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Missing variable models

Complexity of a model may originate from the fact that some piece
of information is missing

Example

Arnason–Schwarz model with missing zones
Probit model with missing normal variate

Generic representation

f(x|θ) =

∫

Z

g(x, z|θ) dz
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Mixture models

Models of mixtures of distributions:

x ∼ fj with probability pj ,

for j = 1, 2, . . . , k, with overall density

p1f1(x) + · · ·+ pkfk(x) .

Usual case: parameterised components

k∑

i=1

pif(x|θi)

where weights pi’s are distinguished from other parameters
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Motivations

Dataset made of several latent/missing/unobserved
strata/subpopulations. Mixture structure due to the missing
origin/allocation of each observation to a specific
subpopulation/stratum. Inference on either the allocations
(clustering) or on the parameters (θi, pi) or on the number of
groups

Semiparametric perspective where mixtures are basis
approximations of unknown distributions
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License
Dataset derived from license plate image
Grey levels concentrated on 256 values later jittered
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Likelihood

For a sample of independent random variables (x1, · · · , xn),
likelihood

n∏

i=1

{p1f1(xi) + · · ·+ pkfk(xi)} .

Expanding this product involves

kn

elementary terms: prohibitive to compute in large samples.
But likelihood still computable [pointwise] in O(kn) time.
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Normal mean benchmark

Normal mixture

pN (µ1, 1) + (1− p)N (µ2, 1)

with only unknown means (2-D representation possible)

Identifiability

Parameters µ1 and µ2

identifiable: µ1 cannot be
confused with µ2 when p is
different from 0.5.

Presence of a spurious mode,

understood by letting p go to 0.5
−1 0 1 2 3 4

−1
0

1
2

3
4

µ1

µ 2

297 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Mixture models

Mixture models

Bayesian Inference

For any prior π (θ,p), posterior distribution of (θ,p) available up
to a multiplicative constant

π(θ,p|x) ∝




n∏

i=1

k∑

j=1

pj f(xi|θj)


 π (θ,p) .

at a cost of order O(kn)

Difficulty

Despite this, derivation of posterior characteristics like posterior
expectations only possible in an exponential time of order O(kn)!
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Missing variable representation
Associate to each xi a missing/latent variable zi that indicates its
component:

zi|p ∼ Mk(p1, . . . , pk)

and
xi|zi,θ ∼ f(·|θzi) .

Completed likelihood

ℓ(θ,p|x, z) =
n∏

i=1

pzi
f(xi|θzi

) ,

and

π(θ,p|x, z) ∝
[

n∏

i=1

pzi
f(xi|θzi

)

]
π (θ,p) ,

where z = (z1, . . . , zn).
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Partition sets

Denote by Z = {1, . . . , k}n set of the kn possible vectors z.
Z decomposed into a partition of sets

Z = ∪r

j=1Zj

For a given allocation size vector (n1, . . . , nk), where
n1 + . . .+ nk = n, partition sets

Zj =

{
z :

n∑

i=1

Izi=1 = n1, . . . ,

n∑

i=1

Izi=k = nk

}
,

for all allocations with the given allocation size (n1, . . . , nk) and
where labels j = j(n1, . . . , nk) defined by lexicographical ordering
on the (n1, . . . , nk)’s.
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Posterior closed form representations

π (θ,p|x) =
r∑

i=1

∑

z∈Zi

ω (z)π (θ,p|x, z) ,

where ω (z) represents marginal posterior probability of the
allocation z conditional on x [derived by integrating out the
parameters θ and p]

Bayes estimator of (θ,p)

r∑

i=1

∑

z∈Zi

ω (z) E
π [θ,p|x, z] .

c© Too costly: 2n terms
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General Gibbs sampling for mixture models

Take advantage of the missing data structure:

Algorithm

Initialization: choose p(0) and θ(0) arbitrarily

Step t. For t = 1, . . .

1 Generate z
(t)
i (i = 1, . . . , n) from (j = 1, . . . , k)

P

(
z
(t)
i = j|p(t−1)

j , θ
(t−1)
j , xi

)
∝ p

(t−1)
j f

(
xi|θ(t−1)

j

)

2 Generate p(t) from π(p|z(t)),
3 Generate θ(t) from π(θ|z(t),x).
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Exponential families

When
f(x|θ) = h(x) exp(R(θ) · T (x) > −ψ(θ))

simulation of both p and θ usually straightforward:
Conjugate prior on θj given byBack to definition

πj(θ) ∝ exp(R(θ) · αj − βjψ(θ)) ,

where αj ∈ R
k and βj > 0 are hyperparameters and

p ∼ D (γ1, . . . , γk)

[Dirichlet distribution]
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Gibbs sampling for exponential family mixtures

Algorithm

Initialization. Choose p(0) and θ(0),

Step t. For t = 1, . . .

1 Generate z
(t)
i (i = 1, . . . , n, j = 1, . . . , k) from

P

(
z
(t)
i = j|p(t−1)

j , θ
(t−1)
j , xi

)
∝ p

(t−1)
j f

(
xi|θ(t−1)

j

)

2 Compute n
(t)
j =

∑n
i=1 I

z
(t)
i =j

, s
(t)
j =

∑n
i=1 I

z
(t)
i =j

t(xi)

3 Generate p(t) from D (γ1 + n1, . . . , γk + nk),

4 Generate θ
(t)
j (j = 1, . . . , k) from

π(θj |z(t),x) ∝ exp
(
R(θj) · (α+ s

(t)
j )− ψ(θj)(nj + β)

)
.
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Normal mean example

For mixture of two normal distributions with unknown means,

pN (µ, τ2) + (1− p)N (θ, σ2) ,

and a normal prior N (δ, 1/λ) on µ1 and µ2,
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Normal mean example (cont’d)

Algorithm

Initialization. Choose µ
(0)
1 and µ

(0)
2 ,

Step t. For t = 1, . . .

1 Generate z
(t)
i (i = 1, . . . , n) from

P

(
z
(t)
i = 1

)
= 1−P

(
z
(t)
i = 2

)
∝ p exp

(
−1

2

(
xi − µ

(t−1)
1

)2
)

2 Compute n
(t)
j =

n∑

i=1

I
z
(t)
i =j

and (sx
j )(t) =

n∑

i=1

I
z
(t)
i =j

xi

3 Generate µ
(t)
j (j = 1, 2) from N

(
λδ + (sx

j )(t)

λ+ n
(t)
j

,
1

λ+ n
(t)
j

)
.
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Normal mean example (cont’d)
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License

Consider k = 3 components, a D3(1/2, 1/2, 1/2) prior for the
weights, a N (x, σ̂2/3) prior on the means µi and a G a(10, σ̂2)
prior on the precisions σ−2

i , where x and σ̂2 are the empirical mean
and variance of License

[Empirical Bayes]
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Metropolis–Hastings alternative

For the Gibbs sampler, completion of z increases the dimension of
the simulation space and reduces the mobility of the parameter
chain.

Metropolis–Hastings algorithm available since posterior available in
closed form, as long as q provides a correct exploration of the
posterior surface, since

π(θ′,p′|x)

π(θ,p|x)

q(θ,p|θ′,p′)
q(θ′,p′|θ,p)

∧ 1

computable in O(kn) time
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Random walk Metropolis–Hastings

Proposal distribution for the new value

θ̃j = θ
(t−1)
j + uj where uj ∼ N (0, ζ2)

In mean mixture case, Gaussian random
walk proposal is

µ̃1 ∼ N

(
µ

(t−1)
1 , ζ2

)
and

µ̃2 ∼ N

(
µ

(t−1)
2 , ζ2

)
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MCMC approaches

Random walk Metropolis–Hastings for means

Algorithm

Initialization:
Choose µ

(0)
1 and µ

(0)
2

Iteration t (t ≥ 1):

1 Generate µ̃1 from N

(
µ

(t−1)
1 , ζ2

)
,

2 Generate µ̃2 from N

(
µ

(t−1)
2 , ζ2

)
,

3 Compute

r = π (µ̃1, µ̃2|x)
/
π
(
µ

(t−1)
1 , µ

(t−1)
2 |x

)

4 Generate u ∼ U[0,1]: if u < r, then
(
µ

(t)
1 , µ

(t)
2

)
= (µ̃1, µ̃2)

else
(
µ

(t)
1 , µ

(t)
2

)
=
(
µ

(t−1)
1 , µ

(t−1)
2

)
.
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Random walk extensions

Difficulties with constrained parameters, like p such that∑k
i=1 pk = 1.

Resolution by overparameterisation

pj = wj

/ k∑

l=1

wl , wj > 0 ,

and proposed move on the wj ’s

log(w̃j) = log(w
(t−1)
j ) + uj where uj ∼ N (0, ζ2)

 Watch out for the Jacobian in the log transform
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Identifiability

A mixture model is invariant under permutations of the indices of
the components.
E.g., mixtures

0.3N (0, 1) + 0.7N (2.3, 1)

and
0.7N (2.3, 1) + 0.3N (0, 1)

are exactly the same!

c© The component parameters θi are not identifiable
marginally since they are exchangeable
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Connected difficulties

1 Number of modes of the likelihood of order O(k!):
c© Maximization and even [MCMC] exploration of the
posterior surface harder

2 Under exchangeable priors on (θ,p) [prior invariant under
permutation of the indices], all posterior marginals are
identical:
c© Posterior expectation of θ1 equal to posterior expectation
of θ2.
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License

Since Gibbs output does not produce exchangeability, the Gibbs
sampler has not explored the whole parameter space: it lacks
energy to switch simultaneously enough component allocations at
once
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Label switching paradox

We should observe the exchangeability of the components [label
switching] to conclude about convergence of the Gibbs sampler.

If we observe it, then we do not know how to estimate the
parameters.

If we do not, then we are uncertain about the convergence!!!
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Constraints

Usual reply to lack of identifiability: impose constraints like
µ1 ≤ . . . ≤ µk in the prior

Mostly incompatible with the topology of the posterior surface:
posterior expectations then depend on the choice of the
constraints.

Computational detail

The constraint does not need to be imposed during the simulation
but can instead be imposed after simulation, by reordering the
MCMC output according to the constraint. This avoids possible
negative effects on convergence.
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Relabeling towards the mode

Selection of one of the k! modal regions of the posterior once
simulation is over, by computing the approximate MAP

(θ,p)(i
∗) with i∗ = arg max

i=1,...,M
π
{

(θ,p)(i)|x
}

Pivotal Reordering

At iteration i ∈ {1, . . . ,M},
1 Compute the optimal permutation

τi = arg min
τ∈Sk

d
(
τ
{

(θ(i),p(i)), (θ(i∗),p(i∗))
})

where d(·, ·) distance in the parameter space.

2 Set (θ(i),p(i)) = τi((θ
(i),p(i))).
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Re-ban on improper priors

Difficult to use improper priors in the setting of mixtures because
independent improper priors,

π (θ) =
k∏

i=1

πi(θi) , with

∫
πi(θi)dθi = ∞

end up, for all n’s, with the property

∫
π(θ,p|x)dθdp = ∞ .

Reason

There are (k − 1)n terms among the kn terms in the expansion
that allocate no observation at all to the i-th component.
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Tempering

Facilitate exploration of π by flattening the target: simulate from
πα(x) ∝ π(x)α for α > 0 large enough

Determine where the modal regions of π are (possibly with
parallel versions using different α’s)

Recycle simulations from π(x)α into simulations from π by
importance sampling

Simple modification of the Metropolis–Hastings algorithm,
with new acceptance

{(
π(θ′,p′|x)

π(θ,p|x)

)α
q(θ,p|θ′,p′)
q(θ′,p′|θ,p)

}
∧ 1
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Tempering with the mean mixture
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MCMC for variable dimension models

One of the things we do
not know is
the number of things we
do not know
—P. Green, 1996—

Example

the number of components in a mixture

the number of covariates in a regression model

the number of different capture probabilities in a
capture-recapture model

the number of lags in a time-series model
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Variable dimension models

Variable dimension model defined as a collection of models
(k = 1. . . . ,K),

Mk = {f(·|θk); θk ∈ Θk} ,

associated with a collection of priors on the parameters of these
models,

πk(θk) ,

and a prior distribution on the indices of these models,

{̺(k) , k = 1, . . . ,K} .

Global notation:
π(Mk, θk) = ̺(k)πk(θk)
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Bayesian inference for variable dimension models

Two perspectives:
1 consider the variable dimension model as a whole and

estimate quantities meaningful for the whole like predictives

∑

k

Pr(Mk|x1, . . . , xn)

∫
fk(x|θk)dxπk(θk|x1, . . . , xn)dθ .

& quantities only meaningful for submodels (like moments of
θk), computed from πk(θk|x1, . . . , xn). [Usual setup]

2 resort to testing by choosing the best submodel via

p(Mi|x) =

pi

Z

Θi

fi(x|θi)πi(θi)dθi

X

j

pj

Z

Θj

fj(x|θj)πj(θj)dθj
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Green’s reversible jumps

Computational burden in exploring [possibly infinite] complex
parameter space: Green’s method set up a proper
measure–theoretic framework for designing moves between
models/spaces Mk/Θk of varying dimensions [no one-to-one
correspondence]

Create a reversible kernel K on H =
⋃

k{k} ×Θk such that

∫

A

∫

B
K(x, dy)π(x)dx =

∫

B

∫

A
K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))] and for all
sets A,B [un-detailed balance]
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Green’s reversible kernel

Since Markov kernel K necessarily of the form [either stay at the
same value or move to one of the states]

K(x,B) =

∞∑

m=1

∫
ρm(x, y)qm(x, dy) + ω(x)IB(x)

where qm(x, dy) transition measure to model Mm and ρm(x, y)
corresponding acceptance probability, only need to consider
proposals between two models, M1 and M2, say.
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Green’s reversibility constraint

If transition kernels between those models are K1→2(θ1, dθ) and
K2→1(θ2, dθ), formal use of the detailed balance condition

π(dθ1)K1→2(θ1, dθ) = π(dθ2)K2→1(θ2, dθ) ,

 To preserve stationarity, necessary symmetry between
moves/proposals from M1 to M2 and from M2 to M1
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Two-model transitions

How to move from model M1 to M2, with Markov chain being in
state θ1 ∈ M1 [i.e. k = 1]?

Most often M1 and M2 are of different dimensions, e.g.
dim(M2) > dim(M1).

In that case, need to supplement both spaces Θk1 and Θk2 with
adequate artificial spaces to create a one-to-one mapping between
them, most often by augmenting the space of the smaller model.
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Two-model completions

E.g., move from θ2 ∈ Θ2 to Θ1 chosen to be a deterministic
transform of θ2

θ1 = Ψ2→1(θ2) ,

Reverse proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 r.v. of dimension dim(M2)− dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .
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Two-model acceptance probability

In this case, θ2 has density [under stationarity]

q1→2(θ2) = π1(θ1)ϕ1→2(v1→2)

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣
−1

,

by the Jacobian rule.
To make it π2(θ2) we thus need to accept this value with
probability

α(θ1, v1→2) = 1 ∧ π(M2, θ2)

π(M1, θ1)ϕ1→2(v1→2)

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣ .

 This is restricted to the case when only moves between M1

and M2 are considered
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Interpretation

The representation puts us back in a fixed dimension setting:

M1 ×V1→2 and M2 in one-to-one relation.

reversibility imposes that θ1 is derived as

(θ1, v1→2) = Ψ−1
1→2(θ2)

appears like a regular Metropolis–Hastings move from the
couple (θ1, v1→2) to θ2 when stationary distributions are
π(M1, θ1)× ϕ1→2(v1→2) and π(M2, θ2), and when proposal
distribution is deterministic (??)
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Pseudo-deterministic reasoning

Consider the proposals

θ2 ∼ N (Ψ1→2(θ1, v1→2), ε) and Ψ1→2(θ1, v1→2) ∼ N (θ2, ε)

Reciprocal proposal has density

exp
{
−(θ2 −Ψ1→2(θ1, v1→2))

2/2ε
}

√
2πε

×
∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣

by the Jacobian rule.
Thus Metropolis–Hastings acceptance probability is

1 ∧ π(M2, θ2)

π(M1, θ1)ϕ1→2(v1→2)

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣

Does not depend on ε: Let ε go to 0
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Generic reversible jump acceptance probability

If several models are considered simultaneously, with probability
̟1→2 of choosing move to M2 while in M1, as in

K(x, B) =
∞X

m=1

Z
ρm(x, y)qm(x, dy) + ω(x)IB(x)

acceptance probability of θ2 = Ψ1→2(θ1, v1→2) is

α(θ1, v1→2) = 1 ∧ π(M2, θ2)̟2→1

π(M1, θ1)̟1→2 ϕ1→2(v1→2)

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣

while acceptance probability of θ1 with (θ1, v1→2) = Ψ−1
1→2(θ2) is

α(θ1, v1→2) = 1 ∧ π(M1, θ1)̟1→2 ϕ1→2(v1→2)

π(M2, θ2)̟2→1

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣
−1
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Green’s sampler

Algorithm

Iteration t (t ≥ 1): if x(t) = (m, θ(m)),

1 Select model Mn with probability πmn

2 Generate umn ∼ ϕmn(u) and set
(θ(n), vnm) = Ψm→n(θ(m), umn)

3 Take x(t+1) = (n, θ(n)) with probability

min

(
π(n, θ(n))

π(m, θ(m))

πnmϕnm(vnm)

πmnϕmn(umn)

∣∣∣∣
∂Ψm→n(θ(m), umn)

∂(θ(m), umn)

∣∣∣∣ , 1
)

and take x(t+1) = x(t) otherwise.
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Mixture of normal distributions

Mk =



(pjk, µjk, σjk);

k∑

j=1

pjkN (µjk, σ
2
jk)





Restrict moves from Mk to adjacent models, like Mk+1 and
Mk−1, with probabilities πk(k+1) and πk(k−1).
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Mixture birth

Take Ψk→k+1 as a birth step: i.e. add a new normal component in
the mixture, by generating the parameters of the new component
from the prior distribution

(µk+1, σk+1) ∼ π(µ, σ) and pk+1 ∼ Be(a1, a2 + . . .+ ak)

if (p1, . . . , pk) ∼ Mk(a1, . . . , ak)

Jacobian is (1− pk+1)
k−1

Death step then derived from the reversibility constraint by
removing one of the k components at random.
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Mixture acceptance probability

Birth acceptance probability

min

(
π(k+1)k

πk(k+1)

(k + 1)!

(k + 1)k!

π(k + 1, θk+1)

π(k, θk) (k + 1)ϕk(k+1)(uk(k+1))
, 1

)

= min

(
π(k+1)k

πk(k+1)

̺(k + 1)

̺(k)

ℓk+1(θk+1) (1− pk+1)
k−1

ℓk(θk)
, 1

)
,

where ℓk likelihood of the k component mixture model Mk and
̺(k) prior probability of model Mk.
Combinatorial terms: there are (k + 1)! ways of defining a (k + 1)

component mixture by adding one component, while, given a (k + 1)

component mixture, there are (k+ 1) choices for a component to die and

then k! associated mixtures for the remaining components.
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More coordinated moves

Use of local moves that preserve structure of the original model.

Split move from Mk to Mk+1: replaces a random component, say
the jth, with two new components, say the jth and the (j + 1)th,
that are centered at the earlier jth component. And opposite
merge move obtained by joining two components together.
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Splitting with moment preservation

Split parameters for instance created under a moment preservation
condition:

pjk = pj(k+1) + p(j+1)(k+1) ,
pjkµjk = pj(k+1)µj(k+1) + p(j+1)(k+1)µ(j+1)(k+1) ,
pjkσ

2
jk = pj(k+1)σ

2
j(k+1) + p(j+1)(k+1)σ

2
(j+1)(k+1) .

Opposite merge move
obtained by reversibility
constraint

M4

M5

M3
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Splitting details

Generate the auxiliary variable uk(k+1) as

u1, u3 ∼ U(0, 1), u2 ∼ N (0, τ2)

and take

pj(k+1) = u1pjk , p(j+1)(k+1) = (1− u1)pjk ,

µj(k+1) = µjk + u2 , µ(j+1)(k+1) = µjk − pj(k+1)u2

pjk−pj)(k+1)
,

σ2
j(k+1) = u3σ

2
jk , σ(j+1)(k+1) =

pjk−pj(k+1)u3

pjk−pj(k+1)
σ2

jk .
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Jacobian

Corresponding Jacobian

det

0
BBBBBBBB@

u1 1− u1 · · · · · · · · · · · ·
pjk −pjk · · · · · · · · · · · ·
0 0 1 1 · · · · · ·

0 0 1
−pj(k+1)

pjk−pj(k+1)
· · · · · ·

0 0 0 0 u3
pjk−pj(k+1)u3

pjk−pj(k+1)

0 0 0 0 σ2
jk

−pj(k+1)

pjk−pj(k+1)
σ2

jk

1
CCCCCCCCA

=
pjk

(1− u1)2
σ2

jk
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Acceptance probability

Corresponding split acceptance probability

min

(
π̃(k+1)k

π̃k(k+1)

̺(k + 1)

̺(k)

πk+1(θk+1)ℓk+1(θk+1)

πk(θk)ℓk(θk)

pjk

(1− u1)2
σ2

jk, 1

)

where π̃(k+1)k and π̃k(k+1) denote split and merge probabilities
when in models Mk and Mk+1

Factorial terms vanish: for a split move there are k possible choices of

the split component and then (k + 1)! possible orderings of the θk+1

vector while, for a merge, there are (k + 1)k possible choices for the

components to be merged and then k! ways of ordering the resulting θk.
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