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The k-nearest-neighbor method

The k-nearest-neighbor (knn) procedure has been used in data
analysis and machine learning communities as a quick way to
classify objects into predefined groups.

This approach requires a training dataset where both the class y
and the vector x of characteristics (or covariates) of each
observation are known.
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The k-nearest-neighbor method

The training dataset (yi,xi)1≤i≤n is used by the
k-nearest-neighbor procedure to predict the value of yn+1 given a
new vector of covariates xn+1 in a very rudimentary manner.

The predicted value of yn+1 is simply the most frequent class found
amongst the k nearest neighbors of xn+1 in the set (xi)1≤i≤n.
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The k-nearest-neighbor method

The classical knn procedure does not involve much calibration and
requires no statistical modeling at all!

There exists a Bayesian reformulation.
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vision dataset (1)

vision: 1373 color pictures, described by 200 variables rather than
by the whole table of 500× 375 pixels

Four classes of images: class C1 for motorcycles, class C2 for
bicycles, class C3 for humans and class C4 for cars
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vision dataset (2)

Typical issue in computer vision problems: build a classifier to
identify a picture pertaining to a specific topic without human
intervention

We use about half of the images (648 pictures) to construct the
training dataset and we save the 689 remaining images to test the
performance of our procedures.
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vision dataset (3)
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A probabilistic version of the knn methodology (1)

Symmetrization of the neighborhood relation: If xi belongs to the
k-nearest-neighborhood of xj and if xj does not belong to the
k-nearest-neighborhood of xi, the point xj is added to the set of
neighbors of xi

Notation: i ∼k j

The transformed set of neighbors is then called the symmetrized
k-nearest-neighbor system.
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A probabilistic version of the knn methodology (2)
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A probabilistic version of the knn methodology (3)

P(yi = Cj |y−i,X, β, k) =

exp

β
∑
ℓ∼ki

ICj (yℓ)
/

Nk


G∑

g=1

exp

β
∑
ℓ∼ki

ICg(yℓ)
/

Nk

 ,

Nk being the average number of neighbours over all xi’s, β > 0
and

y−i = (y1, . . . , yi−1, yi+1, . . . , yn) and X = {x1, . . . ,xn} .
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A probabilistic version of the knn methodology (4)

β grades the influence of the prevalent neighborhood class ;

the probabilistic knn model is conditional on the covariate
matrix X ;

the frequencies n1/n, . . . , nG/n of the classes within the
training set are representative of the marginal probabilities
p1 = P(yi = C1), . . . , pG = P(yi = CG):

If the marginal probabilities pg are known and different from ng/n
=⇒ reweighting the various classes according to their true
frequencies
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Bayesian analysis of the knn probabilistic model

From a Bayesian perspective, given a prior distribution π(β, k)
with support [0, βmax ]× {1, . . . , K}, the marginal predictive
distribution of yn+1 is

P(yn+1 = Cj |xn+1,y,X) =
K∑

k=1

∫ βmax

0
P(yn+1 = Cj |xn+1,y,X, β, k)π(β, k|y,X) dβ ,

where π(β, k|y,X) is the posterior distribution given the training
dataset (y,X).
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Unknown normalizing constant

Major difficulty: it is impossible to compute f(y|X, β, k)

Use instead the pseudo-likelihood made of the product of the full
conditionals

f̂(y|X, β, k) =
G∏

g=1

∏
yi=Cg

P(yi = Cg|y−i,X, β, k)
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Pseudo-likelihood approximation

Pseudo-posterior distribution

π̂(β, k|y,X) ∝ f̂(y|X, β, k)π(β, k)

Pseudo-predictive distribution

P̂(yn+1 = Cj |xn+1,y,X) =
K∑

k=1

∫ βmax

0
P(yn+1 = Cj |xn+1,y,X, β, k)π̂(β, k|y,X) dβ .
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MCMC implementation (1)

MCMC approximation is required

Random walk Metropolis–Hastings algorithm

Both β and k are updated using random walk proposals:

(i) for β, logistic tranformation

β(t) = βmax exp(θ(t))
/
(exp(θ(t)) + 1) ,

in order to be able to simulate a normal random walk on the θ’s,
θ̃ ∼ N (θ(t), τ2);
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MCMC implementation (2)

(ii) for k, we use a uniform proposal on the r neighbors of k(t),
namely on {k(t)− r, . . . , k(t)− 1, k(t) +1, . . . k(t) + r}∩{1, . . . , K}.

Using this algorithm, we can thus derive the most likely class
associated with a covariate vector xn+1 from the approximated
probabilities,

1
M

M∑
i=1

P̂
(
yn+1 = l|xn+1, y, x, (β(i), k(i))

)
.
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MCMC implementation (3)
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βmax = 15, K = 83, τ2 = 0.05 and r = 1
k sequences for the knn Metropolis–Hastings β based on 20, 000 iterations
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Image Segmentation

This underlying structure of the “true” pixels is denoted by x,
while the observed image is denoted by y.

Both objects x and y are arrays, with each entry of x taking a
finite number of values and each entry of y taking real values.

We are interested in the posterior distribution of x given y
provided by Bayes’ theorem, π(x|y) ∝ f(y|x)π(x).

The likelihood, f(y|x), describes the link between the observed
image and the underlying classification.
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Menteith dataset (1)

The Menteith dataset is a 100× 100 pixel satellite image of the
lake of Menteith.

The lake of Menteith is located in Scotland, near Stirling, and
offers the peculiarity of being called “lake” rather than the
traditional Scottish “loch.”
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Menteith dataset (2)
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Satellite image of the lake of Menteith
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Random Fields

If we take a lattice I of sites or pixels in an image, we denote by
i ∈ I a coordinate in the lattice. The neighborhood relation is
then denoted by ∼.

A random field on I is a random structure indexed by the lattice
I, a collection of random variables {xi; i ∈ I} where each xi takes
values in a finite set χ.
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Markov Random Fields

Let xn(i) be the set of values taken by the neighbors of i.

A random field is a Markov random field (MRF) if the conditional
distribution of any pixel given the other pixels only depends on the
values of the neighbors of that pixel; i.e., for i ∈ I,

π(xi|x−i) = π(xi|xn(i)) .
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Ising Models

If pixels of the underlying (true) image x can only take two colors
(black and white, say), x is then binary, while y is a grey-level
image.

We typically refer to each pixel xi as being foreground if xi = 1
(black) and background if xi = 0 (white).

We have

π(xi = j|x−i) ∝ exp(βni,j) , β > 0 ,

where ni,j =
∑

ℓ∈n(i) Ixℓ=j is the number of neighbors of xi with
color j.
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Ising Models

The Ising model is defined via full conditionals

π(xi = 1|x−i) =
exp(βni,1)

exp(βni,0) + exp(βni,1)
,

and the joint distribution satisfies

π(x) ∝ exp

β
∑
j∼i

Ixj=xi

 ,

where the summation is taken over all pairs (i, j) of neighbors.
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Simulating from the Ising Models

The normalizing constant of the Ising Model is intractable except
for very small lattices I...

Direct simulation of x is not possible!
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Ising Gibbs Sampler

Algorithm (Ising Gibbs Sampler)

Initialization: For i ∈ I, generate independently

x
(0)
i ∼ B(1/2) .

Iteration t (t ≥ 1):
1 Generate u = (ui)i∈I , a random ordering of the elements of I.
2 For 1 ≤ ℓ ≤ |I|, update n

(t)
uℓ,0 and n

(t)
uℓ,1, and generate

x(t)
uℓ
∼ B

{
exp(βn

(t)
uℓ,1)

exp(βn
(t)
uℓ,0) + exp(βn

(t)
uℓ,1)

}
.
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Ising Gibbs Sampler (2)
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Simulations from the Ising model with a four-neighbor neighborhood structure
on a 100× 100 array after 1, 000 iterations of the Gibbs sampler: β varies in
steps of 0.1 from 0.3 to 1.2.
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Potts Models

If there are G colors and if ni,g denotes the number of neighbors of
i ∈ I with color g (1 ≤ g ≤ G) (that is, ni,g =

∑
j∼i Ixj=g)

In that case, the full conditional distribution of xi is chosen to
satisfy π(xi = g|x−i) ∝ exp(βni,g).
This choice corresponds to the Potts model, whose joint density is
given by

π(x) ∝ exp

β
∑
j∼i

Ixj=xi

 .
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Simulating from the Potts Models (1)

Algorithm (Potts Metropolis–Hastings Sampler)

Initialization: For i ∈ I, generate independently

x
(0)
i ∼ U ({1, . . . , G}) .

Iteration t (t ≥ 1):
1 Generate u = (ui)i∈I a random ordering of the elements of I.
2 For 1 ≤ ℓ ≤ |I|,

generate

x̃(t)
uℓ

∼ U ({1, x(t−1)
uℓ

− 1, x(t−1)
uℓ

+ 1, . . . , G}) ,
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Simulating from the Potts Models (2)

Algorithm (continued)

compute the n
(t)
ul,g and

ρl =
{

exp(βn
(t)
uℓ,x̃

)/ exp(βn(t)
uℓ,xuℓ

)
}
∧ 1 ,

and set x
(t)
uℓ equal to x̃uℓ

with probability ρl.
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Simulating from the Potts Models (3)
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Simulations from the Potts model with four grey levels and a four-neighbor
neighborhood structure based on 1000 iterations of the Metropolis–Hastings
sampler. The parameter β varies in steps of 0.1 from 0.3 to 1.2.
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Posterior Inference (1)

The prior on x is a Potts model with G categories,

π(x|β) =
1

Z(β)
exp

β
∑
i∈I

∑
j∼i

Ixj=xi

 ,

where Z(β) is the normalizing constant.

Given x, we assume that the observations in y are independent
normal random variables,

f(y|x, σ2, µ1, . . . , µG) =
∏
i∈I

1
(2πσ2)1/2

exp
{
− 1

2σ2
(yi − µxi)

2

}
.
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Posterior Inference (2)

Priors

β ∼ U ([0, 2]) ,

µ = (µ1, . . . , µG) ∼ U ({µ ; 0 ≤ µ1 ≤ . . . ≤ µG ≤ 255}) ,

π(σ2) ∝ σ−2I]0,∞[(σ
2) ,

the last prior corresponding to a uniform prior on log σ.
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Posterior Inference (3)

Posterior distribution

π(x, β, σ2, µ|y) ∝ π(β, σ2, µ)× 1
Z(β)

exp

β
∑
i∈I

∑
j∼i

Ixj=xi


×

∏
i∈I

1
(2πσ2)1/2

exp
{ −1

2σ2
(yi − µxi)

2

}
.
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Full conditionals (1)

P(xi = g|y, β, σ2, µ) ∝ exp

β
∑
j∼i

Ixj=g − 1
2σ2

(yi − µg)2

 ,

can be simulated directly.

ng =
∑
i∈I

Ixi=g and sg =
∑
i∈I

Ixi=gyi

the full conditional distribution of µg is a truncated normal
distribution on [µg−1, µg+1] with mean sg/ng and variance σ2/ng
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Full conditionals (2)

The full conditional distribution of σ2 is an inverse gamma
distribution with parameters |I|2/2 and

∑
i∈I(yi − µxi)

2/2.

The full conditional distribution of β is such that

π(β|y) ∝ 1
Z(β)

exp

β
∑
i∈I

∑
j∼i

Ixj=xi

 .
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Path sampling Approximation (1)

Z(β) =
∑
x

exp {βS(x)} ,

where S(x) =
∑

i∈I
∑

j∼i Ixj=xi

dZ(β)
dβ

= Z(β)
∑
x

S(x)
exp(βS(x))

Z(β)

= Z(β) Eβ [S(X)] ,

d log Z(β)
dβ

= Eβ [S(X)] .
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Path sampling Approximation (2)

Path sampling identity

log {Z(β1)/Z(β0)} =
∫ β1

β0

Eβ [S(x)]dβ .
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Path sampling Approximation (3)

For a given value of β, Eβ [S(X)] can be approximated from an
MCMC sequence.

The integral itself can be approximated by computing the value of
f(β) = Eβ [S(X)] for a finite number of values of β and

approximating f(β) by a piecewise-linear function f̂(β) for the
intermediate values of β.
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Path sampling Approximation (3)

0.0 0.5 1.0 1.5 2.0

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0

Approximation of f(β) for the Potts model on a 100× 100 image, a
four-neighbor neighborhood, and G = 6, based on 1500 MCMC iterations after
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Posterior Approximation (1)

0 500 1000 1500

32.
0

33.
0

34.
0

35.
0

0 500 1000 1500

58.
5

59.
0

59.
5

60.
0

60.
5

0 500 1000 1500

70.
0

70.
5

71.
0

71.
5

72.
0

72.
5

0 500 1000 1500

83.
0

83.
5

84.
0

84.
5

85.
0

0 500 1000 1500

95.
0

95.
5

96.
0

96.
5

97.
0

97.
5

0 500 1000 1500

110
.5

111
.5

112
.5

113
.5

Dataset Menteith: Sequence of µg’s based on 2000 iterations of the hybrid
Gibbs sampler (read row-wise from µ1 to µ6).
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Posterior Approximation (2)
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Histograms of the µg’s
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Posterior Approximation (3)
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Raw plots and histograms of the σ2’s and β’s based on 2000 iterations of the
hybrid Gibbs sampler
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Image segmentation (1)
Based on (x(t))1≤t≤T , an estimator of x needs to be derived from
an evaluation of the consequences of wrong allocations.

Two common ways corresponding to two loss functions

L1(x, x̂) =
∑
i∈I

Ixi 6=x̂i ,

L2(x, x̂) = Ix 6=bx ,

Corresponding estimators

x̂MPM
i = arg max

1≤g≤G
Pπ(xi = g|y) , i ∈ I ,

x̂MAP = arg max
x

π(x|y) ,
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Image segmentation (2)

x̂MPM and x̂MAP not available in closed form!
Approximation

x̂MPM
i = max

g∈{1,...,G}

N∑
j=1

I
x
(j)
i =g

,

based on a simulated sequence, x(1), . . . ,x(N).
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Image segmentation (3)
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(top) Segmented image based on the MPM estimate produced after 2000
iterations of the Gibbs sampler and (bottom) the observed image
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