
k–REGULAR MATROIDS

CHARLES SEMPLE

Abstract. The class of matroids representable over all fields is the class of
regular matroids. The class of matroids representable over all fields except
perhaps GF (2) is the class of near-regular matroids. This paper considers a
generalisation of these classes to the so called k–regular matroids. The main
result of the paper determines the automorphisms of the algebraic structure
associated with the class of k–regular matroids. This result is the first step in
establishing a unique representation property for k–regular matroids.

1. Introduction

It follows from a result of Tutte [7] that a matroid is representable over all fields
if and only if it can be represented by a totally unimodular matrix, that is, by
a matrix over the rationals with the property that all non-zero subdeterminants
are in {1,−1}. This is the class of regular matroids. In [10] Whittle gives an
analogous matrix characterisation for the class of matroids representable over all
fields except perhaps GF (2). Let Q(α) denote the field obtained by extending
the rationals by the transcendental α. A matrix over Q(α) is near-unimodular
if all non-zero subdeterminants are in {±αi(α − 1)j : i, j ∈ Z}. A near-regular
matroid is one that can be represented by a near-unimodular matrix. The class
of matroids representable over all fields except perhaps GF (2) is the class of near-
regular matroids [10, Theorem 1.4]. These classes invite generalisation. This paper
considers a generalisation to the so called “k–regular” matroids.

One reason why strong results for regular and near-regular matroids exist is that
each of these classes has a unique representation property. Regular matroids are
uniquely representable over any field. In particular, all totally unimodular repre-
sentations of a regular matroid are equivalent. For near-regular matroids we have a
weaker, but just as crucial, unique representation property [9, Theorem 5.11]. All
strong results in matroid representation theory use some notion of unique repre-
sentation in an essential way [2, 6, 7, 8, 9, 10]. With this in mind one would want
immediate generalisations of regular and near-regular matroids to have a unique
representation property.

In [4] an algebraic structure called a partial field is associated with classes of
matroids which are obtained, like the classes of regular and near-regular matroids,
by restricting the values of all non-zero subdeterminants in a particular way. The
classes of regular and near-regular matroids can be interpreted as classes of ma-
troids representable over a partial field. The class of k–regular matroids can also
be interpreted in this way. The theory of matroid representation over partial fields
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is similar to that for fields. In particular there is a well-defined notion of an au-
tomorphism of a partial field and equivalence of representations over partial fields
similar to that for fields. Automorphisms of a partial field P play the same role in
determining the equivalence of representations over P as automorphisms of a field
F play in the equivalence of representations over F. This paper, as the first step to-
wards finding a unique representation property for the class of k–regular matroids,
establishes the automorphisms of the natural partial field whose associated class of
matroids is the class of k–regular matroids. This is stated as Theorem 4.2, which
is the main result of this paper.

Note that the partial field that we will associate with the class of k–regular ma-
troids can be embedded in the field Q(α1, α2, . . . , αk), the field obtained by extend-
ing the rationals by the algebraically independent transcendentals α1, α2, . . . , αk.
It appears that if k > 2, then the automorphisms of such fields are unknown (see
[1, Section 5.2]). The fact that we have determined the automorphisms of a par-
tial field that can be embedded in Q(α1, α2, . . . , αk) may reward studying partial
fields for reasons other than the desire to solve problems in matroid representation
theory.

The paper is organised as follows. Section 2 contains a general discussion of
partial fields and matroid representation over partial fields. Section 3 defines k–
regular matroids and presents two results. The first result shows that if a matroid
is k–regular, then it is representable over all fields whose cardinality is at least
k + 2. The other result is needed as a lemma for Theorem 4.2, which is proved in
Section 4.

2. Preliminaries

Familiarity is assumed with the elements of matroid theory, see for example
[3]. In particular we assume familiarity with the theory of matroid representations.
Essentially, it is assumed the reader is familiar with the substance of [3, Chapter 6].

Partial fields are studied in [4]. Essentially a partial field P is a structure that has
all the properties of a field except that addition may only be a partial operation,
that is, there may exist elements a, b ∈ P such that a + b is not defined. The
following special case of [4, Proposition 2.2] gives one way to obtain a partial field.

2.1. Let F be a field, and let G be a multiplicative subgroup of F∗ with the property
that −a ∈ G for all a ∈ G. Then G ∪ {0} with the induced operations from F is a
partial field.

The partial field obtained via (2.1) is denoted (G,F). All the partial fields
referred to in this paper can be obtained in this way.

Interest in partial fields is due to the fact that classes of matroids can be associ-
ated with them. An m × n matrix A over a partial field P = (G,F) is a P–matrix
if det(A′) ∈ G ∪ {0} for every square submatrix A′ of A. If A is a P–matrix, then
the matroid obtained in the usual way from A is denoted M [A]. A matroid M is
representable over P or is P–representable if it is equal to M [A] for some P–matrix
A; in this case A is said to be a representation of M .

In the language of partial fields, the matroids representable over the partial
fields ({−1, 1},Q) and ({±αi(α − 1)j : i, j ∈ Z},Q(α)) are the classes of regular
and near-regular matroids respectively. These partial fields are labelled Reg and
NR respectively. Before going any further we make the following observations.



k–REGULAR MATROIDS 3

We first note that the choice of Q and Q(α) in defining these partial fields is not
unique. In fact Q and Q(α) could be replaced by F and F(α), respectively, where
F is any field whose characteristic is not 2 or 3. The point is that we require 1 + 1
and −1 − 1 to be not defined in both partial fields. Secondly, in general, partial
fields need not arise from fields. However if a partial field can be embedded in some
field, as the ones discussed in this paper can, then we can regard the elements of
the partial field as elements of the embedding field.

Let P1 and P2 be partial fields. A function ϕ : P1 → P2 is a homomorphism if,
for all a, b ∈ P1, ϕ(ab) = ϕ(a)ϕ(b), and whenever a + b is defined, then ϕ(a)+ ϕ(b)
is defined, and ϕ(a + b) = ϕ(a) + ϕ(b).

2.2. ([4, Corollary 5.3]) Let P1 and P2 be partial fields. If there exists a non-
trivial homomorphism ϕ : P1 → P2, then every matroid representable over P1 is
also representable over P2.

The homomorphism ϕ : P1 → P2 is an isomorphism if it is a bijection and has
the property that a+ b is defined if and only if ϕ(a)+ϕ(b) is defined. By extending
the argument in the proof of [5, Proposition 2.4.4], we can simplify the task of
showing that a function is an isomorphism.

2.3. Let P1 and P2 be partial fields and let ϕ : P1 → P2 be a function. Then ϕ is
an isomorphism if and only if ϕ satisfies the following conditions:

(i) ϕ is a bijection.
(ii) For all x, y ∈ P1, ϕ(xy) = ϕ(x)ϕ(y).
(iii) For all z ∈ P1, z − 1 is defined if and only if ϕ(z) − 1 is defined and

ϕ(z − 1) = ϕ(z) − 1.

An automorphism of a partial field P is an isomorphism ϕ : P → P. From
a matroid-theoretic point of view the main interest in automorphisms is the role
they play in determining whether representations of a matroid are equivalent. As for
fields two matrix representations of a matroid M over a partial field P are equivalent
if one can be obtain from the other by a sequence of the following operations:
interchanging two rows; interchanging two columns (together with labels); pivoting
on a non-zero element; multiplying a row or column by a non-zero member of P;
and replacing each entry of the matrix by its image under some automorphism of
P. A matroid is uniquely representable over P if all representations of M over P
are equivalent.

3. k–regular matroids

Let Q(α1, α2, . . . , αk) denote the field obtained by extending the rationals by the
algebraically independent transcendentals α1, α2, . . . , αk. Let Ak denote the set

{±
k∏

i=1

αli
i

k∏
i=1

(αi − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(αi − αj)ni,j : li, mi, ni,j ∈ Z}.

Evidently Ak is a subgroup of the multiplicative group of Q(α1, α2, . . . , αk). Since
−a ∈ Ak for all a ∈ Ak, it follows by (2.1) that Ak∪{0} is a partial field. Set Rk =
(Ak,Q(α1, α2, . . . , αk)). A k–regular matroid is one that can be represented by an
Rk–matrix. When k = 0 we have the partial field Reg which carries the class of
regular matroids. When k = 1 we have the partial field NR which carries the class
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of near-regular matroids. Some properties of 2–regular matroids are established in
[5].

The rest of this section presents two results. It was noted in the introduction
that the class of regular matroids is the class of matroids representable over all
fields and the class of near-regular matroids is the class of matroids representable
over all fields except possibly GF (2). We next show that k–regular matroids are
representable over all fields whose cardinality is at least k + 2. Before doing this,
however, we note that the converse of this is not true. For example it will be shown
at the end of Section 4 that U3,6, which is representable over a field F if and only
if |F| ≥ 4 [3, p. 504], is not 2–regular.

Proposition 3.1. Let M be a k–regular matroid and F be a field such that |F| ≥
k + 2. Then M is representable over F.

Proof. Since |F| ≥ k + 2, we can choose k distinct elements a1, a2, . . . , ak from
F− {0, 1}. Consider the function ϕ : Rk → F defined by ϕ(0) = 0 and

ϕ(±
k∏

i=1

αli
i

k∏
i=1

(αi − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(αi − αj)ni,j )

= ±
k∏

i=1

ali
i

k∏
i=1

(ai − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(ai − aj)ni,j ,

where ϕ(α1) = a1, ϕ(α2) = a2, . . . , ϕ(αk) = ak. It is easily seen that ϕ is a
homomorphism and so, by (2.2), the proposition is proved. �

The other result of this section is needed as a lemma for Theorem 4.2, but it has
independent interest so we call it a theorem. We first note that, for all x, y ∈ P∗,
x + y is defined if and only if −y(−xy−1 − 1) is defined, and the latter expression
is defined if and only if −xy−1 − 1 is defined. It follows that to know whether the
sum of a pair of elements in P is defined it suffices to know those elements z of P
for which z − 1 ∈ P. An element z of a partial field P is fundamental if z − 1 is
defined. Note that 0 and 1 are fundamental in all partial fields.

We now determine the fundamental elements of Rk. The following observation
is used in the proof of this characterisation. If z is an element of Rk, then z
is the quotient of two polynomials in Q[α1, α2, . . . , αk]. Moreover, as elements
of Q[α1, α2, . . . , αk], these polynomials have factors of the form a − b, where a
and b are distinct elements of {0, 1, α1, α2, . . . , αk}. Therefore we can regard an
element of Rk as a quotient of two polynomials in Q[α1, α2, . . . , αk]. In the proof
of Theorem 3.2 we regard all elements of Rk in this way. Furthermore to simplify
the proof of Theorem 3.2 we make the following definitions. Let p be a polynomial
in Rk. By an abuse of language we say that a− b is a factor of p if a− b is a linear
factor of p in the usual sense or {a, b} = {0, 1}. In the former case a − b is defined
to be a normal factor of p.

Theorem 3.2. Let z be an element of Rk such that z 6∈ {0, 1}. Then z is a
fundamental element of Rk if and only if z can be written in one of the following
forms:

(i)
a − b

c − b
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where a, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
(ii)

(a − b)(c − d)
(c − b)(a − d)

where a, b, c, and d are distinct elements of {0, 1, α1, α2, . . . , αk}.
Proof. From the remarks preceding the statement of the proposition, we can regard
z as a quotient of two polynomials p1 and p2 of Rk. Without loss of generality we
may assume that p1 and p2 are relatively prime polynomials. It follows that z is a
fundamental element of Rk if and only if there is a polynomial p3 of Rk such that
p1 − p2 = p3. Now z 6∈ {0, 1}, so by rearranging if necessary, we may assume that
p1 6∈ {1,−1}. The proof finds all pairs of polynomials p1 and p2 in Rk with the
property that p1 − p2 is also a polynomial in Rk. In doing this we immediately
establish all the fundamental elements of Rk.

First we show that p1, p2, and p3 are relatively prime. If p1 and p3 are not
relatively prime, then they have a common normal factor q. Since p2 = p1 − p3,
q is also a normal factor of p2, contradicting the fact that p1 and p2 are relatively
prime. Similarly p2 and p3 are relatively prime. In the proof we repeatedly use this
fact.

Since p1 6∈ {1,−1}, it has a normal factor a−b where a and b are distinct elements
of {0, 1, α1, α2, . . . , αk}. Without loss of generality assume that a = αi for some i ∈
{1, 2, . . . , k}. Let p(αi = b) denote the polynomial obtained by substituting b for αi

in p. Then p1(αi = b) = 0 and so −p2(αi = b) = p3(αi = b). Since p1, p2, and p3 are
relatively prime, it follows that there is an element c in {0, 1, α1, α2, . . . , αk}−{a, b}
such that either c− b or a− c is a factor of p2. If c − b is a factor of p2, then a − c
is a factor of p3. If a − c is a factor of p2, then c − b is a factor of p3. The rest of
the proof is a case analysis based on the factors of p2.

3.2.1. If p2 has at most one normal factor, then one of the following holds: p1 =
a− b and p2 ∈ {c− b, a− c}; p1 = b− a and p2 ∈ {b− c, c− a}; p1 = (a− b)(c− d)
and p2 = (c − b)(a − d); or p1 = (b − a)(c − d) and p2 = (b − c)(a − d).

Proof. Assume that p2 has no normal factor. Then p2 ∈ {1,−1}. Since a ∈
{α1, α2, . . . , αk}, a−c 6∈ {1,−1}. Therefore p2 ∈ {c−b, b−c} where {b, c} = {0, 1}.
Since −p2(αi = b) = p3(αi = b) and since p1, p2, and p3 are relatively prime, it
follows that a− c is the only normal factor of p3. Similarly substituting c for a into
p1 − p2 = p3, a − b is the only normal factor of p1. It is now easily seen that that
the multiplicity of both a − b in p1 and a − c in p3 is 1. Furthermore if p1 = a − b,
then p2 = c − b. Also if p1 = b − a, then p2 = b − c. Hence if p2 has no normal
factors, then the result holds.

Assume that p2 has exactly one normal factor. Then either c − b is a factor of
p2, in which case a − c is a normal factor of p3, or a − c is the only normal factor
of p2, in which case c − b is a factor of p3. Assume that the former case holds.
There are two possibilities to consider. Assume first that c− b is not normal. Since
−p2(αi = b) = p3(αi = b) and since p1, p2, and p3 are relatively prime polynomials,
it follows that there is an element d in {α1, α2, . . . , αk}− {a} such that either b− d
or a− d is the only normal factor of p2. If b− d is a normal factor of p2, then a− d
is a normal factor of p3. If a − d is a normal factor of p2, then b − d is a normal
factor of p3. We now show that b− d is not a normal factor of p2. If it was normal
factor, then, by substituting c for a into p1 − p2 = p3, we see that b − d is a factor
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of p1. But then the fact that p1 and p2 are relatively prime is contradicted. Hence
a−d is the only normal factor in p2. Therefore b−d is a normal factor in p3. Using
the fact that −p2(αi = b) = p3(αi = b) again, it follows that a − c and b − d are
the only normal factors of p3. Substituting c for a into p1 − p2 = p3, it follows that
c − d must be a factor of p1. Moreover it also follows that a − b and c − d are the
only normal factors of p1. Again it is easily seen that all the normal factors of p1,
p2, and p3 have multiplicity 1. If p1 = (a − b)(c − d), then p2 = (c − b)(a − d). If
p1 = (b−a)(c−d), then p2 = (b− c)(a−d). Therefore for this possibility the result
holds. Now assume that c− b is normal. Then, arguing as before, a− c is the only
normal factor of p3 and a − b is the only normal factor of p1. Again it is easily
seen that all normal factors of p1, p2, and p3 have multiplicity 1. If p1 = a − b,
then p2 = c − b. If p1 = b − a, then p2 = b − c. Therefore for this possibility the
result holds. The case that a− c is the only normal factor of p2 is treated similarly,
completing the proof. �

Assume that p2 has at least two normal factors. Assume that c − b is a factor
of p2. Then, using the argument in the proof of (3.2.1), there is an element d in
{0, 1, α1, α2, . . . , αk}− {a, b, c} such that a− d is a normal factor of p2 and b− d is
a factor of p3. Since p1 − p3 = p2, it follows that if a − c is a normal factor of p2,
then b − d is a factor of p2 and a − d is a normal factor of p3.

3.2.2. If p2 has exactly two normal factors, then either p1 = (a − b)(c − d) and
p2 ∈ {(c − b)(a − d), (a − c)(b − d)} or p1 = (b − a)(c − d) and p2 ∈ {(b − c)(a −
d), (c − a)(b − d)}.
Proof. Assume first that c− b is a factor of p2. We first show that c− b must be a
normal factor of p2. If not, then a−d is a normal factor of p2 and both a−c and b−d
are normal factors of p3. Since −p2(αi = b) = p3(αi = b) and since p1, p2, and p3

are relatively prime, it follows that there is an element e of {α1, α2, . . . , αk}−{a, d}
such that either e − b or a − e is a normal factor in p2. Using an argument similar
to that in the proof of (3.2.1), it follows that e− b cannot be a normal factor in p2.
Therefore a − e is a normal factor of p2. Substituting b for d into p1 − p2 = p3, we
see that a − e is also a normal factor in p1. This contradicts the fact that p1 and
p2 are relatively prime. Therefore c − b must be a normal factor in p2. From the
proof of (3.2.1), it follows that either p1 = (a − b)(c − d) and p2 = (c − b)(a − d)
or p1 = (b − a)(c − d) and p2 = (b − c)(a − d). Therefore if c − b is a factor of p2,
then the result holds. Since p1 − p3 = p2, it follows that if a − c is a normal factor
in p2, then the result also holds. �

It now readily follows from the proof of (3.2.2) that p2 has at most two normal
factors. A similar argument also shows that p1 has at most two normal factors.
Therefore all pairs of polynomials p1 and p2 have been found. The theorem follows
on combining (3.2.1) and (3.2.2), and appropriately interchanging the roles of the
elements a, b, c, and d if necessary. �

4. Main Result

The next result is needed as a lemma for Theorem 4.2. We note that if z1, z2 ∈
R∗

k, then z1 − z2 ∈ Rk if and only if z1/z2 − 1 ∈ Rk. The proof is a routine case
analysis using this observation in combination with Theorem 3.2.
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Lemma 4.1. Let z1 and z2 be distinct fundamental elements in Rk such that
z1, z2 6∈ {0, 1}. Then z1 − z2 is defined if and only if {z1, z2} is equal to one of the
following sets:

(i) {
a1 − b

c − b
,
a2 − b

c − b

}

where a1, a2, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
(ii) {

a − b1

c − b1
,
a − b2

c − b2

}

where a, b1, b2, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
(iii) {

a − b

c1 − b
,

a − b

c2 − b

}

where a, b, c1, and c2 are distinct elements of {0, 1, α1, α2, . . . , αk}.
(iv) {

a − b

c − b
,
(a − b)(c − d)
(c − b)(a − d)

}

where a, b, c, and d are distinct elements of {0, 1, α1, α2, . . . , αk}.
(v) {

(a − b)(c − d1)
(c − b)(a − d1)

,
(a − b)(c − d2)
(c − b)(a − d2)

}

where a, b, c, d1, and d2 are distinct elements of {0, 1, α1, α2, . . . , αk}.
Before stating and proving the main result of this paper we make the following

observation. Let ϕ : {α1, α2, . . . , αk} → Rk be a map. Suppose we can extend ϕ
to an automorphism τ of Rk. Then it follows that

τ(±
k∏

i=1

αli
i

k∏
i=1

(αi − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(αi − αj)ni,j )

= ±
k∏

i=1

(ϕ(αi))li

k∏
i=1

(ϕ(αi) − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(ϕ(αi) − ϕ(αj))ni,j .

Hence every automorphism of Rk is determined by its action on {α1, α2, . . . , αk}.
Theorem 4.2. Let ϕ : {α1, α2, . . . , αk} → Rk be a map. Then ϕ extends to an
automorphism of Rk if and only if {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to one of the
following sets:

(i) {
a1 − b

c − b
,
a2 − b

c − b
, . . . ,

ak − b

c − b

}

where {a1, a2, . . . , ak, b, c} = {0, 1, α1, α2, . . . , αk};
(ii) {

a − b1

c − b1
,
a − b2

c − b2
, . . . ,

a − bk

c − bk

}

where {a, b1, b2, . . . , bk, c} = {0, 1, α1, α2, . . . , αk};
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(iii) {
a − b

c1 − b
,

a − b

c2 − b
, . . . ,

a − b

ck − b

}

where {a, b, c1, c2, . . . , ck} = {0, 1, α1, α2, . . . , αk};
(iv) {

a − b

c − b
,
(a − b)(c − d1)
(c − b)(a − d1)

,
(a − b)(c − d2)
(c − b)(a − d2)

, . . . ,
(a − b)(c − dk−1)
(c − b)(a − dk−1)

}

where {a, b, c, d1, d2, . . . , dk−1} = {0, 1, α1, α2, . . . , αk}.
Proof. If ϕ extends to an automorphism, then, using Lemma 4.1, it is clear that
{ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to one of the sets (i)–(iv) in the statement of
the theorem. Conversely, suppose that {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to one of
these sets. We need to show that ϕ extends to an automorphism of Rk. Consider
the function τ : Rk → Rk defined by τ(0) = 0 and

τ(±
k∏

i=1

αli
i

k∏
i=1

(αi − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(αi − αj)ni,j )

= ±
k∏

i=1

(ϕ(αi))li

k∏
i=1

(ϕ(αi) − 1)mi

∏
i,j⊆{1,2,...,k},i6=j

(ϕ(αi) − ϕ(αj))ni,j .

Observe that ϕ extends to an automorphism if and only if τ is an automor-
phism. Therefore it suffices to show that tau satisfies the properties of (2.3).
Evidently τ satisfies (2.3)(ii). We next show that τ is a bijection. Assume first
that {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to set (i) in the statement of the theo-
rem. Then, for all distinct i, j ∈ {1, 2, . . . , k}, τ(αi − 1) = ϕ(αi) − 1 = (ai −
c)/(c − b) and τ(αi − αj) = ϕ(αi) − ϕ(αj) = (ai − aj)/(c − b). Furthermore, as
{a1, a2, . . . , ak, b, c} = {0, 1, α1, α2, . . . , αk}, ai − b, ai − c, ai − aj , and c− b are all
distinct. Therefore exactly one of ai − b, ai − c, ai − aj , and c − b is an element of
{1,−1} and the other elements are exactly the generators αi, αi − 1, and αi − αj

of R∗
k. From these observations one can now readily check that in this case τ is

a bijection. The cases that {ϕ(α1), ϕ(α2), . . . , ϕ(αk)} is equal to one of the sets
(ii)–(iv) is treated similarly. Hence τ satisfies (2.3)(i).

Lastly we show that τ satisfies (2.3)(iii). Suppose z ∈ Rk such that z − 1 is
defined. Using the fact that τ(0) = 0 and τ(1) = 1, it is easily checked that if
z ∈ {0, 1}, then (2.3)(iii) holds. So assume that z 6∈ {0, 1}. Assume first that z is
equal to (a−b)/(c−b) where a, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}.
Then

τ(z) − 1 = τ

(
a − b

c − b

)
− 1

=
τ(a) − τ(b)
τ(c) − τ(b)

− 1

=
τ(a) − τ(c)
τ(c) − τ(b)

= τ

(
a − c

c − b

)
.
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Since the expression in the last line is defined, τ(z) − 1 is defined. The argument
in the case that z is equal to [(a − b)(c − d)]/[(c − b)(a − d)] where a, b, c, and d
are distinct elements of {0, 1, α1, α2, . . . , αk} is similar and is omitted.

Now suppose that τ(z) − 1 is defined. Assume first that τ(z) is equal to (a −
b)/(c − b) where a, b, and c are distinct elements of {0, 1, α1, α2, . . . , αk}. Since τ
is a bijection, it has a unique inverse τ−1 such that τ(τ−1(p)) = p. Using this fact
one readily checks that, for all p, q ∈ Rk, τ−1(pq) = τ−1(p)τ−1(q) and, whenever
τ(p − q) = τ(p) − τ(q), τ−1(p − q) = τ−1(p) − τ−1(q). From this we get

z − 1 = τ−1(τ(z)) − 1

= τ−1

(
a − b

c − b

)
− 1

=
τ−1(a) − τ−1(b)
τ−1(c) − τ−1(b)

− 1

=
τ−1(a) − τ−1(c)
τ−1(c) − τ−1(b)

= τ−1

(
a − c

c − b

)
.

Since the expression in the last line is defined, z − 1 is defined. The argument in
the case that τ(z) is equal to [(a− b)(c−d)]/[(c− b)(a−d)] where a, b, c, and d are
distinct elements of {0, 1, α1, α2, . . . , αk} is similar and is omitted. Moreover in all
cases τ(z − 1) = τ(z) − 1. Hence (2.3)(iii) holds, and the theorem is proved. �

It was noted in Section 3 that the matroid U3,6 is not 2–regular. We now show
that this is indeed the case. This shows that the class of 2–regular matroids is
properly contained in the class of matroids representable over all fields of size at
least 4.

Corollary 4.3. The matroid U3,6 is not 2–regular.

Proof. Assume that [Ir |A] is an R2–representation of U3,6. Using the results of [4,
Section 3], we can assume that A is

 1 1 1
1 a c
1 b d




where a, b, c, and d are non-zero elements of R2. It follows from Theorem 4.2 that
U2,5 is uniquely representable over R2 and so we may also assume that a = α1 and
c = α2. Since U3,6 has no 3–circuits, it follows that b − 1, d − 1, b − a, d − b, and
d − c are all non-zero and defined. Using Lemma 4.1 we get that

(b, d) ∈ {(α2, α1), (α2, (α1 − α2)/(α1 − 1), (α2, α2/α1), (α2, α2(α1 − 1)/(α1 − α2),

(−(α1 − α2)/(α2 − 1), α1), (α1/α2, α1), (−α1(α2 − 1)/(α1 − α2), α1)}.
Furthermore, as [Ir |A] is an R2–representation, the 3 × 3 determinants ad − cb
and ad − cb − d + b + c − a are non-zero and defined. But routine checking shows
that no choice of (b, d) gives both these determinants being non-zero and defined.
Hence [Ir |A] is not a 2–regular representation for U3,6. We conclude that U3,6 is
not 2–regular. �
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