A CHAIN THEOREM FOR MATROIDS

JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

Abstract

Tutte's Wheels-and-Whirls Theorem proves that if M is a 3 -connected matroid other than a wheel or a whirl, then M has a 3-connected minor N such that $|E(M)|-|E(N)|=1$. Geelen and Whittle extended this theorem by showing that when M is sequentially 4-connected, the minor N can also be guaranteed to be sequentially 4connected, that is, for every 3-separation (X, Y) of N, the set $E(N)$ can be obtained from X or Y by successively applying the operations of closure and coclosure. Hall proved a chain theorem for a different class of 4-connected matroids, those for which every 3-separation has at most five elements on one side. This paper proves a chain theorem for those sequentially 4-connected matroids that also obey this size condition.

1. Introduction

We begin the introduction by discussing the results presented in this paper. We believe that they are of interest in their own right. But our primary motivation for conducting this research is to develop theorems that we hope will be of eventual use in an attack on Rota's Conjecture. This broader purpose is discussed at the end of this section.

In dealing with matroid connectivity, one frequently wants to be able to remove a small set of elements from a matroid M to obtain a minor N that maintains the connectivity of M. Such results are referred to as chain theorems. Tutte [15] proved that if M is 2-connected and $e \in E(M)$, then $M \backslash e$ or M / e is 2 -connected. More profoundly, when M is 3 -connected, Tutte [15] proved the following result, his Wheels-and-Whirls Theorem.

Theorem 1.1. Let M be a 3-connected matroid other than a wheel or whirl. Then M has an element e such that $M \backslash e$ or M / e is 3 -connected.

This result has proved to be such a useful tool for 3 -connected matroids that it is natural to seek a corresponding result for 4 -connected matroids. Since higher connectivity for matroids may be unfamiliar, we now define it. For a matroid M with ground set E and rank function r, the connectivity function λ_{M} of M is defined on all subsets X of E by $\lambda_{M}(X)=r(X)+$ $r(E-X)-r(M)$. A subset X or a partition $(X, E-X)$ of E is k-separating

[^0]if $\lambda_{M}(X) \leq k-1$. A k-separating partition $(X, E-X)$ is a k-separation if $|X|,|E-X| \geq k$. A matroid having no k-separations for all $k<n$ is n-connected.

For 4-connected matroids, the hope of a chain theorem is frustrated by examples given by Rajan [13]. He showed that, for all positive integers m, there is a 4-connected matroid M such that M has no proper 4-connected minor N with $|E(M)|-|E(N)| \leq m$. Rajan also supplied corresponding examples for vertically 4 -connected matroids and cyclically 4 -connected matroids, the analogues of 4 -connected graphs and their duals. Nevertheless, chain theorems have been proved for certain classes of 3 -connected matroids which are partially 4-connected. More precisely, instead of ruling out all 3 -separations as one does in a 4 -connected matroid, one can severely restrict the types of 3 -separations that one allows. There are two natural ways of doing this. One way is to control the structure of 3 -separations. A 3 -separation (X, Y) of a 3-connected matroid is sequential if, for some Z in $\{X, Y\}$, there is a sequential ordering, that is, an ordering $\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ of Z such that $\left\{z_{1}, z_{2}, \ldots, z_{i}\right\}$ is 3 -separating for all i in $\{1,2, \ldots, k\}$. A matroid is sequentially 4 -connected if it is 3 -connected and its only 3 -separations are sequential. One raises connectivity to eliminate degeneracies and many of the degeneracies eliminated by requiring 4-connectivity are also eliminated by requiring sequential 4-connectivity. Geelen and Whittle [3] proved the following chain theorem.

Theorem 1.2. [3, Theorem 1.2] Let M be a sequentially 4-connected matroid that is neither a wheel nor a whirl. Then M has an element z such that $M \backslash z$ or M / z is sequentially 4-connected.

Another way to restrict 3 -separations is to control size, that is, to require that they all have a small side. More precisely, let k be an integer exceeding one. A matroid M is $(4, k)$-connected if M is 3 -connected and, whenever (X, Y) is a 3-separating partition of $E(M)$, either $|X| \leq k$ or $|Y| \leq k$. Hall [6] called such a matroid 4-connected up to separators of size k. Matroids that are $(4,4)$-connected have also been called weakly 4-connected. Although Rajan [13] showed that, for all positive integers m, a (4,4)-connected matroid M cannot be guaranteed to have a (4,4)-connected proper minor N with $|E(M)|-|E(N)| \leq m$, Geelen and Zhou [4] have recently shown that, when $|E(M)| \geq 7$, the only obstructions to such a result when $m=2$ occur when M has twelve elements or is the cycle or bond matroid of a planar or Möbius circular ladder. By contrast, Hall [6] proved that, by moving to $(4,5)$-connected matroids with at least seven elements, one always has a chain theorem.

Theorem 1.3. Let M be a (4,5)-connected matroid other than a rank-3 wheel. Then M has an element x such that $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is $(4,5)$ connected and has cardinality $|E(M)|-1$ or $|E(M)|-2$.

In this paper, we prove a chain theorem where both the structure and the size of 3 -separations is controlled, that is, where the allowable 3-separations are subject to both the restrictions imposed by Hall and those imposed by Geelen and Whittle. A 3-connected matroid M is $(4, k, S)$-connected if M is both $(4, k)$-connected and sequentially 4 -connected.

Theorem 1.4. Let M be a $(4,5, S)$-connected matroid that has no 5-element fans. Then M has an element x such that $M \backslash x$ or M / x is $(4,5, S)$ connected.

Theorem 1.4 does not hold in certain highly structured matroids with 5 -element fans. More generally, we have the following theorem, the main result of the paper.

Theorem 1.5. Let M be a (4,5,S)-connected matroid other than a rank-3 wheel. Then M has an element x such that $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is $(4,5, S)$ connected and has cardinality $|E(M)|-1$ or $|E(M)|-2$.

An example that illustrates the necessity of the 2-element move in Theorem 1.5 is given at the end of the paper. In proving this theorem, we shall use another new result, which seems to be of independent interest. A matroid that is $(4,3)$-connected is often called internally 4-connected.

Theorem 1.6. Let M be a 4-connected matroid with $|E(M)| \geq 11$. Let $\{a, b, c, d, e\}$ be a rank-3 subset of $E(M)$. Then there are at least two elements x in $\{a, b, c, d, e\}$ such that $M \backslash x$ is internally 4-connected.

We now discuss the broader motivation for the results of this paper. Rota [14] conjectured that, for each finite field \mathbb{F}, the number of excluded minors for \mathbb{F}-representability is finite. Rota's Conjecture has become a focus for much recent work in matroid representation theory. A major obstacle to proving Rota's Conjecture is the existence of inequivalent representations of matroids over finite fields and understanding the behaviour of such inequivalent representations is an imperitive. It can be hoped that control could be obtained by imposing appropriate connectivity conditions. Indeed, for prime fields, this is certainly the case. In [5], the notion of k-coherence for matroids is introduced; this is a connectivity notion intermediate between 3 -connectivity and 4 -connectivity. It is proved that, for all $k \geq 5$ and all primes p, there is an integer $f(k, p)$ such that a k-coherent matroid has at most $f(k, p)$ inequivalent $G F(p)$-representations.

While the above result is certainly interesting in its own right, it turns out that, for the purposes of proving Rota's Conjecture, it is of limited use. Let \mathbb{F} be a finite field with at least five elements and let $g(M)$ denote the number of inequivalent \mathbb{F}-representations of a matroid M. Then there exist infinite sequences $M_{1}, M_{2}, M_{3}, \ldots$ of k-coherent matroids such that, for all i, M_{i} is a minor of M_{i+1}, and such that the sequence, $g\left(M_{1}\right), g\left(M_{2}\right), g\left(M_{3}\right), \ldots$ oscillates. The existence of such sequences is clearly problematic in attempting to generalize any of the current proofs of instances of Rota's Conjecture.

However, k-coherent matroids can have arbitrarily long nested sequences of 3 -separations and the known examples of sequences of matroids over a prime field that exhibit the above oscillatory behaviour also have members with arbitrarily long nested sequences of 3 -separations. It is natural to conjecture that, when nested sequences of 3 -separations have bounded length, the unwanted oscillatory behaviour disappears. The obvious strategy to prove this conjecture is to develop a connectivity notion that restricts nested sequences of 3-separations and then to mimic the techniques of [5]. To do this, it is necessary to begin by developing the basic tools that make it possible to work effectively with this notion of connectivity.

This was our original approach, but we soon realized that we were not being sufficiently far-sighted. Rather than attempt to develop tools that would work for a notion of connectivity where nested sequences of 3 -separations have bounded length, we should seek theorems that would yield tools when applied to any reasonable notion of connectivity intermediate between 3 connectivity and 4-connectivity. This is the second paper of a proposed series with this goal in mind, the first being [12]. In what follows, we explain the role of this paper in the series.

In a matroid M, the full closure $\mathrm{fcl}(X)$ of a set X is the intersection of all sets containing X that are closed in both M and M^{*}. Now suppose that M is 3 -connected. Two 3 -separations $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ of M are equivalent if $\mathrm{fcl}\left(A_{1}\right)=\mathrm{fcl}\left(A_{2}\right)$ and $\mathrm{fcl}\left(B_{1}\right)=\mathrm{fcl}\left(B_{2}\right)$. Let x be an element of M such that $M \backslash x$ is 3-connected. If $M \backslash x$ has a non-sequential 3-separation $\left(A_{1}, B_{1}\right)$ such that, for all 3 -separations $\left(A_{2}, B_{2}\right)$ equivalent to $\left(A_{1}, B_{1}\right)$, neither $\left(A_{2} \cup\{x\}, B_{2}\right)$ nor $\left(A_{2}, B_{2} \cup\{x\}\right)$ is 3 -separating in M, then we say that x exposes $\left(A_{1}, B_{1}\right)$. If $M \backslash x$ is 3 -connected and x does not expose a nonsequential 3 -separation, then any reasonable weakening of 4 -connectivity held by M will be retained by $M \backslash x$.

The task, then, is to demonstrated the existence of elements that do not expose 3-separations in either $M \backslash x$ or M / x, or to characterize the structures where such elements cannot be found. A triangle of a 3-connected matroid is wild if, for all t in T, either $M \backslash t$ is not 3-connected, or t exposes a 3separation in $M \backslash t$. The structure of a matroid relative to a wild triangle is characterized in [12]. The next natural step is to develop an analogue of Tutte's Wheels and Whirls Theorem. We believe the following.

Conjecture 1.7. Let M be a 3-connected matroid that is not the matroid of a wheel or a whirl. Then M has an element x such that either $M \backslash x$ or M / x is 3-connected and does not expose a 3-separation.

Indeed, we believe we currently have a proof of Conjecture 1.7 up to a bounded-size case analysis. When completed, this analysis will yield either the conjecture or a characterization of certain exceptional matroids. Our strategy for proving Conjecture 1.7 is to identify a 3 -separating set X of M that seems likely to contain an element that can be removed without exposing a 3 -separation. By adding dummy elements $\{\alpha, \beta\}$ to X, we obtain
a matroid N on $X \cup\{\alpha, \beta\}$ that enables us to localize the problem. The tricky case turns out to be when N is 4 -connected. It is not enough to find an element in X that does not expose a 3 -separation in N; we need stronger properties that will enable us to lift back to M. The principal results of this paper establish some of these stronger properties and, from this point of view, can be regarded as lemmas towards proving Conjecture 1.7.

The next section contains some basic definitions and results that will be needed in the proof of the main theorem. In Section 3, we outline how the proof of Theorem 1.5 proceeds. Basically, it divides the argument into the cases when M is $(4, k, S)$-connected for $k=2,3,4$, and 5 . Observe that M is $(4,2, S)$-connected if and only if it is 4 -connected; and M is $(4,3, S)$ connected if and only if it is internally 4 -connected. When M is 4 -connected, there are two main cases to consider. The first uses Theorem 1.6, which is proved in Section 4; the second is treated in Section 5 . The case when M is internally 4-connected is treated in Section 6. The proof of Theorem 1.5 is completed in Section 7 where the $(4,4, S)$-connected and $(4,5, S)$-connected cases are handled. The treatment of these cases is relatively short, but is somewhat artificially so since the latter relies crucially on Hall's proof of Theorem 1.3.

2. Preliminaries

The matroid terminology used here will follow Oxley [8] except that the simplification and cosimplification of a matroid N will be denoted by $\operatorname{si}(N)$ and $\operatorname{co}(N)$, respectively. A quad in a matroid is a 4-element set that is both a circuit and a cocircuit. This paper will use some results and terminology from our papers describing the structure of 3 -separations in 3 -connected matroids $[10,11]$. In this section, we introduce the relevant definitions. In addition, we prove some elementary connectivity results that will be used in the proof of the main theorem.

In a matroid M, a k-separating set X, or a k-separating partition $(X, E-$ $X)$, or a k-separation $(X, E-X)$ is exact if $\lambda_{M}(X)=k-1$. A k-separation $(X, E-X)$ is minimal if $|X|=k$ or $|E-X|=k$. It is well known (see, for example, [8, Corollary 8.1.11]) that if M is k-connected having $(X, E-X)$ as a k-separation with $|X|=k$, then X is a circuit or a cocircuit of M.

A set X in a matroid M is fully closed if it is closed in both M and M^{*}, that is, $\operatorname{cl}(X)=X$ and $\operatorname{cl}^{*}(X)=X$. Thus the full closure of X is the intersection of all fully closed sets that contain X. One way to obtain $\mathrm{fcl}(X)$ is to take $\operatorname{cl}(X)$, and then $\mathrm{cl}^{*}(\mathrm{cl}(X))$ and so on until neither the closure nor coclosure operator adds any new elements of M. The full closure operator enables one to define a natural equivalence on exactly 3 -separating partitions as follows. Two exactly 3 -separating partitions $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ of a 3 -connected matroid M are equivalent, written $\left(A_{1}, B_{1}\right) \cong\left(A_{2}, B_{2}\right)$, if $\mathrm{fcl}\left(A_{1}\right)=\mathrm{fcl}\left(A_{2}\right)$ and $\mathrm{fcl}\left(B_{1}\right)=\mathrm{fcl}\left(B_{2}\right)$. If $\mathrm{fcl}\left(A_{1}\right)=E(M)$, then B_{1} has a sequential ordering and we call B_{1} sequential. Similarly, A_{1} is sequential
if $\mathrm{fcl}\left(B_{1}\right)=E(M)$. We say $\left(A_{1}, B_{1}\right)$ is sequential if A_{1} or B_{1} is sequential. Evidently, if $\left(A_{1}, B_{1}\right) \cong\left(A_{2}, B_{2}\right)$ and $\left(A_{1}, B_{1}\right)$ is sequential, then so is $\left(A_{2}, B_{2}\right)$.

For a 3-connected matroid N, we shall be interested in 3 -separations of N that show that it is not $(4, k, S)$-connected. We call a 3 -separation (X, Y) of N a $(4, k, S)$-violator if either
(i) $|X|,|Y| \geq k+1$; or
(ii) (X, Y) is non-sequential.

Observe that, when $k=3$, condition (ii) implies condition (i). Hence (X, Y) is a $(4,3, S)$-violator of N if and only if $|X|,|Y| \geq 4$.

The next observation is routine but useful.
Lemma 2.1. Every 3 -connected matroid with at most $2 k+1$ elements is $(4, k)$-connected.

The following elementary lemma [10, Lemma 3.1] will be in repeated use throughout the paper.

Lemma 2.2. For a positive integer k, let (A, B) be an exactly k-separating partition in a matroid M.
(i) For e in $E(M)$, the partition $(A \cup e, B-e)$ is k-separating if and only if $e \in \operatorname{cl}(A)$ or $e \in \operatorname{cl}^{*}(A)$.
(ii) For e in B, the partition $(A \cup e, B-e)$ is exactly k-separating if and only if e is in exactly one of $\operatorname{cl}(A) \cap \operatorname{cl}(B-e)$ and $\operatorname{cl}^{*}(A) \cap \mathrm{cl}^{*}(B-e)$.
(iii) The elements of $\operatorname{fcl}(A)-A$ can be ordered $b_{1}, b_{2}, \ldots, b_{n}$ so that $A \cup$ $\left\{b_{1}, b_{2}, \ldots, b_{i}\right\}$ is k-separating for all i in $\{1,2, \ldots, n\}$.

The next well-known lemma specifies precisely when a single element z of a matroid M blocks a k-separating partition of $M \backslash z$ from extending to a k-separating partition of M. This result and its dual underlie numerous arguments in this paper.

Lemma 2.3. In a matroid M with an element z, let (A, B) be a k-separating partition of $M \backslash z$. Then both $\lambda_{M}(A \cup z)$ and $\lambda_{M}(B \cup z)$ exceed $k-1$ if and only if $z \in \operatorname{cl}^{*}(A) \cap \mathrm{cl}^{*}(B)$.

Let S be a subset of a 3 -connected matroid M. We call S a fan of M if $|S| \geq 3$ and there is an ordering $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of the elements of S such that, for all i in $\{1,2, \ldots, n-2\}$,
(i) $\left\{s_{i}, s_{i+1}, s_{i+2}\right\}$ is a triangle or a triad; and
(ii) when $\left\{s_{i}, s_{i+1}, s_{i+2}\right\}$ is a triangle, $\left\{s_{i+1}, s_{i+2}, s_{i+3}\right\}$ is a triad, and when $\left\{s_{i}, s_{i+1}, s_{i+2}\right\}$ is a triad, $\left\{s_{i+1}, s_{i+2}, s_{i+3}\right\}$ is a triangle.
The connectivity function λ_{M} of a matroid M has a number of attractive properties. For example, $\lambda_{M}(X)=\lambda_{M}(E-X)$. Moreover, the connectivity functions of M and its dual M^{*} are equal. To see this, it suffices to note the easily verified fact that

$$
\lambda_{M}(X)=r(X)+r^{*}(X)-|X|
$$

We shall often abbreviate λ_{M} as λ.
One of the most useful features of the connectivity function of M is that it is submodular, that is, for all $X, Y \subseteq E(M)$,

$$
\lambda(X)+\lambda(Y) \geq \lambda(X \cap Y)+\lambda(X \cup Y)
$$

This means that if X and Y are k-separating, and one of $X \cap Y$ or $X \cup Y$ is not $(k-1)$-separating, then the other must be k-separating. The next lemma specializes this fact.

Lemma 2.4. Let M be a 3-connected matroid, and let X and Y be 3separating subsets of $E(M)$.
(i) If $|X \cap Y| \geq 2$, then $X \cup Y$ is 3-separating.
(ii) If $|E(M)-(X \cup Y)| \geq 2$, then $X \cap Y$ is 3-separating.

The last lemma will be in constant use throughout the paper. For convenience, we use the phrase by uncrossing to mean "by an application of Lemma 2.4."

Another consequence of the submodularity of λ is the following very useful result for 3-connected matroids, which has come to be known as Bixby's Lemma [1].

Lemma 2.5. Let M be a 3-connected matroid and e be an element of M. Then either $M \backslash e$ or M / e has no non-minimal 2-separations. Moreover, in the first case, $\operatorname{co}(M \backslash e)$ is 3-connected while, in the second case, $\operatorname{si}(M / e)$ is 3-connected.

A useful companion function to the connectivity function is the local connectivity, $\sqcap(X, Y)$, defined for sets X and Y in a matroid M, by

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y)
$$

Evidently,

$$
\sqcap(X, E-X)=\lambda_{M}(X)
$$

When M is \mathbb{F}-representable and hence viewable as a subset of the vector space $V(r(M), \mathbb{F})$, the local connectivity $\sqcap(X, Y)$ is precisely the rank of the intersection of those subspaces in $V(r(M), \mathbb{F})$ that are spanned by X and Y.

An attractive link between connectivity and local connectivity is provided by the next result [10, Lemma 2.6], which follows immediately by substitution.

Lemma 2.6. Let X and Y be disjoint sets in a matroid M, then

$$
\lambda_{M}(X \cup Y)=\lambda_{M}(X)+\lambda_{M}(Y)-\sqcap_{M}(X, Y)-\sqcap_{M^{*}}(X, Y)
$$

The first part of the next lemma [10, Lemma 2.3] is just a restatement of [8, Lemma 8.2.10]. The second part, which follows from the first, is the well-known fact that the connectivity function is monotone under taking minors.

Lemma 2.7. Let M be a matroid.
(i) Let X_{1}, X_{2}, Y_{1} and Y_{2} be subsets of $E(M)$. If $X_{1} \subseteq Y_{1}$ and $X_{2} \subseteq Y_{2}$, then $\Pi\left(X_{1}, X_{2}\right) \leq \Pi\left(Y_{1}, Y_{2}\right)$.
(ii) If N is a minor of M and $X \subseteq E(M)$, then

$$
\lambda_{N}(X \cap E(N)) \leq \lambda_{M}(X) .
$$

One application of the last lemma that we shall use here is the following.
Lemma 2.8. Let N be a 3-connected minor of a sequentially 4connected matroid M. If (X, Y) is a 3 -separation of M and $|X \cap E(N)|, \mid Y \cap$ $E(N) \mid \geq 3$, then $(X \cap E(N), Y \cap E(N))$ is a sequential 3 -separation of N.

Proof. We may assume that X is sequential having $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ as a sequential ordering. Thus $\left(\left\{x_{1}, x_{2}, \ldots, x_{i}\right\},\left\{x_{i+1}, x_{i+2}, \ldots, x_{k}\right\} \cup Y\right)$ is a 3separation of M for all $i \geq 3$. We deduce that the lemma holds provided we can show that ($X \cap E(N), Y \cap E(N)$) is a 3 -separation of N. But the latter follows immediately from Lemma 2.7.

The next lemma, which is elementary, is taken from Geelen and Whittle [3, Proposition 3.8].

Lemma 2.9. Let M be a 3-connected matroid and (X, Y) be a nonsequential 3 -separation of M. If $|X|=4$, then X is a quad.

In the next lemma, all but (ii) are taken from [3, Lemma 4.1]. The part of the lemma before (i) is in Coullard [2] (see also [8, Exercise 8.4.3]).

Lemma 2.10. Let M be a 4-connected matroid and z be an element of M. Then $M \backslash z$ or M / z is weakly 4-connected. Let Q be a quad of M / z.
(i) If (X, Y) is a 3-separation of $M \backslash x$ with $|X|,|Y| \geq 4$, then $|X \cap Q|=$ $|Y \cap Q|=2$.
(ii) If T^{*} is a triad of $M \backslash z$ and $|E(M)| \geq 7$, then $Q \cap T^{*} \neq \emptyset$.

Proof. (ii) Since M is 4-connected and $|E(M)| \geq 7$, the matroid M does not have Q as a quad or T^{*} as a triad. Thus $Q \cup z$ is a circuit of M and $T^{*} \cup z$ is a cocircuit of M. By orthogonality, $Q \cap T^{*} \neq \emptyset$.

The next lemma simplifies the task of identifying a $(4,4, S)$-violator.
Lemma 2.11. Let N be a 3 -connected matroid. Then (X, Y) is a $(4,4, S)$ violator if and only if
(i) $|X|,|Y| \geq 5$; or
(ii) X and Y are non-sequential and at least one is a quad.

Proof. A 3-separation (X, Y) obeying (i) or (ii) is a ($4,4, S$)-violator. Conversely, suppose (X, Y) is a $(4,4, S)$-violator. We may assume that $|X|$ or $|Y|$ is at most 4. Then (X, Y) is non-sequential. Hence X and Y are non-sequential and at least one is a quad.

The notion of a flower was introduced in [10] to deal with crossing 3separations, that is, 3-separations $\left(A_{1}, A_{2}\right)$ and $\left(B_{1}, B_{2}\right)$ for which each of the intersections $A_{1} \cap B_{1}, A_{1} \cap B_{2}, A_{2} \cap B_{1}$, and $A_{2} \cap B_{2}$ is non-empty. When each of these intersections has at least two elements, Lemma 2.4 implies that each is exactly 3 -separating. Moreover, the union of any consecutive pair in the cyclic ordering $\left(A_{1} \cap B_{1}, A_{1} \cap B_{2}, A_{2} \cap B_{2}, A_{2} \cap B_{1}\right)$ is exactly 3 -separating. This 4-tuple is an example of a flower.

An ordered partition $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ of the ground set of a 3-connected matroid M is a flower Φ if $\lambda_{M}\left(P_{i}\right)=2=\lambda_{M}\left(P_{i} \cap P_{i+1}\right)$ for all i in $\{1,2, \ldots, n\}$ where all subscripts are interpreted modulo n. The sets $P_{1}, P_{2}, \ldots, P_{n}$ are the petals of Φ. It is shown in [10, Theorem 4.1] that every flower is either an anemone or a daisy. In the first case, all unions of petals are 3 -separating; in the second, a union of petals is 3 -separating if and only if the petals are consecutive in the cyclic ordering $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$. Observe that, when $n \leq 3$, the concepts of an anemone and a daisy coincide but, for $n \geq 4$, a flower cannot be both an anemone and a daisy.

Let Φ_{1} and Φ_{2} be flowers of a 3-connected matroid M. A natural quasi ordering on the collection of flowers of M is obtained by setting $\Phi_{1} \preceq \Phi_{2}$ whenever every non-sequential 3 -separation displayed by Φ_{1} is equivalent to one displayed by Φ_{2}. If $\Phi_{1} \preceq \Phi_{2}$ and $\Phi_{2} \preceq \Phi_{1}$, we say that Φ_{1} and Φ_{2} are equivalent flowers of M. Hence equivalent flowers display, up to equivalence of 3 -separations, exactly the same non-sequential 3 -separations of M. An element e of M is loose in a flower Φ if $e \in \operatorname{fcl}\left(P_{i}\right)-P_{i}$ for some petal P_{i} of Φ.

The classes of anemones and daisies can be refined using local connectivity. For $n \geq 3$, an anemone $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ is called
(i) a paddle if $\sqcap\left(P_{i}, P_{j}\right)=2$ for all distinct i, j in $\{1,2, \ldots, n\}$;
(ii) a copaddle if $\sqcap\left(P_{i}, P_{j}\right)=0$ for all distinct i, j in $\{1,2, \ldots, n\}$; and
(iii) spike-like if $n \geq 4$, and $\sqcap\left(P_{i}, P_{j}\right)=1$ for all distinct i, j in $\{1,2, \ldots, n\}$.

Similarly, a daisy $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ is called
(i) swirl-like if $n \geq 4$ and $\sqcap\left(P_{i}, P_{j}\right)=1$ for all consecutive i and j, while $\sqcap\left(P_{i}, P_{j}\right)=0$ for all non-consecutive i and j; and
(ii) Vámos-like if $n=4$ and $\sqcap\left(P_{i}, P_{j}\right)=1$ for all consecutive i and j, while $\left\{\sqcap\left(P_{1}, P_{3}\right), \sqcap\left(P_{2}, P_{4}\right)\right\}=\{0,1\}$.

If $\left(P_{1}, P_{2}, P_{3}\right)$ is a flower Φ and $\sqcap\left(P_{i}, P_{j}\right)=1$ for all distinct i and j, we call Φ ambiguous if it has no loose elements, spike-like if there is an element in $\operatorname{cl}\left(P_{1}\right) \cap \operatorname{cl}\left(P_{2}\right) \cap \operatorname{cl}\left(P_{3}\right)$ or $\mathrm{cl}^{*}\left(P_{1}\right) \cap \mathrm{cl}^{*}\left(P_{2}\right) \cap \mathrm{cl}^{*}\left(P_{3}\right)$, and swirl-like otherwise. It is shown in [10] that every flower with at least three petals is one of these six different types: a paddle, a copaddle, spike-like, swirl-like, Vámos-like, or ambiguous.

3. Outline of the Proof of the Main Theorem

In this section, we begin by giving a slightly more detailed statement of the main theorem. Then we briefly outline the main steps in the proof of this theorem.

Theorem 3.1. Let M be $a(4,5, S)$-connected matroid. Then M has an element x such that, for some N in $\{\operatorname{co}(M \backslash x), \operatorname{si}(M / x)\}$, the matroid N is $(4,5, S)$-connected. Moreover, $|E(N)| \in\{|E(M)|-1,|E(M)|-2,|E(M)|-$ 3\}. In particular, $E(N)=|E(M)|-3$ if and only if M is a rank-3 wheel; and $E(N)=|E(M)|-1$ unless x is the element of a 5-element fan that is in two triangles or two triads of the fan.

The overall strategy of the proof of this theorem is standard for proofs of theorems of this type. We begin by assuming that M is 4 -connected. In that case, we prove the following result.

Theorem 3.2. Let M be a 4-connected matroid with $|E(M)| \geq 13$. Then M has an element x such that $M \backslash x$ or M / x is $(4,4, S)$-connected.

A crucial tool in this proof is the following result of Geelen and Whittle [3, Theorem 5.1].

Theorem 3.3. Let M be a 4-connected matroid. Then M has an element z such that $M \backslash z$ or M / z is sequentially 4-connected.

In proving Theorem 3.2, we have, by the last result and duality, that we may assume that the 4 -connected matroid M has an element x for which $M \backslash x$ is sequentially 4-connected. If $M \backslash x$ is not (4, 4, S)-connected, then it has a 3 -separation (X, Y) with $|X|,|Y| \geq 5$. Moreover, this 3 -separation is sequential. Hence it can be chosen so that $|X|=5$ and X is sequential having $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ as a sequential ordering. Because M is 4 -connected, $M \backslash x$ has no triangles, so $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triad of $M \backslash x$. Now x_{4} is in either the coclosure or the closure of $\left\{x_{1}, x_{2}, x_{3}\right\}$ in $M \backslash x$. In the first case, $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ must be a union of triads in $M \backslash x$. Again, because M is 4 -connected, it follows that every 4 -element subset of $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x\right\}$ is a cocircuit of M, that is, $M^{*} \mid\left\{x_{1}, x_{2}, x_{3}, x_{4}, x\right\} \cong U_{3,5}$. The dual of this case is treated in Section 4 where Theorem 1.6 is proved. The second case, when $x_{4} \in \operatorname{cl}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)$, is treated in Section 5 , thereby completing the proof of Theorem 3.2. That result imposed a lower bound on $|E(M)|$. By settling for a $(4,5, S)$-connected minor of M, we can drop this restriction. Specifically, at the end of Section 5, we prove the following result.

Corollary 3.4. Let M be a 4-connected matroid. Then M has an element x such that $M \backslash x$ or M / x is $(4,5, S)$-connected.

In view of the last result, when continuing the proof of Theorem 3.1 to the case when M is internally 4 -connected, we may assume that M is not 4 -connected. In that case, our proof uses the following result of Geelen and Whittle [3, Theorem 6.1].

Theorem 3.5. Let T be a triangle in an internally 4-connected matroid M. Assume that M is not a wheel or whirl of rank three. Then either
(i) T contains an element t for which $M \backslash t$ is sequentially 4-connected; or
(ii) $|E(M)| \leq 11$ and M has an element y such that M / y is sequentially 4-connected.

Our main result in the internally 4 -connected case is the following theorem, which is proved in Section 6.

Theorem 3.6. Let M be a $(4,3, S)$-connected matroid that is not isomorphic to a wheel or whirl of rank three. Then M has an element e such that $M \backslash e$ or M / e is $(4,5, S)$-connected.

The main difficulty in proving this theorem arises when $|E(M)|$ is relatively small although our argument does not differentiate cases based on $|E(M)|$.

The first theorem in Section 7 treats the case when M is $(4,4, S)$ connected by proving the following result.

Theorem 3.7. Let M be a $(4,4, S)$-connected matroid that is not isomorphic to a wheel or whirl of rank 3 or 4 . Then M has an element x such that $M \backslash x$ or M / x is $(4,5, S)$-connected.

The core difficulties in proving this result have already been resolved in proving Theorem 3.6, so Theorem 3.7 has a short proof. By using the last result, we deduce that, to finish the proof of Theorem 3.1, we only need to treat the case when M is $(4,5, S)$-connected but not $(4,4, S)$-connected. This occupies the rest of Section 7. The proof here relies heavily on the detailed case analysis used by Hall in proving Theorem 1.3.

4. The Five-Point-Plane Case

In this section, we prove Theorem 1.6. It would be desirable to eliminate the lower bound on $|E(M)|$ in that theorem even though we do not need the stronger result to prove Theorem 1.5. To this end, the proof of Lemma 4.3 below includes more detail than is needed to get that result.

Lemma 4.1. In a 4-connected matroid M, let $|F|=5$ and $r(F)=3$. For some $f \in F$, let $\left(F_{1}, F_{2}\right)$ be a 3-separation of $M \backslash f$. Then
(i) $\left|F_{1} \cap F\right|=2=\left|F_{2} \cap F\right|$; and
(ii) if $\left|F_{1}\right|=4$, then F_{1} is a circuit of M and $F_{1} \cup f$ contains a cocircuit of M containing f and having at least four elements.

Proof. As M is 4-connected, exactly two elements of $F-f$ are in each of F_{1} and F_{2}, so (i) holds. Now let $\left|F_{1}\right|=4$. Then $r_{M \backslash f}\left(F_{1}\right)+r_{M \backslash f}^{*}\left(F_{1}\right)-\left|F_{1}\right|=2$, so $r_{M \backslash f}\left(F_{1}\right)+r_{M \backslash f}^{*}\left(F_{1}\right)=6$. Since M has no triangles, $r\left(F_{1}\right) \geq 3$. Thus F_{1} is a circuit unless $r\left(F_{1}\right)=4$. In the exceptional case, $r_{M \backslash f}^{*}\left(F_{1}\right)=2$, so every

3-element subset of F_{1} is a triad in $M \backslash f$. Hence every 4-element subset of $F_{1} \cup f$ is a cocircuit of M. Thus M has a 4 -element cocircuit that contains exactly two elements of F. Since every 4 -element subset of F is a circuit of M, we have a contradiction to orthogonality. We deduce that F_{1} is indeed a circuit of M. Thus $r_{M \backslash f}^{*}\left(F_{1}\right)=3$.

We now know that F_{1} contains a cocircuit of $M \backslash f$. If this cocircuit is a triad T^{*}, then $T^{*} \cup f$ is a cocircuit of M containing f and contained in $F_{1} \cup f$. We may now assume that F_{1} is a cocircuit of $M \backslash f$. Since F_{1} is not a quad of M, we deduce that $F_{1} \cup f$ is a cocircuit of M.

Lemma 4.2. In a 4-connected matroid M with $|E(M)| \geq 7$, let $\{a, b, c, d, e\}$ be a rank-3 subset of $E(M)$. Then
(i) $\operatorname{co}(M \backslash a, b)$ is 3 -connected;
(ii) every non-trivial series class of $M \backslash a, b$ has exactly two elements and meets $\{c, d, e\} ;$ and
(iii) each of c, d, and e is in at most one series pair of $M \backslash a, b$.

Proof. Consider $M \backslash a$. This matroid is certainly 3-connected. Now suppose that (X, Y) is a 2 -separation of $M \backslash a, b$. Without loss of generality, we may assume that $\{d, e\} \subseteq X$. If $c \in X$, then $b \in \operatorname{cl}(X)$ so $(X \cup b, Y)$ is a 2separation of $M \backslash a$; a contradiction. Hence $c \in Y$. Again consider $(X \cup b, Y)$ and suppose that $|Y| \geq 3$. Then $(X \cup b, Y)$ is a 3-separation of $M \backslash a$ and $a \in \operatorname{cl}(X \cup b)$, so $(X \cup b \cup a, Y)$ is a 3 -separation of M; a contradiction. Hence we may assume that $|Y|=2$. Thus Y is a 2-cocircuit of $M \backslash a, b$ containing c. We deduce that $M \backslash a, b$ has no non-minimal 2 -separations so $\operatorname{co}(M \backslash a, b)$ is 3 -connected. Moreover, every 2-cocircuit of $M \backslash a, b$ meets $\{c, d, e\}$. If both $\{c, y\}$ and $\{c, z\}$ are cocircuits of $M \backslash a, b$, then neither y nor z is in $\{d, e\}$, otherwise $\{a, b, c, d\}$ or $\{a, b, c, e\}$ is a quad of M; a contradiction. Therefore $\{y, z\}$ is a cocircuit of $M \backslash a, b$ avoiding $\{c, d, e\}$. This contradiction implies that (ii) and (iii) hold.

Lemma 4.3. In a 4-connected matroid M, let $r(\{a, b, c, d, e\})=3$. Suppose that $\left(A_{1}, A_{2}\right)$ and $\left(B_{1}, B_{2}\right)$ are 3-separations of $M \backslash a$ and $M \backslash b$, respectively, with $\left|A_{1}\right|,\left|A_{2}\right|,\left|B_{1}\right|,\left|B_{2}\right| \geq 4$ and $b \in A_{1}$ and $a \in B_{1}$. Then
(i) $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right) \in\{1,2\}$;
(ii) if $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right)=1$ and $|E(M)| \geq 10$, then either $A_{1} \cap B_{1}$ consists of a single element and this element is in $\{c, d, e\}$, or $A_{1} \cap B_{1}$ consists of a 2-element cocircuit including exactly one element that is in $\{c, d, e\}$; in both cases, the two elements of $\{c, d, e\}$ that are not in $A_{1} \cap B_{1}$ are in $A_{2} \cap B_{2}$;
(iii) if $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right)=2$ and $|E(M)| \neq 10$, then $\left|A_{2} \cap B_{2}\right|=2$ and exactly one element of $\{c, d, e\}$ is in $A_{1} \cap B_{1}$ while the other two elements are in $A_{2} \cap B_{2}$, and $\left|A_{2} \cap B_{1}\right|=\left|A_{1} \cap B_{2}\right|=2$.

Proof. Observe that, by orthogonality, we have:
4.3.1. Every cocircuit of M that meets $\{a, b, c, d, e\}$ does so in at least three elements.

Consider $M \backslash a, b$. From the preceding lemma, $\operatorname{co}(M \backslash a, b)$ is 3connected and each of c, d, and e is in at most one series pair of $M \backslash a, b$. Consider the placement of c, d, and e.
4.3.2. Either
(I) exactly one element of $\{c, d, e\}$ is in each of $A_{2} \cap B_{1}, A_{2} \cap B_{2}$, and $A_{1} \cap B_{2}$; or
(II) exactly one element of $\{c, d, e\}$ is in $A_{1} \cap B_{1}$ and the other two are in $A_{2} \cap B_{2}$.

None of A_{1}, A_{2}, B_{1}, and B_{2} contains more than two elements of $\{a, b, c, d, e\}$. Since $a \in B_{1}$, exactly one of c, d, and e is in B_{1} and the other two are in B_{2}. Similarly, as $b \in A_{1}$, exactly one of c, d, and e is in A_{1} and the other two are in A_{2}.

Suppose that $\left|A_{2} \cap B_{1} \cap\{c, d, e\}\right|=1$. Then, as $\left|B_{1} \cap\{c, d, e\}\right|=1$, we have $\left|A_{1} \cap B_{1} \cap\{c, d, e\}\right|=0$. As $\left|A_{1} \cap\{c, d, e\}\right|=1$, it follows that $\left|A_{1} \cap B_{2} \cap\{c, d, e\}\right|=1$. Since $\left|B_{2} \cap\{c, d, e\}\right|=2$, we deduce that $\mid A_{2} \cap$ $B_{2} \cap\{c, d, e\} \mid=1$. Hence if $\left|A_{2} \cap B_{1} \cap\{c, d, e\}\right|=1$, then (I) holds. On the other hand, if $\left|A_{2} \cap B_{1} \cap\{c, d, e\}\right|=0$, then $\left|A_{1} \cap B_{1} \cap\{c, d, e\}\right|=1$, so $\left|A_{2} \cap B_{2} \cap\{c, d, e\}\right|=2$ and (II) holds. This completes the proof of (4.3.2).
4.3.3. $\lambda_{M \backslash a, b}\left(A_{2}\right)=\lambda_{M \backslash a, b}\left(A_{1}-b\right)=2=\lambda_{M \backslash a, b}\left(B_{2}\right)=\lambda_{M \backslash a, b}\left(B_{1}-a\right)$.

By symmetry and taking complements, we see that it suffices to prove that $\lambda_{M \backslash a, b}\left(A_{2}\right)=2$. Assume that $\lambda_{M \backslash a, b}\left(A_{2}\right)<2$. Now $\left|A_{1}\right|,\left|A_{2}\right|,\left|B_{1}\right|,\left|B_{2}\right| \geq 4$, every series class of $M \backslash a, b$ has at most two elements and meets $\{c, d, e\}$ and $\operatorname{co}(M \backslash a, b)$ is 3 -connected. Thus, by (4.3.2), A_{2} consists of exactly two series pairs each containing one member of $\{c, d, e\}$. Let these series pairs be $\left\{c, c^{\prime}\right\}$ and $\left\{d, d^{\prime}\right\}$. Since $\left|A_{2}\right|=4$, by Lemma 4.1, A_{2} is a circuit of M. But, in forming $\operatorname{co}(M \backslash a, b)$, we contract one element from each of $\left\{c, c^{\prime}\right\}$ and $\left\{d, d^{\prime}\right\}$ to get a 2-element circuit. This contradicts the fact that $\operatorname{co}(M \backslash a, b)$ is 3 -connected since $|E(M)| \geq 9$. Hence (4.3.3) holds.
4.3.4. $b \in \operatorname{cl}\left(A_{1}-b\right)$ and $a \in \operatorname{cl}\left(B_{1}-a\right)$.

By symmetry, it suffices to prove that $b \in \operatorname{cl}\left(A_{1}-b\right)$. Assume the contrary. We have $r\left(A_{1}\right)+r\left(A_{2}\right)=r(M \backslash a)+2$, so $r\left(A_{1}-b\right)+r\left(A_{2} \cup b\right) \leq r(M \backslash a)+2$.
Since $a \in \operatorname{cl}\left(A_{2} \cup b\right)$ and $\left|A_{1}-b\right| \geq 3$, we deduce that $\left(A_{1}-b, A_{2} \cup b \cup a\right)$ is a 3 -separation of M; a contradiction. We conclude that (4.3.4) holds.
4.3.5. None of $A_{1} \cap B_{1}, A_{1} \cap B_{2}$, or $A_{2} \cap B_{1}$ is empty.

If $A_{1} \cap B_{1}=\emptyset$, then $A_{1}-b \subseteq B_{2}$, so, by (4.3.4), $b \in \operatorname{cl}\left(B_{2}\right)$; a contradiction. If $A_{1} \cap B_{2}=\emptyset$, then $A_{1}-b \subseteq B_{1}$, so $b \in \operatorname{cl}\left(B_{1}\right)$; a contradiction. Hence $A_{1} \cap B_{2}$ is non-empty and, by symmetry, so is $A_{2} \cap B_{1}$.
4.3.6. If $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right) \leq 2$, then $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right)=\left|A_{2} \cap B_{2}\right|$.

By (4.3.4), we deduce that $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right)=\lambda_{M \backslash a}\left(A_{2} \cap B_{2}\right)=\lambda_{M}\left(A_{2} \cap\right.$ B_{2}). Since M is 4-connected, it follows that $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right)=\left|A_{2} \cap B_{2}\right|$.

4.3.7. \quad (i) $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{2}\right)=\lambda_{M \backslash b}\left(A_{1} \cap B_{2}\right)=\lambda_{M}\left(A_{1} \cap B_{2}\right)$; and

(ii) $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{1}\right)=\lambda_{M \backslash a}\left(A_{2} \cap B_{1}\right)=\lambda_{M}\left(A_{2} \cap B_{1}\right)$.

We have $\left|A_{2} \cap\{c, d, e\}\right|=2$ and $a \in \operatorname{cl}\left(B_{1}-a\right)$, so $\operatorname{cl}\left(\left(B_{1}-a\right) \cup\left(A_{2} \cap B_{2}\right)\right)$ contains b. Thus (i) holds and (ii) follows by symmetry.

By submodularity, we have:
4.3.8. $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{2}\right)+\lambda_{M \backslash a, b}\left(A_{2} \cap B_{1}\right) \leq 4$.
4.3.9. (i) If $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{2}\right) \leq 2$, then $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{2}\right)=\left|A_{1} \cap B_{2}\right|$.
(ii) If $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{1}\right) \leq 2$, then $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{1}\right)=\left|A_{2} \cap B_{1}\right|$.
(iii) Either $\left|A_{1} \cap B_{2}\right|$ or $\left|A_{2} \cap B_{1}\right|$ is 1 ; or $\left|A_{1} \cap B_{2}\right|=2=\left|A_{2} \cap B_{1}\right|$.
(iv) If $\left|A_{1} \cap B_{2}\right|=1$, then A_{1} is a 4-element circuit of M and $A_{1} \cap B_{1}$ is a 2-element cocircuit of $M \backslash a, b$ that contains exactly one element of $\{c, d, e\}$.
Parts (i) and (ii) follow from (4.3.7). Part (iii) follows by combining (i) and (ii) and using (4.3.8) and (4.3.5). To prove (iv), now assume that $\left|A_{1} \cap B_{2}\right|=1$. As $\left|A_{2}\right|,\left|A_{1}\right| \geq 4$, we have $\left|A_{2} \cap B_{2}\right| \geq 3$ and $\left|A_{1} \cap B_{1}\right| \geq 2$. Now $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right)=\lambda_{M \backslash a}\left(A_{2} \cap B_{2}\right) \geq 3$, so $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right) \leq 1$. Hence $A_{1} \cap B_{1}$ is a 2-element cocircuit of $M \backslash a, b$, so $\left|A_{1}\right|=4$. Thus, by Lemma 4.1, A_{1} is a circuit of M.

4.3.10. Either

(i) $\left|A_{2} \cap B_{2}\right|=2$ and $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right) \leq 2$; or
(ii) $\left|A_{2} \cap B_{2}\right| \geq 3$ and $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right)=1$.

Moreover, if $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right)=1$, then either $\left|A_{1} \cap B_{1}\right|=1$, or $A_{1} \cap B_{1}$ is a 2-cocircuit of $M \backslash a, b$ that contains exactly one element of $\{c, d, e\}$.

To see this, note that, by (4.3.9)(iii), either $\left|A_{1} \cap B_{2}\right|=\left|A_{2} \cap B_{1}\right|=2$; or $\left|A_{1} \cap B_{2}\right|$ or $\left|A_{2} \cap B_{1}\right|$ is 1. Thus, as $\left|B_{2}\right|,\left|A_{2}\right| \geq 4$, we have $\left|A_{2} \cap B_{2}\right| \geq 2$. Also $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right)=\lambda_{M \backslash a}\left(A_{2} \cap B_{2}\right)$ as $b \in \operatorname{cl}\left(A_{1}-b\right)$. Hence $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right) \geq$ 2, so, by submodularity, $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right) \leq 2$. Moreover, if $\left|A_{2} \cap B_{2}\right| \geq 3$, then $\lambda_{M \backslash a, b}\left(A_{2} \cap B_{2}\right) \geq 3$, so $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right) \leq 1$. We deduce that (i) or (ii) of (4.3.10) holds. The final assertion of the sublemma follows directly from Lemma 4.2.

By (4.3.5) and (4.3.10), we deduce that (i) of the lemma holds.
4.3.11. If $\left|A_{1} \cap B_{1}\right|=1$ and $|E(M)| \geq 10$, then $A_{1} \cap B_{1} \subseteq\{c, d, e\}$.

By (ii) of the lemma, each of A_{1} and B_{1} has exactly four elements. By Lemma 4.1, each of A_{1} and B_{1} is a circuit and $A_{1} \cup a$ and $B_{1} \cup b$ contain cocircuits C_{a}^{*} and C_{b}^{*} of M containing a and b, respectively. As $\left|A_{1} \cap B_{1}\right|=1$ and each of these cocircuits contains at least four elements, C_{a}^{*} and C_{b}^{*} are distinct.

Assume that (4.3.11) fails. Then (I) of (4.3.2) holds and $\mid A_{1} \cap B_{2} \cap$ $\{c, d, e\}\left|=1=\left|A_{2} \cap B_{1} \cap\{c, d, e\}\right|\right.$. Let $A_{1} \cap B_{2}=\{c, x\}$, let $A_{2} \cap B_{1}=\{d, y\}$, and let $A_{1} \cap B_{1}=\{z\}$. Then $A_{1} \cup B_{1}$ is spanned by $\{a, b, c, z\}$ since we have the circuits $\{b, c, z, x\},\{a, b, c, d\}$, and $\{a, d, z, y\}$. Thus

$$
\begin{aligned}
\lambda\left(A_{1} \cup B_{1}\right) & =r\left(A_{1} \cup B_{1}\right)+r^{*}\left(A_{1} \cup B_{1}\right)-\left|A_{1} \cup B_{1}\right| \\
& \leq 4+5-7=2
\end{aligned}
$$

This contradicts the fact that M is 4-connected because $\left|A_{2} \cap B_{2}\right| \geq 3$ since $|E(M)| \geq 10$. We conclude that (4.3.11) holds.

By combining (4.3.10) and (4.3.11), we deduce that (ii) of the lemma holds.

As an immediate consequence of (4.3.10), we have:
4.3.12. If $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right)=2$, then $\left|A_{2} \cap B_{2}\right|=2$.

We now complete the proof of (iii) of the lemma. Assume that $\lambda_{M \backslash a, b}\left(A_{1} \cap\right.$ $\left.B_{1}\right)=2$. Then, by (4.3.12), $\left|A_{2} \cap B_{2}\right|=2$. Since $\left|A_{2}\right|,\left|B_{2}\right| \geq 4$, it follows by (4.3.9)(iii) that $\left|A_{1} \cap B_{2}\right|=\left|A_{2} \cap B_{1}\right|=2$. Suppose that (I) of (4.3.2) holds. Then $\{a, b\} \subseteq \operatorname{cl}\left(E-\{a, b\}-\left(A_{1} \cap B_{1}\right)\right)$, so $\lambda_{M \backslash a, b}\left(A_{1} \cap B_{1}\right)=$ $2=\lambda_{M \backslash a}\left(A_{1} \cap B_{1}\right)=\lambda_{M}\left(A_{1} \cap B_{1}\right)$. Hence, as $\left|A_{2}\right| \geq 4$, we deduce that $\left|A_{1} \cap B_{1}\right|=2$ and, therefore, $|E(M)|=10$. Thus, provided $|E(M)| \neq 10$, we may assume that (II) of (4.3.2) holds and part (iii) of the lemma follows.

The essential fact from the last lemma needed for the proof of Theorem 1.6 is the following.

Corollary 4.4. In a 4-connected matroid M with $|E(M)| \geq 11$, let $r(\{a, b, c, d, e\})=3$. Suppose that $\left(A_{1}, A_{2}\right)$ and $\left(B_{1}, B_{2}\right)$ are 3 -separations of $M \backslash a$ and $M \backslash b$, respectively, with $\left|A_{1}\right|,\left|A_{2}\right|,\left|B_{1}\right|,\left|B_{2}\right| \geq 4$ and $b \in A_{1}$ and $a \in B_{1}$. Then one element of $\{c, d, e\}$ is in $A_{1} \cap B_{1}$ and the other two are in $A_{2} \cap B_{2}$.

Proof of Theorem 1.6. Suppose that none of $M \backslash a, M \backslash b, M \backslash c$, and $M \backslash d \quad$ is internally 4 -connected. Let $\quad\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right),\left(C_{1}, C_{2}\right)$, and $\left(D_{1}, D_{2}\right)$ be 3 -separations of $M \backslash a, M \backslash b, M \backslash c$, and $M \backslash d$ with $\left|A_{1}\right|,\left|A_{2}\right|,\left|B_{1}\right|,\left|B_{2}\right|,\left|C_{1}\right|,\left|C_{2}\right|,\left|D_{1}\right|,\left|D_{2}\right| \geq 4$. Each of the last eight sets contains exactly two elements of $\{a, b, c, d, e\}$. In particular, we may assume that $\{b, c\} \subseteq A_{1} \cap\{b, c, d, e\}$. Label B_{1} and C_{1} so that $a \in B_{1} \cap C_{1}$. By Corollary 4.4, since $\left|A_{1} \cap B_{1} \cap\{c, d, e\}\right|=1$, we deduce that $c \in B_{1}$, so $B_{2} \cap\{a, c, d, e\}=\{d, e\}$. Symmetrically, $b \in C_{1}$.

Now consider $\left(D_{1}, D_{2}\right)$ labelling this so that $a \in D_{1}$. Because $d \in A_{2}$ and $A_{2} \cap\{b, c, d, e\}=\{d, e\}$, we deduce that $D_{1} \cap A_{2} \cap\{a, b, c, d, e\}=\{e\}$. Thus $D_{1} \cap\{a, b, c, d, e\}=\{a, e\}$ and $D_{2} \cap\{a, b, c, d, e\}=\{b, c\}$. Now $d \in$ B_{2} and $b \in D_{2}$, yet $D_{2} \cap B_{2} \cap\{a, b, c, d, e\}=\emptyset$. This contradiction to Corollary 4.4 completes the proof that at least one of $M \backslash a, M \backslash b, M \backslash c$, and $M \backslash d$ is internally 4-connected. If exactly one of $M \backslash a, M \backslash b, M \backslash c$, and $M \backslash d$ is internally 4-connected, assume it is $M \backslash a$. Then, arguing as above, we get
that at least one of $M \backslash b, M \backslash c, M \backslash d$, and $M \backslash e$ is internally 4-connected. We conclude that at least two of $M \backslash a, M \backslash b, M \backslash c, M \backslash d$, and $M \backslash e$ are internally 4 -connected.

5. The 4-Connected Case

In this section, we shall complete the proof of Theorem 3.2, thereby proving the main theorem in the case that M is 4 -connected. We are following the strategy outlined in Section 3. The key remaining result we need is the following.

Theorem 5.1. Let M be a 4-connected matroid with $|E(M)| \geq 13$. Let x be an element of M such that $M \backslash x$ is sequentially 4-connected but not weakly 4 -connected, and M / x is not sequentially 4-connected. Suppose that $\{s, t, u\}$ is a triad of $M \backslash x$, that $\{s, t, u, y\}$ is a circuit of $M \backslash x$, and that $\{s, t, u, y, c\}$ is 3-separating in $M \backslash x$. Then, for some z in $\{s, t, u\}$, the matroid M / z is (4, 4, S)-connected.

Proof. Since $M \backslash x$ is not weakly 4-connected, by Lemma 2.10, we have:
5.1.1. M / x is weakly 4-connected.

Since M / x is not sequentially 4 -connected, by Lemma 2.9,
5.1.2. M / x has a quad D.

Assume the theorem fails.
Lemma 5.2. The matroid M / s has a (4, 4, S)-violator (S_{1}, S_{2}) with $\{t, u, y\} \subseteq S_{1}$ and x in S_{2}.

Proof. Because the theorem fails, M / s has a $(4,4, S)$-violator $\left(S_{1}, S_{2}\right)$ where we can label this so that $\left|S_{1} \cap\{t, u, y\}\right| \geq 2$.
5.2.1. If $\{t, u, y\} \subseteq S_{1}$, then $x \in S_{2}$.

To see this, assume that $x \in S_{1}$. We have

$$
r_{M / s}\left(S_{1}\right)+r_{M / s}\left(S_{2}\right)=r(M / s)+2
$$

so $r\left(S_{1} \cup s\right)+r\left(S_{2} \cup s\right)=r(M)+3$. But $\{s, t, u, x\}$ is a cocircuit of M and $\{t, u, x\} \cap S_{2}=\emptyset$. Hence $r\left(S_{2} \cup s\right)=r\left(S_{2}\right)+1$. Thus $\left(S_{1} \cup s, S_{2}\right)$ is a 3 -separation of M; a contradiction. Hence (5.2.1) holds.

We may now assume that $\left|S_{1} \cap\{t, u, y\}\right|=2$. Then $\left(S_{1} \cup\{t, u, y\}, S_{2}-\right.$ $\{t, u, y\}$) is a 3-separation of M / s that is equivalent to $\left(S_{1}, S_{2}\right)$. Hence S_{2} is not a quad of M / s. Thus $\left(S_{1} \cup\{t, u, y\}, S_{2}-\{t, u, y\}\right)$ is a $(4,4, S)$ violator unless $\left|S_{2}\right|=5$ and $S_{2}-\{t, u, y\}$ is not a quad of M / s. We deduce that the lemma holds unless S_{2} is a sequential 3-separating set of M / s having a sequential ordering $(1,2,3,4,5)$ with $5 \in\{t, u, y\}$.

Consider the exceptional case. As $5 \in\{t, u, y\}$, we have $5 \in \operatorname{cl}_{M / s}\left(S_{1}\right)$. Thus $5 \in \operatorname{cl}_{M / s}(\{1,2,3,4\})$. Since M / s has no triads, we deduce that $\{1,2,3\}$ is a triangle of M / s. If $4 \in \operatorname{cl}_{M / s}(\{1,2,3\})$, then $M \mid\{1,2,3,4, s\} \cong$
$U_{3,5}$. By applying the argument for (5.2.1) to ($S_{1} \cup\{t, u, y\}, S_{2}-\{t, u, y\}$), we deduce that $x \in\{1,2,3,4\}$. But this means that the circuit $\{1,2,3,4\}$ meets the cocircuit $\{s, t, u, x\}$ in a single element; a contradiction. Hence $4 \notin \operatorname{cl}_{M / s}(\{1,2,3\})$, so $\{1,2,3,4\}$ is a cocircuit of M / s and hence of M. Moreover, $\{1,2,3, s\}$ is a circuit of M. By orthogonality, $x \in\{1,2,3\}$ so, since 1,2 , and 3 can be arbitrarily reordered, we may assume that $x=1$.

Let $Z=\{x, 2,3,4, s, t, u, y\}$. Then $r_{M / s}(Z-s) \leq 4$ since $Z-s$ is spanned in M / s by $\{2,3,4\}$ together with an element of $\{t, u, y\}-5$ because $5 \in$ $\operatorname{cl}_{M / s}(\{1,2,3,4\})$ and $5 \in\{t, u, y\}$. Now $\{s, t, u, y\}$ is 3 -separating in $M \backslash x$. Thus, by Lemma 2.10, the quad D of M / x satisfies

$$
|D \cap\{s, t, u, y\}|=2 \text { and }|D-\{s, t, u, y\}|=2 .
$$

Now D is a cocircuit of M and $D \cup x$ is a circuit of M. As the cocircuit $\{x, 2,3,4\}$ meets $D \cup x$, orthogonality implies that D meets $\{2,3,4\}$.

We now have two possibilities:
(i) $D \subseteq Z$; and
(ii) $D-Z=\{d\}$ for some element d.

In the first case, D contains exactly two elements of $\{2,3,4\}$. Consider M^{*}. It has $\{x, 2,3,4\},\{s, t, u, x\}$, and D among its circuits. Let B^{*} consist of $\{x, y\}$ together with two elements of $\{s, t, u\}$, both in D if possible, and one element of $\{2,3,4\} \cap D$. Then B^{*} spans Z in M^{*}, Hence $r_{M}^{*}(Z) \leq 5$. But we have already shown that $r_{M}(Z) \leq 5$. Thus $r_{M}(Z)+r_{M}^{*}(Z)-|Z| \leq 2$, so $|E(M)-Z| \leq 2$. Hence $|E(M)| \leq 10$; a contradiction.

In case (ii), the circuit $D \cup x$ and the fact that $r(Z) \leq 5$ imply that $r(Z \cup d) \leq 5$. Moreover, $Z \cup d$ is spanned in M^{*} by $\{x, y, s, t, 2,3\}$, so $r^{*}(Z \cup d) \leq 6$. Thus $r_{M}(Z \cup d)+r_{M}^{*}(Z \cup d)-|Z \cup d| \leq 2$, so $|E(M)-(Z \cup d)| \leq$ 2. Hence $|E(M)| \leq 11$. This contradiction completes the proof of the lemma.

Lemma 5.3. If $\left(S_{1}, S_{2}\right)$ is a $(4,4, S)$-violator of M / s with $\{t, u, y\} \subseteq S_{1}$ and $x \in S_{2}$, then
(i) $r_{M / s}\left(S_{1}\right), r_{M / s}\left(S_{2}\right) \geq 3$; and
(ii) either $\left|S_{1}\right|,\left|S_{2}\right| \geq 5$, or S_{2} is a quad of M / s and S_{1} is non-sequential but is not a quad.

Proof. Suppose that $r_{M / s}\left(S_{2}\right)=2$. Then, by Lemma 2.11, $\left|S_{2}\right| \geq 5$ and so every 4-element subset of S_{2} is a circuit of M. Thus M has a 4 -element circuit meeting the cocircuit $\{s, t, u, x\}$ in $\{x\}$. This contradicts orthogonality. Thus $r_{M / s}\left(S_{2}\right) \geq 3$.

Now assume that $r_{M / s}\left(S_{1}\right)=2$. Then, by Lemma 2.11, $\left|S_{1}\right| \geq 5$. Now take a and b to be distinct elements of $S_{1}-\{t, u, y\}$. Then $\{a, b, y, s\}$ is a circuit of M meeting the cocircuit $\{s, t, u, x\}$ in a single element; a contradiction to orthogonality. We conclude that (i) holds.

To prove (ii), note that if it fails, then S_{1} is a quad of M / s. But S_{1} is not a quad of the 4-connected matroid M, so $S_{1} \cup s$ is a circuit of M that properly contains the circuit $\{s, t, u, y\}$; a contradiction.

Now, by Lemma 5.2, we can choose $\left(S_{1}, S_{2}\right),\left(T_{1}, T_{2}\right)$, and $\left(U_{1}, U_{2}\right)$ to be (4, 4, S)-violators of $M / s, M / t$, and M / u, respectively, with $x \in S_{2} \cap T_{2} \cap U_{2}$ and $\left(S_{2} \cup T_{2} \cup U_{2}\right) \cap\{s, t, u, y\}=\emptyset$. Let $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime} be $S_{2}-x, T_{2}-x$, and $U_{2}-x$, respectively. In the results that follow, we prove various properties of the set S_{2}. By symmetry, the corresponding properties will also hold for T_{2} and U_{2}.
Lemma 5.4. The elements s and x are in $\operatorname{cl}_{M}\left(S_{2}\right)$ and $\mathrm{cl}_{M / s}\left(S_{2}^{\prime}\right)$, respectively. Thus $x \in \operatorname{cl}_{M}\left(S_{2}^{\prime} \cup s\right)$.
Proof. We have

$$
r_{M / s}\left(S_{1}\right)+r_{M / s}\left(S_{2}\right)=r(M / s)+2
$$

Assume $x \notin \operatorname{cl}_{M / s}\left(S_{2}^{\prime}\right)$. Then

$$
r_{M / s}\left(S_{1} \cup x\right)+r_{M / s}\left(S_{2}^{\prime}\right)=r(M / s)+2
$$

so $r\left(S_{1} \cup x \cup s\right)+r\left(S_{2}^{\prime} \cup s\right)=r(M)+3$. Now $\{s, t, u, x\}$ is a cocircuit of M meeting $S_{2}^{\prime} \cup s$ in a single element. Hence $r\left(S_{2}^{\prime} \cup s\right)=r\left(S_{2}^{\prime}\right)+1$. Thus $r\left(S_{1} \cup x \cup s\right)+r\left(S_{2}^{\prime}\right)=r(M)+2$. But M is 4-connected, so $\left|S_{2}^{\prime}\right| \leq 2$. This contradicts the fact that $\left|S_{2}\right| \geq 4$. We deduce that $x \in \operatorname{cl}_{M / s}\left(S_{2}^{\prime}\right)$. Hence $x \in \operatorname{cl}_{M}\left(S_{2}^{\prime} \cup s\right)$. But $x \notin \mathrm{cl}_{M}\left(S_{2}^{\prime}\right)$ because $\{s, t, u, x\}$ is a cocircuit that avoids S_{2}^{\prime}. Hence $s \in \operatorname{cl}_{M}\left(S_{2}^{\prime} \cup x\right)=\operatorname{cl}\left(S_{2}\right)$.
Lemma 5.5. $\sqcap\left(\{s, t, u, y\}, S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$.
Proof. The set $\{s, t, u, y\}$ is 3 -separating in $M \backslash x$, so $\sqcap(\{s, t, u, y\}, E(M)-$ $\{s, t, u, y, x\})=2$. By Lemma 2.7(i), $\sqcap\left(\{s, t, u, y\}, S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right) \leq 2$.

Now $r(\{s, t, u, y\})=3$ and, by Lemma 5.4 and symmetry, $\operatorname{cl}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup\right.$ $\left.U_{2}^{\prime} \cup x\right)$ contains $\{s, t, u\}$ and hence y. Thus

$$
3=r(\{s, t, u, y\})+r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup x\right)-r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup x \cup\{s, t, u, y\}\right)
$$

and

$$
\begin{aligned}
2 \geq & r(\{s, t, u, y\})+r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)-r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y\}\right) \\
\geq & r(\{s, t, u, y\})+r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)-r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup x \cup\{s, t, u, y\}\right) \\
\geq & r(\{s, t, u, y\})+r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup x\right)-1 \\
& \quad-r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup x \cup\{s, t, u, y\}\right) \\
= & 3-1=2
\end{aligned}
$$

We conclude that $\Pi\left(\{s, t, u, y\}, S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$.
Lemma 5.6. If $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$, then

$$
E(M)=S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y, x\}
$$

Proof. By Lemma 2.6, we have

$$
\begin{aligned}
\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y\}\right) \leq & \lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)+\lambda_{M \backslash x}(\{s, t, u, y\}) \\
& -\sqcap\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime},\{s, t, u, y\}\right) \\
= & 2+2-2=2
\end{aligned}
$$

But $x \in \operatorname{cl}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y\}\right)$, so $\lambda_{M}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y, x\}\right) \leq 2$.
The matroid M is 4-connected, so $E(M)-\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y, x\}\right)$ is a set V with at most two elements. To complete the proof of the lemma, we need to show that V is empty.

First we show that
5.6.1. $V \subseteq \operatorname{cl}(\{s, t, u\})$.

Assume not. As $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$, we have

$$
\begin{aligned}
2 & =r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)+r(\{s, t, u, y\} \cup V)-r(M \backslash x) \\
& \geq r\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)+r(\{s, t, u, y\})-r(M \backslash x) \\
& =2
\end{aligned}
$$

where the last step holds by Lemma 5.5 since $r(M \backslash x)=r(M \backslash x \backslash V)$ as $|V \cup x| \leq 3$. Thus equality holds throughout the last chain of inequalities, so $V \subseteq \operatorname{cl}(\{s, t, u, y\})=\operatorname{cl}(\{s, t, u\})$, that is, (5.6.1) holds.

Now take $e \in V$. Then $\{s, t, u, e\}$ and $\{s, t, u, y\}$ are both circuits of M, so every 4-element subset of $\{s, t, u, y, e\}$ is a circuit of M. By (5.1.2), M / x has a quad D. By Lemma $2.10, D$ contains exactly two elements of $\{s, t, u, y, e\}$. But this contradicts orthogonality since D is a cocircuit of M. We conclude that $V=\emptyset$. Hence the lemma holds.

Lemma 5.7. The matroid $M \backslash x / s$ is 3-connected.
Proof. Certainly $M \backslash x$ is 3 -connected and has no triangles since M is 4connected. The matroid $M \backslash x / s$ has $\{t, u, y\}$ as a triangle and is simple and cosimple. Assume (X, Y) is a 2-separation of $M \backslash x / s$. Since $M \backslash x / s$ has no 2 -cocircuits, this 2-separation is non-minimal. Then, without loss of generality, $|X \cap\{t, u, y\}| \geq 2$. Therefore $(X \cup\{t, u, y\}, Y-\{t, u, y\})$ is a 2-separation of $M \backslash x / s$ and $|Y-\{t, u, y\}| \geq 3$. Hence we may assume that $X \supseteq\{t, u, y\}$ and $|Y| \geq 3$. Now

$$
r_{M \backslash x / s}(X)+r_{M \backslash x / s}(Y)=r(M \backslash x / s)+1
$$

So $r(X \cup s)+r(Y \cup s)=r(M)+2$. We have $\{s, t, u, x\}$ as a cocircuit of M, so $\{s, t, u\}$ is a cocircuit of $M \backslash x$. Hence, as $\{t, u\} \subseteq X$, we have $r(Y \cup s)=$ $r(Y)+1$, so $r(X \cup s)+r(Y)=r(M)+1$. Thus $r(X \cup s)+r(Y \cup x) \leq r(M)+2$, a contradiction to the fact that M is 4 -connected.

Lemma 5.8. The partition $\left(S_{1} \cup s, S_{2}^{\prime}\right)$ is a vertical 3-separation of $M \backslash x$, so $\lambda_{M \backslash x}\left(S_{2}^{\prime}\right)=2$. Moreover, if $\left|S_{2}^{\prime}\right|=3$, then S_{2}^{\prime} is a triad of $M \backslash x$.

Proof. We have

$$
\begin{aligned}
r\left(S_{1} \cup s\right)+r\left(S_{2}^{\prime}\right)-r(M \backslash x)= & {\left[r_{M / s}\left(S_{1}\right)+1\right]+\left[r\left(S_{2}^{\prime} \cup s\right)-1\right] } \\
& -[r(M / s)+1] \\
= & r_{M / s}\left(S_{1}\right)+r_{M / s}\left(S_{2}^{\prime}\right)-r(M / s) \\
= & r_{M / s}\left(S_{1}\right)+r_{M / s}\left(S_{2}\right)-r(M / s) \\
= & 2 .
\end{aligned}
$$

Thus ($S_{1} \cup s, S_{2}^{\prime}$) is a 3 -separation of $M \backslash x$. Since, by Lemmas 5.3 and 5.4, $r_{M / s}\left(S_{1}\right) \geq 3$ and $r_{M / s}\left(S_{2}^{\prime}\right)=r_{M / s}\left(S_{2}\right) \geq 3$, it follows that this 3separation is vertical.

Finally, if $\left|S_{2}^{\prime}\right|=3$, then $\left(S_{1} \cup x, S_{2}^{\prime}\right)$ is a minimal 3-separation of $M \backslash x$. As $M \backslash x$ has no triangles, it follows that S_{2}^{\prime} is a triad of $M \backslash x$.
Lemma 5.9. $S_{2}^{\prime} \cap T_{2}^{\prime} \neq \emptyset$.
Proof. Assume $S_{2}^{\prime} \cap T_{2}^{\prime}=\emptyset$. Then $S_{2}^{\prime} \subseteq T_{1}$ and $s \in T_{1}$. But, by Lemma 5.4, $x \in \operatorname{cl}\left(S_{2}^{\prime} \cup s\right)$. Hence $x \in \operatorname{cl}\left(T_{1}\right)$. Thus, by Lemma 5.8 and symmetry, $\left(T_{1} \cup t \cup x, T_{2}^{\prime}\right)$ is a 3 -separation of M; a contradiction.
Lemma 5.10. The sets S_{2}^{\prime} and T_{2}^{\prime} have the following properties:
(i) $\lambda_{M}\left(S_{2}^{\prime}-T_{2}^{\prime}\right)+\lambda_{M}\left(T_{2}^{\prime}-S_{2}^{\prime}\right) \leq 4$;
(ii) if $\left|S_{2}^{\prime}-T_{2}^{\prime}\right| \geq 2$, then $\left|T_{2}^{\prime}-S_{2}^{\prime}\right| \leq 2$;
(iii) if $\left|S_{2}^{\prime}-T_{2}^{\prime}\right| \geq 3$, then $\left|T_{2}^{\prime}-S_{2}^{\prime}\right| \leq 1$; and
(iv) if $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|,\left|T_{2}^{\prime}-S_{2}^{\prime}\right| \geq 2$, then $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=\left|T_{2}^{\prime}-S_{2}^{\prime}\right|=2$.

Proof. We have $\lambda_{M \backslash x}\left(S_{2}^{\prime}\right)=2=\lambda_{M \backslash x}\left(T_{2}^{\prime}\right)$ while $E(M \backslash x)-S_{2}^{\prime}=S_{1} \cup s$ and $E(M \backslash x)-T_{2}^{\prime}=T_{1} \cup t$. Thus

$$
\begin{aligned}
4 & =\lambda_{M \backslash x}\left(S_{2}^{\prime}\right)+\lambda_{M \backslash x}\left(T_{1} \cup t\right) \\
& \geq \lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{1} \cup t\right)+\lambda_{M \backslash x}\left(S_{2}^{\prime} \cap\left(T_{1} \cup t\right)\right) \\
& =\lambda_{M \backslash x}\left(T_{2}^{\prime}-S_{2}^{\prime}\right)+\lambda_{M \backslash x}\left(S_{2}^{\prime}-T_{2}^{\prime}\right) \\
& =\lambda_{M}\left(T_{2}^{\prime}-S_{2}^{\prime}\right)+\lambda_{M}\left(S_{2}^{\prime}-T_{2}^{\prime}\right)
\end{aligned}
$$

The last step here holds because $E(M \backslash x)-\left(T_{2}^{\prime}-S_{2}^{\prime}\right) \supseteq S_{2}^{\prime} \cup s$ and $x \in$ $\operatorname{cl}_{M}\left(S_{2}^{\prime} \cup s\right)$, so $\lambda_{M \backslash x}\left(T_{2}^{\prime}-S_{2}^{\prime}\right)=\lambda_{M}\left(T_{2}^{\prime}-S_{2}^{\prime}\right)$ and, by symmetry, $\lambda_{M \backslash x}\left(S_{2}^{\prime}-\right.$ $\left.T_{2}^{\prime}\right)=\lambda_{M}\left(S_{2}^{\prime}-T_{2}^{\prime}\right)$. Thus (i) holds. Since M is 4-connected, parts (ii) and (iii) hold. Part (iv) follows by using (ii) and the natural symmetric form of it.

Lemma 5.11. If $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right|=1$, then S_{2}^{\prime} and T_{2}^{\prime} are both triads of $M \backslash x$.
Proof. Suppose that S_{2}^{\prime} is not a triad of $M \backslash x$. Then, by Lemma 5.8, $\left|S_{2}^{\prime}\right|>3$, so $\left|S_{2}^{\prime}-T_{2}^{\prime}\right| \geq 3$. Hence, by Lemma 5.10 (iii), $\left|T_{2}^{\prime}-S_{2}^{\prime}\right| \leq 1$. As $\left|T_{2}^{\prime} \cap S_{2}^{\prime}\right|=1$, it follows that $\left|T_{2}^{\prime}\right| \leq 2$; a contradiction. We conclude that S_{2}^{\prime} is a triad and, by symmetry, so is T_{2}^{\prime}.
Lemma 5.12. If each of $S_{2}^{\prime}-T_{2}^{\prime}, T_{2}^{\prime}-S_{2}^{\prime}$, and $S_{2}^{\prime} \cap T_{2}^{\prime}$ has at least two elements, then $\left(S_{2}^{\prime} \cap T_{2}^{\prime}, T_{2}^{\prime}-S_{2}^{\prime},\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right), S_{2}^{\prime}-T_{2}^{\prime}\right)$ is a Vámos-like flower Φ in $M \backslash x$ and $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=2=\left|T_{2}^{\prime}-S_{2}^{\prime}\right|$.
Proof. By Lemma 5.10, we deduce that each of $S_{2}^{\prime}-T_{2}^{\prime}$ and $T_{2}^{\prime}-S_{2}^{\prime}$ has exactly two elements and so is 3 -separating in $M \backslash x$. We have $\lambda_{M \backslash x}\left(S_{2}^{\prime}\right)=2=$ $\lambda_{M \backslash x}\left(T_{2}^{\prime}\right)$ while $\left|\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)\right|=\left|E(M \backslash x)-\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)\right| \geq|\{s, t, u, y\}| \geq 4$. We deduce, by Lemma 2.4, that $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cap T_{2}^{\prime}\right)=2=\lambda_{M \backslash x}\left(\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)\right)$. Hence Φ is a flower in $M \backslash x$. Now $\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)$ is 3-separating in $M \backslash x$ and has at least four elements. Thus, by Lemma $2.10, D$ has exactly two elements
in $\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)$. Similarly, D has exactly two elements in S_{2}^{\prime} and exactly two elements in T_{2}^{\prime}. Hence D has exactly two elements in $S_{2}^{\prime} \cap T_{2}^{\prime}$. We deduce, since D contains a cocircuit of $M \backslash x$, that $\sqcap_{M \backslash x}^{*}\left(S_{2}^{\prime} \cup T_{2}^{\prime},\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)\right)>0$.

Now D avoids the 4 -element set $\left(S_{2}^{\prime}-T_{2}^{\prime}\right) \cup\left(T_{2}^{\prime}-S_{2}^{\prime}\right)$ of $E(M \backslash x)$ so, by Lemma 2.10 again, the set $\left(S_{2}^{\prime}-T_{2}^{\prime}\right) \cup\left(T_{2}^{\prime}-S_{2}^{\prime}\right)$ is not exactly 3 -separating. Thus Φ is a daisy in each of $M \backslash x$ and $(M \backslash x)^{*}$. As $\sqcap_{M \backslash x}^{*}\left(S_{2}^{\prime} \cup T_{2}^{\prime},\left(S_{1} \cup\right.\right.$ $\left.s) \cap\left(T_{1} \cup t\right)\right)>0$, the flower Φ is not swirl-like in $(M \backslash x)^{*}$. Hence Φ is not swirl-like in $M \backslash x$, so Φ is Vámos-like.

Lemma 5.13. If $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right| \geq 2$, then $\left|S_{2}^{\prime}-T_{2}^{\prime}\right| \leq 1$ or $\left|T_{2}^{\prime}-S_{2}^{\prime}\right| \leq 1$.
Proof. Assume that both $S_{2}^{\prime}-T_{2}^{\prime}$ and $T_{2}^{\prime}-S_{2}^{\prime}$ exceed one. Then, by Lemma 5.12, Φ is a Vámos-like flower in $M \backslash x$ and $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=2=\left|T_{2}^{\prime}-S_{2}^{\prime}\right|$. By [10, Theorem 6.1], Φ has no loose elements.

Now $\left(S_{2}^{\prime}-T_{2}^{\prime}\right) \cup\left[\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)\right]=T_{1} \cup t$ and $\left(T_{2}^{\prime}, T_{1} \cup t\right)$ is a 3separation of $M \backslash x$. Hence it is sequential. Assume that $T_{1} \cup t$ is sequential and consider the set F of the first three elements in a sequential ordering $\overrightarrow{T_{1} \cup t}$ of $T_{1} \cup t$. If $S_{2}^{\prime}-T_{2}^{\prime} \subseteq F$, then the element of $F-\left(S_{2}^{\prime}-T_{2}^{\prime}\right)$ is loose in Φ; a contradiction. Thus, at most one element of $S_{2}^{\prime}-T_{2}^{\prime}$ is in F, so we may assume that the first two elements of $\overrightarrow{T_{1} \cup t}$ are in $\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)$. It follows that the first element of $S_{2}^{\prime}-T_{2}^{\prime}$ in $\overrightarrow{T_{1} \cup t}$ is in the closure or coclosure of $\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)$ in $M \backslash x$ and so is loose in Φ; a contradiction. We conclude that $T_{1} \cup t$ is not sequential. A symmetric argument using $T_{2}^{\prime}-S_{2}^{\prime}$ and $S_{2}^{\prime} \cap T_{2}^{\prime}$ in place of $S_{2}^{\prime}-T_{2}^{\prime}$ and $\left(S_{1} \cup s\right) \cap\left(T_{1} \cup t\right)$, respectively, establishes that T_{2}^{\prime} is not sequential. Thus $\left(T_{2}^{\prime}, T_{1} \cup t\right)$ is non-sequential; a contradiction.

Lemma 5.14. If $T_{2}^{\prime} \subseteq S_{2}^{\prime}$, then $\left(\left(S_{1} \cup s\right)-t, S_{2}\right)$ is a $(4,4, S)$-violator for M / t with x in S_{2} and $\{s, u, y\} \subseteq\left(S_{1} \cup s\right)-t$.

Proof. We have

$$
r_{M / s}\left(S_{2}\right)+r_{M / s}\left(S_{1}\right)=r(M / s)+2
$$

Thus

$$
r\left(S_{2} \cup s\right)-1+r\left(S_{1} \cup s\right)-1=r(M / t)+2
$$

Now, by Lemma 5.4, $r\left(S_{2} \cup s\right)=r\left(S_{2}\right)$ and $r\left(T_{2} \cup t\right)=r\left(T_{2}\right)$. Thus, as $T_{2} \subseteq S_{2}$, we deduce that $r\left(S_{2} \cup t\right)=r\left(S_{2}\right)=r\left(S_{2} \cup s\right)$, so

$$
r\left(S_{2} \cup t\right)-1+r\left(\left[\left(S_{1} \cup s\right)-t\right] \cup t\right)-1=r(M / t)+2
$$

Hence $\left(\left(S_{1} \cup s\right)-t, S_{2}\right)$ is a 3 -separation of M / t.
Evidently $x \in S_{2}$ and $\{s, u, y\} \subseteq\left(S_{1} \cup s\right)-t$. Suppose that $\left(\left(S_{1} \cup s\right)-t, S_{2}\right)$ is not a $(4,4, S)$-violator of M / t. As $\left(S_{1}, S_{2}\right)$ is a $(4,4, S)$-violator of M / s, it follows that S_{1} or S_{2} is a quad of M / s. But if S_{1} is a quad of M / s, then $S_{1} \cup s$ is a circuit of M that properly contains the circuit $\{s, t, u, y\}$; a contradiction. Thus S_{2} is a quad of M / s. Hence $S_{2}^{\prime}=T_{2}^{\prime}$ since $\left|S_{2}^{\prime}\right|,\left|T_{2}^{\prime}\right| \geq 3$, so $S_{2}=T_{2}$ and $\left(\left(S_{1} \cup s\right)-t, S_{2}\right)=\left(T_{1}, T_{2}\right)$. Thus $\left(\left(S_{1} \cup s\right)-t, S_{2}\right)$ is a (4, 4, S)-violator of M / t.

By the last lemma, if $T_{2}^{\prime} \subseteq S_{2}^{\prime}$, then we may replace $\left(T_{1}, T_{2}\right)$ by $\left(\left(S_{1} \cup\right.\right.$ $s)-t, S_{2}$) giving $T_{2}^{\prime}=S_{2}^{\prime}$. By repeating this process, we may assume that none of $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime} is properly contained in another such set.

Lemma 5.15. The sets $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime} are not all equal.
Proof. Assume that $S_{2}^{\prime}=T_{2}^{\prime}=U_{2}^{\prime}$. We know that $x \in \mathrm{cl}_{M / s}\left(S_{2}^{\prime}\right) \cap \mathrm{cl}_{M / t}\left(T_{2}^{\prime}\right) \cap$ $\mathrm{cl}_{M / u}\left(U_{2}^{\prime}\right)$ and

$$
\begin{aligned}
\sqcap\left(S_{2}^{\prime},\{s, t, u, y\}\right) & =r\left(S_{2}^{\prime}\right)+r(\{s, t, u, y\})-r\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right) \\
& =r\left(S_{2}^{\prime}\right)+3-r\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right) .
\end{aligned}
$$

Now $M \backslash x$ has $\{s, t, u\}$ as a triad. Thus $r\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right) \geq r\left(S_{2}^{\prime}\right)+1$. But $\operatorname{cl}\left(S_{2}^{\prime} \cup s\right)$ contains x. Thus, by Lemma 5.4 and symmetry, $\operatorname{cl}\left(S_{2}^{\prime} \cup s\right)$ contains t and u, and hence y. Therefore $r\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right) \leq r\left(S_{2}^{\prime}\right)+1$. Thus $\sqcap\left(S_{2}^{\prime},\{s, t, u, y\}\right)=2$.

By Lemma 2.6,

$$
\begin{aligned}
\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right)= & \lambda_{M \backslash x}\left(S_{2}^{\prime}\right)+\lambda_{M \backslash x}(\{s, t, u, y\}) \\
& -\sqcap_{M \backslash x}\left(S_{2}^{\prime},\{s, t, u, y\}\right)-\sqcap_{M \backslash x}^{*}\left(S_{2}^{\prime},\{s, t, u, y\}\right) \\
\leq & 2+2-2=2
\end{aligned}
$$

Since $x \in \operatorname{cl}\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right)$, we deduce that $\lambda_{M}\left(S_{2}^{\prime} \cup\{s, t, u, y, x\}\right) \leq 2$. As M is 4-connected, it follows that $\left|E(M)-\left(S_{2}^{\prime} \cup\{s, t, u, y, x\}\right)\right| \leq 2$.

By Lemma 2.7(i),

$$
2=\sqcap\left(S_{2}^{\prime}, S_{1} \cup s\right) \geq \sqcap\left(S_{2}^{\prime},\{s, t, u, y\}\right)=2
$$

Thus

$$
r\left(S_{1} \cup s\right)-r\left(S_{2}^{\prime} \cup S_{1} \cup s\right)=r(\{s, t, u, y\})-r\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right)
$$

Since $\left|E(M)-\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right)\right| \leq 3$, we deduce that $r\left(S_{2}^{\prime} \cup S_{1} \cup s\right)=$ $r\left(S_{2}^{\prime} \cup\{s, t, u, y\}\right)=r(M)$. Hence $r\left(S_{1} \cup s\right)=r(\{s, t, u, y\})=3$. This contradiction to Lemma 5.3 completes the proof.

Lemma 5.16. If S_{2}^{\prime} and T_{2}^{\prime} are both triads of $M \backslash x$, then $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right|=1$.
Proof. By Lemma 5.9, $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right| \geq 1$. If $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right| \geq 2$, then every 3-element subset of $S_{2}^{\prime} \cup T_{2}^{\prime}$ is a triad of $M \backslash x$. Thus $r_{M}^{*}\left(S_{2} \cup T_{2}\right)=3$. Now exactly two elements of D are in $\{s, t, u, y\}$. Thus at most two elements of D are in $S_{2}^{\prime} \cup T_{2}^{\prime}$. But, by Lemma 2.10(ii), there is an element of D in each 3-element subset of $S_{2}^{\prime} \cup T_{2}^{\prime}$. Hence exactly two elements of D are in $S_{2}^{\prime} \cup T_{2}^{\prime}$.

Let $G=S_{2}^{\prime} \cup T_{2}^{\prime} \cup\{s, t, u, y, x\}$. Then G is spanned by $S_{2}^{\prime} \cup T_{2}^{\prime} \cup\{u, x\}$ as $s \in \operatorname{cl}\left(S_{2}\right)$ and $t \in \operatorname{cl}\left(T_{2}\right)$ while $\{s, t, u, y\}$ is a circuit. Thus $r(G) \leq$ $\left|S_{2}^{\prime} \cup T_{2}^{\prime}\right|=2$. On the other hand, letting d be an element of $\{s, t, u\}$ such that $|\{d, y\} \cap D|=1$, we have that $\mathrm{cl}^{*}\left(S_{2} \cup T_{2} \cup\{d, y\}\right)$ contains at least three elements of the cocircuit D and so contains all of D. The choice of D also means that this coclosure contains at least two elements of $\{s, t, u\}$ and the cocircuit $\{s, t, u, x\}$ guarantees that it contains all of $\{s, t, u\}$. Hence
$\mathrm{cl}^{*}\left(S_{2} \cup T_{2} \cup\{d, y\}\right)$ contains G and so $r^{*}(G) \leq r^{*}\left(S_{2} \cup T_{2}\right)+2 \leq 5$.Thus we have

$$
\lambda_{M}(G)=r(G)+r^{*}(G)-|G| \leq\left[\left|S_{2}^{\prime} \cup T_{2}^{\prime}\right|+2\right]+5-\left[\left|S_{2}^{\prime} \cup T_{2}^{\prime}\right|+5\right]=2 .
$$

Hence $|E(M)-G| \leq 2$. But this contradicts the fact that $|E(M)| \geq 12$.
Lemma 5.17. If $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right| \geq 2$, then $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)=2$. Moreover, if at least two of $S_{2}^{\prime} \cap T_{2}^{\prime}, T_{2}^{\prime} \cap U_{2}^{\prime}$, and $U_{2}^{\prime} \cap S_{2}^{\prime}$ exceed one, then $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$.
Proof. We have $\lambda_{M \backslash x}\left(S_{2}^{\prime}\right)=\lambda_{M \backslash x}\left(T_{2}^{\prime}\right)=2$. Since $M \backslash x$ is 3 -connected and each of $S_{2}^{\prime} \cap T_{2}^{\prime}$ and $E(M \backslash x)-\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)$ has at least two elements, the first assertion of the lemma holds by uncrossing.

Now assume that $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right| \geq 2$ and $\left|T_{2}^{\prime} \cap U_{2}^{\prime}\right| \geq 2$. Then $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)=$ $2=\lambda_{M \backslash x}\left(T_{2}^{\prime} \cup U_{2}^{\prime}\right)$. Since $E(M \backslash x)-\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right) \supseteq\{s, t, u, y\}$, another application of uncrossing gives that $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$.
Lemma 5.18. If $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$, then $\left|\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)-U_{2}^{\prime}\right| \geq 2$.
Proof. Assume that $\left|\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)-U_{2}^{\prime}\right| \leq 1$. By Lemma 5.6, $S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}=$ $E(M)-\{s, t, u, y, x\}$. Hence $\left|U_{1}\right| \leq|\{s, t, y\}|+\left|\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)-U_{2}^{\prime}\right| \leq 3+1=4$; a contradiction to Lemma 5.3.
Lemma 5.19. If $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right|=1$, then $\left|S_{2}^{\prime} \cap U_{2}^{\prime}\right|=1$ and $\left|T_{2}^{\prime} \cap U_{2}^{\prime}\right|=1$.
Proof. By Lemma 5.11, S_{2}^{\prime} and T_{2}^{\prime} are both triads of $M \backslash x$. If $\left|S_{2}^{\prime} \cap U_{2}^{\prime}\right|=1$, then U_{2}^{\prime} is also a triad. Hence, by Lemma 5.16, $\left|T_{2}^{\prime} \cap U_{2}^{\prime}\right|=1$. Thus we may assume that $\left|S_{2}^{\prime} \cap U_{2}^{\prime}\right| \geq 2$ and $\left|T_{2}^{\prime} \cap U_{2}^{\prime}\right| \geq 2$. By Lemma 5.17, $\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=2$. Then, by Lemma 5.18, $\left|\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)-U_{2}^{\prime}\right| \geq 2$. Since $\left|S_{2}^{\prime}-U_{2}^{\prime}\right| \leq 1$ and $\left|T_{2}^{\prime}-U_{2}^{\prime}\right|=1$, we deduce that $S_{2}^{\prime}-U_{2}^{\prime}$ and $T_{2}^{\prime}-U_{2}^{\prime}$ are disjoint one-element sets. By Lemma 5.6, $E(M)$ is the disjoint union of the sets $U_{2}^{\prime}, S_{2}^{\prime}-U_{2}^{\prime}, T_{2}^{\prime}-U_{2}^{\prime}$, and $\{s, t, u, y, x\}$.

Since both ($U_{1} \cup u, U_{2}^{\prime}$) and ($\left.\{s, t, u, y\}, E(M \backslash x)-\{s, t, u, y\}\right)$ are 3separations of $M \backslash x$ and $\{s, t, u, y\} \subseteq U_{1} \cup u$, we have, by Lemma 2.10(ii) that $|D \cap\{s, t, u, y\}|=2$ and $\left|D \cap U_{2}^{\prime}\right|=2$. Furthermore, by Lemma 2.10(iii), since D meets every triad of $M \backslash x$, we must have $D \cap S_{2}^{\prime} \cap U_{2}^{\prime} \neq \emptyset \neq D \cap T_{2}^{\prime} \cap U_{2}^{\prime}$.

Now let $G=S_{2}^{\prime} \cup T_{2}^{\prime} \cup\{s, t, u, y, x\}$ and $R=E(M)-G=U_{2}^{\prime}-\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)$. The set G is spanned by $S_{2}^{\prime} \cup T_{2}^{\prime} \cup\{x, u\}$ because $\operatorname{cl}\left(S_{2}\right)$ and $\operatorname{cl}\left(T_{2}\right)$ contain s and t, respectively, and $\mathrm{cl}(\{s, t, u\})$ contains y. Thus $r(G) \leq 7$.

Next we compare $r(R)$ and $r(M)$. In $M \mid U_{2}^{\prime}$, each of $S_{2}^{\prime} \cap U_{2}^{\prime}$ and $T_{2}^{\prime} \cap U_{2}^{\prime}$ is a union of cocircuits. Thus $r\left(U_{2}^{\prime}\right) \geq r(R)+2$. Recall that $\left(U_{1} \cup u, U_{2}^{\prime}\right)$ is a 3 -separation of $M \backslash x$. Let $S_{2}^{\prime}-U_{2}^{\prime}=\left\{s_{2}^{\prime}\right\}$ and $T_{2}^{\prime}-U_{2}^{\prime}=\left\{t_{2}^{\prime}\right\}$. Since $s_{2}^{\prime} \in \operatorname{cl}_{M \backslash x}^{*}\left(U_{2}^{\prime}\right)$, we have $s_{2}^{\prime} \notin \mathrm{cl}_{M \backslash x}\left(U_{2}^{\prime}\right)$. Thus $r\left(U_{2}^{\prime} \cup s_{2}^{\prime}\right)=r\left(U_{2}^{\prime}\right)+1$ and $\left(\left(U_{1} \cup u\right)-s_{2}^{\prime}, U_{2}^{\prime} \cup s_{2}^{\prime}\right)$ is a 3-separation of $M \backslash x$. Since $t_{2}^{\prime} \in \mathrm{cl}_{M \backslash x}^{*}\left(U_{2}^{\prime} \cup s_{2}^{\prime}\right)$, we have $t_{2}^{\prime} \notin \mathrm{cl}_{M \backslash x}\left(U_{2}^{\prime} \cup s_{2}^{\prime}\right)$. Thus $r\left(U_{2}^{\prime} \cup s_{2}^{\prime} \cup t_{2}^{\prime}\right)=r\left(U_{2}^{\prime}\right)+2$. Hence $r\left(U_{2}^{\prime} \cup S_{2}^{\prime} \cup T_{2}^{\prime}\right) \geq r(R)+4$. The set $\{s, t, u, x\}$ is a cocircuit of M avoiding $U_{2}^{\prime} \cup S_{2}^{\prime} \cup T_{2}^{\prime}$. Hence $r(M) \geq r(R)+5$. As $r(G) \leq 7$ and $R=E(M)-G$, we have

$$
\lambda_{M}(G) \leq 7+[r(R)-r(M)] \leq 7-5=2,
$$

so $|R| \leq 2$. Thus we get a contradiction since $|G|=10$ and $|E(M)| \geq 13$.
Lemma 5.20. The set $\{s, t, u, y\}$ is a flat of $M \backslash x$.
Proof. Assume that $e \in E(M \backslash x)-\{s, t, u, y\}$ and $e \in \operatorname{cl}(\{s, t, u, y\})$. Then $M \mid\{s, t, u, y, e\} \cong U_{3,5}$. The quad D of M / x contains exactly two elements of $\{s, t, u, y\}$ and exactly two elements of $E(M \backslash x)-\{s, t, u, y, e\}$. Thus $\{s, t, u, y, e\}$ contains a 4-circuit having exactly one element in common with the cocircuit D of M; a contradiction.

Lemma 5.21. $\left|S_{2}^{\prime} \cap T_{2}^{\prime}\right| \neq 1$.
Proof. Assume the contrary. Then, by Lemma 5.19, $\left|S_{2}^{\prime} \cap U_{2}^{\prime}\right|=1=\left|T_{2}^{\prime} \cap U_{2}^{\prime}\right|$. By Lemma 5.11, each of $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime} is a triad of $M \backslash x$. Thus each of S_{2}, T_{2}, and U_{2} has exactly four elements, so these sets are quads of $M / s, M / t$, and M / u, respectively. Hence $S_{2} \cup s, T_{2} \cup t$, and $U_{2} \cup u$ are circuits of M. Now D contains exactly two elements of the 3 -separating set $\{s, t, u, y\}$ of $M \backslash x$. Hence, without loss of generality, $s \notin D$. Moreover, D meets each of $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime}. Since D is a cocircuit of M and $S_{2} \cup s$ is a circuit of M and these sets meet, it follows that $\left|D \cap S_{2}^{\prime}\right|=2$. Thus if $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\emptyset$, then $D \supseteq\left\{s_{t}, s_{u}\right\}$ where $S_{2}^{\prime} \cap T_{2}^{\prime}=\left\{s_{t}\right\}$ and $S_{2}^{\prime} \cap U_{2}^{\prime}=\left\{s_{u}\right\}$; and if $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\overline{\{z\}}$, then $D \supseteq\left\{z, s_{2}\right\}$ for some s_{2} in $S_{2}^{\prime}-z$.

Let $G=S_{2} \cup T_{2} \cup U_{2} \cup\{s, t, u, y\}$. If $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\emptyset$, let $B_{G}=\{s, t, u, x\} \cup$ $\left(T_{2}^{\prime}-S_{2}^{\prime}\right)$; and if $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\{z\}$, let $B_{G}=\{s, t, u, x\} \cup\left\{z, t_{2}, u_{2}\right\}$ where $t_{2} \in T_{2}^{\prime}-z$ and $u_{2} \in U_{2}^{\prime}-z$. Then by using, in order, the circuits $\{s, t, u, y\}, T_{2} \cup t, D \cup x, S_{2} \cup s$, and $U_{2} \cup u$, we get that B_{G} spans G. Thus $r(G)-|G| \leq-5$.

Now if $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\emptyset$, let $B_{G}^{*}=\{s, t, u, y\} \cup\left\{s_{t}, t_{u}\right\}$ where $\left\{t_{u}\right\}=T_{2}^{\prime} \cap U_{2}^{\prime}$; and if $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\{z\}$, let $B_{G}^{*}=\{s, t, u, y\} \cup\left\{z, t_{2}, u_{2}\right\}$. Then by using, in order, the cocircuits $\{s, t, u, x\}, D, S_{2}, T_{2}$, and U_{2}, we get that B_{G}^{*} spans G. Thus if $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\emptyset$, then $r^{*}(G) \leq 6$, so $\lambda_{M}(G) \leq 1$ and we get a contradiction since $|E(M)-G| \geq 2$ because $|E(M)| \geq 13$.

If $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\{z\}$, then $r^{*}(G) \leq 7$, so $\lambda_{M}(G) \leq 2$. Thus we get a contradiction provided $|E(M)-G| \geq 3$, that is, provided $|E(M)| \geq 15$. But we are only guaranteed that $|E(M)| \geq 13$. We shall now more closely examine the situation in which $S_{2}^{\prime} \cap T_{2}^{\prime} \cap U_{2}^{\prime}=\{z\}$ and show that, in that case too, we will get a contradiction, this time only requiring that $|E(M)| \geq 11$.

For the first time in the proof of this theorem, we consider the element c from the hypothesis such that $\{s, t, u, y, c\}$ is 3-separating in $M \backslash x$. By Lemma 5.20, $c \notin \operatorname{cl}_{M \backslash x}(\{s, t, u, y\})$. Thus $\{s, t, u, y, c\}$ contains a cocircuit C^{*} of $M \backslash x$ containing c. Since D contains exactly two elements of $\{s, t, u, y\}$ and exactly two elements of $E(M \backslash x)-\{s, t, u, y, c\}$, we deduce that $c \notin D$. Thus, as $z \in D$, we have

$$
c \neq z
$$

Now either C^{*} or $C^{*} \cup x$ is a cocircuit of M.
5.21.1. $C^{*} \cup x$ is a cocircuit of M.

Assume not. Then C^{*} is a cocircuit of M. But both $\{s, t, u\}$ and C^{*} are cocircuits of $M \backslash x$, so C^{*} contains at most two elements of $\{s, t, u\}$. Since $C^{*} \subseteq\{s, t, u, y, c\}$ and $\left|C^{*}\right| \geq 4$, we deduce that C^{*} contains exactly two of s, t, and u. Thus C^{*} meets two of the circuits $S_{2} \cup s, T_{2} \cup t$, and $U_{2} \cup u$ of M. But C^{*} does not contain z or x and the only element of C^{*} that can be in $S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}$ is c. Since $\left(S_{2}^{\prime}-z\right) \cup s,\left(T_{2}^{\prime}-z\right) \cup t$, and $\left(U_{2}^{\prime}-z\right) \cup u$ are disjoint, we have a contradiction. Hence (5.21.1) holds.

Now the cocircuit $C^{*} \cup x$ meets each of the circuits $S_{2} \cup s, T_{2} \cup t$, and $U_{2} \cup u$, so C^{*} meets each of $\left(S_{2}^{\prime}-z\right) \cup s,\left(T_{2}^{\prime}-z\right) \cup t$, and $\left(U_{2}^{\prime}-z\right) \cup u$. But $C^{*}-c$ avoids $S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}$ and C^{*} does not contain all of s, t, and u. Thus C^{*} must contain exactly two of s, t, and u. Moreover, for the element w of $\{s, t, u\}$ that is not in C^{*}, we have $c \in W_{2}^{\prime}-z$.

5.21.2. $y \in C^{*}$.

Suppose $y \notin C^{*}$. Then $C^{*} \cup x=\{s, t, u, y\}$. It follows that $M^{*} \mid\{s, t, u, c, x\} \cong U_{3,5}$. Thus, since $|E(M)| \geq 11$, Theorem 1.6 implies that $\{s, t, u, c, x\}$ contains at least two elements e such that $M^{*} \backslash e$ is internally 4-connected. By assumption, $M^{*} \backslash x$ is not internally 4-connected. Thus, for some e in $\{s, t, u\}$, the matroid M / e is internally 4-connected. This contradiction to the fact that the theorem fails implies that (5.21.2) holds.

Now we know that C^{*} contains exactly two of s, t, and u. Moreover, although the symmetry between s, t, and u is broken by the fact that $s \notin D$, we will not use D in the short argument to follow. Thus we may assume that $C^{*}=\{s, t, y, c\}$ and $c \in U_{2}^{\prime}-z$. Then $\{s, t, y, c, x\}$ and $\{s, t, u, x\}$ are cocircuits of M. Eliminating x, we get that M has a cocircuit D^{*} containing c and contained in $\{s, t, u, y, c\}$. By orthogonality with the circuits $S_{2} \cup s$ and $T_{2} \cup t$, we deduce that neither s nor t is in D^{*}. Thus $\left|D^{*}\right| \leq 3$; a contradiction.

On combining Lemmas 5.9, 5.21, 5.17, and 5.6, we immediately get the following.

Lemma 5.22. Each of $S_{2}^{\prime} \cap T_{2}^{\prime}, T_{2}^{\prime} \cap U_{2}^{\prime}$, and $S_{2}^{\prime} \cap U_{2}^{\prime}$ has at least two elements and is 3-separating. Moreover, $E(M)-\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=\{s, t, u, y, x\}$.
Lemma 5.23. The sets S_{2}^{\prime} and T_{2}^{\prime} have the following properties.
(i) $T_{2}^{\prime} \nsubseteq S_{2}^{\prime}$; and
(ii) $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=1$ or $\left|T_{2}^{\prime}-S_{2}^{\prime}\right|=1$.

Proof. Assume that $T_{2}^{\prime} \subseteq S_{2}^{\prime}$. Then, by our choice of $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime}, we have $T_{2}^{\prime}=S_{2}^{\prime}$. By Lemmas 5.13 and 5.22 and symmetry, $\left|U_{2}^{\prime}-T_{2}^{\prime}\right| \leq 1$ or $\left|T_{2}^{\prime}-U_{2}^{\prime}\right| \leq 1$. If $U_{2}^{\prime} \subseteq T_{2}^{\prime}$ or $T_{2}^{\prime} \subseteq U_{2}^{\prime}$, then our choice of $S_{2}^{\prime}, T_{2}^{\prime}$, and U_{2}^{\prime} means that $U_{2}^{\prime}=T_{2}^{\prime}=S_{2}^{\prime}$, a contradiction to Lemma 5.15. Hence $\left|U_{2}^{\prime}-T_{2}^{\prime}\right|=1$ and $\left|T_{2}^{\prime}-U_{2}^{\prime}\right|=1$. By Lemma $5.22, E(M)-\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=\{s, t, u, y, x\}$. Thus $\left|T_{1}\right|=4$, a contradiction to Lemma 5.3. Hence (i) holds. Part (ii) follows immediately from Lemma 5.13.

Figure 1. The cardinalities $n_{s}, n_{t}, n_{u}, n_{s t}, n_{s u}$, and $n_{t u}$.
Now define $n_{s}, n_{s t}$, and $n_{s u}$ to be $\left.\left|S_{2}^{\prime}-\left(T_{2}^{\prime} \cup U_{2}^{\prime}\right)\right|, \mid\left(S_{2}^{\prime} \cap T_{2}^{\prime}\right)-U_{2}^{\prime}\right) \mid$, and $\left.\mid\left(S_{2}^{\prime} \cap U_{2}^{\prime}\right)-T_{2}^{\prime}\right) \mid$, respectively (see Figure 1). Let n_{t}, n_{u}, and $n_{t u}$ be defined similarly.

Lemma 5.24. After a possible relabelling, either
(i) $n_{s}+n_{s u}=n_{t}+n_{s t}=n_{u}+n_{t u}=1$; or
(ii) $n_{s}+n_{s u}=n_{u}+n_{s u}=n_{u}+n_{t u}=1$.

Proof. By Lemma 5.23,

$$
\begin{array}{lll}
\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=1 & \text { or } & \left|T_{2}^{\prime}-S_{2}^{\prime}\right|=1 ; \\
\left|T_{2}^{\prime}-U_{2}^{\prime}\right|=1 & \text { or } & \left|U_{2}^{\prime}-T_{2}^{\prime}\right|=1 ; \text { and } \\
\left|U_{2}^{\prime}-S_{2}^{\prime}\right|=1 & \text { or } & \left|S_{2}^{\prime}-U_{2}^{\prime}\right|=1
\end{array}
$$

By symmetry and a possible relabelling, we get that either
(i) $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=\left|T_{2}^{\prime}-U_{2}^{\prime}\right|=\left|U_{2}^{\prime}-S_{2}^{\prime}\right|=1$; or
(ii) $\left|S_{2}^{\prime}-T_{2}^{\prime}\right|=\left|U_{2}^{\prime}-T_{2}^{\prime}\right|=\left|U_{2}^{\prime}-S_{2}^{\prime}\right|=1$.

The lemma follows by substitution.
Lemma 5.25. The following inequalities hold:

$$
\begin{aligned}
n_{s}+n_{s t}+n_{t} & \geq 2 \\
n_{t}+n_{t u}+n_{u} & \geq 2 ; \text { and } \\
n_{u}+n_{s u}+n_{s} & \geq 2
\end{aligned}
$$

Proof. We have $E(M)-\left(S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}\right)=\{s, t, u, y, x\}$, so $U_{1}=\{s, t, y\} \cup$ $\left[\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)-U_{2}^{\prime}\right]$. As $\left|U_{1}\right| \geq 5$, it follows that $\left|\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)-U_{2}^{\prime}\right| \geq 2$. Hence $n_{s}+n_{s t}+n_{t} \geq 2$. The second and third inequalities in the lemma follow by symmetry.
Lemma 5.26. At most two of n_{s}, n_{t}, and n_{u} equal one.

Proof. Suppose that $n_{s}=n_{t}=n_{u}=1$ and let the elements of $S_{2}^{\prime}-\left(T_{2}^{\prime} \cup\right.$ $\left.U_{2}^{\prime}\right), T_{2}^{\prime}-\left(S_{2}^{\prime} \cup U_{2}^{\prime}\right)$, and $U_{2}^{\prime}-\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)$ be s^{\prime}, t^{\prime}, and u^{\prime}, respectively. Then both $\{s, t, u, y\}$ and $T_{2}^{\prime} \cup U_{2}^{\prime}$ are 3 -separating in $M \backslash x$. Hence both $\{s, t, u, y\}$ and $\left\{s, t, u, y, s^{\prime}\right\}$ are 3 -separating in $M \backslash x$. Thus, by Lemma 5.20, $s^{\prime} \in \operatorname{cl}_{M \backslash x}^{*}(\{s, t, u, y\})$. By symmetry, $\left\{s^{\prime}, t^{\prime}, u^{\prime}\right\} \subseteq \mathrm{cl}_{M \backslash x}^{*}(\{s, t, u, y\})$. As $(\{s, t, u, y\}, E(M \backslash x)-\{s, t, u, y\})$ is a 3-separation of $(M \backslash x)^{*}$, we have $r_{(M \backslash x)^{*}}\left(\operatorname{cl}_{M \backslash x}^{*}(\{s, t, u, y\}) \cap(E(M \backslash x)-\{s, t, u, y\})\right) \leq 2$. Thus $\left\{s^{\prime}, t^{\prime}, u^{\prime}\right\}$ is a triangle in $(M \backslash x)^{*}$ and hence is a triad in $M \backslash x$. This triad avoids the quad D since D has exactly two elements in each of $S_{2}^{\prime} \cup T_{2}^{\prime} \cup U_{2}^{\prime}, S_{2}^{\prime} \cup T_{2}^{\prime}, T_{2}^{\prime} \cup U_{2}^{\prime}$, and $S_{2}^{\prime} \cup U_{2}^{\prime}$. This contradicts Lemma 2.10(ii).

Lemma 5.27. $n_{u} \neq 1$.
Proof. Suppose $n_{u}=1$. Assume first that (i) of Lemma 5.24 holds. Then $n_{t u}=0$ so, by Lemma $5.25, n_{t}=1$. By the symmetry of (i), we also get $n_{s}=1$, so we have a contradiction to Lemma 5.26 . Hence we may assume that case (ii) of Lemma 5.24 holds. By that, $n_{s u}=0=n_{t u}$ and $n_{s}=1$. By Lemmas 5.25 and $5.26, n_{t} \geq 1$ but $n_{t} \neq 1$. Hence $n_{t} \geq 2$, that is, $\left|T_{2}^{\prime}-\left(S_{2}^{\prime} \cup U_{2}^{\prime}\right)\right| \geq 2$. Let s^{\prime} and u^{\prime} be the unique elements of $S_{2}^{\prime}-\left(T_{2}^{\prime} \cup U_{2}^{\prime}\right)$ and $U_{2}^{\prime}-\left(S_{2}^{\prime} \cup T_{2}^{\prime}\right)$, respectively.

In $M \backslash x$, the set $S_{2}^{\prime} \cup U_{2}^{\prime}$ is 3 -separating. Hence so is $E-x-\left(S_{2}^{\prime} \cup\right.$ $\left.U_{2}^{\prime}\right)$. Likewise, T_{2}^{\prime} is 3 -separating. The union of T_{2}^{\prime} and $E-x-\left(S_{2}^{\prime} \cup\right.$ U_{2}^{\prime}) avoids $\left\{s^{\prime}, u^{\prime}\right\}$. Hence their intersection $T_{2}^{\prime}-\left(S_{2}^{\prime} \cup U_{2}^{\prime}\right)$ is 3-separating. Now each of $\left\{s, t, u, y, s^{\prime}\right\}$ and $\left\{s, t, u, y, u^{\prime}\right\}$ is 3-separating in $M \backslash x$ and, by Lemma 5.20, $\{s, t, u, y\}$ is a flat of $M \backslash x$. Thus $\left\{s^{\prime}, u^{\prime}\right\} \subseteq \mathrm{cl}_{M \backslash x}^{*}(\{s, t, u, y\})$. Hence $\sqcap_{M \backslash x}^{*}\left(S_{2}^{\prime} \cup U_{2}^{\prime},\{s, t, u, y\}\right) \geq 2$.

By Lemma 5.4, $x \in \operatorname{cl}\left(S_{2}^{\prime} \cup s\right) \cap \operatorname{cl}\left(U_{2}^{\prime} \cup u\right)$. By orthogonality with the cocircuit $\{s, t, u, x\}$, we deduce that M has circuits containing $\{x, s\}$ and $\{x, u\}$ that are contained in $S_{2} \cup s$ and $U_{2} \cup u$. Hence, by circuit elimination, $M \backslash x$ has a circuit contained in $\left(S_{2}^{\prime} \cup U_{2}^{\prime}\right) \cup\{s, t, u, y\}$ that meets both $S_{2}^{\prime} \cup U_{2}^{\prime}$ and $\{s, t, u, y\}$. Thus $\sqcap_{M \backslash x}\left(S_{2}^{\prime} \cup U_{2}^{\prime},\{s, t, u, y\}\right) \geq 1$. By Lemma 2.6, we get

$$
\begin{aligned}
3 & \leq \sqcap_{M \backslash x}\left(S_{2}^{\prime} \cup U_{2}^{\prime},\{s, t, u, y\}\right)+\sqcap_{M \backslash x}^{*}\left(S_{2}^{\prime} \cup U_{2}^{\prime},\{s, t, u, y\}\right) \\
& =\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup U_{2}^{\prime}\right)+\lambda_{M \backslash x}(\{s, t, u, y\})-\lambda_{M \backslash x}\left(S_{2}^{\prime} \cup U_{2}^{\prime} \cup\{s, t, u, y\}\right) \\
& =2+2-2=2
\end{aligned}
$$

a contradiction.
By Lemmas 5.24 and 5.27, $n_{u}=0$ and $n_{s}+n_{s u}=1$. Hence $n_{s}+n_{s u}+n_{u}=$ 1. This contradiction to Lemma 5.25 completes the proof of Theorem 5.1.

We are now ready to prove Theorem 3.2 and we begin by restating the result for ease of reference.

Theorem 5.28. Let M be a 4-connected matroid with $|E(M)| \geq 13$. Then M has an element x such that $M \backslash x$ or M / x is $(4,4, S)$-connected.

Proof. By Theorem 3.3, M has an element x such that $M \backslash x$ or M / x is sequentially 4 -connected. By duality, we may assume the former. We may also assume that $M \backslash x$ is not $(4,4, S)$-connected so is not weakly 4 -connected. Thus, by Lemma $2.10, M / x$ is weakly 4 -connected. Hence M / x is not sequentially 4 -connected otherwise the theorem holds.

Because $M \backslash x$ is not weakly 4 -connected, it has a 3 -separation (X, Y) with $|X|,|Y| \geq 5$. As $M \backslash x$ is sequentially 4 -connected, we may assume that X is sequential. Thus we may assume that $|X|=5$ and X has a sequential ordering $(1,2,3,4,5)$. Let $Z=\{1,2,3,4\}$. Since M has no triangles, $\{1,2,3\}$ is a triad of M.

Suppose first that $4 \in \mathrm{cl}_{M \backslash x}^{*}(\{1,2,3\})$. Then every 3 -element subset of Z is a triad of $M \backslash x$. Thus $M^{*} \mid(Z \cup x) \cong U_{3,5}$. Hence, by Theorem 1.6, for some element z in Z, the matroid $M^{*} \backslash z$ is internally 4 -connected. Hence M / z is internally 4 -connected so M / z is $(4,4, S)$-connected.

We may now assume that $4 \in \operatorname{cl}_{M \backslash x}(\{1,2,3\})$. Then Z is a circuit of M. Consider the 3-separating set $\{1,2,3,4,5\}$ in $M \backslash x$ and apply Theorem 5.1 taking $(1,2,3,4,5)=(s, t, u, y, c)$. By that result, for some z in $\{s, t, u\}$, the matroid M / z is $(4,4, S)$-connected. This completes the proof of the theorem.

Corollary 5.29. Let M be a 4-connected matroid. Then M has an element x such that $M \backslash x$ or M / x is $(4,5, S)$-connected.
Proof. By Theorem 3.3, M has an element z such that $M \backslash z$ or M / z is sequentially 4 -connected. By duality, we may assume the former. If $M \backslash z$ is $(4,5, S)$-connected, then the corollary holds. Thus we may assume that $M \backslash z$ is not $(4,5, S)$-connected. Hence $M \backslash z$ has a 3 -separation (X, Y) with $|X|,|Y| \geq 6$. Thus $|E(M)| \geq 13$. Therefore, by Theorem 5.28, M has an element x such that $M \backslash x$ or M / x is $(4,4, S)$-connected and so is $(4,5, S)$ connected.

6. The internally 4-connected case.

In this section, we establish the main theorem when M is internally 4connected by proving Theorem 3.6, which, for convenience, is restated below as Theorem 6.3. We begin with an elementary lemma.

Lemma 6.1. Let M be an internally 4-connected matroid with $|E(M)| \geq 8$.
(i) If e is an element of M that is not in a triad, then $M \backslash e$ is 3connected.
(ii) Every triad of M avoids every triangle of M.

Proof. For (i), suppose that $M \backslash e$ has a 2-separation (X, Y). Then

$$
r(X)+r(Y)=r(M \backslash e)+1
$$

and $|X|,|Y| \geq 2$. Since $|E(M)| \geq 8$, we may assume that $|Y| \geq 4$. Then

$$
r(X \cup e)+r(Y) \leq r(M \backslash e)+2 .
$$

Since M is internally 4-connected, we get a contradiction unless $|X \cup e|=$ $3=r(X \cup e)$. In the exceptional case, $X \cup e$ is a triad of M; a contradiction. Thus (i) holds.

To prove (ii), note that if M has a triad that meets a triangle, then, since $|E(M)| \geq 5$, these sets meet in exactly two elements, so M has a 4 -element fan F. But $|F|,|E(M)-F| \geq 4$, so we have a contradiction to the fact that M is internally 4-connected.

Next we show that it is a straightforward consequence of earlier results that the main theorem holds for internally 4 -connected matroids with at most 12 elements.

Corollary 6.2. Let M be an internally 4-connected matroid that is not isomorphic to a wheel or whirl of rank three. If $|E(M)| \leq 12$, then M has an element e such that $M \backslash e$ or M / e is $(4,5, S)$-connected.

Proof. The corollary holds by Corollary 5.29 if M is 4 -connected. Thus, by duality, we may assume that T has a triangle. Then, by Theorem 3.5, M has an element f such that $M \backslash f$ or M / f is sequentially 4-connected. Since $|E(M)| \leq 12$, it follows that $M \backslash f$ or M / f is $(4,5, S)$-connected.

Theorem 6.3. Let M be a $(4,3, S)$-connected matroid that is not isomorphic to a wheel or whirl of rank three. Then M has an element e such that $M \backslash e$ or M / e is $(4,5, S)$-connected.

Proof. Assume the theorem fails. Then, by the last result and duality, we may assume that $|E(M)| \geq 13$ and that M has a triangle $\{x, y, z\}$.

By Lemma 6.1, we immediately get the following.
6.3.1. None of x, y, or z is in a triad of M, and all of $M \backslash x, M \backslash y$, and $M \backslash z$ are 3-connected.
6.3.2. If $e \in\{x, y, z\}$ and (A, B) is a 3-separation of $M \backslash e$ with $|A| \geq 4$, then $\{x, y, z\} \cap A \neq \emptyset$.

If $\{x, y, z\}-e \subseteq B$, then $(A, B \cup e)$ is a 3 -separation of M in which each side has at least four elements; a contradiction. Thus (6.3.2) holds.

Because the theorem fails, each of $M \backslash x, M \backslash y$, and $M \backslash z$ has a $(4,5, S)$-violator. For the moment, we shall take $\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)$, and $\left(Z_{1}, Z_{2}\right)$ to be 3-separations of $M \backslash x, M \backslash y$, and $M \backslash z$, respectively, with $\left|X_{1}\right|,\left|X_{2}\right|,\left|Y_{1}\right|,\left|Y_{2}\right|,\left|Z_{1}\right|,\left|Z_{2}\right| \geq 4$. Without loss of generality, we shall assume that $y \in X_{1}$ and $z \in X_{2}$. We shall also assume that $x \in Y_{1} \cap Z_{1}$. By (6.3.2), $z \in Y_{2}$ and $y \in Z_{2}$.

Later we will refine the choices of $\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)$, and $\left(Z_{1}, Z_{2}\right)$, thereby breaking the symmetry between them. At this point, however, we do have symmetry and we will prove various properties of any collection of 3 -separations that satisfy the conditions above as well as the additional restrictions imposed by specific lemmas.

Lemma 6.4. If $\left(X_{1}, X_{2}\right) \cong\left(X_{1} \cup f, X_{2}-f\right)$ for some element f of X_{2} and $\left(X_{1}, X_{2}\right)$ is a $(4, k, S)$-violator of $M \backslash x$ with $k \geq 4$, then $\left(X_{1} \cup f, X_{2}-f\right)$ is $a(4, k-1, S)$-violator of $M \backslash x$.

Proof. If $\left(X_{1}, X_{2}\right)$ is non-sequential, then so is $\left(X_{1} \cup f, X_{2}-f\right)$. If $\left(X_{1}, X_{2}\right)$ is sequential, then $\left|X_{1}\right|,\left|X_{2}\right| \geq k+1$, so $\left|X_{1} \cup f\right|,\left|X_{2}-f\right| \geq k$.

Lemma 6.5. If $\left(X_{1}, X_{2}\right)$ is a $(4,4, S)$-violator of $M \backslash x$, then $y \in \operatorname{cl}\left(X_{1}-y\right)$.
Proof. We have $\lambda_{M \backslash x}\left(X_{1}\right)=2$. If y is a coloop of $(M \backslash x) \mid X_{1}$, then $\left(X_{1}-\right.$ $\left.y, X_{2} \cup y\right) \cong\left(X_{1}, X_{2}\right)$, so $\lambda_{M \backslash x}\left(X_{1}-y\right)=2$. But $X_{2} \cup y \supseteq\{y, z\}$, so $\lambda_{M}\left(X_{1}-y\right)=2$. This is a contradiction since, by Lemma 6.4, $\left(X_{1}-y, X_{2} \cup y\right)$ is a $(4,3, S)$-violator of $M \backslash x$ with $\{y, z\} \subseteq X_{2} \cup y$, so $\left(X_{1}-y, X_{2} \cup y \cup x\right)$ is a $(4,3, S)$-violator of M. We deduce that $y \in \operatorname{cl}\left(X_{1}-y\right)$.

Lemma 6.6. If $\left(Y_{1}, Y_{2}\right)$ is a $(4,4, S)$-violator of $M \backslash y$, then $X_{2} \cap Y_{1} \neq \emptyset$.
Proof. Suppose that $X_{2} \cap Y_{1}=\emptyset$. Then, by Lemma 6.5 and symmetry, $x \in \operatorname{cl}\left(Y_{1}-x\right)$. But $Y_{1}-x \subseteq X_{2}$, so $x \in \operatorname{cl}\left(X_{1}\right)$; a contradiction.

Lemma 6.7. Let $\left(Y_{1}, Y_{2}\right)$ be a $(4,5, S)$-violator of $M \backslash y$.
(i) If $\left(X_{1}, X_{2}\right)$ is a $(4,4, S)$-violator of $M \backslash x$, then $\left|X_{2} \cap Y_{1}\right| \geq 2$.
(ii) If $\left|X_{2} \cap Y_{1}\right|=1$ and $\left|X_{2}\right|=4$, then $X_{2} \cap Y_{2}$ is a triangle of M and M has a cocircuit containing $\left(X_{2} \cap Y_{1}\right) \cup x$ and contained in $X_{2} \cup x$.

Proof. Suppose that $X_{2} \cap Y_{1}=\{e\}$. If $e \in \operatorname{cl}\left(X_{2} \cap Y_{2}\right)$, then $e \in \operatorname{cl}\left(Y_{2}\right)$, so $\left(Y_{1}, Y_{2}\right) \cong\left(Y_{1}-e, Y_{2} \cup e\right)$. By Lemma $6.4,\left(Y_{1}-e, Y_{2} \cup e\right)$ is a $(4,4, S)$ violator of $M \backslash y$. If x is a coloop of $M \mid\left(Y_{1}-e\right)$, then $\left(Y_{1}, Y_{2}\right) \cong\left(Y_{1}-e-\right.$ $\left.x, Y_{2} \cup e \cup x\right)$ and $\left(Y_{1}-e-x, Y_{2} \cup e \cup x\right)$ is a $(4,3, S)$-violator of $M \backslash y$. As $y \in \operatorname{cl}\left(Y_{2} \cup e \cup x\right)$, we get the contradiction that $\left(Y_{1}-e-x, Y_{2} \cup e \cup x \cup y\right)$ is a $(4,3, S)$-violator of M. We deduce that x is not a coloop of $M \mid\left(Y_{1}-e\right)$, so $x \in \operatorname{cl}\left(Y_{1}-e-x\right)$. Hence $x \in \operatorname{cl}\left(X_{1}\right)$, a contradiction.

We may now assume that $e \notin \operatorname{cl}\left(X_{2} \cap Y_{2}\right)$, so $e \notin \operatorname{cl}\left(X_{2}-e\right)$. Hence $\left(X_{1}, X_{2}\right) \cong\left(X_{1} \cup e, X_{2}-e\right)$ in $M \backslash x$. Now $\left(X_{2}-e\right) \cap Y_{1}=\emptyset$. As $x \in \operatorname{cl}\left(Y_{1}-x\right)$, we deduce that $x \in \operatorname{cl}\left(X_{1} \cup e\right)$. Thus $\left(X_{1} \cup e \cup x, X_{2}-e\right)$ is a 3-separation of M. This gives a contradiction provided $\left|X_{2}-e\right| \geq 4$, that is, provided $\left|X_{2}\right| \geq 5$.

Now suppose that $\left|X_{2}\right|=4$. Then $X_{2}-e=X_{2} \cap Y_{2}$ and this set is a triangle or a triad of M. But $X_{2} \cap Y_{2}$ contains a single element, z, of the triangle $\{x, y, z\}$. Thus $X_{2} \cap Y_{2}$ is a triangle of M. Hence X_{2} is sequential in $M \backslash x$ and so (i) holds. Moreover, $M \backslash x$ has a cocircuit that contains e and is contained in $e \cup\left(X_{2} \cap Y_{2}\right)$. Hence M has a cocircuit that contains $\{e, x\}$ and is contained in $\{e, x\} \cup\left(X_{2} \cap Y_{2}\right)$.
Lemma 6.8. If $\left|X_{2} \cap Y_{1}\right|,\left|X_{1} \cap Y_{2}\right| \geq 2$ and $y \in \operatorname{cl}\left(X_{1}-y\right)$ and $x \in \operatorname{cl}\left(Y_{1}-x\right)$, then $\left|X_{1} \cap Y_{2}\right|,\left|X_{2} \cap Y_{1}\right| \in\{2,3\}$ and $\lambda_{M}\left(X_{1} \cap Y_{2}\right)=2=\lambda_{M}\left(X_{2} \cap Y_{1}\right)$. Moreover, if $W \in\left\{X_{1} \cap Y_{2}, X_{2} \cap Y_{1}\right\}$ and $|W|=3$, then W is a triangle or triad of M.

Proof. We have $2=\lambda_{M \backslash x}\left(X_{2}\right) \geq \lambda_{M \backslash x, y}\left(X_{2}\right)=\lambda_{M \backslash x, y}\left(X_{1}-y\right)$ and $2=$ $\lambda_{M \backslash y}\left(Y_{2}\right) \geq \lambda_{M \backslash x, y}\left(Y_{2}\right)=\lambda_{M \backslash x, y}\left(Y_{1}-x\right)$. By submodularity,
(1) $2+2 \geq \lambda_{M \backslash x, y}\left(X_{2}\right)+\lambda_{M \backslash x, y}\left(Y_{1}-x\right) \geq \lambda_{M \backslash x, y}\left(X_{2} \cap Y_{1}\right)+\lambda_{M \backslash x, y}\left(X_{1} \cap Y_{2}\right)$.

Since $z \in X_{2} \cap Y_{2}$ while $y \in \operatorname{cl}\left(X_{1}-y\right)$ and $x \in \operatorname{cl}\left(Y_{1}-x\right)$, we have that $\lambda_{M \backslash x, y}\left(X_{2} \cap Y_{1}\right)=\lambda_{M}\left(X_{2} \cap Y_{1}\right)$ and $\lambda_{M \backslash x, y}\left(X_{1} \cap Y_{2}\right)=\lambda_{M}\left(X_{1} \cap Y_{2}\right)$. As $\left|X_{1} \cap Y_{2}\right|,\left|X_{2} \cap Y_{1}\right| \geq 2$, we deduce, using (1), that $\lambda_{M}\left(X_{2} \cap Y_{1}\right)=2$ and $\lambda_{M}\left(X_{1} \cap Y_{2}\right)=2$. Since M is internally 4 -connected, we conclude that each of $X_{2} \cap Y_{1}$ and $X_{1} \cap Y_{2}$ has exactly two or exactly three elements. Moreover, each such set with exactly three elements is a triangle or a triad of M.

Lemma 6.9. (i) Let $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ be $(4,4, S)$-violators of $M \backslash x$ and $M \backslash y$, respectively. If $\left|X_{2} \cap Y_{1}\right|,\left|X_{1} \cap Y_{2}\right| \geq 2$, then $\left|X_{1} \cap Y_{2}\right|, \mid X_{2} \cap$ $Y_{1} \mid \in\{2,3\}$ and $\lambda_{M}\left(X_{1} \cap Y_{2}\right)=2=\lambda_{M}\left(X_{2} \cap Y_{1}\right)$.
(ii) Let $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ be $(4,5, S)$-violators of $M \backslash x$ and $M \backslash y$, respectively. Then $\left|X_{1} \cap Y_{2}\right|,\left|X_{2} \cap Y_{1}\right| \in\{2,3\}$ and $\lambda_{M}\left(X_{1} \cap Y_{2}\right)=$ $2=\lambda_{M}\left(X_{2} \cap Y_{1}\right)$.

Proof. Let $\left(X_{1}, X_{2}\right)$ and (Y_{1}, Y_{2}) be $(4,4, S)$-violators of $M \backslash x$ and $M \backslash y$. Then, by Lemma 6.5 and symmetry, $y \in \operatorname{cl}\left(X_{1}-y\right)$ and $x \in \operatorname{cl}\left(Y_{1}-x\right)$. Part (i) follows immediately from Lemma 6.8.

Now let (X_{1}, X_{2}) and (Y_{1}, Y_{2}) be ($4,5, S$)-violators of $M \backslash x$ and $M \backslash y$. By Lemma 6.7(i) and symmetry, $\left|X_{1} \cap Y_{2}\right|,\left|X_{2} \cap Y_{1}\right| \geq 2$. Part (ii) now follows from part (i).

Lemma 6.10. If $\left(X_{1}, X_{2}\right)$ is a $(4,4, S)$-violator of $M \backslash x$, then $X_{2} \cap Y_{2} \supsetneqq\{z\}$.
Proof. Suppose that $X_{2} \cap Y_{2}=\{z\}$. Then, by Lemma 6.5 and symmetry, $z \in \operatorname{cl}\left(X_{2}-z\right)$. But $X_{2}-z \subseteq Y_{1}$, so $z \in \operatorname{cl}\left(Y_{1}\right)$. Since $x \in Y_{1}$, we deduce that $y \in \operatorname{cl}\left(Y_{1}\right) ;$ a contradiction.

To this point, we have symmetry between $\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)$, and $\left(Z_{1}, Z_{2}\right)$ and this symmetry will be heavily exploited in the argument below as we apply the lemmas we have already proved. We shall now specialize the choices of $\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)$, and $\left(Z_{1}, Z_{2}\right)$. In particular, by Theorem 3.5, since $\{x, y, z\}$ is a triangle of M and M is internally 4 -connected having at least 13 elements, we may assume that $M \backslash x$ is sequentially 4 -connected. We will take the 3 -separation (X_{1}, X_{2}) of $M \backslash x$ to have the property that X_{2} is sequential and $\left|X_{2}\right|=6$. Hence $\left(X_{1}, X_{2}\right)$ is a $(4,5, S)$-violator of $M \backslash x$. We also take the 3 -separations $\left(Y_{1}, Y_{2}\right)$ and $\left(Z_{1}, Z_{2}\right)$ so that they are (4,5,S)-violators of $M \backslash y$ and $M \backslash z$, respectively.
Now we want to exploit the symmetry between $\left(X_{1}, y\right)$ and $\left(X_{2}, z\right)$. Although we have made some special assumptions about X_{2}, we do still have symmetry between $\left(z, X_{2}, x, X_{1}, Y_{1}, y, Y_{2}\right)$ and ($y, X_{1}, x, X_{2}, Z_{1}, z, Z_{2}$) with respect to the hypotheses of Lemma 6.9. This is easy to see using a Venn diagram. Hence an immediate consequence of Lemmas 6.8 and 6.9 is the following.

Corollary 6.11. $\left|X_{1} \cap Z_{1}\right|,\left|X_{2} \cap Z_{2}\right| \in\{2,3\}$ and $\lambda_{M}\left(X_{1} \cap Z_{1}\right)=2=$ $\lambda_{M}\left(X_{2} \cap Z_{2}\right)$. Moreover, if $W \in\left\{X_{1} \cap Z_{1}, X_{2} \cap Z_{2}\right\}$ and $|W|=3$, then W is a triangle or triad of M.

Although it will not be needed, it is worth noting at this point that we have the following easy bound on $|E(M)|$, where we recall that M is a counterexample to the theorem.

Lemma 6.12. $|E(M)| \leq 17$.
Proof. We have $|E(M)|=\left|X_{1}\right|+\left|X_{2}\right|+1=\left|X_{1}\right|+7$. Now X_{1} is the disjoint union of $X_{1} \cap Y_{2},\{y\}, X_{1} \cap Y_{1} \cap Z_{1}$, and $X_{1} \cap Y_{1} \cap Z_{2}$. By Lemma 6.9, $\mid X_{1} \cap$ $Y_{2} \mid \leq 3$ and $\left|X_{1} \cap Y_{1} \cap Z_{2}\right| \leq\left|Y_{1} \cap Z_{2}\right| \leq 3$. Moreover, using Corollary 6.11, we have $\left|X_{1} \cap Y_{1} \cap Z_{1}\right| \leq\left|X_{1} \cap Z_{1}\right| \leq 3$. We conclude that $\left|X_{1}\right| \leq 3+1+3+3=10$, so $|E(M)| \leq 17$.

To complete the proof of the theorem, we will use the fact that X_{2} is sequential. Thus there is a sequential ordering $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ of X_{2}. Now, because M is internally 4-connected, we have that $z \in\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Lemma 6.13. Either

(i) $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=3$ and $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{1}\right|=1$ and $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}$ is a triangle of M; or
(ii) $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=2$ and $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=2$.

Proof. By Lemma 6.9(ii), since $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ are $(4,5, S)$-violators of $M \backslash x$ and $M \backslash y$, respectively, we have $\left|X_{2} \cap Y_{1}\right|,\left|X_{1} \cap Y_{2}\right| \in\{2,3\}$.

Now $\left(X_{1} \cup x_{6}, X_{2}-x_{6}\right)$ is a $(4,4, S)$-violator of $M \backslash x$. Thus, by Lemma 6.7, $\left|\left(X_{2}-x_{6}\right) \cap Y_{1}\right| \geq 2$. From the previous paragraph, we have $\left|\left(X_{1} \cup x_{6}\right) \cap Y_{2}\right| \geq$ $\left|X_{1} \cap Y_{2}\right| \geq 2$. Hence, by Lemma 6.8, both $\left|\left(X_{2}-x_{6}\right) \cap Y_{1}\right|$ and $\left|\left(X_{1} \cup x_{6}\right) \cap Y_{2}\right|$ are in $\{2,3\}$. Thus if $x_{6} \in X_{2} \cap Y_{1}$, then $\left|X_{2} \cap Y_{1}\right|=3$ and $\left|\left(X_{2}-x_{6}\right) \cap Y_{1}\right|=2$. If $x_{6} \in X_{2} \cap Y_{2}$, then $\left|X_{1} \cap Y_{2}\right|=2$ and, by Lemma 6.10, $\left|\left(X_{2}-x_{6}\right) \cap Y_{2}\right| \geq 2$.

Consider the position of x_{5}. It is straightforward to see that either
(a) $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=3$ and $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{1}\right|=1$; or
(b) $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=2$ and $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{1}\right|=2$;
unless $X_{2} \cap Y_{2}=\left\{z, x_{5}, x_{6}\right\}$. Consider the exceptional case. We have ($X_{1} \cup$ $\left.\left\{x_{5}, x_{6}\right\}, X_{2}-\left\{x_{5}, x_{6}\right\}\right)$ as a 3-separation of $M \backslash x$. Now $\lambda_{M \backslash x, y}\left(Y_{1}-x\right)=$ $2=\lambda_{M \backslash x, y}\left(X_{2}-\left\{x_{5}, x_{6}\right\}\right)$. Thus, by the submodularity of the connectivity function and the positions of x, y, and z, we deduce that $\lambda_{M \backslash x, y}\left(Y_{2} \cap\left(X_{1} \cup\right.\right.$ $\left.\left.\left\{x_{5}, x_{6}\right\}\right)\right)=\lambda_{M}\left(Y_{2} \cap\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right)\right)=2$. Since $\left|Y_{2} \cap\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right)\right| \geq 4$, we have a contradiction to the fact that M is internally 4 -connected. We deduce that (a) or (b) holds.

If (a) holds, then, by Lemma 6.7(ii), $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}$ is a triangle of M.

By Lemma 6.9, $\left|X_{2} \cap Y_{1}\right|$ is 2 or 3 . The rest of the proof considers these two possibilities beginning with the first.
Lemma 6.14. If $\left|X_{2} \cap Y_{1}\right|=2$, then
(i) $x_{6} \in X_{2} \cap Y_{2}$;
(ii) $\left|X_{1} \cap Y_{2}\right|=2$;
(iii) $\left(X_{1} \cap Y_{2}\right) \cup x_{6}$ is a triangle or a triad of M; and
(iv) $\left(X_{2} \cap Y_{2}\right)-x_{6}$ is a triangle of M containing z.

Proof. By Lemma 6.13, we have two possibilities for the distribution of the elements of $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ in $X_{2} \cap Y_{1}$ and $X_{2} \cap Y_{2}$. Suppose first that $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{1}\right|=2$. As $\left|X_{2} \cap Y_{2}\right|=2$, we deduce that $\left\{x_{5}, x_{6}\right\} \subseteq$ $X_{2} \cap Y_{2}$. Now consider the 3 -separation $\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}, X_{2}-\left\{x_{5}, x_{6}\right\}\right)$ of $M \backslash x$. We have $y \in \operatorname{cl}\left(X_{1}-y\right)$ and $x \in \operatorname{cl}\left(Y_{1}-x\right)$. Moreover, $\left|\left(X_{2}-\left\{x_{5}, x_{6}\right\}\right) \cap Y_{1}\right|=$ $\left|X_{2} \cap Y_{1}\right| \geq 2$ and $\left|\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right) \cap Y_{2}\right|=\left|X_{1} \cap Y_{2}\right|+2 \geq 4 \geq 2$. Thus, by Lemma $6.8,\left|\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right) \cap Y_{2}\right| \in\{2,3\}$; a contradiction. We conclude that $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{1}\right| \neq 2$, so $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{1}\right|=1$.

By Lemma 6.13, $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}$ is a triangle of M. We know that $z \in\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}$. Thus z is in a triangle of M contained in $X_{2} \cap Y_{2}$ and avoiding $\left\{x_{5}, x_{6}\right\}$. We now consider where x_{5} and x_{6} are. As $\left(X_{1} \cup\right.$ $\left.x_{6}, X_{2}-x_{6}\right)$ is a $(4,4, S)$-violator for $M \backslash x$, we have, by Lemma 6.7, that $\left|\left(X_{2}-x_{6}\right) \cap Y_{1}\right| \geq 2$. But $\left|X_{2} \cap Y_{1}\right|=2$ by assumption. Thus $x_{6} \in X_{2} \cap Y_{2}$ and $x_{5} \in X_{2} \cap Y_{1}$, so (i) holds. Moreover, $\left|\left(X_{2}-x_{6}\right) \cap Y_{1}\right|=\left|X_{2} \cap Y_{1}\right|=2$ and $\left|\left(X_{1} \cup x_{6}\right) \cap Y_{2}\right|=\left|X_{1} \cap Y_{2}\right|+1 \geq 3$. Hence, by Lemma 6.9(i), $\left|\left(X_{1} \cup x_{6}\right) \cap Y_{2}\right| \in$ $\{2,3\}$. Thus $\left|X_{1} \cap Y_{2}\right|=2$ and $\left(X_{1} \cup x_{6}\right) \cap Y_{2}$ is a triangle or a triad of M, so (ii) and (iii) hold. Part (iv) follows from Lemma 6.13.

For the rest of the proof, we shall call the elements of Z_{1} red and those of Z_{2} green.

Lemma 6.15. $\left|X_{2} \cap Y_{1}\right|=3$.
Proof. Assume that $\left|X_{2} \cap Y_{1}\right|=2$. From the previous lemma, we may assume that $\left|X_{1} \cap Y_{2}\right|=2$. Let the triangle $\left(X_{2} \cap Y_{2}\right)-x_{6}$ be $\left\{z_{1}, z_{2}, z\right\}$. Since $z \notin \operatorname{cl}\left(Z_{1}\right) \cup \operatorname{cl}\left(Z_{2}\right)$, we may assume that $z_{1} \in Z_{1}$ and $z_{2} \in Z_{2}$. Now, by Lemma 6.14(iii), $\left(X_{1} \cap Y_{2}\right) \cup x_{6}$ is a triangle or triad of M. By Lemma 6.9, Y_{2} contains two or three red elements. Since z_{1} is red, $Y_{2}-z_{1}$ contains either one or two red elements. Thus $\left(X_{1} \cap Y_{2}\right) \cup x_{6}$ contains either one green and two red elements, or one red and two green elements. In the first case, we recolour the green element γ of $\left(X_{1} \cap Y_{2}\right) \cup x_{6}$ to red. This means replacing $\left(Z_{1}, Z_{2}\right)$ by $\left(Z_{1} \cup \gamma, Z_{2}-\gamma\right)$, which is a $(4,4, S)$-violator of $M \backslash z$. Now $\left|Y_{1} \cap\left(Z_{2}-\gamma\right)\right|=\left|Y_{1} \cap Z_{2}\right| \geq 2$, while $\left|\left(Z_{1} \cup \gamma\right) \cap Y_{2}\right|=4$. This gives a contradiction to Lemma 6.9(i).

We may now assume that $\left\{y_{1}, y_{2}, x_{6}\right\}$ contains one red and two green elements. In that case, we recolour the red element ρ to green, replacing $\left(Z_{1}, Z_{2}\right)$ by $\left(Z_{1}-\rho, Z_{2} \cup \rho\right)$, which is a $(4,4, S)$-violator. Thus, by Lemma 6.7 and symmetry, $\left|\left(Z_{1}-\rho\right) \cap Y_{2}\right| \geq 2$; a contradiction to the fact that $\mid\left(Z_{1}-\right.$ $\rho) \cap Y_{2} \mid=1$.

Lemma 6.16. $\left(X_{2} \cap Y_{2}\right)-z$ is monochromatic.

Proof. Assume that $\left(X_{2} \cap Y_{2}\right)-z$ contains one red and one green element. By Lemma 6.9 and symmetry, X_{2} contains either two or three green elements. Thus either
(i) $X_{2} \cap Y_{1}$ contains one red and two green elements; or
(ii) $X_{2} \cap Y_{1}$ contains one green and two red elements.

Now $X_{2} \cap Y_{1}$ is a triangle or triad of M.
In case (i), we recolour the red element ρ of $X_{2} \cap Y_{1}$ to green, replacing $\left(Z_{1}, Z_{2}\right)$ by $\left(Z_{1}-\rho, Z_{2} \cup \rho\right)$. Now $\left|\left(Z_{2} \cup \rho\right) \cap X_{2}\right|=4$ and $\left|\left(Z_{1}-\rho\right) \cap X_{1}\right| \geq 2$, so we get a contradiction to Lemma 6.8.

In case (ii), we recolour the one green element γ of $X_{2} \cap Y_{1}$ to red, replacing $\left(Z_{1}, Z_{2}\right)$ by the $(4,4, S)$-violator $\left(Z_{1} \cup \gamma, Z_{2}-\gamma\right)$. Then, by Lemma 6.7 and symmetry, $\left|\left(Z_{2}-\gamma\right) \cap X_{2}\right| \geq 2$. But $\left|\left(Z_{2}-\gamma\right) \cap X_{2}\right|=1$; a contradiction.
Lemma 6.17. $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=2$.
Proof. We assume that $\left|\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}\right|=3$. Then $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cap Y_{2}$ is a triangle of M containing z. Since neither Z_{1} nor Z_{2} spans z, the set ($X_{2} \cap Y_{2}$) - z must contain one red and one green element; a contradiction to Lemma 6.16.
Lemma 6.18. (i) One of x_{5} and x_{6} is in $X_{2} \cap Y_{1}$ and the other is in $X_{2} \cap Y_{2}$.
(ii) $Y_{2} \cap\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right)$ is a triangle or triad of M.
(iii) $\left|X_{1} \cap Y_{2}\right|=2$.

Proof. Part (i) follows immediately from the last lemma and the fact that $\left|X_{2} \cap Y_{1}\right|=3$. Consider the 3 -separation $\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}, X_{2}-\left\{x_{5}, x_{6}\right\}\right)$ of $M \backslash x$. We have $\left|\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right) \cap Y_{2}\right|=\left|X_{1} \cap Y_{2}\right|+1 \geq 3$ and $\mid\left(X_{2}-\right.$ $\left.\left\{x_{5}, x_{6}\right\}\right) \cap Y_{1} \mid=2$. Also $y \in \operatorname{cl}\left(\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right)-y\right)$ and $x \in \operatorname{cl}\left(Y_{1}-x\right)$. Thus, by Lemma 6.8, $Y_{2} \cap\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right)$ is a triangle or triad of M. Moreover, $\left|X_{1} \cap Y_{2}\right|=2$.
Lemma 6.19. $\left|Y_{2}\right|=5$ and $\left(Y_{1}, Y_{2}\right)$ is non-sequential.
Proof. We have $\left|Y_{2}\right|=\left|Y_{2} \cap X_{1}\right|+\left|Y_{2} \cap X_{2}\right|=2+3=5$. By the choice of (Y_{1}, Y_{2}), we deduce that (Y_{1}, Y_{2}) must be non-sequential.
Lemma 6.20. The elements of $\left(X_{2} \cap Y_{2}\right)-z$ are both red.
Proof. Assume the lemma fails. Then, by Lemma 6.16, both the elements of $\left(X_{2} \cap Y_{2}\right)-z$ are green. Now X_{2} contains either two or three green elements. Assume the latter. Then, by Lemma 6.8, $X_{2} \cap Y_{2}$ is a triangle or a triad of M. Thus if γ is the green element in $X_{2} \cap Y_{2}$, then $\left(Y_{1}-\gamma, Y_{2} \cup \gamma\right) \cong\left(Y_{1}, Y_{2}\right)$. Thus $\left(Y_{1}-\gamma, Y_{2} \cup \gamma\right)$, like $\left(Y_{1}, Y_{2}\right)$, is non-sequential, and so is a $(4,5, S)$ violator of $M \backslash y$. Hence we could replace (Y_{1}, Y_{2}) by ($Y_{1}-\gamma, Y_{2} \cup \gamma$). But $\left|X_{2} \cap\left(Y_{1}-\gamma\right)\right|=2$, a contradiction to Lemma 6.15. We conclude that X_{2} contains exactly two green elements.

The set Y_{2} contains two or three red elements while $\left|Y_{2} \cap X_{1}\right|=2$, so both elements of $Y_{2} \cap X_{1}$ are red. As $\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right) \cap Y_{2}$ is a triangle or a triad
of M, the element γ^{\prime} of $\left\{x_{5}, x_{6}\right\} \cap X_{2} \cap Y_{2}$ can be recoloured red, that is, we replace $\left(Z_{1}, Z_{2}\right)$ by $\left(Z_{1} \cup \gamma^{\prime}, Z_{2}-\gamma^{\prime}\right)$. Since $\left|\left(Z_{2}-\gamma^{\prime}\right) \cap X_{2}\right|=\left|Z_{2} \cap X_{2}\right|-1=1$, we have a contradiction to Lemma 6.7.

Lemma 6.21. The elements of $X_{1} \cap Y_{2}$ are green.
Proof. We know that Y_{2} contains at most three red elements. Hence $X_{1} \cap Y_{2}$ contains at most one red element. If $X_{1} \cap Y_{2}$ does contain a red element, then, using the triangle or triad $\left(X_{1} \cup\left\{x_{5}, x_{6}\right\}\right) \cap Y_{2}$, we can recolour the other element γ of $X_{1} \cap Y_{2}$ to red, replacing $\left(Z_{1}, Z_{2}\right)$ by $\left(Z_{1} \cup \gamma, Z_{2}-\gamma\right)$. We now get a contradiction to Lemma 6.8 because $\left|\left(Z_{1} \cup \gamma\right) \cap Y_{2}\right|=4$ and $\left|\left(Z_{2}-\gamma\right) \cap Y_{1}\right| \geq 2$.

Since both elements of $X_{1} \cap Y_{2}$ are green, we can recolour the element ρ of $\left\{x_{5}, x_{6}\right\} \cap X_{2}$ to green, replacing $\left(Z_{1}, Z_{2}\right)$ by $\left(Z_{1}-\rho, Z_{2} \cup \rho\right)$. As $\left|\left(Z_{1}-\rho\right) \cap Y_{2}\right|=1$, we get a contradiction to Lemma 6.7 that completes the proof of Theorem 6.3.

7. Finishing Off

This section completes the proof of the main theorem of the paper. Our proof will rely on the following lemma, which is a slight strengthening of a result of Geelen and Whittle [3, Theorem 7.1(i)]. The proof is a minor modification of their proof and is presented here for completeness.

Lemma 7.1. Let M be a sequentially 4-connected matroid and let (A, B) be a sequential 3-separation of M having $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ as a sequential ordering of A with $k=|A| \geq 4$. If $M \backslash a_{i}$ is 3-connected, then $M \backslash a_{i}$ is sequentially 4-connected.

Proof. The proof will make repeated use of the elementary observation that if (J, K) is a 3-separating partition of M and $e \in J$, then $(J-e, K)$ is a 3 -separating partition of $M \backslash e$. Assume that $M \backslash a_{i}$ is not sequentially 4connected, letting (X, Y) be a non-sequential 3 -separation of it. Since the first three elements of $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ can be arbitrarily reordered, we may assume that $i \geq 3$. Suppose first that $i=3$. Then $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triangle, otherwise it is a triad and $M \backslash a_{3}$ is not 3-connected. If $a_{4} \in \operatorname{cl}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$, then we can interchange a_{3} and a_{4} to reduce to the case when $i \geq 4$, which we treat below. If $a_{4} \notin \operatorname{cl}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$, then $a_{4} \in \operatorname{cl}^{*}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$. Thus $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ contains a cocircuit of M containing a_{4}. Since $M \backslash a_{3}$ is 3connected, it has $\left\{a_{1}, a_{2}, a_{4}\right\}$ as a triad. Now at least two of a_{1}, a_{2}, and a_{4} may be assumed to be in X, so $\left(X \cup\left\{a_{1}, a_{2}, a_{4}\right\}, Y-\left\{a_{1}, a_{2}, a_{4}\right\}\right)$ is a nonsequential 3-separation of $M \backslash a_{3}$. Thus ($X \cup\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, Y-\left\{a_{1}, a_{2}, a_{4}\right\}$) is a 3 -separation of M. This 3 -separation must be sequential so, by Lemma 2.8, $\left(X \cup\left\{a_{1}, a_{2}, a_{4}\right\}, Y-\left\{a_{1}, a_{2}, a_{4}\right\}\right)$ is a sequential 3 -separation of $M \backslash a_{3}$; a contradiction.

Now suppose that $i \geq 4$. We may assume that at least two of a_{1}, a_{2}, and a_{3} are in X. Hence each of $X \cup\left\{a_{1}, a_{2}, a_{3}\right\}, X \cup\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \ldots, X \cup$
$\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}$ is 3-separating in $M \backslash a_{i}$, so $\left(X \cup\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, Y-\right.$ $\left.\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$ is a non-sequential 3 -separation of $M \backslash a_{i}$. Now $a_{i} \in$ $\operatorname{cl}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$, or $a_{i} \in \operatorname{cl}^{*}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$. In the latter case, $r\left(\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}=r\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)+1\right.$, so $\lambda_{M \backslash a_{i}}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)=$ 1; a contradiction. Therefore $a_{i} \in \operatorname{cl}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$ and $(X \cup$ $\left.\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}, Y-\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$ is a 3 -separation of M. This 3separation must be sequential, yet this implies, by Lemma 2.8, that $\left(X \cup\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, Y-\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$ is a sequential 3 -separation of $M \backslash a_{i}$; a contradiction.

Next we prove the main theorem in the case that M is $(4,4)$-connected.
Theorem 7.2. Let M be a $(4,4, S)$-connected matroid that is not isomorphic to a wheel or whirl of rank 3 or 4 . Then M has an element x such that $M \backslash x$ or M / x is $(4,5, S)$-connected.

Proof. By Theorem 6.3, the result holds if M is $(4,3, S)$-connected. Thus we may assume that M has a 3 -separation (X, Y) with $|X|=4$ and $|Y| \geq$ 4 and with X sequential. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a sequential ordering of X. Then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle or a triad of M. By duality, we may assume that $x_{4} \in \operatorname{cl}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)$. Then it is straightforward to show that $\left(\left\{x_{1}, x_{2}, x_{3}\right\}, E(M)-\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right)$ is a non-minimal 2-separation of M / x_{4}. Hence, by Lemma 2.5, $\operatorname{co}\left(M \backslash x_{4}\right)$ is 3-connected. Thus either
(i) $M \backslash x_{4}$ is 3-connected, or
(ii) M has a triad T^{*} containing x_{4}.

Consider case (ii). As $x_{4} \in \operatorname{cl}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)$, the triad T^{*} meets $\left\{x_{1}, x_{2}, x_{3}\right\}$. If $T^{*} \subseteq\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, then $\lambda_{M}\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right)=1$; a contradiction. Hence $\left|T^{*} \cap\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right|=2$ so, by Lemma 2.4, $T^{*} \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is 3 -separating in M. If $|E(M)| \geq 10$, then $\mid E(M)-$ $\left(T^{*} \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right) \mid \geq 5$, so we have a contradiction to the fact that M is $(4,4, S)$-connected. Now assume that $|E(M)|<10$. We know that $|E(M)| \geq 8$. Hence, by Theorem 1.2 , either M is a wheel or whirl of rank 4 , or M has an element e such that $M \backslash e$ or M / e is sequentially 4-connected. The former case was excluded by assumption. In the latter case, because $|E(M)|<13$, either $M \backslash e$ or M / e is $(4,5, S)$-connected.

Now consider case (i). By Lemma 7.1, $M \backslash x_{4}$ is sequentially 4-connected. Suppose this matroid has a 3-separation (J, K) with $|J|,|K| \geq 6$. Without loss of generality, at least two of x_{1}, x_{2}, and x_{3} are in J. Thus $(J, K) \cong$ $\left(J \cup\left\{x_{1}, x_{2}, x_{3}\right\}, K-\left\{x_{1}, x_{2}, x_{3}\right\}\right)$ and $\left(J \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, K-\left\{x_{1}, x_{2}, x_{3}\right\}\right)$ is a 3 -separation of M. Since $\left|J \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right|,\left|K-\left\{x_{1}, x_{2}, x_{3}\right\}\right| \geq 5$, we have a contradiction to the fact that M is $(4,4, S)$-connected. We conclude that $M \backslash x_{4}$ is $(4,5, S)$-connected.

To complete the proof of the main theorem, we shall require some more preliminaries some of which are extracted from Hall's proof of Theorem 1.3. A segment in a matroid N is a subset X of $E(N)$ such that every 3-element subset of X is a circuit of N. A cosegment of N is a segment of N^{*}.

Lemma 7.3. [6, Lemma 4.1] If M is a $(4, k)$-connected matroid and X is a 4-element segment, then $M \backslash x$ is $(4, k)$-connected for some x in X.

Lemma 7.4. Let A be a 5-element sequential 3 -separating set in a $(4,5, S)$ connected matroid M having at least 13 elements. Let $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ be a sequential ordering of A. If $i \in\{1,2,3\}$ and $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triangle, or if $i \geq 4$ and $a_{i} \in \operatorname{cl}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$, then $M \backslash a_{i}$ is 3 -connected unless a_{i} is in a triad of M contained in A.

Proof. Suppose first that $i \geq 4$ and $a_{i} \in \operatorname{cl}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$. Then M / a_{i} has $\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\},\left\{a_{i+1}, a_{5}\right\} \cup B\right)$ as a non-minimal 2 -separation. Hence, by Lemma 2.5, $\operatorname{co}\left(M \backslash a_{i}\right)$ is 3-connected. Thus $M \backslash a_{i}$ is 3-connected unless a_{i} is in a triad T^{*} of M. In the exceptional case, as $a_{i} \in \operatorname{cl}\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}\right)$, it follows by orthogonality that T^{*} meets $\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}$. Thus T^{*} and A are 3-separating in M having at least two common elements. Therefore $T^{*} \cup A$ is 3 -separating. If $T^{*} \nsubseteq A$, then $\left|T^{*} \cup A\right|=6$ and so we contradict the fact that M is $(4,5, S)$-connected. Hence, when $i \geq 4$, the matroid $M \backslash a_{i}$ is 3 -connected unless a_{i} is in a triad of M contained in A.

Now assume that $i \in\{1,2,3\}$ and $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triangle. Since a_{1}, a_{2}, and a_{3} can be arbitrarily reordered, we may assume that $i=1$. Suppose that (X, Y) is a non-minimal 2-separation of $M \backslash a_{1}$. If $a_{4} \in \operatorname{cl}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$, then $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is a segment so, by Lemma $7.3, M \backslash a_{1}$ is 3 -connected. We may now assume that $a_{4} \in \operatorname{cl}^{*}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$. Then M has a cocircuit C^{*} containing a_{4} and contained in $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Suppose that $\left|C^{*}\right|=4$. Then $\left\{a_{2}, a_{3}, a_{4}\right\}$ is a cocircuit of $M \backslash a_{1}$. We may assume that at least two elements of $\left\{a_{2}, a_{3}, a_{4}\right\}$ are in X. Thus $\left(X \cup\left\{a_{2}, a_{3}, a_{4}\right\}, Y-\left\{a_{2}, a_{3}, a_{4}\right\}\right)$ is a 2-separation of $M \backslash a_{1}$. Hence $\left(X \cup\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, Y-\left\{a_{2}, a_{3}, a_{4}\right\}\right)$ is a 2 -separation of M. But M is 3 -connected, so $\left|Y-\left\{a_{2}, a_{3}, a_{4}\right\}\right|<2$, which contradicts the fact that $|Y| \geq 3$. We conclude that the only 2 -separations of $M \backslash a_{1}$ are minimal. Hence either $M \backslash a_{i}$ is 3 -connected, or a_{1} is in a triad T^{*} of M. In the latter case, we argue as at the end of the previous paragraph to deduce that $T^{*} \subseteq A$.

The next lemma and its proof are lifted from Hall [6, p. 56].
Lemma 7.5. Let M be a (4,5)-connected matroid with $|E(M)| \geq 16$. Let A be a 5-element 3 -separating set in M with $r(A)=3$. If a is an element of A for which $M \backslash a$ is 3 -connected and $A-a$ contains no triangles, then $M \backslash a$ is $(4,5)$-connected.

Proof. Assume that $M \backslash a$ has a 3 -separation (X, Y) with $|X|,|Y| \geq 6$. Since $A-a$ contains no triangles and $r(A)=3$, every 3 -element subset of $A-a$ spans A. Since neither $\operatorname{cl}(X)$ nor $\operatorname{cl}(Y)$ contains a, we deduce that $|A \cap X|=$ $2=|A \cap Y|$. Since $M \backslash a$ is 3-connected, $\lambda_{M \backslash a}(A \cap X)=2=\lambda_{M \backslash a}(A \cap Y)$. Thus, by the submodularity of λ, we deduce that both $Y \cap(E(M)-A)$ and $X \cap(E(M)-A)$ are 3-separating in $M \backslash a$. Because $a \in \operatorname{cl}(A-a)$, these sets are also 3-separating in M. Thus $|X \cap(E(M)-A)|,|Y \cap(E(M)-A)| \leq 5$.

Since $|A|=5$, it follows that $|E(M)| \leq 15$; a contradiction. We conclude that $M \backslash a$ is $(4,5)$-connected.
Lemma 7.6. Let M be $a(4,5, S)$-connected matroid with $|E(M)| \geq 12$. Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ be a 5-element fan F in M having $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{a_{3}, a_{4}, a_{5}\right\}$ as triangles and $\left\{a_{2}, a_{3}, a_{4}\right\}$ as a triad. Then $M \backslash a_{3} / a_{4}$ is sequentially 4-connected.

Proof. If a_{4} is in a triangle T other than $\left\{a_{3}, a_{4}, a_{5}\right\}$, then, by orthogonality and the fact that M is 3 -connected, it follows that $T=\left\{a_{2}, a_{4}, a_{6}\right\}$ for some new element a_{6}. Then $F \cup T$ is a 6 -element 3 -separating set in M; a contradiction since $|E(M)| \geq 12$. We deduce that $\left\{a_{3}, a_{4}, a_{5}\right\}$ is the unique triangle containing a_{4}. A similar argument (or see [9, Lemma 3.4]) establishes that $\left\{a_{2}, a_{3}, a_{4}\right\}$ is the unique triad of M containing a_{3}. Hence if $M \backslash a_{3} / a_{4}$ is not 3 -connected, it has a 2 -separation (J, K) with $|J|,|K| \geq 3$. On the other hand, if $M \backslash a_{3} / a_{4}$ is 3-connected but not sequentially 4-connected, it has a non-sequential 3 -separation (J, K). We shall prove simultaneously that $M \backslash a_{3} / a_{4}$ is 3 -connected and that it is sequentially 4 -connected by considering a k-separation (J, K) of $M \backslash a_{3} / a_{4}$ for some $k \in\{2,3\}$, where $|J|,|K| \geq 3$ if $k=2$, while (J, K) is non-sequential if $k=3$.

We may assume that at least two elements of $\left\{a_{1}, a_{2}, a_{5}\right\}$ are in J, so $\left(J \cup\left\{a_{1}, a_{2}, a_{5}\right\}, K-\left\{a_{1}, a_{2}, a_{5}\right\}\right)$ is a k-separation of $M \backslash a_{3} / a_{4}$. Moreover, if $k=3$, this 3 -separation is non-sequential while if $k=2$, then $\mid K-$ $\left\{a_{1}, a_{2}, a_{5}\right\} \mid \geq 2$. Hence $\left(J \cup\left\{a_{1}, a_{2}, a_{5}, a_{3}\right\}, K-\left\{a_{1}, a_{2}, a_{5}\right\}\right)$ is a k-separation of M / a_{4}. As $a_{4} \in \mathrm{cl}^{*}\left(\left\{a_{2}, a_{3}\right\}\right)$, it follows that $(J \cup F, K-F)$ is a k-separation of M. If $k=2$, then, as $|K-F| \geq 2$, we contradict the fact that M is 3 connected. We conclude $M \backslash a_{3} / a_{4}$ is 3 -connected. If $k=3$, then, since M is sequentially 4-connected, $(J \cup F, K-F)$ is a sequential 3-separation of M. Thus, by Lemma $2.8,\left(J \cup\left\{a_{1}, a_{2}, a_{5}\right\}, K-\left\{a_{1}, a_{2}, a_{5}\right\}\right)$ is a sequential 3 -separation of $M \backslash a_{3} / a_{4}$; a contradiction. We conclude that $M \backslash a_{3} / a_{4}$ is sequentially 4 -connected.

We are now ready to complete the proof of the main theorem of the paper.
Proof of Theorem 3.1. If M is $(4,4, S)$-connected, then the theorem follows by Theorem 7.2. We may now assume that M is $(4,5, S)$-connected but not $(4,4, S)$-connected. Then M has a 3 -separation (A, B) with $|A|,|B| \geq 5$. Since M is sequentially 4 -connected, we may assume that A is sequential having exactly 5 elements.

Suppose that A contains a 4 -element segment. Then, by Lemma 7.3, A contains an element e such that $M \backslash e$ is (4,5)-connected. In particular, $M \backslash e$ is 3 -connected so, by Lemma $7.1, M \backslash e$ is sequentially 4 -connected. Hence $M \backslash e$ is $(4,5, S)$-connected and the theorem holds.

By the last paragraph and duality, we may assume that A contains no 4-element segments or cosegments of M. By Theorem 1.2 , either M is neither a wheel nor a whirl and M has an element e such that $M \backslash e$ or M / e is sequentially 4-connected; or M is a wheel or a whirl and $\operatorname{co}(M \backslash e)$ or
$\operatorname{si}(M / e)$ is sequentially 4-connected for every element e. Since a sequentially 4-connected matroid N is certainly $(4,5, S)$-connected when $|E(N)| \leq 12$, we deduce that the theorem holds when $|E(M)| \leq 12$. Thus we may assume that $|E(M)| \geq 13$. Hall's proof of Theorem 1.3 distinguishes the cases when $|E(M)| \geq 16$ and when $13 \leq|E(M)| \leq 15$, and, since we will be relying on her results, we shall use the same dichotomy.

Figure 2. The five possibilities for the 3-separating set A.

Since A is a 3 -separating set in M, we have $r(A)+r^{*}(A)-|A|=2$, so $r(A)+r^{*}(A)=7$. Because A contains no 4-element segments or cosegments of M, we may assume by duality that $r(A)=3$. Moreover, since M is $(4,5)$-connected, A is a flat of M. Hall [6, p. 58] distinguishes eleven possibilities for A. Since we have the additional requirement that A is sequential, we can reduce the number of possibilities to five. In particular, using Hall's terminology, A is a 5 -element fan or a 3 -separating set of type A, type B , type D , or type F . In each case, we have labelled A in Figure 2 such that $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ is a sequential ordering of it. To interpret this diagram, observe that, in each case, we have drawn $M \mid A$. The line in the diagram marking the boundary between the plane A and the hyperplane $\operatorname{cl}(B)$ corresponds to $\operatorname{cl}(A) \cap \operatorname{cl}(B)$.

Suppose that $|E(M)| \geq 16$. If A is a 5 -element fan, then, by Hall [6, pp. 57-58], either $M \backslash a_{1}$ or $M \backslash a_{3} / a_{4}$, which is isomorphic to $\operatorname{co}\left(M \backslash a_{3}\right)$, is $(4,5)$-connected. Hence, by Lemmas 7.1 and $7.6, M \backslash a_{1}$ or $\operatorname{co}\left(M \backslash a_{3}\right)$ is $(4,5, S)$-connected. We may now assume that A has type A, B, D, or F. By Lemma 7.4, taking $i=4$ when A has type A or B and taking $i=3$ when
A has type D or F , we see that the matroid $M \backslash a_{i}$ is 3-connected. Thus, by Lemma $7.1 M \backslash a_{i}$ is sequentially 4 -connected. Moreover, by Lemma 7.5, $M \backslash a_{i}$ is $(4,5)$-connected and so is $(4,5, S)$-connected. We conclude that the theorem holds when $|E(M)| \geq 16$.

Now suppose that $13 \leq|E(M)| \leq 15$. In this case, if A is a fan, then, by Hall [6,5.2.10], one of $M \backslash a_{1}, M \backslash a_{5}$, or $\operatorname{co}\left(M \backslash a_{3}\right)$ is $(4,5)$-connected. Again, by Lemmas 7.1 and $7.6, M \backslash a_{1}, M \backslash a_{5}$, or $\operatorname{co}\left(M \backslash a_{3}\right)$ is $(4,5, S)$-connected. Now assume that A has type A, B, D, or F. In each of these cases, Hall identified a pair of elements $\left\{a_{i}, a_{j}\right\}$ such that $M \backslash a_{i}$ or $M \backslash a_{j}$ is $(4,5)$-connected. In particular, $\{i, j\}$ is $\{4,5\}$ if A has type A or $\mathrm{B}[6,5.2 .2,5.2 .3] ;\{i, j\}$ is $\{2,3\}$ if A has type $\mathrm{D}[6,5.2 .4]$; and $\{i, j\}$ is $\{3,5\}$ if A has type $\mathrm{F}[6,5.2 .5]$. By Lemma 7.1 , we get that $M \backslash a_{i}$ or $M \backslash a_{j}$ is $(4,5, S)$-connected and this completes the proof of the theorem.

Figure 3. Simplification and cosimplification are needed.

It is natural to ask whether there is a $(4,5, S)$-connected matroid M other than a wheel or a whirl in which there is no element e such that $M \backslash e$ or M / e is $(4,5, S)$-connected. In other words, are we forced to allow cosimplification or simplification in Theorem 1.5? The cycle matroid M of the graph G in Figure 3 is $(4,5, S)$-connected. All 18 elements of M lie in triangles. Nine of the elements, including all those bounding the infinite face F of G, also lie in triads. The remaining nine elements are of two types: those that meet a degree- 4 vertex on the boundary of F; and those bounding the innermost triangular face of G. The deletion of an edge of the first type creates a 6 -element fan, while deletion of an edge of the second type leaves a 3 -vertex cut corresponding to a 3 -separation in which each part has 8 or 9 elements.

References

[1] Bixby, R. E., A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982), 123-126.
[2] Coullard, C. R., Minors of 3-connected matroids and adjoints of binary matroids, Ph.D. thesis, Northwestern University, 1985.
[3] Geelen, J. and Whittle, G., Matroid 4-connectivity: A deletion-contraction theorem, J. Combin. Theory Ser. B 83 (2001), 15-37.
[4] Geelen, J. and Zhou, X., Generating weakly 4-connected matroids, submitted.
[5] Geelen, J., Gerards, B., and Whittle, G., Inequivalent representations of matroids $\mathrm{I}-\mathrm{V}$, in preparation.
[6] Hall, R., A chain theorem for 4-connected matroids, J. Combin. Theory Ser. B 93 (2005), 45-66.
[7] Kahn, J., On the uniqueness of matroid representation over GF(4), Bull. London Math. Soc. 20 (1988), 5-10.
[8] Oxley, J. G., Matroid Theory, Oxford University Press, New York, 1992.
[9] Oxley, J., and Wu, H., On the structure of 3-connected matroids and graphs, European J. Combin. 21 (2000), 667-688.
[10] Oxley, J., Semple, C., and Whittle, G., The structure of the 3-separations of 3connected matroids, J. Combin. Theory Ser. B 92 (2004), 257-293.
[11] Oxley, J., Semple, C., and Whittle, G., The structure of the 3-separations of 3connected matroids II, European J. Combin. 28 (2007), 1239-1261.
[12] Oxley, J., Semple, C., and Whittle, G., Wild triangles in 3-connected matroids, J. Combin. Theory Ser. B, to appear.
[13] Rajan, A., Algorithmic applications of connectivity and related topics in matroid theory, Ph.D. thesis, Northwestern University, 1987.
[14] Rota, G.-C., Combinatorial theory, old and new, in Proc. Internat. Cong. Math. (Nice, 1970), Gauthier-Villars, Paris, 1971, pp. 229-233.
[15] Tutte, W. T., Connectivity in matroids, Canad. J. Math. 18 (1966), 1301-1324.
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA

E-mail address: oxley@math.lsu.edu
Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

E-mail address: c.semple@math.canterbury.ac.nz
School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

E-mail address: Geoff. Whittle@mcs.vuw.ac.nz

[^0]: Date: August 17, 2007.
 1991 Mathematics Subject Classification. 05B35.
 The first author was supported by the National Security Agency and the second and third authors were supported by the New Zealand Marsden Fund.

