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Abstract. Phylogenetic diversity (PD) is a measure of the extent to which

different subsets of taxa span an evolutionary tree, and provides a quantita-
tive tool for studying biodiversity conservation. Recently, it was shown that
the problem of finding subsets of taxa of given size to maximize PD can be
efficiently solved by a greedy algorithm. In this paper, we extend this earlier
work, beginning with a more explicit description of the underlying combinato-
rial structure of the problem and its connection to greedoid theory. Next we
show that an extension of the PD optimization problem to a phylogeographic
setting is NP-hard, although a special case has a polynomial-time solution
based on the greedy algorithm. We also show how the greedy algorithm can
be used to solve some special cases of the PD optimization problem when the
sets that are restricted to are ecologically ‘viable’. Finally, we show that three
measures related to PD fail to be optimized by a greedy algorithm.

1. Introduction

A central question in conservation biology is how to measure, predict, and pre-
serve biodiversity as species face extinction. One unifying approach to this question
is to measure the ‘biodiversity’ of a collection of species in terms of the evolutionary
diversity that those species span in a ‘tree of life’—a measure often referred to as
‘phylogenetic diversity’ (PD) [2, 7, 8, 12]. Loosely speaking, if T is a (phyloge-
netic) tree whose leaf labels comprise a set X of species, and whose edges have
non-negative real-valued lengths, then for a subset Y of X , the PD score of Y is
the sum of the lengths of the edges of the minimal subtree of T that connects Y (in
the case that T is rooted, the root vertex must also be connected). Depending on
how the edge lengths are assigned, PD can measure either the genetic diversity or
the total evolutionary time spanned by the subset of species. Phylogenetic diversity
is also relevant to other problems in bioinformatics such as prioritizing species for
sequencing in genomics [18].

Date: 17 October 2006.
1991 Mathematics Subject Classification. 05C05; 92D15.
Key words and phrases. Phylogenetic diversity, greedy algorithm.
The first author thanks the Department of Mathematics and Statistics, University of Can-

terbury, New Zealand for hosting him during the preliminary stages of this work, during which
time he was supported by a University of Canterbury Erskin Fellowship. The first author was
supported in part by an EPSRC grant (EP/D068800/1), while the second and third authors were
supported by the New Zealand Marsden Fund (06UOC02).

1



2 VINCENT MOULTON, CHARLES SEMPLE, AND MIKE STEEL

In the PD optimization problem, we wish to find a subset of X of given size
(perhaps also containing a given subset of species) that has maximal PD score
amongst all such subsets. Although the concept of PD (and a greedy algorithm for
constructing high-PD sets) has been around for 14 years [7], it was only in 2005
[21, 18] that the greedy algorithm was formally shown to solve the PD optimization
problem. The implication of this is that it is now realistic to solve this optimization
problem exactly for thousands of species [17].

In this paper, we apply greedoid theory (a branch of combinatorics related to
matroid theory) to study optimization problems based on PD, including three vari-
ations that are biologically motivated. We first make explicit the underlying role
of greedoids in the original PD optimization problem. We then consider the fol-
lowing variations on the problem that include a geographic component: in the first
problem we wish to maximize the PD of the species chosen so that at least certain
numbers are conserved from each of a set of regions. We show that this problem
has a polynomial-time algorithm based on the greedy algorithm.

Next we show that the problem (described in [19]) of selecting a given number
of regions to maximize the PD of the species that occur within at least one of the
selected regions is NP-hard.

In the third variation, we incorporate an obvious ecological constraint: the ex-
tinction of a certain set of species will necessarily lead to the extinction of other
species (for example, if that species depends on at least one of the species in the set
for its survival)—that is, not all subsets of X are (ecologically) ‘viable’ (this point
has been raised by other authors, such as [22, 23]). Consequently it is desirable to
restrict the PD optimization problem just to the ‘viable’ subsets of X . Again there
is an underlying greedoid structure to this problem (though in a quite different
sense to the standard PD optimization problem) and we describe precisely when
the greedy algorithm solves this restricted PD optimization problem.

The final section of the paper considers three functions related to PD, and pro-
vides examples to show that for all three the corresponding optimization problem is
not solved by the greedy algorithm. We begin by recalling some fundamental con-
cepts from greedoid theory, in particular the concept of a greedoid and the formal
definition and properties of the greedy algorithm.

2. Some Facts from Greedoid Theory

Let X be a finite set and let F be a collection of subsets of X . The pair (X,F)
is a greedoid if it satisfies the following two conditions:

(G1) If F ∈ F and F 6= ∅, then there is an x ∈ F such that F − {x} ∈ F ;
(G2) If F1, F2 ∈ F and |F2| = |F1| + 1, then there is an x ∈ F2 − F1 such that

F1 ∪ {x} ∈ F .

Note that a consequence of (G1) is that ∅ ∈ F .
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For a greedoid (X,F), the members of F are called feasible. Furthermore, the
maximal feasible sets, that is the feasible sets not properly contained in any other
feasible set, are called bases. Observe that, because of (G2), all bases have the
same size. As an explicit example, let G be a connected graph with edge set E.
Let F denote the collection of subsets of E that contain no cycle, that is, induce
a forest. Then F certainly satisfies (G1) and one can show that F satisfies (G2),
and so (E,F) is a greedoid. As G is connected, the bases of this greedoid are the
edge sets of spanning trees of G.

Condition (G1) implies that (X,F) is an ‘accessible’ set system. The implication
of this is that if F is a feasible set, then it can be obtained from the empty set by
sequentially adding elements of X such that at each stage the set so far constructed
is feasible. In particular, there is a sequence of feasible sets ∅ = F0, F1, F2, . . . Fk =
F such that, for all i, we have that Fi−1 ⊆ Fi and |Fi| = |Fi−1| + 1.

Now consider the following condition, a strengthening of (G2):

(G2′) If F1, F2 ∈ F and |F2| = |F1| + 1, then there is an x ∈ F2 − F1 such that
F1 ∪ {x} ∈ F and F2 − {x} ∈ F .

If (X,F) satisfies (G1), (G2′), then (X,F) is called a strong greedoid or, equiva-
lently, a Gauss greedoid. Bryant and Brooksbank, and Goecke derive a number of
properties of this type of greedoid in [4] and [11], respectively.

One natural way to obtain one greedoid from another is stated in the following
well-known proposition (for example, see [3]).

Proposition 2.1. Let (X,F) be a greedoid (resp. a strong greedoid), k a non-
negative integer, and F (k) denote the subset of F containing all feasible sets with
at most k elements. Then (X,F (k)) is a greedoid (resp. a strong greedoid).

The original motivation for greedoids was to provide a unified approach to var-
ious greedy algorithms that can be successfully applied to optimization problems.
Generically, these algorithms work by sequentially selecting objects of maximum
weight with no backtracking. Their simplicity is highlighted by the fact that the
sole criteria for each selection is the weight of the objects—the available object with
the biggest weight is the one that is selected. In this section, we formally describe
the greedy algorithm and give one direction of an algorithmic characterization of
greedoids (see Theorem 2.2). This characterization in terms of the greedy algorithm
justifies the original motivation.

To aid the reader in what follows, consider the explicit example above. Suppose
that the edges of G are weighted with (assigned) positive real numbers. One natural
problem is to find a spanning tree of G whose sum of edge weights is maximized.
In terms of the greedy algorithm below, F is the collection of subsets of E that
contain no cycle and the objective function f is the function on F that assigns f(F )
to be the sum of the weights of the edges in F for all F ∈ F .

Formally, the greedy algorithm is stated as follows.
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Algorithm: Greedy

Input: A collection F of subsets of a set X , and an objective function f : F → R.
Output: A member of F .

1. Set F0 = ∅ and i = 0.
2. Given Fi, choose an element x in X − Fi such that

(i) Fi ∪ {x} ∈ F and
(ii) f(Fi ∪ {x}) ≥ f(Fi ∪ {y}) for all y ∈ X − Fi with Fi ∪ {y} ∈ F .

3. Set Fi+1 = Fi ∪ {x}.
4. If Fi+1 is not a maximal member of F , set i = i + 1 and go to to Step 2; otherwise

output Fi+1.

To state Theorem 2.2, we need one further definition. Suppose that (X,F) is
a greedoid and let f : F → R be an objective function on F . We say that f is
compatible with (X,F) if the following property holds:

• Let F ⊆ G and x ∈ X − G, and assume that

F, G, F ∪ {x}, G ∪ {x} ∈ F .

Then, for all y ∈ X−F with F ∪{y} ∈ F such that f(F∪{x}) ≥ f(F ∪{y}),
we have

f(G ∪ {x}) ≥ f(G ∪ {z})

for all z ∈ X − G with G ∪ {z} ∈ F .

Informally, this property says that if x is the current best choice, then it is also
the best choice at any latter stage. An example of an objective function that is
compatible with every greedoid (X,F) is the cardinality function, which is the
objective function f on F that is defined by setting f(F ) = |F | for all F ∈ F .

The following theorem gives one direction of the characterization of greedoids in
terms of Greedy (see [3, Theorem 8.5.2] and [15, Theorem 1.3, page 155]).

Theorem 2.2. Let (X,F) be a greedoid and let f : F → R be an objective function
that is compatible with (X,F). Then Greedy applied to (X,F) and f outputs a
basis of (X,F) of maximum weight.

An important and well-known observation to note is the following. Let (X,F)
be a greedoid and let f : F → R be an objective function that is compatible with
F . Then, by Theorem 2.2, Greedy applied to (X,F) and f finds a basis, F say,
of (X,F) of maximum weight. To find F , the algorithm finds a nested sequence of
feasible sets

∅ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = F,

where |Fi| = |Fi−1| + 1 for all i ∈ {1, 2, . . . , r}. While Fr = F is a feasible set
of size r of maximum weight, it also turns out that, for all i, the set Fi is a
maximum weight feasible set of size i. To see this, let k ∈ {0, 1, 2, . . . , r}. Then, by
Proposition 2.1, (X,F (k)) is a greedoid. Let fk : F (k) → R denote the function that
is obtained from f by setting fk(F ) = f(F ). Since f is compatible with (X,F),
fk is compatible with (X,F (k)) and so Greedy applied to (X,F (k)) and fk finds
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a basis of maximum weight. But this basis is also a maximum weight feasible set
of size k of (X,F). By considering Greedy applied to (X,F) and f , the desired
outcome follows routinely.

The following result will also be useful in what follows. It provides a slight
strengthening of part of Theorem 4 in [4].

Lemma 2.3. Let (X,F) be a strong greedoid and let f : F → R be a function on
F . Suppose that, for all F1, F2 ∈ F with |F2| = |F1|+ 1 and x ∈ F2 − F1 such that
F1 ∪ {x}, F2 − {x} ∈ F , we have

f(F1 ∪ {x}) + f(F2 − {x}) ≥ f(F1) + f(F2).(1)

Then
F∗ =

{

F ∈ F : f(F ) = max{f(F ′) : F ′ ∈ F , |F ′| = |F |}
}

is the collection of feasible sets of a strong greedoid on X (with respect to f). In
particular, (X,F∗) is a strong greedoid.

Before proving Lemma 2.3, we note that the set F∗ is the subset of F consisting
of all feasible sets of each size of maximum weight.

Proof of Lemma 2.3. To verify condition (G1), let F ∈ F∗. Since F satisfies (G1)
and F ∈ F , there is an element y ∈ F such that F −{y} ∈ F . Consequently, there
is some element F ′ ∈ F∗ of cardinality |F |−1. As (X,F) is a strong greedoid, there
is an element x ∈ F −F ′ such that F ′ ∪ {x}, F −{x} ∈ F . Applying inequality (1)
with F1 = F ′ and F2 = F , we have

f(F ′ ∪ {x}) + f(F − {x}) ≥ f(F ′) + f(F ).(2)

Since F, F ′ ∈ F∗, |F ′∪{x}| = |F |, and |F−{x}| = |F ′|, it follows that f(F ′∪{x}) ≤
f(F ) and f(F − {x}) ≤ f(F ′). By considering (2), we deduce that f(F − {x}) =
f(F ′), and so there is an element in F , namely x, such that F − x ∈ F∗. It follows
that F∗ satisfies (G1).

To show that F∗ satisfies (G2′), let F1, F2 ∈ F∗ with |F2| = |F1| + 1. Since F
satisfies (G2′), there exists some element x ∈ F2−F1 such that F1∪{x}, F2−{x} ∈
F . Furthermore, by hypothesis,

f(F1 ∪ {x}) + f(F2 − {x}) ≥ f(F1) + f(F2).

Since |F2 − {x}| = |F1| and |F1 ∪ {x}| = |F2| and since F1, F2 ∈ F∗, it follows that
f(F1∪{x}) ≤ f(F2) and f(F2−{x}) ≤ f(F1). Combining these last two inequalities
with the previous inequality gives f(F1 ∪ {x}) = f(F2), f(F2 − {x}) = f(F1), and
so F1 ∪ {x}, F2 − {x} ∈ F∗. Hence F∗ satisfies (G2′). We conclude that (X,F∗) is
a strong greedoid. 2

Remark. Let (X,F) be a strong greedoid and let f : F → R be an objective func-
tion on F satisfying the property of its namesake in the statement of Lemma 2.3.
A consequence of Lemma 2.3 is that if F is a feasible set of size k that maximizes
f over all feasible sets of size k, then it is possible for Greedy when applied to F
and f to construct a nested sequence that includes F . To see this, observe that, as
(X,F∗) is a greedoid on X , there is a nested sequence of feasible sets

∅ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk = F
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Figure 1. A phylogenetic X-tree with edge lengths, where X = {a, b, c, d, e, f, g}.

such that, for each i, we have |Fi| = |Fi−1|+ 1 and Fi maximizes f over all subsets
of F of size i. Now consider applying Greedy to F and f . Beginning with F0

at Step 1, we can subsequently choose F1 at the first iteration, F2 at the second
iteration and so on. Eventually, Greedy chooses Fk = F at the k-th iteration.

3. Phylogenetic Diversity

In this section the notation and terminology follows [21] (also see [20]). A phy-
logenetic X-tree is a tree with no degree-2 vertices and whose leaf set is X . Let T
be a phylogenetic X-tree with edge set E and let λ : E → R

≥0 be an assignment
of lengths (weights) to the edges of T . For example, ignoring the dashed edges,
the tree shown in Fig. 1 is a phylogenetic tree whose edges are weighted with non-
negative real numbers. For a subset S of X , the phylogenetic diversity (PD) score
of S, denoted PD(T ,λ)(S), is the sum of the edge lengths of the minimal subtree
of T that connects S. If there is no ambiguity, we frequently denote PD(T ,λ)(S)
by PD(S). Referring to Fig. 1, if S = {a, b, f}, then PD(S) is equal to the sum
of the weights of the minimal subtree (dashed edges) that connects a, b, and f . In
particular, PD(S) = 12.

Following [18], it is also useful to consider an extended version of PD by restrict-
ing attention to those subsets of X that contain a fixed non-empty subset W of X .
For example, if we take W to be a singleton, {z} say, we may regard z as providing
a root for the tree T (in which case, if the edge incident with leaf z is assigned
weight 0, the concept of rooted phylogenetic diversity coincides with that used in
biology). For a fixed subset W of X , let PDW,k denote the maximum PD score over
all subsets S of X of size k that contain W . Let FW be the collection of all subsets
F of X − W that have the property that PD(W ∪ F ) = PDW,|W |+|F |. In other
words, FW is the collection of subsets of X−W that together with W maximize the
PD score for their cardinality under the restriction that they contain W . Within
this setting, the standard phylogenetic diversity problem can be formally stated as
follows.
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Problem: Optimizing Diversity

Instance: A phylogenetic X-tree T , a weighting λ : E → R
≥0 of the edge set of

T , a subset W of X , and a positive integer k.
Question: Find a subset X ′ of X of size k that contains W and maximizes the
PD score amongst all such subsets of X .

It is shown in [21, 18] that the greedy algorithm can be used to solve Optimizing

Diversity in polynomial time. Essentially, this is done by applying Greedy to the
collection of all subsets of X and the PD function on this collection. In particular,
provided W is non-empty, we begin with W instead of the emptyset in Step 1 of
Greedy and add elements sequentially as in Steps 2 and 3. Once the set that
contains W has size k, we stop; this set maximizes the PD score over all subsets of
X of size k that contain W . Interestingly, if W is empty and k ≥ 2, one proceeds
in the same way but begins with an initial subset of size two that maximizes the
PD score over all subsets of size two.

In the rest of this section, we put Optimizing Diversity in the setting of
greedoids and show that all optimal solutions can be obtained via Greedy. To
achieve this aim, we begin with a lemma, which we will use to show that (X,FW )
is a (strong) greedoid.

Lemma 3.1. Let T be a phylogenetic X-tree and let λ : E → R
≥0 be a weighting

of the edge set E of T . Let U and V be subsets of X both containing at least one
common element with 1 ≤ |U | < |V |. Then there is an element x ∈ V − U such
that

PD(V − {x}) + PD(U ∪ {x}) ≥ PD(V ) + PD(U).

Proof. The case when |U | ≥ 2 is established at the beginning of the proof of Theo-
rem 1 in [21]. Therefore assume that U = {z} and let x be any element in V − U .
Then, as PD(U) = 0 and both U and V contain z, it is easily seen that

PD(V ) + PD(U) ≤ PD(V − {x}) + P (U ∪ {x}).

This completes the proof of the lemma. �

Theorem 3.2. Let T be a phylogenetic X-tree and let λ : E → R
≥0 be a weighting

of the edge set E of T . Let W be a fixed non-empty subset of X. Then (X,FW ) is
a strong greedoid.

Proof. Define f : 2X−W → R by setting f(F ) = PD(W ∪F ) for all F ∈ 2X−W . Let
F1, F2 be subsets of 2X−W with |F2| = |F1| + 1. Since W is non-empty, it follows
by Lemma 3.1 that there is an element x in (F2 ∪ W ) − (F1 ∪ W ) = F2 − F1 such
that

f(F2 − {x}) + f(F1 ∪ {x}) ≥ f(F2) + f(F1).

Observing that the pair (X, 2X−W ) is trivially a strong greedoid, it now follows by
Lemma 2.3 that (X,FW ) is a strong greedoid. �
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The important consequence of Theorem 3.2 for us is that (X,FW ) is a greedoid.
It now follows from the remarks after Lemma 2.3 that, for all W and k, every
optimal solution of Optimizing Diversity can be chosen by Greedy. Indeed, by
considering all possible choices at Step 2 of Greedy, a straightforward modification
of this algorithm can produce such a set of solutions.

4. Optimizing Diversity with Coverage

In this section we consider the following problem. Suppose that each species in
our set X possesses one of several possible (discrete state) attributes. For example,
we may have a collection of geographic regions, and we record for each species the
region(s) it is found in (each region may contain several species, and each species
can be present in several regions). We may wish to select a subset of species of
maximal phylogenetic diversity, so that we select at least one (or more generally
some positive number) from each region. We will show how this problem can be
solved by a polynomial-time approach based on the greedy algorithms, provided
that (i) the regions are chosen sufficiently large so that each species is present in
just one location and (ii) species of given attribute are compatible with the tree
(i.e. they divide the tree up into non-overlapping subtrees). First we formalize the
problem.

Consider a phylogenetic X–tree T and λ a weighting of the edges by non-negative
real numbers. Let A be a finite set, and let f : X → 2A be a function. For a ∈ A,
let

(3) Xa = {x ∈ X : a ∈ f(x)},

that is Xa is the set of species with attribute a. Now suppose we wish to sample
k species from X , so that for each a ∈ A at least na ≥ 1 species are selected from
Xa in order to maximize the PD-score of the set over all such selections. In other
words, we have the following problem.

Problem: Optimizing Diversity with Coverage

Instance: A pair (T , λ), f : X → 2A, positive integer k, and a positive integer na

for each a ∈ A.
Question: Find a subset X ′ of X of maximum PD score amongst all subsets of X

of size k that satisfy the constraint that, for each a ∈ A, at least na species in Xa

are included in X ′.

Let T (Xa) denote the minimal subtree of T that connects the leaves in Xa

(note that this tree may have vertices of degree 2). Following [20], we say that
f is convex on T if the collection {T (Xa) : a ∈ A} of subtrees is vertex-disjoint.
Intuitively, f is convex on T if there is a subset of edges whose deletion results in a
graph such that, for all a ∈ A, the elements of X having attribute a are in exactly
one component of the graph, and no component has elements of X with different
attributes. Furthermore, we say that f is atomic if |f(x)| = 1 for all x ∈ X , that is
x has precisely one attribute.

Lemma 4.1. Let N = {1, 2, 3, . . .} and let m ∈ N. For each i ∈ {1, 2, . . . , m}, let
ni ∈ N and let fi : N → R be an increasing function. Let k ∈ N with k ≥

∑m
i=1 ni.
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Then, with respect to m and k, the following problem can be solved in polynomial-
time: construct an m-tuple (x1, x2, . . . , xm) ∈ N

m that maximizes
∑m

i=1 fi(xi) sub-
ject to the constraints

(i)
∑m

i=1 xi = k, and
(ii) for all i ∈ {1, . . . , m}, xi ≥ ni.

Proof. For all i between 1 and m and all j between
∑i

l=1 nl and k, let M(i, j)

denote a sequence (m1, m2, . . . , mi) ∈ N
i that maximizes

∑i

l=1 fl(ml) subject to

the constraints ml ≥ nl for all l ∈ {1, 2, . . . , i} and
∑i

l=1 ml = j. Let m(i, j) denote

the corresponding value of
∑i

l=1 fl(ml).

The algorithm for solving the desired problem is inductive. For i = 1, we have
M(1, j) = (j) for each j ≥ n1. To construct a valid choice for M(i + 1, j) for

all values of j between
∑i+1

l=1 nl and k from the sequences M(i, j′) (for j′ between
∑i

l=1 nl and k) observe that

(4) m(i + 1, j) = max{m(i, r) + fi+1(s) : r + s = j, r ≥
i

∑

l=1

nl, s ≥ ni+1}.

Thus in O(j) steps we can find a pair r and s to maximize the expression on the
right-hand side of (4) and we can then extend the sequence M(i, r) to a sequence
M(i + 1, j) by appending s as the (i + 1)-th coordinate. Continuing in this way
constructs a desired sequence M(m, k). �

Theorem 4.2. If f is atomic and convex on T , then Optimizing Diversity

with Coverage can be solved in polynomial-time by a method based on the greedy
algorithm.

Proof. First note that, as f is atomic, we may assume that k ≥
∑

a∈A na. Let

E0 = E(T ) −
⋃

a∈A

E(T (Xa))

and let E1 denote the subset of E0 containing those edges with at least one end
vertex in

⋃

a∈A

V (T (Xa)).

Let Λf =
∑

e∈E0
λ(e). For each a ∈ A, let Ta denote the tree that is obtained from

T (Xa) by adjoining a new leaf (via a new edge) to each vertex v of T (Xa) that
is an end-vertex of an edge in E1 in T . Note that v may be a degree-2 vertex of
T (Xa). For each a ∈ A, let Wa denote the resulting set of new leaves and observe
that Ta is a phylogenetic tree with leaf set Xa ∪Wa. Now assign each edge incident
with a leaf in Wa weight 0, thereby extending the restriction of λ to T (Xa) to an
edge weighting λa of Ta. For each positive integer j between na and |Wa| + |Xa|,
let

fa(j) = max{PD(Ta,λa)(Y ) : Wa ⊆ Y ⊆ Xa ∪ Wa, |Y | = j},

and let Ya(j) denote any set Y that realizes this maximum. It follows from Theo-
rems 2.2 and 3.2 and the comments after Theorem 2.2 that the sequence fa(j) and
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a set Ya(j) can be computed by the greedy algorithm for j = na, na +1, . . . , |Wa|+
|Xa|.

Now, for every subset X ′ of X that satisfies the condition |X ′ ∩ Xa| ≥ 1 for all
a, we have

PD(T ,λ)(X
′) = Λf +

∑

a∈A

PD(Ta,λa)((X
′ ∩ Xa) ∪ Wa).

Consequently, a set X ′ that maximizes this last quantity and is subject to the
constraints |X ′ ∩ Xa| ≥ na ≥ 1 and |X ′| = k is the disjoint union

˙⋃

a∈A

(X ′ ∩ Ya(ja)),

where the sequence (ja, a ∈ A) is chosen to maximize the expression
∑

a∈A

fa(ja)

subject to the constraints ja ≥ na + |Wa| and
∑

a∈A ja = k +
∑

a∈A |Wa|. The
construction of the sets Ya(ja) can now be carried out by applying Lemma 4.1. �

Theorem 4.2 shows that Optimizing Diversity with Coverage can be effi-
ciently solved in the special case where f is both atomic and convex on T . Requiring
both these conditions is clearly a strong assumption, and it would be of interest to
investigate the complexity of this problem under weaker constraints.

5. Optimizing Diversity via Regions

In this section we consider a variation on the phylogenetic coverage problem,
discussed in [19]. The motivation for the problem is as follows. Suppose we have
various regions (for example, nature reserves) each of which contains a subset of
species. We can conserve each region at some cost, and we wish to select certain
regions to conserve so as to (i) keep within the allowed budget and (ii) maximize
the PD score of the species that are ‘safe’ (i.e. present within at least one conserved
region).

Here the set-up is similar to Optimizing Diversity with Coverage, but the
question is different. Let T be a phylogenetic X-tree with positive edge weighting
λ, let A be a set of regions, each containing some subset of X , and let f : X → 2A

be the function defined by setting f(x) to be the set of regions that contain x, for
each x ∈ X . Given a non-negative integer k, the problem is to find a subset A′

of A of size k that maximizes the PD score of those species that are contained in
at least one region in A′ amongst all such choices of A′ of size k. Formally, the
problem can be stated as follows (recall the definition of Xa from 3).

Problem: Optimizing Diversity via Regions

Instance: A phylogenetic X-tree T , a positive weighting λ on the edges of T , a
set of regions, a function f : X → 2A, and a positive integer k.
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Question: Find a subset A′ of A that maximizes the PD score of
⋃

a∈A′ Xa over
all subsets of A of size k.

A more general version of the problem would be to have an additional cost
function c : A → R

>0 and a budget B and so the choice of A′ is also subject to
the constraint

∑

a∈A′ c(a) ≤ B. However, Optimizing Diversity via Regions

is computationally hard.

Theorem 5.1. Optimizing Diversity via Regions is NP-hard.

Proof. To establish the theorem, we use a polynomial-time reduction from the NP-
complete problem Set Cover [10]. In this latter problem, one is given a collection
C of subsets of a finite set X and a positive integer k′. The question is whether there
exists a subset of C of size k′ whose union is X . Given an instance of this problem,
we construct an instance of Optimizing Diversity via Regions as follows. Take
the phylogenetic X-tree T having exactly one interior vertex and assign weight 1
to each edge of T . Let f : X → 2C be the function that is defined by setting f(x)
to be the the collection of sets in C that contain x. Here C corresponds to the set
A in the problem Optimizing Diversity via Regions. For a subset C′ of C, the
union of the members of C′ is a subset of X and, referring to T , its PD score is the
cardinality of that set (provided it has size at least two) since the pendant edges of
T connecting these elements of X all have weight 1.

If we could solve Optimizing Diversity via Regions in polynomial time,
then we could decide in polynomial time whether or not the maximum PD score
amongst all subsets of C of size k′ was |X | or not. This is precisely the condition
that C contains a subset of size k′ whose union is X , and thus we would obtain a
solution to the given instance of Set Cover. Since the above reduction is clearly
polynomial time in the size of the input, it follows that Optimizing Diversity

via Regions is NP-hard. �

Theorem 5.1 implies there is no polynomial-time algorithm for solving Optimiz-

ing Diversity via Regions (unless P = NP ). However, if some constraints are
placed on the function f it may be possible to efficiently solve certain instances of
this problem. Of particular relevance in biodiversity conservation would be mild
constraints on f that permit an efficient algorithm for the more general problem in
which costs are assigned to elements of A (mentioned just before Theorem 5.1).

6. Optimizing Diversity with Dependencies Between Species

In this section we consider a complication that arises in maximizing phylogenetic
diversity in real ecosystems. Namely, often species depend on other species for their
survival; that is, only certain sets of taxa are ‘viable’ and selecting sets to maximize
phylogenetic diversity should respect this constraint [22, 23].

We can model this formally as follows. Suppose that, as well as our phylogenetic
X-tree T with its edge lengths λ, we also have a acyclic digraph D = (X, A);
this could represent for example a “food web” where an arc (u, v) ∈ A is present
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precisely if taxon u feeds on taxon v. We say that a subset S of X is viable if the
following property holds:

• for every x ∈ S, either x has out-degree 0, or there exists some s ∈ S such
that (x, s) ∈ A.

For the food-web interpretation, this translates into the condition that S is viable
if every species under consideration that needs to predate at least one of the other
species under consideration, has such a species available to it within the set S.

Proposition 6.1. Let D = (X, A) be a digraph and let F be the collection of
subsets F of X that are viable. Then (X,F) is a greedoid. Moreover, F has the
property that if F1, F2 ∈ F , then F1 ∪ F2 ∈ F .

Proof. Let G be a rooted digraph with vertex set V and root vertex r. Let F ′ be
the collection of subsets F ′ of V − {r} such that F ′ ∪ {r} is the set of vertices of a
subtree of G directed away from r. Then (V −{r},F ′) is a greedoid. This greedoid
is sometimes referred to as the vertex search greedoid of G [3].

To show that (X,F) is a greedoid, consider the rooted digraph that is obtained
from D in the following way:

(i) Add a new vertex r that is adjoined to precisely the vertices of D that have
out-degree 0. Initially, the direction of the arcs incident with r are directed
towards r.

(ii) Now reverse the direction of all the arcs, and let D′ denote the resulting
digraph.

It is easily seen that the collection F ′ of feasible sets of the vertex search digraph
of D′ is equal to F , and so (X,F) is a greedoid. Furthermore, as F ′ is closed under
union [3], it follows that F is closed under union. This completes the proof of the
proposition. �

We note in passing that Proposition 6.1 implies that the pair (X,F) has the
structure of an ‘antimatroid’ (see [3, Proposition 8.2.7]).

An immediate consequence of Theorem 2.2 and Proposition 6.1 is the following.

Corollary 6.2. Let (X, A) be an acyclic digraph and let (X,F) denote the greedoid
described in Theorem 6.1. Let f : F → R be an objective function. If f is compatible
with (X,F), then Greedy applied to F and f finds, for all k, a feasible subset of
size k that maximizes f .

Consider now the question of optimizing phylogenetic diversity while respecting
the dependencies specified by (X, A). The biological motivation for this is that
there is no point conserving a species if all of the taxa it depends on go extinct.
Formally, we have the following problem.
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Figure 2. (a) A digraph D on X and (b) a rooted phylogenetic
tree with clock-like edge lengths.

Problem: Optimizing Diversity with Dependencies

Instances: A phylogenetic X-tree T with edge set E, a function λ : E → R
≥0, an

acyclic digraph (X, A), and a positive integer k.
Question: Find a subset of X of size at most k that is viable and maximizes the
PD score over T amongst all such subsets.

By Corollary 6.2, Optimizing Diversity with Dependencies can also be
solved by Greedy if the weighting on the viable subsets of X induced by their PD
score over T is compatible with (X,F), where F is the collection of viable subsets
of X in (X, A).

For example, suppose the edge lengths of T are clock-like – that is, the sum of the
lengths of the edges from the root to each leaf is the same. If, in addition, T is the
phylogenetic X-tree consisting of exactly one interior vertex (the ‘star tree’), then
Greedy solves this special case of Optimizing Diversity with Dependencies

(we can use Corollary 6.2 by choosing f to be the cardinality function).

However, for an arbitrary phylogenetic tree, even with clock-like edge lengths,
the greedy algorithm does not solve Optimizing Diversity with Dependencies,
as the following example shows.

Let X = {a, b, b′, x, y} and let D be the digraph shown in Fig. 2(a). The collection
of viable subsets of X of size at most 3 is

F =
{

{a}, {b}, {a, b}, {a, x}, {b, b′}, {a, b, b′}, {a, b, x}, {b, b′, y}
}

.

Now consider the rooted phylogenetic tree T shown in Fig. 2(b) with the indicated
edge-lengths which are clearly clock-like. The unique member of F that maximizes
the PD score on T is {b, b′, y}. However, this set does not contain the unique
member of F of size 2, namely {a, x}, that maximizes the PD score on T .

Remark. In computing the PD score of a set of taxa on a rooted phylogenetic
tree, one may or may not insist that the root be part of this set. To illustrate, in
the example shown in Fig. 2, the PD score of {a, b, b′} without the root is 5, while
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Figure 3. A phylogenetic tree with edge lengths. Here {b, c, e} is
the unique subset of size 3 that maximizes ED({b, c, e}) = 15 −
1 = 14, while {a, d} is the unique subset of size 2 that maximizes
ED({a, d}) = 15 − 4 = 11.

its PD score with the root is 8. Nevertheless, the example is valid regardless of
which of the two ways we define the PD score for rooted trees.

7. Variations and Extensions of PD

We now describe some variations and extensions of PD, and investigate whether
the greedy algorithm is guaranteed to find optimal solutions.

First, suppose we have a function f : 2X → R. For k ∈ {1, . . . , |X |} let m(f, k) =
max{f(A) : A ⊆ X, |A| = k} and let M(f, k) = {A ∈ X : |A| = k, f(A) = m(f, k)}.
We say that f satisfies the nested optimality property if for every k ∈ {2, . . . , |X |},
there exists a pair A ∈ M(f, k), A′ ∈ M(f, k − 1) with A′ ⊂ A. In particular
if Greedy maximizes f amongst all sets of given cardinality, then f satisfies the
nested optimality property, and so to demonstrate that Greedy fails it suffices
to show for some k that the nested optimality property fails. We will use this
observation repeatedly in what follows.

Lewis and Lewis [16] defined a measure of diversity on a phylogenetic X-tree
with a non-negative real-valued edge weighting as follows. For a subset S of X , let

ED(S) = PD(X) − PD(X − S).

Note that selecting a subset S of X of size at most k to maximize ED is equivalent
to selecting a subset S′ of X of size |X | − k to minimize PD.

However, a simple example shows that ED fails to have the nested optimality
property. Consider the phylogenetic tree shown in Fig. 3. It is easily checked
that S = {b, c, e} is the unique maximum weight subset of X of size 3. However,
T = {a, d} is the unique maximum weight subset of X of size 2, and T is not a
subset of S.

An alternative way to measure the diversity of a subset S of X has been proposed
by Holland [13] in the context of model strain selection. Here we set

M(S) = min{PD({x, y}) : x, y ∈ S}.

Selecting a subset S of X of size k to maximize M(S) corresponds to selecting a
subset of k elements of X each pair of which is as ‘far apart’ as possible in the tree.
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Figure 4. An phylogenetic tree with edge lengths. Here
{a, c, d, e} is the unique subset of size 4 that maximizes
M({a, c, d, e}) = 12, but it does not contain {a, b, c}, the unique
subset of size 3 that maximizes M({a, b, c}) = 13.

Note that, as before, sets which maximize M do not necessarily maximize PD and
vice-versa. As with the previous variation, M does not have the nested optimality
property. Consider the phylogenetic tree shown in Fig. 4 with its edge lengths.
The set {a, c, d, e} is the unique subset of size 4 that maximizes M , but it does not
contain {a, b, c}, the unique subset of size 3 that maximizes M .

Instead of varying PD, it is natural to extend PD on phylogenetic trees to more
general structures. For example, we may regard a phylogenetic X-tree as a collec-
tion Σ of pairwise compatible X-splits ([5]) and we can regard edge lengths as a
map λ : Σ → R

≥0, in which case the PD score of a subset S of X is
∑

λ(A|B),

where the sum is over all A|B ∈ Σ with A ∩ S 6= ∅ and B ∩ S 6= ∅. Extending
this definition of PD on a pairwise compatible collection of λ-weighted splits to an
arbitrary collection of splits, we can ask the question of whether the pair (Σ, λ) has
the nested property. Here we could impose for example that Σ is either circular or
weakly compatible [1].

In general, (Σ, λ) does not have the nested property. For example, consider the
network shown in Fig. 5. This network is a pictorial way of describing a collection of
weighted splits that are circular. Splits are obtaining by deleting “parallel edges”.
Except for the four edges with weight 3

2 , all edges have weight 1. The distance
between two labelled vertices u and v is the length of a shortest path joining u and
v. It is easily checked that {b, c, e, f} is the unique subset of size 4 that maximizes
PD. However, this set does not contain the unique set of size 2, namely {a, d}, that
maximizes PD, and so the nested optimality property fails. Nevertheless, there are
collections Σ of non-compatible splits for which (Σ, λ) has the nested optimality
property. An interesting (and possibly challenging) problem is to characterize these
structures.

Fast algorithms for constructing high diversity subsets for networks could be
useful in case trees are constructed from various genomic regions [17]. In this
context, it is worth mentioning one further extension of PD. Given a collection of
phylogenetic X-trees T1, . . . , Tn and a subset S of X we define

Gg(S) = g(PD1(S), . . . , PDn(S)),
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Figure 5. A split network [14] corresponding to a circular split
system. Apart from the edges with weight 3

2 , all edges have
weight 1. Here {b, c, e, f} is a subset of size 4 that maximizes
PD({b, c, e, f} = 11, but it does not contain {a, d}, the unique set
of size 2 that maximizes PD({a, d}) = 7.
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Figure 6. For the multivariate function Gg(S) = max{x1, x2},
the set {a, b, d} is the unique 3-element set that maximizes Gg, but
it does not contain {a, c}, the unique 2-element set that maximizes
Gg.

where PDi(S) is the PD score of S with respect to tree Ti for 1 ≤ i ≤ n and
g is some multivariate function. In general, for n > 1, the greedy algorithm will
again fail to find subsets of X optimizing Gg. For example, suppose that Gg(S) =
max{x1, . . . , xn}, where xi = PDi(S) for all i, and consider the two phylogenetic
trees in Fig. 6. Here {a, b, d} is the unique 3-element subset of X that maximizes
Gg, yet it does not contain {a, c}, the unique 2-element subset of X that maximizes
Gg and so the nested optimality property fails. Note that Gg({a, b, d}) = 28 and
Gg({a, c}) = 21.

Despite the last example, a subset S of X of size k maximizing Gg(S) =
max{x1, . . . , xn} may be found by applying the greedy algorithm to each Ti to
find a set of size k with highest PDi score, and then taking the highest scoring set
amongst all of these sets. It would be interesting to investigate whether other mul-
tivariate functions Gg could be optimized using variants of the greedy algorithm.
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