ G}| is the
number of pairs (ρi, ai) in which both ρi and ai are singletons in G. To illustrate, an
agreement forest G (viewed as restricted subtrees) for the cluster sequence shown
in Fig. 3 is shown in Fig. 4. The weight of this agreement forest is

(3 + 3 + 4) − 2 − 2 = 6.

For the reader familiar with maximum-agreement forests, it is interesting to note
that Fρ is not a maximum-agreement forest for Tρ and T ′

ρ since
{

{a1, 13}, {a2, 14}, {15, 16, ρ}
}

is an agreement forest for these two trees. However, it turns out that G is of
minimum weight. Hence, to optimize the weighting, it is not sufficient to exclusively
consider maximum-agreement forests for each pair of trees in a cluster sequence.

The point of the above weighting is because of the following theorem, the key
result of the paper.

Theorem 2.2. Let T and T ′ be two rooted binary phylogenetic X-trees. Let

(T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ)

be a cluster sequence of T and T ′. Let F be a maximum-agreement forest for T and

T ′, and let G be an agreement forest for this sequence of minimum weight. Then

|F| = w(G). In particular,

drSPR(T , T ′) = w(G) − 1.

The fact that drSPR(T , T ′) = w(G)−1 in the statement of Theorem 2.2 is an imme-
diate consequence of Theorem 2.1. The main part of the theorem will be establish
in the next section. Furthermore, a divide-and-conquer algorithm for computing
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the rSPR distance based upon this theorem will be described in Section 4. However,
before doing this, we make three remarks.

First, a single application of the cluster reduction for computing the rSPR dis-
tance was considered in [7]. In the language of this paper, the following result was
established.

Proposition 2.3. Let T and T ′ be two rooted binary phylogenetic X-trees, and let

(T1, T ′
1 ), (Tρ, T ′

ρ ) be a cluster sequence of T and T ′. Then

drSPR(T , T ′) ≤ drSPR(T1, T
′
1 ) + drSPR(Tρ, T

′
ρ) ≤ drSPR(T , T ′) + 1.

The potential difficulty of using Proposition 2.3 in practice is that either

drSPR(T , T ′) = drSPR(T1, T
′
1 ) + drSPR(Tρ, T

′
ρ )

or

drSPR(T , T ′) = drSPR(T1, T
′
1 ) + drSPR(Tρ, T

′
ρ) − 1

and both equalities are possible depending upon the pairs (T1, T ′
1 ) and (Tρ, T ′

ρ).
Understanding and recognizing which of these equalities hold is the basis for this
paper.

Second, as Theorem 2.2 is stated, it appears that we have to work globally to
find an agreement forest for

(T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ)

of minimum weight. Perhaps surprisingly given Proposition 2.3, this is not the case.
It turns out that we can work locally using a bottom-up strategy starting at the
leaves of both trees and working towards their respective roots, and only needing
to find agreement forests for the smaller trees Ti and T ′

i for all i ∈ {1, 2, . . . , t, ρ}.
Indeed, it turns out that it is sufficient to only consider maximum-agreement forests
of subtrees of Ti and T ′

i (see Section 4).

Third, a closely-related, and also computationally hard, problem to that of com-
puting the rSPR distance is computing the so-called hybridization number h(T , T ′)
of two rooted binary phylogenetic X-trees T and T ′. The value h(T , T ′) is the min-
imum number of hybridization events that is required to simultaneously explain the
evolutionary scenarios of T and T ′. For a formal definition, see [4]. The under-
lying reason for the closeness of the two computational problems is that h(T , T ′)
can also be characterized in terms of agreement forests. The only difference in the
characterizations is that, for h(T , T ′), we require the forest to have the additional
property of being “acyclic”. The reason for this property is so that the biologically
well-motivated constraint that species cannot inherit genetic material from their
own descendants is satisfied. However, it is this additional property that allows for
a cleaner version of Proposition 2.3 for the hybridization number of T and T ′. In
particular, in the language of this paper, Baroni et al. [5] established the following
proposition.
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Proposition 2.4. Let T and T ′ be two rooted binary phylogenetic X-trees, and let

(T1, T ′
1 ), (Tρ, T ′

ρ ) be a cluster sequence of T and T ′. Then

h(T , T ′) = h(T1, T
′
1 ) + h(Tρ, T

′
ρ ).

An immediate consequence of Proposition 2.4 is that if (T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T ′

ρ)
is a cluster sequence of T and T ′, then

h(T , T ′) = h(T1, T
′
1 ) + h(T2, T

′
2 ) + · · · + h(Tρ, T

′
ρ ).

This equality is the third rule mentioned in the introduction and it is this one
that greatly aids the computational process in the study in [8], and because of
this motivates the work done in this paper. For the reader familiar with acyclic-
agreement forests, all maximum-acyclic-agreement forests have the property that ρ

is never a singleton and it is this property that gives the equality in Proposition 2.4.
This property on ρ does not necessarily hold in the context of maximum-agreement
forests, and thus the reason for the inequalities in Proposition 2.3.

3. Proof of Theorem 2.2

This section contains the proof of Theorem 2.2. For convenience, we restate the
theorem.

Theorem 2.2. Let T and T ′ be two rooted binary phylogenetic X-trees. Let

(T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ)

be a cluster sequence of T and T ′. Let F be a maximum-agreement forest for T and

T ′, and let G be an agreement forest for this sequence of minimum weight. Then

|F| = w(G). In particular,

drSPR(T , T ′) = w(G) − 1.

Proof. We prove that |F| = w(G) by first showing that |F| ≤ w(G) and then show-
ing that |F| ≥ w(G). Both parts are established by induction. For this purpose, let
S be the rooted binary phylogenetic tree obtained from T by replacing the minimal
rooted subtree T (L(T1)) with a single vertex labeled a1 and, similarly, let S′ be
such a tree obtained from T ′ by replacing T ′(L(T1)) with a single vertex labeled a1.
Note that L(T1) = L(T ′

1 ), and (T2, T ′
2 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ) is a cluster sequence

for S and S′ of length t.

We first show that |F| ≤ w(G) by proving a slightly stronger result. Let GT be
an arbitrary agreement forest for the cluster sequence (T1, T

′
1 ), . . . , (Tt, T

′
t ), (Tρ, T ′

ρ)
of T and T ′. We will show that there exists an agreement forest FT for T and T ′

such that |FT | ≤ w(GT ) and, for each x ∈ L(T ) − {ρ} with {x} ∈ GT , we have
{x} ∈ FT . For simplicity, we will refer to this last property in the following way:
FT has the desired singleton property relative to GT . Observe that, by choosing GT

to be G and noting that |F| ≤ |FT |, this stronger result establishes |F| ≤ w(G).
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The proof is by induction on t. If t = 0, then the definition of a maximum-
agreement forest for T and T ′ coincides with the definition of an agreement forest
of minimum weight for the cluster sequence (T , T ′) of T and T ′. Therefore, we can
choose FT to be GT and the result follows. Now suppose that the stronger result
holds for all cluster sequences of two rooted binary phylogenetic trees with length
at most t. As GT is an agreement forest for

(T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ ),

it is easily checked that

GS = {Li ∈ GT : Li ∩ L(T1) = ∅}

is an agreement forest for (T2, T ′
2 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ ) and

FT1
= {Li ∈ GT : Li ∩ L(T1) 6= ∅}

is an agreement forest for T1 and T ′
1 . Observe that |GT | = |GS | + |FT1

|. Since
(T2, T

′
2 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ ) is a cluster sequence of S and S′ with length t, it

follows by the induction assumption that there exists an agreement forest FS for S
and S′ such that |FS | ≤ w(GS) and FS has the desired singleton property relative
to GS . Let Lρ1

denote the label set of FT1
containing ρ1, and let La1

denote the
label set of FS containing a1. Let

P = {(ρi, ai) : {ρi}, {ai} ∈ GT and i ∈ {1, . . . , t}},

and let

PS = {(ρi, ai) : {ρi}, {ai} ∈ GS and i ∈ {2, . . . , t}}.

Noting that |P | ∈ {|PS |, |PS | + 1}, there are two cases to consider: (i) |P | = |PS |
and (ii) |P | = |PS | + 1.

If (i) holds, then (ρ1, a1) 6∈ P . Let

FT = (FS ∪ FT1
− {La1

,Lρ1
}) ∪ {(La1

− {a1}) ∪ (Lρ1
− {ρ1})},

and note that {(La1
−{a1})∪ (Lρ1

−{ρ1})} may consist of the empty set, in which
case we set FT = (FS ∪FT1

)−{La1
,Lρ1

}. Since FS and FT1
are agreement forests

for S and S′, and for T1 and T ′
1 , respectively, FT is an agreement forest for T and

T ′. Furthermore, by construction, FT has the desired singleton property relative
to GT . Now, since |FS | ≤ w(GS),

|FT | ≤ |FS | − 1 + |FT1
| − 1 + 1

≤ w(GS) + |FT1
| − 1

= (|GT | − |FT1
| − |PS | − (t − 1)) + |FT1

| − 1

= |GT | − |P | − t = w(GT ).

If (ii) holds, then (ρ1, a1) ∈ P . Therefore, {ρ1}, {a1} ∈ GT and {ρ1} ∈ FT1
.

Since FS has the desired singleton property relative to GS and {a1} ∈ GS , we also
have {a1} ∈ FS. In this case, let

FT = (FS − {La1
}) ∪ (FT1

− {Lρ1
})

Since FS and FT1
are agreement forests for S and S′, and for T1 and T ′

1 , respectively,
and La1

= {a1} and Lρ1
= {ρ1}, it follows that FT is an agreement forest for T and
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T ′. Furthermore, by construction, FT has the desired singleton property relative
to GT . Now, as |FS | ≤ w(GS),

|FT | = |FS | − 1 + |FT1
| − 1

≤ w(GS) + |FT1
| − 2

= (|GT | − |FT1
| − |PS | − (t − 1)) + |FT1

| − 2

= |GT | − |P | − t = w(GT ).

Thus |FT | ≤ w(GT ) as required.

For the other direction of the theorem, we again prove a slightly stronger result.
In particular, let FT be an arbitrary agreement forest for T and T ′. We show that
there exists an agreement forest GT for the cluster sequence (T1, T ′

1 ), . . . , (Tt, T ′
t ), (Tρ, T ′

ρ)
of T and T ′ such that |FT | ≥ w(GT ) and, for all Lj ∈ GT , there exists a Li ∈ FT

with Lj ∩ (X ∪ {ρ}) being a subset of Li. For simplicity, we will refer to this last
property in the following way: GT has the desired subset property relative to FT .
Observe that, by choosing FT to be F and noting that w(GT ) ≥ w(G), this stronger
result establishes the other direction.

The proof of this direction is by induction on t. If t = 0, then, as the definition
of a maximum-agreement forest for T and T ′ coincides with the definition of an
agreement forest of minimum weight for the cluster sequence (T , T ′) of T and
T ′, we can choose GT to be FT and this immediately establishes the result. Now
suppose that the stronger result holds for all cluster sequences of two rooted binary
phylogenetic trees with length at most t. We consider two cases, where A1 denotes
L(T1) − {ρ1}:

(i) There exists a label set Lm in FT such that Lm ∩ A1 6= ∅ and Lm ∩ ((X −
A1) ∪ {ρ}) 6= ∅.

(ii) For all label sets Li ∈ FT , either Li ⊆ A1 or Li ⊆ ((X − A1) ∪ {ρ}).

Assume first that (i) holds and note that Lm is the unique label set in FT with
the described properties; otherwise FT is not an agreement forest for T and T ′.
Let Lm′ = Lm ∩ ((X − A1) ∪ {ρ}), and let Lm′′ = Lm ∩ A1. Then, since FT is an
agreement forest for T and T ′,

FS = {Li ∈ FT : Li ⊆ ((X − A1) ∪ {ρ})} ∪ {Lm′ ∪ {a1}}

is an agreement forest for S and S′, and

FT1
= {Li ∈ FT : Li ⊆ A1} ∪ {Lm′′ ∪ {ρ1}}

is an agreement forest for T1 and T ′
1 . Since (T2, T

′
2 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ ) is a cluster

sequence of S and S′ with length t, it follows by the induction assumption that there
exists an agreement forest GS for the cluster sequence (T2, T ′

2 ), . . . , (Tt, T ′
t ), (Tρ, T ′

ρ)
of S and S′ such that |FS | ≥ w(GS) and, for all Lj ∈ GS , there exists a Li ∈ FS

with Lj ∩ ((X −A1)∪ {ρ, a1}) being a subset of Li. As FT1
is an agreement forest

for (T1, T
′
1 ), it follows that

GT = GS ∪ FT1

is an agreement forest for (T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ ). By construction, GT has the

desired subset property relative to FT . Furthermore, as {ρ1} 6∈ FT1
and w(GS) ≤
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|FS|,

w(GT ) = w(GS) + |FT1
| − 1

≤ |FS | + |FT1
| − 1 = |FT |.

For (ii), choose

FS = {Li ∈ F : Li ⊆ ((X − A1) ∪ {ρ})} ∪ {{a1}}

and

FT1
= {Li ∈ F : Li ⊆ A1} ∪ {{ρ1}}.

It is clear that FS is an agreement forest for S and S′, and FT1
is an agreement forest

for T1 and T ′
1 . By the induction assumption, there exists an agreement forest GS

for the cluster sequence (T2, T ′
2 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ) of S and S′ such that |FS | ≥

w(GS) and, for all Lj ∈ GS , there exists a Li ∈ FS with Lj ∩ ((X − A1) ∪ {ρ, a1})
being a subset of Li. In particular, as {a1} ∈ FS , we have {a1} ∈ GS . Set

GT = GS ∪ FT1

and observe that GT is an agreement forest for (T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ ). By

construction, GT has the desired subset property relative to FT . Moreover, as
{ρ1}, {a1} ∈ GT , we have w(GT ) = w(GS) + |FT1

| − 2, and so

w(GT ) = w(GS) + |FT1
| − 2

≤ |FS | + |FT1
| − 2 = |FT |.

This completes the proof of the theorem. �

4. Computing the Minimum Weight

In this section, we present an algorithm for computing the minimum weight of
an agreement forest for a cluster sequence (T1, T ′

1 ), . . . , (Tt, T ′
t ), (Tρ, T ′

ρ ) of T and
T ′. Potentially, to find such a minimum-weight-agreement forest one may have to
consider all agreement forests for each (Ti, T

′
i ) and compare over all such forests

to minimize the weighting. However, in this section, we show that we can do
significantly better than this by applying a ‘bottom-up’ approach. The fact that
this approach works is shown in the second part of the section.

Let T and T ′ be two rooted binary phylogenetic X-trees, and let

(T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ)

be a cluster sequence of T and T ′. For each i ∈ {1, 2, . . . , t}, we denote by ei the
edge of T whose end vertex has been replaced by ai at iteration i. Similarly, for
each i ∈ {1, 2, . . . , t}, we denote by e′i the edge of T ′ whose end vertex has been
replaced by ai at iteration i. Note that ei and e′i are well-defined. We refer to ei

and e′i as reduction edges of the sequence. Now let J denote the rooted tree with
root ρ whose vertex set is {ρ, e1, . . . , et} and where two vertices are joined by an
edge precisely if the (unique) path connecting them in T does not traverse any other
element in {ρ, e1, . . . , et}. Similarly, let J ′ denote the rooted tree with root ρ whose
vertex set is {ρ, e′1, . . . , e

′
t} and where two vertices are joined by an edge precisely

if the (unique) path connecting them in T ′ does not traverse any other element in
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J ′

e1 e2

ρ

e
′

1 e
′

2

ρ

J

Figure 5. The two rooted trees J and J ′ for the cluster sequence
(T1, T ′

1 ), (T2, T ′
2 ), (Tρ, T ′

ρ ) shown in Fig. 3.

{ρ, e′1, . . . , e
′
t}. To illustrate, consider the cluster sequence (T1, T ′

1 ), (T2, T ′
2 ), (Tρ, T ′

ρ)
shown in Fig. 3 of the two trees T and T ′ shown in Fig. 2. The reduction edges e1,
e2, e′1, and e′2 of this sequence are shown in Fig. 2. Furthermore, the rooted trees
J and J ′ are shown in Fig. 5.

Lemma 4.1. Let T and T ′ be two rooted binary phylogenetic X-trees, and let

(T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ ) be a cluster sequence of T and T ′. Then

(i) CT (ei) = CT ′(e′i) for all i ∈ {1, 2, . . . , t}, and

(ii) J is isomorphic to J ′.

Proof. Let Σ denote the sequence (T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ). We prove both

parts simultaneously by induction on the length of Σ. If Σ has length 1, that is
t = 0, then (i) trivially holds and, as J and J ′ each consist of a single vertex
ρ, (ii) also holds. Now suppose that (i) and (ii) holds for all cluster sequences of
two rooted binary phylogenetic trees with length at most t. Let S be the rooted
binary phylogenetic tree obtained from T by replacing the minimal rooted sub-
tree T (L(T1)) with a single vertex labeled a1 and, similarly, let S′ be such a tree
obtained from T ′ by replacing T ′(L(T1)) with a single vertex labeled a1. Since
ΣS = (T2, T ′

2 ), . . . , (Tt, T ′
t ), (Tρ, T ′

ρ ) is a cluster sequence for S and S′ of length t,
it follows by the induction assumption, that CS(ei) = CS′(e′i) for all i ∈ {2, . . . , t}
and that JS and J ′

S are isomorphic, where JS and J ′
S are the analogues of J and

J ′ for S and S′, respectively.

By the construction of S and S′ from T and T ′, it is easily seen that CT (ei) =
CT ′(e′i) for all i ∈ {1, 2, . . . , t}, so (i) holds. Furthermore, observe that J is obtained
from JS by adjoining e1 to the vertex corresponding to the minimal cluster in
{CT (ei) : i ∈ {2, . . . , t}} ∪ {X} that contains CT (e1). Similarly, J ′ is obtained
from J ′

S by adjoining e′1 to the vertex corresponding to the minimal cluster in
{CT (e′i) : i ∈ {2, . . . , t}} ∪ {X} that contains CT ′(e′1). It now follows by these
observations and (i) that (ii) holds. This completes the proof of the lemma. �

Following Lemma 4.1(ii), let (T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ) be a cluster sequence

of T and T ′. We define the cluster hierarchy H of this sequence to be the rooted tree
obtained from J (or equivalently J ′) by relabeling the vertex ρ with (Tρ, T ′

ρ) and,
for all i ∈ {1, 2, . . . , t}, relabeling ei with (Ti, T

′
i ). We now present our algorithm.
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(Tρ, T
′

ρ )

H

(T1, T
′

1 ) (T2, T
′

2 )

Figure 6. The cluster hierarchy H for the cluster sequence de-
picted in Fig. 3.

Algorithm: Minimum-Weight Forest

Input: A cluster sequence (T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ ) of two rooted binary phy-

logenetic X-trees T and T ′.
Output: The minimum weight of an agreement forest for this sequence.

Step 1 Set j = 1, set Gj = ∅, and set Hj to be the cluster hierarchy of

(T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ ).

Step 2 Select a leaf (Ti, T ′
i ) of Hj and find an agreement forest Fi for Ti and T ′

i

that minimizes

|Fi| − |{(ρi′ , ai′) : {ρi′} ∈ Gj and {ai′} ∈ Fi}|

and, provided i 6= ρ, amongst all such forests, choose one in which ρi is a
singleton if possible. Note that ρi′ ∈ {ρ1, ρ2, . . . , ρt} and ai′ ∈ {a1, a2, . . . , at}.

Step 3 Set Gj+1 = Gj ∪ Fi.
Step 4 If j = t + 1, STOP and return

|Gt+1| − |{(ρi′ , ai′) : {ρi′}, {ai′} ∈ Gt+1}| − t.

Step 5 Otherwise, increment j by 1, and set Hj to be the hierarchy obtained from
Hj−1 by deleting (Ti, T ′

i ) and its incident edge. Return to Step 2.

To illustrate the algorithm, again consider the cluster sequence (T1, T ′
1 ), (T2, T ′

2 ), (Tρ, T ′
ρ )

shown in Fig. 3 of the two trees T and T ′ shown in Fig. 2. The cluster hierarchy of
this sequence is the rooted tree shown in Fig. 6. In the first iteration of Minimum-

Weight Forest applied to (T1, T ′
1 ), (T2, T ′

2 ), (Tρ, T ′
ρ), either (T1, T ′

1 ) or (T2, T ′
2 ) is

selected at Step 2. Say (T1, T ′
1 ) is selected. The algorithm then finds an appropriate

agreement forest of T1 and T ′
1 . Such a forest F1 is shown in Fig. 4. The set G1 is

initially empty, so G2 is set to be F1 at Step 3. In the second iteration, (T2, T ′
2 ) is

selected at Step 2 and an appropriate agreement forest F2 of T2 and T ′
2 is shown in

Fig. 4. At Step 3, G3 is set to be F1 ∪ F2. In the third and final iteration, (Tρ, T ′
ρ)

is considered. Using Fρ shown in Fig. 4, a possible agreement forest of minimum
weight for T and T ′ is

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14}, {15, 16, ρ}}.

Thus, Minimum-Weight Forest returns 6, the weight of this forest.

Before establishing the correctness of Minimum-Weight Forest, we make
three remarks. Firstly, observe that Minimum-Weight Forest is well-defined
and Gt+1 is an agreement forest for the initial sequence. Secondly, in practice,
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finding such an appropriate forest in Step 2 comes down to finding a maximum-
agreement forest. In particular, Step 2 can be restated as follows.

Step 2′ Select a leaf (Ti, T ′
i ) of Hj and find a maximum-agreement forest F ′

i for
Ti and T ′

i restricted to L(Ti) − {ai′ : {ρi′} ∈ Gj} with the property that,
amongst all such forests, choose one in which ρi is a singleton if possible.
Set Fi to be F ′

i ∪ {{ai′} : {ρi′} ∈ Gj}.

To see why Step 2′ is equivalent to Step 2 in Minimum-Weight Forest, let
F ′′

i denote F ′
i ∪ {{ai′} : {ρi′} ∈ Gj} and recall that, in Step 2, Fi is an agreement

forest for Ti and T ′
i that minimizes

|Fi| − |{(ρi′ , ai′) : {ρi′} ∈ Gj and {ai′} ∈ Fi}|

and, amongst all such forests, ρi is a singleton if possible. As F ′′
i is an agreement

forest for Ti and T ′
i , it follows by the minimality of Fi that

|F ′′
i | − |

{

(ρi′ , ai′) : {ρi′} ∈ Gj ,{ai′} ∈ F ′′
i

}

|(1)

≥ |Fi| − |{(ρi′ , ai′) : {ρi′} ∈ Gj , {ai′} ∈ Fi}|.

But the set obtained from Fi by removing any labels in {ai′ : {ρi′} ∈ Gj} and any
resulting empty sets is an agreement forest for Ti and T ′

i restricted to L(Ti)−{ai′ :
{ρi′} ∈ Gj}. Therefore, by the minimality of F ′

i ,

|F ′
i | ≤ |Fi| − |

{

A′ : A′ ∈ Fi, A′ ⊆ {ai′ : {ρi′} ∈ Gj}
}

|(2)

≤ |Fi| − |{(ρi′ , ai′) : {ρi′} ∈ Gj and {ai′} ∈ Fi}|.

Since

|F ′
i | = |F ′′

i | − |
{

(ρi′ , ai′) : {ρi′} ∈ Gj , {ai′} ∈ F ′′
i

}

|,

it now follows that

|F ′′
i | − |

{

(ρi′ , ai′) : {ρi′} ∈ Gj ,{ai′} ∈ F ′′
i

}

|

= |Fi| − |{(ρi′ , ai′) : {ρi′} ∈ Gj , {ai′} ∈ Fi}|.

Furthermore, by the last equality, we now have equality in (1) and (2). Using these
equalities, it is easily checked that ρi is a singleton in F ′

i ∪ {{ai′} : {ρi′} ∈ Gj} if
and only if it is a singleton in Fi. Thus Step 2′ is equivalent to Step 2.

Lastly, for computational reasons, it is useful to choose a cluster sequence that
is as long as possible; thus breaking the problem instance into as many smaller
subproblems as possible. Hence, in selecting clusters for this sequence, the best
strategy is to choose minimal common clusters of size at least 2.

Theorem 4.2. Let (T1, T
′
1 ), . . . , (Tt, T

′
t ), (Tρ, T

′
ρ ) be a cluster sequence of two rooted

binary phylogenetic X-trees T and T ′. Then the Minimum-Weight Forest algo-

rithm applied to this sequence returns the minimum weight of an agreement forest

for it.

Proof. Let Σ denote the sequence (T1, T ′
1 ), . . . , (Tt, T ′

t ), (Tρ, T ′
ρ ), and let (Ti, T ′

i ) be
a pair in Σ. At some iteration of Minimum-Weight Forest, (Ti, T ′

i ) is selected at
Step 2. Let e and e′ be the reduction edges of T and T ′, respectively, corresponding
to Ti and T ′

i if i 6= ρ. Thus e ∈ {e1, e2, . . . , et} and e′ ∈ {e′1, e
′
2, . . . , e

′
t}. Recalling
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that CT (e) = CT ′(e′) by Lemma 4.1(i), let S denote T |CT (e), and let S′ denote
T ′|CT (e). If i = ρ, let S denote T and S′ denote T ′. Let H denote the cluster
hierarchy of Σ. Now observe that the subsequence ΣS of Σ consisting of those
pairs that are vertices in the pendant subtree of H whose root vertex is (Ti, T ′

i ) is
a cluster sequence for S and S′. Recalling that Gt+1 is the agreement forest for Σ
found by Minimum-Weight Forest, let

GS = {Li ∈ Gt+1 : Li ∩ L(Ti′ ) 6= ∅, (Ti′ , T
′

i′) ∈ ΣS}.

Clearly, GS is an agreement forest for ΣS . To establish the theorem we show by
induction on the length of ΣS that GS is an agreement forest of minimum weight
for ΣS where, amongst all such forests, the root label ρi is a singleton if possible.

If ΣS has length 1, then (Ti, T ′
i ) is a leaf of H, and it immediately follows that

GS is an agreement forest of minimum weight for ΣS . Now suppose that the result
holds for all sequences of length less than ΣS .

Let f1, f2, . . . , fs denote the reduction edges of T corresponding to the child
vertices of (Ti, T ′

i ) in H. Similarly, let f ′
1, f

′
2, . . . , f

′
s denote the reduction edges of

T ′ corresponding to the child vertices of (Ti, T ′
i ) in H. For each r ∈ {1, 2, . . . , s}, the

path in T from e to fr does not contain any other element in {ρ, e1, e2, . . . , et} and
the path in T ′ from e′ to f ′

r does not contain any other element in {ρ, e′1, e
′
2, . . . , e

′
t}.

Without loss of generality, we may assume that CT (fr) = CT ′(f ′
r) for all r. In the

construction of Σ, let br denote the replacement vertex at the ends of fr and f ′
r.

Thus br ∈ {a1, a2, . . . , at}. For each r, let Sr denote T |CT (fr) and S′
r denote

T ′|CT (fr). Furthermore, for each r, let Σr denote the subsequence of Σ consisting
of those pairs that are vertices in the pendant subtree of H whose root vertex
corresponds to the reduction edges fr and f ′

r. As above, note that Σr is a cluster
sequence for Sr and S′

r. By the induction assumption, for all r,

Gr = {Li ∈ Gt+1 : Li ∩ L(Ti′ ) 6= ∅, (Ti′ , T
′

i′) ∈ Σr}

is an agreement forest of minimum weight for Σr where, amongst all such forests,
the root label, ζr say, of Sr and S′

r is a singleton if possible. Note that ζr ∈
{ρ1, ρ2, . . . , ρt}.

Let G∗
S be an agreement forest for ΣS of minimum weight. For the purposes of

obtaining a contradiction, suppose that either w(G∗
S) < w(GS), or w(G∗

S) = w(GS)
and ρi is a singleton in G∗

S but it is not a singleton in GS . For all r, let

G∗
r = {Li ∈ G∗

S : Li ∩ L(Ti′ ) 6= ∅, (Ti′ , T
′

i′) ∈ Σr}.

Since Σr is of smaller length than ΣS , it follows by the induction assumption that
w(Gr) ≤ w(G∗

r ) for all r. Therefore, either

(i) w(Gr) = w(G∗
r ), in which case if ζr is a singleton in G∗

r , then it is a singleton
in Gr, or

(ii) w(Gr) + 1 = w(G∗
r ), in which case ζr is not a singleton in Gr, but it is a

singleton in G∗
r .

These are the only two possibilities, otherwise w(Gr) + 1 = w(G∗
r ), in which case

ζr is a singleton in Gr or ζr is not a singleton in G∗
r , or w(Gr) + 2 ≤ w(G∗

r ). In
both cases, (G∗

S − G∗
r ) ∪ Gr is an agreement forest of ΣS with smaller weight than
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G∗
S ; a contradiction to the minimality of G∗

S . By reindexing if necessary, we may
assume that w(Gr) = w(G∗

r ) for all r ∈ {1, . . . , j} and w(Gr) + 1 = w(G∗
r ) for all

r ∈ {j + 1, . . . , s}.

Let Fi and F∗
i denote GS −

⋃

r∈{1,...,s} Gr and G∗
S −

⋃

r∈{1,...,s} G
∗
r , respectively.

Note that Fi is the set obtained in Step 2 in Minimum-Weight Forest and F∗
i

is an agreement forest for Ti and T ′
i . Furthermore, let

p1 = |{(ζr, br) : r ∈ {1, . . . , j} and {ζr}, {br} ∈ GS}|,

and let
p∗1 = |{(ζr, br) : r ∈ {1, . . . , j} and {ζr}, {br} ∈ G∗

S}|

and
p∗2 = |{(ζr, br) : r ∈ {j + 1, . . . , s} and {ζr}, {br} ∈ G∗

S}|.

Observe that

s − j ≥ p∗2.(3)

Since ζr is a singleton in Gr whenever ζr is a singleton in G∗
r for all r ∈ {1, . . . , j},

it follows by the algorithm’s choice of Fi in Step 2 that

|Fi| − p1 ≤ |F∗
i | − p∗1.(4)

Now

w(G∗
S) =

j
∑

r=1

w(G∗
r ) +

s
∑

r=j+1

w(G∗
r ) + |F∗

i | − (p∗1 + p∗2) − s

=

s
∑

r=1

w(Gr) + (s − j) + |F∗
i | − (p∗1 + p∗2) − s(5)

and

w(GS) =
s

∑

r=1

w(Gr) + |Fi| − p1 − s,(6)

where (5) follows by the above reindexing. If w(G∗
S) < w(GS), then

s − j + |F∗
i | − (p∗1 + p∗2) < |Fi| − p1.(7)

Combining (7) and (4),

s − j < p∗2,

contradicting (3). Thus we may assume that w(G∗
S) = w(GS) and ρi is a singleton

in G∗
S but it is not a singleton in GS . Therefore, by (4), (5), and (6),

s − j + |F∗
i | − (p∗1 + p∗2) = |Fi| − p1 ≤ |F∗

i | − p∗1.

Since (s − j) − p∗2 ≥ 0 by (3), it follows that s − j = p∗2 and so, in particular,
|F∗

i |−p∗1 = |Fi|−p1. Furthermore, for all r ∈ {1, 2, . . . , j}, whenever ζr is a singleton
in G∗

r , it is also a singleton in Gr . Hence, as ρi is a singleton in F∗
i , Minimum-

Weight Forest would have not have chosen Fi in Step 2. We deduce that GS is
an agreement forest of ΣS of minimum with the property that, amongst all such
forests, ρi is a singleton if possible. This completes the proof of the theorem. �
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5. Some Remarks on the Fixed-Parameter Tractability of

Calculating the rSPR Distance

Fixed-parameter algorithms have recently attracted much attention in various
areas of computational biology (e.g. see [2, 10] and references therein). The idea
behind fixed-parameter algorithms is that although the general instance of a prob-
lem is NP-hard, many practical instances may be tractable in reasonable time. This
may be the case if one can find an algorithm whose running time separates the size
of the instance and the parameter of interest. In the case of computing the rSPR
distance between two rooted binary phylogenetic X-trees T and T ′, Bordewich and
Semple [7] have shown that such an algorithm exists. In particular, they showed
that this distance can be computed in time O(f(k) + p(n)), where k is the actual
rSPR distance between T and T ′, n = |X |, f is a computable function, and p is
a fixed polynomial. Thus, if k is small, the problem might be tractable even for
a large n. For further information about fixed-parameter tractability, we refer the
interested reader to [9].

To show that finding the rSPR distance between two arbitrary rooted binary
phylogenetic X-trees T and T ′ is fixed-parameter tractable, it suffices to kernalize
the problem using two reduction rules [7]:

Rule 1. Replace a pendant subtree that occurs identically in both trees by a single
leaf with a new label.

Rule 2. Replace a chain of at least three common pendant subtrees that occur
identically and with the same orientation relative to the root in both trees
by three new leaves, say a, b, c, correctly orientated to preserve the direction
of the chain.

These reduction rules are the subtree and chain rules mentioned in the introduction.
Both rules preserve the rSPR distance [7, Proposition 3.2]. That is, if S and S′

are the two rooted binary phylogenetic trees resulting from a single application of
either Rule 1 or Rule 2 to T and T ′, then

drSPR(T , T ′) = drSPR(S,S′)

or, equivalently, by Theorem 2.1, the size of a maximum-agreement forest for T
and T ′ is equal to the size of a maximum-agreement forest for S and S′. It is
shown in [7] that repeated applications of both rules to T and T ′ until no further
reductions are possible result in two rooted binary phylogenetic X ′-trees, where
|X ′| is linear in drSPR(T , T ′); in particular, |X ′| ≤ 28drSPR(T , T ′). Applying an
exhaustive search gives the aforementioned running time.

The obvious first way to make use of the subtree and chain rules in Minimum-

Weight Forest is to preprocess the initial two trees by applying the these rules
repeatedly before constructing any cluster sequence. This immediately implies that
Minimum-Weight Forest is fixed-parameter tractable, and so one can think of
the cluster sequence as a way of aiding the exhaustive search. Now suppose we
have a cluster sequence of the resulting trees. In the following, we consider the use
of the chain rule, but a similar analysis can be done for the simpler subtree rule.
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Suppose that S and S′ have been obtained from two arbitrary rooted binary
phylogenetic X-trees T and T ′ by a single application of the chain rule. The reason
that the chain rule preserves the rSPR distance is that there exists a maximum-
agreement forest FS for S and S′ in which {a, b, c} is a subset of a label set in
FS [7, Lemma 3.1]. By replacing a, b, and c in this label set with the original
elements of the chain, we obtain an agreement forest FT for T and T ′. By the
optimality of FS , it follows that FT is a maximum-agreement forest for T and T ′

(see [1, 7]). Using the equivalence of Steps 2 and 2′, we can incorporate the chain
rule in Minimum-Weight Forest in Step 2 as follows:

(i) first, reduce Ti|(L(Ti)−{ai′ : {ρi′} ∈ Gj}) and T ′
i |(L(Ti)−{ai′ : {ρi′} ∈ Gj})

with repeated applications of the chain rule;
(ii) second, find a maximum-agreement forest of the resulting trees such that

each 3-element set {a, b, c} resulting from the chain rule is a subset of a
label set and, amongst all such forests, ρi a singleton if possible;

(iii) third, replace each 3-element set {a, b, c} with the original elements of the
associated chain to obtain F ′

i .

(Note that any element in {a1, a2, . . . , at} that is in the label sets of the restrictions
in (i) does not effect the weighting as their counterpart in {ρ1, ρ2, . . . , ρt} is not a
singleton in Gj .) The two possible causes for concern are that

(I) we can find no maximum-agreement forest in (ii) such that each 3-element
set {a, b, c} is a subset of a label set, and

(II) there is a maximum-agreement forest for the restrictions in (i) with ρi a
singleton and we no longer find it because no maximum-agreement forest
found in (ii) has ρi as a singleton.

However, the proof of [7, Lemma 3.1] works by taking a maximum-agreement forest
and making small modifications to get the desired outcome. An analysis of the proof
shows that we can sequentially find a maximum-agreement forest so that if {a, b, c}
is a subset of a label set prior to the modifications, then it is also a subset of a
label set after the modifications. This resolves (I). Furthermore, this analysis also
shows that if ρi is a singleton prior to the modifications, then it is a singleton
afterwards. It now follows that if there is a maximum-agreement forest for the
trees resulting from repeated use of the chain rule with ρi a singleton, then the
maximum-agreement forest found in (ii) also has ρi as a singleton, in which case,
we obtain via (iii) a maximum-agreement forest for the restrictions in (i) with ρi a
singleton. Similarly, the converse also holds by noting that common subtrees are
never broken across different label sets in a maximum-agreement forest and that
the analogous outcome of [7, Lemma 3.1] holds for all chains of size at least 3. This
resolves (II).
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