## CAF

Given a CRS  $Q = (X, \mathcal{R}, C, F)$ , a subset  $\mathcal{R}'$  of  $\mathcal{R}$  is a *CAF* (constructively autocatalytic F-generated set) for Q if  $\mathcal{R}'$  is nonempty and the reactions in  $\mathcal{R}'$  can be ordered in such a way that for reach reaction r in  $\mathcal{R}'$ , each reactant and at least one catalyst of r has the property that it is either produced by an earlier reaction from  $\mathcal{R}'$  or is present in the food set.

In words, a CAF is like a RAF with the extra requirement that no spontaneous (uncatalysed) reactions are allowed to occur in its formation (i.e. the catalyst needs to be already present when it is first needed).

## pseudo-RAF

Given a CRS  $\mathcal{Q} = (X, \mathcal{R}, C, F)$ , a subset  $\mathcal{R}'$  of  $\mathcal{R}$  is a *p*-*RAF* (pseudo-RAF) if  $\mathcal{R}'$  is nonempty and it satisfies the reflexively autocatalytic property for a RAF, and the following weakened form of the F-generated condition.

• For each reaction  $r \in \mathcal{R}'$ , each reactant of r is either present in the food set or generated by another reaction in  $\mathcal{R}'$ .

In words, a pseudo-RAF is a subset of reactions that is collectively autocatalytic and where each reaction proceeds from products of the other reactions or food elements. Once a pseudo-RAF exists it will continue as a collectively autocatalytic self-sustaining system, however unlike a RAF or a CAF it cannot 'get going' from scratch starting with just the molecules in a food set. Note that if one of these objects (RAF, CAF or p-RAF) exists within a CRS then there is always a unique maximal one, and it can be found by a fast algorithm. The Figure below illustrates the difference between these three notions. RAF, CAF, p-RAF involving food molecule types (green dots labeled  $f_i$ ), non-food molecule types (black dots labeled  $p_i$ ) and catalysis arcs in red. The RAF (top) is not a CAF and the p-RAF is not a RAF.



Note that every CAF is a RAF and every RAF is a pseudo-RAF. In origin-of-life theory, RAF seems the most relevant concept since the catalysis rates required for their formation are much lower than those required for a CAF.