2. RAFs

Given a CRS $Q = (X, \mathcal{R}, C, F)$, a subset \mathcal{R}' of \mathcal{R} is a *RAF* for Q if \mathcal{R}' is nonempty and satisfies the following two conditions.

- Reflexively autocatalytic (RA): each reaction $r \in \mathcal{R}'$ is catalysed by at least one molecule type that is either present in the food set or generated by another reaction in \mathcal{R}' .
- Food-generated (F): for each reaction $r \in \mathcal{R}'$, the reactants of r are either present in the food set, or can be created from the food set F by using a series of reactions only from \mathcal{R}' .

In words, a RAF is a subset of reactions that is both self-sustaining (from the food set) and collectively autocatalytic. In forming a RAF from the food set, some reactions may initially need to proceed uncatalysed (so at a lower rate) but once formed every reaction in the RAF must be catalysed. A simple example of a RAF where this occurs is shown in Fig. 2.

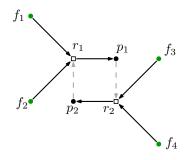


FIGURE 2. A simple RAF involving two reactions r_1, r_2 and a food set $F = \{f_1, f_2, f_3, f_4\}$, with catalysation arcs shown as dashed arrows. We can write this RAF by the pair of equations

$$r_1: f_1 + f_2[p_2] \to p_1,$$

 $r_2: f_3 + f_4[p_1] \to p_2.$

where [*] denotes the that the reaction is catalysed by *. Note that r_1 or r_2 must first proceed uncatalysed, but once one reaction has occurred the system can then continue with both reactions catalysed (so this is a RAF and not a CAF, as described next).

2.1. Further concepts for RAFs. The support of a RAF \mathcal{R}' is the set of molecule types that are either a reactant or a product of at least one reaction from \mathcal{R}' . The maxRAF may contain a proper subset of reactions that itself is an RAF for \mathcal{Q} – we call such a subset a subRAF of the maxRAF (there may be no such subRAF, or many). An RAF \mathcal{R}' is an *irreducible* RAF (or *irrRAF*) if contains no subRAF. In other words, removing any single reaction from \mathcal{R}' gives a set of reactions that does not contain a RAF for \mathcal{Q} . We say that a reaction r from \mathcal{R}' is essential if removing r from \mathcal{R}') gives a set of reactions that does not contain a RAF for \mathcal{Q} . Thus a RAF \mathcal{R}' is an *irrRAF* if and only if all its reactions are essential. A *co-RAF* is a subset of reactions that when combined with an RAF produces a larger RAF.

Given an RAF \mathcal{R}' for \mathcal{Q} , the *closure* of \mathcal{R}' , denoted $\overline{\mathcal{R}'}$ is the (unique) minimal subset \mathcal{R}'' of \mathcal{R} that contains \mathcal{R}' and that satisfies the property that if $r \in \mathcal{R}$ has each its reactants and at least one catalyst is either in the food set or a product of a reaction from \mathcal{R}'' then r is in \mathcal{R}'' . We say that a RAF \mathcal{R}' is *closed* if it is equal to its closure (i.e. $\mathcal{R}' = \overline{\mathcal{R}'}$), and *closure-irreducible* if it is not equal to the closure of any subRAF. The maxRAF is always closed, and an irrRAF is closure-irreducible (but a closure-irreducible subRAF need not be an irrRAF).