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Case Study 1 – A framework for weed management 
 
Aims 
The first case study for the key workshop will form the basis of the project for the post-
doctoral fellowship. The key aims of the fellowship will be to: 

• Formulate a simple deterministic model of weed spread and control. 
• Develop a stochastic model from the deterministic framework and examine the 

effects of stochasticity on the invasion dynamics. 
• Identify optimal management strategies. 

 
Using a deterministic approach, the arrival of a species into an area and its subsequent growth 
and spread in a structured environment can be modelled using either mean field models or 
reaction–diffusion equations. The costs of detection and control at various points in the 
species life cycle can be incorporated to assess potential control strategies. However, when 
the underlying events governing species emergence are rare and the rate of invasion is subject 
to environmental variability (as is the case for most exotic plant species), a more realistic 
method is to model the system stochastically. This allows for random fluctuations in the 
environment and in the rates of weed emergence and spread. This method also has the 
advantage of being able to include effects due to clustering of species and spatial 
heterogeneity. 
 
Method 
The spread of plant species can be modelled deterministically using ordinary or partial 
differential equations (Williamson, 1996). For example, an SIS model (Kermack and 
McKendrick, 1927) 
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can be used to model the total amount of ‘susceptible’ (S) and ‘infected’ (I) land. Similarly, 
the Fisher (1937) equation 
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for population density (u) represents a classical nonlinear reaction–diffusion model of species 
growth and spread. These simple differential equations can be extended to multi-compartment 
models for the case of several plant species. 
 
Deterministic models of this type can used to predict macroscopic rates of species invasion in 
a steady, homogeneous environment (Woolcock and Cousens, 2000). Simple functions may 
be included to simulate the effects of various control strategies. These might include reducing 
the intrinsic growth rate, reducing the species ‘diffusion coefficient’ or increasing the death 
rate. In addition, a cost function can be specified, quantifying the aggregate environmental 
and economical cost of a particular level of weed invasion together with a particular 
monitoring and control protocol. 
 
The post-doctoral fellow will formulate a simple deterministic framework of this type for 
consideration at the key workshop. Following detailed discussion and development at the 
workshop, and in collaboration with workshop participants, the post-doctoral fellow will then 
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extend the basic framework to a stochastic model. This could be done in a number of different 
ways. The emergence of new weed species and arrival of existing weeds at new sites could be 
modelled as stochastic processes (e.g. Poisson process). The physical spread of a weed 
species could be modelled as a two-dimensional random walk, which would allow the effect 
of a heterogeneous environment to be studied (Law et al, 2003). This aspect of the model can 
be approached in two ways: as a stochastic individual-based model; or using a continuum 
limit PDE. The link between these two approaches has been studied for relatively simple 
reinforced random walks and non-interacting populations (Othmer and Stevens, 1997), but is 
still an open problem for more general walks and for interacting populations. Also, the 
question of whether a species spreads contiguously as a single advancing front or by forming 
new isolated colonies will have major implications for selecting appropriate monitoring and 
management methods (Wallinga et al, 2002). 
 
The superposition of control strategies and cost functions on the stochastic model poses new 
mathematical questions. In particular, a simple stochastic model might be expected to give the 
same behaviour, on average, as its mean field equivalent (Øksendal, 2003). However, 
Jensen’s inequality states that the mean of a nonlinear function differs from the function of a 
mean. Thus, even when the expected solution of a stochastic model is the same as that of the 
deterministic skeleton, the application of a control and/or cost function can radically alter the 
outcome (Pitchford et al, 2005). Addressing the implications of this phenomenon for the 
selection of optimal control strategies will form a central part of this project.  
 
Many existing models implicitly assume that there is no interaction among different species 
or between the plants and the environment (Hastings, 1997). The addition of species–species 
and species–environment interactions is therefore a priority and will result in a much more 
realistic model. In general these interactions will be nonlinear in nature, resulting in complex 
and often unexpected behaviour rather than simply a sum of linear effects. 
 
One area of weed management that has been the subject of mathematical modelling is the 
identification of the minimum threshold density of weeds that justifies initiation of an active 
control mechanism (Moore, 1989; Doyle, 1997). These models are generally non-spatial in 
that they assume a uniform distribution of weeds. Furthermore, the existence of uncertainty in 
the cost and control response functions, as well as environmental fluctuations, could 
substantially alter the predicted threshold density. This has been identified as a major 
limitation of existing models (Doyle, 1997) and a stochastic model would provide the ideal 
framework for studying the effects of uncertainty. 
 
Proposed Time Line for the Post-Doctoral Fellow 
The postdoctoral fellowship will start in June 2006. The fellow will begin by developing a 
simple deterministic model of weed management that forms the basis of the first case study at 
the key workshop in Dec 2006. Using the ideas generated at the workshop the fellow will then 
formulate the stochastic model and explore other avenues generated by the workshop. In Sept 
2007 the analysis and results to that point will be presented at the follow-up meeting.  
 
Personnel 
The construction and analysis of the models will require an imaginative and technically 
competent scientist. The aspects of ecology and general modelling that are pertinent to this 
project can, with appropriate support and enthusiasm, be learnt. An interest in ecological 
systems is, therefore, a necessary requirement, but an in-depth knowledge, whilst desirable, is 
not necessary. The scientist must be competent in the mathematical aspects, particularly the 
techniques of stochastic processes, beforehand. For this a degree and PhD in mathematics, 
statistics or another suitably numerate discipline are required. An emphasis, at graduate level 
study, in either mathematical or statistical modelling is also highly desirable. The candidate 
must be competent in using computational methods as it is anticipated that a significant 
proportion of the analysis will be done by computational means. Finally, good 
communication skills and written English are necessary in order to undertake collaborations 
with scientists from more experimental backgrounds and to present the work to a wider 
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audience. The post-doctoral fellow will benefit from input from both mathematicians and 
statisticians at Canterbury and ecologists at Lincoln and Landcare. 
 
 
Outputs 
The research is expected to generate published work in both mathematical and ecological 
journals. Results will also be disseminated at national and international conferences, e.g. the 
Annual Meeting of the Society for Mathematical Biology. The post-doctoral fellow will be 
expected to play a key role in all outputs of the research, from writing and co-authoring 
journal articles to presenting the work at scientific meetings. The project will also generate 
outputs in the form of advice to weed management agencies, such as DoC, and by feeding 
into the FRST-funded project at Landcare Research. Using these outputs, during the second 
year of the research the project leaders will apply for funding from external sources (e.g. 
FRST) to continue work in this area. 
 
The post-doctoral fellow will be based in the Department of Mathematics and Statistics at the 
University of Canterbury. He/she will benefit from close collaborations with theoretical 
ecologists at Lincoln University and Landcare Research, who have recently negotiated a 
twelve-year funding contract from FRST on Ecosystem Resilience to Weeds. 
 
On conclusion of the project, the post-doctoral fellow will write a report on the project, its 
outputs and the progress made to be submitted for publication and distributed to programme 
participants. 
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