Welcome to Mathematics and Statistics at UC

Mathematics and statistics are living subjects with new techniques and theories constantly being devised, tested and explored. The extensive use of computers in a wide range of academic areas has led to an increasing demand for statistical and mathematical analysis in many new and diverse fields.

It has been said that it is mathematics that offers the natural sciences a certain measure of security which, without mathematics, they could not hope to attain.

You will find our mathematics and statistics courses are aimed not only at those wishing to become specialists in these subjects, but also at students majoring in engineering, physics, computer science, biology, management and a host of other disciplines.

You will find our courses exciting, challenging, relevant and thoroughly up-to-date as all our lecturers are actively engaged in research in some aspect of mathematical and statistical science.

This handbook is provided to help you plan a course of study in mathematics or statistics. It will also assist you in choosing appropriate courses that complement studies in other disciplines.

You should make the most of your opportunity at university to study subjects under the guidance of experts in our subject areas. I wish you enjoyment in your studies of the fascinating range of topics that we offer.

If you have further questions please contact us.

Professor David Wall
Head of Department
You can complete either a Bachelor of Science (BSc) or a Bachelor of Arts (BA) majoring either in mathematics or statistics. A BSc or BA consists of a minimum of 360 points taken over three years. Typically, the degree is made up of 144 points from 100-level courses, 132 points from 200-level courses and 84 points from 300-level courses. Of the 84 points at 300-level, at least 56 must be from your chosen major subject. Note that you can take 100-level courses in your 2nd year of study and 100- and 200-level courses in your 3rd year of study. For full details of the requirements, see the UC calendar regulations at right.

To qualify for the Degree of Bachelor of Arts:
(a) a candidate must pass courses having a minimum total value of 360 points.
(b) at least 254 of the 360 points must be from the Schedule to the Regulations for the Bachelor of Arts.
(c) the remaining 106 points may be for courses from any degree of the University. They will be subject to the Regulations of the other degree.
(d) at least 216 points must be for courses above 100-level.
(e) at least 84 points must be for courses at 300-level.
(f) at least 56 points of that 84 must be in a single subject from the Schedule to the Regulations for the Bachelor of Arts or from a list of specified courses approved for the major requirement.

Students majoring in Mathematics must complete 44 points from MATH 210-299 or equivalent, and at least 56 points from MATH 310-399. Students majoring in Statistics must complete MATH 109 or MATH 199, 33 points from STAT 210-299 and 56 points from STAT 310-399.
Starting your degree in Mathematics or Statistics

There are many different pathways through mathematics and statistics. (See the section on Pathways through Mathematics and Statistics). Choose a programme that keeps your options open, particularly at the 100- and 200-level. Generally, business, industry and government want people who have a broad background in a variety of mathematical and statistical areas. Include other subjects in your degree to expand your knowledge of the applications of mathematics and statistics. Common choices include physics, computer science, biology, chemistry, management and economics.

Mathematics and statistics are in both the arts and science schedules. The Bachelor of Science (BSc) and Bachelor of Arts (BA) are three-year undergraduate degrees requiring a minimum of 360 points. For a first-year full-time student, a sensible number of points to take is about 126 (1.05 course weight).

If you are good at mathematics or statistics, seriously consider aiming for a BSc (Hons) or BA (Hons) degree, an extra one year’s study after your BSc or BA. (See the section on Postgraduate Study). People with honours level qualifications in both mathematics and statistics are highly employable in commerce, industry and research institutes and it is sensible to include mathematics papers in your statistics degree and statistics papers in your mathematics degree, or consider the mathematics and statistics joint honours programme.

Mathematics major
Most students begin by taking the following core mathematics courses in their first year.

- MATH 108 (18 points) is a course in calculus and linear algebra. The calculus material follows on from NCEA level 3 calculus. MATH108 is available as a first semester course and a second semester course. It is a prerequisite for the second core first year course:
 - MATH 109 (18 points) builds on the linear algebra and calculus developed in MATH 108. It is available as a first semester course, a second semester course and as a summer course. Together, these courses will let you into any 200-level mathematics course (with the exception of MATH 271, which has MATH 171 as a prerequisite).

Statistics major
Most students take the following courses in their first year.

- STAT 111 (18 points) is a full-year course designed to give students a sound basic knowledge of the subject and a good grounding in how statistics are used to tackle genuine problems. An alternative is STAT112, which is the one semester equivalent of STAT111, and is offered in semester 1 and semester 2.
 - MATH 108 (18 points) – see above.
 - MATH 109 (18 points) builds on the linear algebra and calculus developed in MATH 108. It is available as a first semester course, a second semester course and as a summer course.

Choosing the right course
Any student who meets standard university entrance requirements may enrol in any of the 100-level mathematics and statistics courses (except for MATH 109 which has MATH 108 as a prerequisite).

Students intending to take MATH 108 as a first or second semester course should have at least 18 points in NCEA Level 3 Mathematics with Calculus, including both the differentiation and integration achievement standards (or the equivalent Unit Standards).

For STAT 111 (or STAT 112), it is important to do as well as possible in NCEA Level 3 subjects, especially the Statistics with Modelling and/or Mathematics with Calculus. More detailed advice is available via the Prospective Students link at www.math.canterbury.ac.nz. We also recommend that students intending to take any of the MATH 108 offerings do the pre-entry self-assessment quiz, also available at this link.

The Department will consider allowing students direct entry into MATH 109 if they have a high level of achievement (mostly excellences and merits) in NCEA Level 3 Mathematics with Calculus. Each year, we also offer a few outstanding students direct entry into 200-level mathematics/statistics. Please contact the Department in person if you wish to discuss either of these options.

Other 100-level mathematics courses (all 18 points)

- MATH101 is a first semester course, emphasising applications of mathematics. It is particularly good for students who have not studied mathematics for some time, or who lack confidence in their mathematical skills.
- MATH 109 is the best follow up to this paper.
- MATH 115 is a whole year course designed particularly for computer science students. The discrete mathematics taught in this course is also useful for students majoring in mathematics.
- MATH 134 is a first semester course in logic that is taught jointly by mathematics and philosophy staff. Some computer science students find it useful too.
- MATH 171 is a second semester course in mathematical modelling and simulation. It complements existing 100-level courses in the mathematical sciences, and is particularly recommended for students interested in applying mathematics to real-world problems.
A degree from the University of Canterbury is highly flexible and allows you to design a personal course to meet your needs. You can do either a Bachelor of Science (BSc) or a Bachelor of Arts (BA) with a mathematics or statistics major. Set out below are possible courses of study but they are suggestions only and staff will be happy to advise you.

To complete a degree with mathematics as a major subject, you will need at least 56 points from MATH 310-399, supported by 44 points from MATH 210-299. In order to satisfy these requirements, you will need to take MATH 108 and MATH 109. For a degree with statistics as a major subject, you will need at least 56 points from STAT 310-399, supported by 33 points from STAT 210-299, and MATH 108 and MATH 109. However, it is always better to have a broader background in your major, so we strongly recommend that you take more than this absolute minimum of papers.

It is essential for a mathematics or statistics major that you take the core courses in your chosen major subject at each level, and that you supplement these with courses chosen according to your interests in mathematics, statistics and other subject areas.

Pathways through Mathematics and Statistics

Core Mathematics

<table>
<thead>
<tr>
<th>Year</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>MATH 108, MATH 109</td>
</tr>
<tr>
<td>Year 2</td>
<td>MATH 264 or (MATH 261 and MATH 262), and MATH 254 or (MATH 251 and MATH 252)</td>
</tr>
</tbody>
</table>

- At the 100-level your core study in mathematics will be the techniques of calculus and linear algebra.
- At the 200-level the core courses cover calculus, linear algebra and analysis.
- At the 300-level your courses are chosen from MATH 310 - MATH 399.
Core Statistics

Year 1 STAT 111 (or STAT 112), MATH 108
Year 2 MATH 109, STAT 212, STAT 214, STAT 222 and/or STAT 224
Year 3 STAT 312, STAT 313, STAT 315, STAT 316

• At the 100-level your core study in statistics will give you a sound basic knowledge of the subject and a good grounding in how statistics are applied to tackle genuine problems.
• At the 200-level the core courses cover statistical distribution, inference and probability.
• At the 300-level your courses become more specialised and depend on where your interests lie.

Although most of these core courses are not required to major in mathematics or statistics, we recommend that all majors take them. This will also help ensure that you have the appropriate prerequisites to take a wide range of more specialised courses which may be chosen from the following areas:

Applied Mathematics, Physical Sciences and Engineering

The applied mathematician is more concerned with how to use mathematics than with how to develop mathematics for its own sake. As well as the traditional areas of mathematical physics and numerical analysis, “applied mathematics” means mathematical biology, modelling of problems in industry, fluid dynamics and meteorology, approximation and optimisation, discrete applied mathematics (including coding theory), and mathematical economics. If you are interested in applied mathematics, the physical sciences or engineering, you will probably find the following courses of most interest to you.

Year 1 MATH 211
Year 2 MATH 271, MATH 282
Year 3 MATH 321, MATH 342, MATH 352, MATH 353, MATH 361, MATH 363, MATH 371, MATH 381

Pure Mathematics

The pure mathematician is attracted by the intrinsic fascination and beauty of mathematics, and by a desire to test the limits of mathematical techniques, rather than a desire to apply it to the outside world. Pure mathematics – dealing with abstractions in algebra, analysis, geometry and many other areas of mathematics – is a stimulating and rewarding pursuit in its own right. If you are interested in pure mathematics, you will probably find the following courses of most interest to you.

Year 1 MATH 115, MATH 134
Year 2 MATH 221, MATH 222, MATH 231, MATH 243
Year 3 MATH 321/322, MATH 324, MATH 333, MATH 334, MATH 336, MATH 342, MATH 352, MATH 361

Much of pure mathematics, however, originates with problems in the sciences and other areas such as economics. It is extremely valuable for all pure mathematicians to have some understanding of applied mathematics.

Statistics for Mathematics Majors

Everyone should consider taking some statistics in their degree programme. Even if you do not intend to become a statistician, you will be faced with statistical information in all walks of life. Look at the papers. Look at the stock market. Watch television or listen to the radio. Often you will come across comments of a statistical or probabilistic nature. Do some statistics so that you learn how to interpret uncertain data in an intelligent way! The statistics courses of most interest to many mathematicians include:

Year 1 STAT 111 (or STAT 112)
Year 2 STAT 212, STAT 214, STAT 218, STAT 222, STAT 224
Year 3 STAT 316

Computer Science

Many mathematics majors have a strong interest in computer science. In this case, we recommend you take options from amongst the following courses.

Year 1 MATH 115, MATH 134, STAT 111 (or STAT 112)
Year 2 MATH 221, MATH 231, STAT 218
Year 3 MATH 321/322, MATH 324, MATH 333, MATH 334, MATH 335, MATH 336, STAT 313

Biomathematics

Biomathematics applies methods from mathematics, statistics and computer science to solve biological problems and is an area of applied mathematics that has shown enormous growth in the past decade.

There are three main areas of biomathematics:

• Computational biology/bioinformatics is the study of genetics, protein structure and evolution. It has applications to medicine and drug design. It requires a sound knowledge of discrete mathematics, computer science and statistics.
• Biological modelling studies population dynamics and cellular processes. It has applications to ecology, epidemiology and medicine. It requires a sound knowledge of calculus, computer science and statistics.
• Biostatistics/bioinformatics is the statistical analysis of populations. It has applications to ecology, forestry and population genetics. It requires a sound knowledge of statistics.

If you are interested in biomathematics, you should take a broad mixture of mathematics, statistics and biology courses. Mike Steel is the director of our Biomathematics Research Centre, and you can see him, Jennifer Brown or David Wall if you are interested in finding out more about this exciting area of applied mathematics and statistics.

Commerce

Mathematics and statistics are used extensively in many areas of commerce; for example, finance, accounting, management science, operations research and marketing. Commerce students may be particularly interested in the following courses.

Year 1 MATH 108, STAT 111
Year 2 STAT 218, STAT 222, STAT 224
Year 3 STAT 315, STAT 317

Biology

It is good to have some mathematics and statistics in your biology degree, especially for students considering postgraduate study.

Year 1 MATH 108, STAT 111
Year 2 STAT 218, STAT 222, STAT 224
Year 3 STAT 312, STAT 315, STAT 317
Postgraduate study

The Department has a successful postgraduate programme for Honours, Masters and PhD degrees. Apart from the UC Scholarships, we may be able to offer some additional financial assistance in the form of part-time tutoring positions, and fees scholarships (at the NZ resident rate).

Honours Degrees

The Honours degree is a one-year (if studied full-time) programme of study, consisting of an Honours project and eight 400-level courses. The assessment of the Class of Honours is based on overall performance in the programme. To enrol in Honours, you need to be eligible to graduate with a BA or BSc (360 points) and have the appropriate prerequisites for entry into Honours. Students are expected to have a GPA of at least 6.0 (B+ average) in courses relevant to their chosen subject and final approval for entry is given by the Head of Department.

The Courses section outlines the proposed 400-level courses for 2008. The final decision on which courses are offered will depend on student demand and staff availability. However, in every year there will always be at least one course offered in analysis, algebra, discrete mathematics, functional analysis, differential equations and computational mathematics. Every statistics 300-level course is offered as a 400-level course and courses in generalised linear models and bioinformatics are offered each year. A broad range of honours projects for 2008 is listed on the department web page. This list is not exhaustive, and there is plenty of scope for other possible projects. Project supervision is by mutual agreement between the supervisor and student. It is expected that a student will have arranged their project by the end of the first week of term. Assessment is based on a written report (80%), which is to be handed in in September, and an oral or a poster presentation in early October (20%).

Specialised Honours programmes

In addition to the single honours degrees, there are a number of joint honours programmes that you can study to combine mathematics with another subject. To keep your options open to enter these courses you must ensure you study a broad base of courses at lower levels, especially the core mathematics courses, so that you have the appropriate prerequisites. For all joint honours programmes it is very important that you check the calendar regulations to ensure you are taking all the required courses. Some of the more relevant sections of the calendar are included below.

Mathematics and Statistics

You can do a joint degree in mathematics and statistics. This is a great thing to do and very marketable. You should start by taking the core mathematics and statistics courses; beyond that there is a range of suitable courses.

Mathematical Physics

The Department of Physics and Astronomy and the Department of Mathematics and Statistics offer a joint BSc (Hons) programme. This is aimed at students who are interested in both subjects and who do not wish to concentrate entirely on one at the expense of the other. As well as the core mathematics courses, you will probably be most interested in:

Year 1 MATH 171
Year 2 MATH 222, MATH 271
Year 3 MATH 322, MATH 342, MATH 361, MATH 363, MATH 371

The course coordinator for this programme is David Wiltshire (Physics), and you should seek advice from him or Ben Martin (Mathematics).

Mathematics and Philosophy

The interaction between mathematics and philosophy in the twentieth century has been far greater than at any previous time. The BSc (Hons) programme in mathematics and philosophy is designed for students with a highly creative mathematical ability whose interests in mathematics draw them towards foundational and philosophical issues. As well as the core mathematics courses you will probably be interested in:

Year 1 MATH 134
Year 2 MATH 208
Year 3 MATH 301, MATH 321, MATH 335, MATH 336, MATH 342, MATH 343, MATH 392

For more details about this programme contact Douglas Bridges (Mathematics) or Philip Catton (Philosophy). See also www.phil.canterbury.ac.nz.

Mathematics and Economics

A joint degree in mathematics and economics will allow you to combine these two subjects and leave university with an excellent preparation for a professional career. If you wish to study for a joint degree in mathematics and economics you must take a mixture of mathematics and statistics alongside the required economics papers. As well as the core mathematics papers, courses of most interest might include:

Year 1 STAT 111
Year 2 MATH 243, STAT 212, STAT 216, STAT 214
Year 3 MATH 343, MATH 353, MATH 361, MATH 363, STAT 315, STAT 317

For information about a joint degree in mathematics and economics talk to Douglas Bridges (Mathematics) or Seamus Hogan (Economics).
BSc (Hons) in Mathematics and Statistics
MATH 449 or STAT 449; and eight other courses chosen from MATH 401-490 and STAT 401-490 (other than MATH 449 or STAT 449). One of the eight courses must normally be MATH 449 if the student has not been credited with MATH 449 previously, and one of the eight courses must be STAT 464 if the student has not been credited with STAT 214 previously. At least three courses will be chosen from the MATH course list and at least three courses will be chosen from the STAT course list.

Prereq: (1) 44 points from MATH 210-299; and (2) 33 points from STAT 210-299; and (3) 98 points from MATH 310-399 and STAT 310-399, including at least 42 points from each of the MATH and STAT course lists.

BSc (Hons) in Mathematics and Philosophy
MPHI 450 and seven courses chosen from MATH 401-490 (other than MATH 449) and PHIL 431-470. One of the seven courses must normally be MATH 443 if the student has not been credited with MATH 443 previously. Normally two courses will be chosen from the PHIL course list and five courses from the MATH course list.

Prereq: (1) 44 points from MATH 210-299; and (2) 84 points from PHIL 208-209, 223, 233, MATH 208, 209; and (3) 44 points from PHIL 301-399, MATH 308, 309.

BSc (Hons) in Mathematical Physics
MAPH 480 (Research Project) and six courses chosen from MATH 401-490 (other than MATH 449) and PHYS 401-450. Normally, at least three courses must be chosen from each of the PHYS course list and at least two from the MATH course list. The choice of courses is subject to the approval of the Course Coordinator. The Research Project is equivalent to two courses.

Prereq: (1) PHYS 221-224, 281, 282; and (2) 44 points from MATH 251-269; (3) 112 points PHYS 300-level and MATH 300-level courses chosen with the approval of the Course Coordinator.

Note: Students will normally be expected to take: PHYS 310; at least 42 points from PHYS 311, 312, 314, 316, 318, 322, 326; 56 points from MATH 342, 343, 352, 353, 361, 362, 363, 371.

BSc (Hons) in Economics and Mathematics
Either:
1. ECON 480 plus eight additional half-courses in 400-level ECON or MATH, including at least three half-courses in ECON and at least four half-courses in MATH; or
2. MATH 449 plus eight additional half-courses in 400-level ECON or MATH, including at least four half-courses in ECON and at least three half-courses in MATH.

Prereq: (1) ECON 201 and ECON 230; and (2) STAT 212 and STAT 214; and (3) 66 points from 200-level MATH, normally consisting of MATH 254, 264, 243; and (4) 56 points from ECON 321, 322, 323, 324, 325, 326, 331, 332; and (5) 56 points from 200-level MATH or STAT, normally consisting of MATH 343 and 42 points from MATH 352, 353, 361, 363, with up to 28 points of 300-level STAT.

BSc (Hons) in Computational and Applied Mathematics
CAMS 449 (project) and eight other approved courses chosen from MATH 401-490, MSCI 451-462 or STAT 401-490 (other than MATH/STAT 449). With the approval of the Programme Coordinator, candidates may substitute one or two courses from other subjects in an applications area.

Prereq: (1) 44 points from MATH 251, 252, 254, 261, 262, 264 (Note: It is recommended that candidates also include one of MATH 171, 271 or 282); and (2) MATH 381; and (3) 70 points from MATH 323, 346, 352, 353, 361, 362, 363, 371; and (4) 44 points from other approved courses at 200-level or above (normally from CHEM, COSC, MATH, MSCI, PHYS, STAT or ENGINEERING courses).

Calendar regulations
Postgraduate Diploma in Science (PGDipSc)

This is a one year course which is equivalent to the first year of a Master’s degree. It normally consists of eight 400-level papers. A completed PGDipSc can be substituted for part I of an MSc.

Calendar regulations

PGDipSc in Mathematics

Eight courses chosen from MATH 401-490 and STAT 401-490 (other than MATH / STAT 449). One of the eight courses must normally be MATH 443 if the student has not been credited with MATH 343 previously. Normally at least six courses will be chosen from the MATH course list. Not all courses will be offered in any one year.

Prereq: (1) 44 points from MATH 210-299; and (2) 56 points from MATH 310-399; and (3) an additional 28 points from MATH 310-399 or STAT 310-399 or other approved courses.

PGDipSc in Statistics

Eight courses chosen from STAT 401-490 and MATH 401-490 (other than STAT / MATH 449). One of the eight courses must be STAT 464 if the student has not been credited with STAT 214 previously. Normally at least six courses will be chosen from the STAT course list.

Prereq: (1) MATH 109 or MATH 199; and (2) 33 points from STAT 210-299; and (3) 56 points from STAT 310-399; and (4) an additional 28 points from MATH 310-399 or STAT 310-399 or other approved courses.

Research Degrees

There are a number of active research groups in pure, applied and computational mathematics, in statistics, and in bioinformatics. The department also jointly supervises postgraduate students in conjunction with other departments or outside organizations, depending on the nature of the student’s research topic. Information about possible research areas in the department may be found on the departmental website, or by talking to the department’s postgraduate coordinator, or any academic staff member.

Master of Science (MSc) or Master of Arts (MA)

A Master’s degree is a two-part degree. The first part consists of eight 400-level papers, and the second a research project which is presented as a thesis. Part II students are supervised by a senior supervisor who is a continuing academic staff member and at least one other supervisor. Students who are eligible to do a PGDipSc may enrol in the first part of a Master’s degree. Students who have completed part I with an average grade of C+ or better, or who hold an appropriate Honours degree or PGDipSc, may enrol in part II once supervision has been arranged. Part II normally takes one year full time, but may take up to a maximum of two years. A Master’s degree may be done part-time over a longer period. We almost always ask that you enrol for a BSc/BA (Hons) or PGDipSc in your first year.

Master’s level papers in Engineering

Some of the department’s 400-level papers are also offered as 600-level engineering mathematics (EMTH) papers. For more information please refer to the section on honours courses.

Doctor of Philosophy (PhD)

A PhD is a research degree that typically takes three years of full-time study, but can take up to four. To enrol for a PhD, a student must have a BSc/BA (Hons) with either first class honours, or second class honours, division one, or a Master’s degree. The student works under the direction of a supervision team led by an academic staff member with whom they have a shared research interest. The results of the work are presented in thesis form.

Master’s level papers in Engineering

Some of the department’s 400-level papers are also offered as 600-level engineering mathematics (EMTH) papers. For more information please refer to the section on honours courses.

Doctor of Philosophy (PhD)

A PhD is a research degree that typically takes three years of full-time study, but can take up to four. To enrol for a PhD, a student must have a BSc/BA (Hons) with either first class honours, or second class honours, division one, or a Master’s degree. The student works under the direction of a supervision team led by an academic staff member with whom they have a shared research interest. The results of the work are presented in thesis form.

An inspiring picture containing one of our students’ favourite proofs
Anna MacDonald
Like a lot of students starting university, initially I wasn’t sure which subject to major in. With this in mind, I selected courses which kept my options open. In my first year, along with Psychology and Economics, I took MATH108, MATH109 and STAT111, knowing they would provide me with a solid base of knowledge in university level mathematics and statistics. At 200-level I took the core Maths and Stats courses (MATH254, MATH264, STAT212 and STAT214) as well as some ECON papers. By selecting these broad subjects, I kept my options open for deciding my major, and being able to continue my study in any of the three areas at 300-level. I found that both subjects were invaluable with fields from Maths and Stats popping up in Economics. It wasn’t until 300-level that I realised my true calling was studying Statistics, so I enrolled in as many Stats courses as I could handle. I also took some Maths courses and the crossover between Maths and Stats helped make sure I had a well-rounded degree.

My Honours year, as well as 400-level courses, required a year-long research project. This is a valuable opportunity to delve into an area that piques your interest and a great way to come to terms with the everyday applications of Mathematics and Statistics. It was while working on my Honours project (and also a summer research project the Department offers) that I realised research was the future for me. With the backing of my supervisor and other lecturers in the Department, I started a PhD in March 2008. If the opportunity ever arises to research an area of Mathematics or Statistics I wholeheartedly recommend. My project, on nonlinear dynamics, let me combine biological models, computer programming (MATH171/271) and mathematical techniques that were entirely new to me. 300-level has meant an extension once more, into the realms of analysis, linear algebra, differential equations, and so-called “recreational maths”. In addition, tutoring on MATH171, taking my first Stats paper (STAT216) since high school, and taking two biology courses has provided a very full year. Currently, I look forward to a second summer project, before I begin my Honours year, then onto studying for a diploma in secondary school teaching.

Matt Botur
In my first couple of years at uni, I took Political Science and Law, planning to move into diplomacy. But after two years, I needed a change - I simply wasn’t enjoying my studies. I switched to Engineering intermediate year, giving me quite a range of science papers. I soon discovered that Maths and Biology were my favourites, and decided to pursue a Maths degree, with some Biology papers on the side. At 200-level, as well as the core courses (MATH254 and MATH264), I immersed myself in a range of mathematical disciplines including logic, cryptography and mathematical modelling, which gave me new perspectives on using Maths in the real world. With these under my belt, I decided to apply for a summer research scholarship, an experience I wholeheartedly recommend. My project, on nonlinear dynamics, let me combine biological models, computer programming (MATH171/271) and mathematical techniques that were entirely new to me. 300-level has meant an extension once more, into the realms of analysis, linear algebra, differential equations, and so-called “recreational maths”. In addition, tutoring on MATH171, taking my first Stats paper (STAT216) since high school, and taking two biology courses has provided a very full year. Currently, I look forward to a second summer project, before I begin my Honours year, then onto studying for a diploma in secondary school teaching. And with such a comprehensive experience here already, I feel more than ready for it!
Scholarships and prizes

The Department offers a range of scholarships and prizes to students studying mathematics or statistics each year.

Undergraduate scholarships and prizes

UC Emerging Leaders’ Scholarships: Each year.

Undergraduate scholarships and prizes

The Department offers a range of

Scholarships and prizes each year:

Number of scholarships that may be offered apply for the undergraduate scholarships. Department Scholarships: You do not need to apply for the undergraduate scholarships. Number of scholarships that may be offered each year:

<table>
<thead>
<tr>
<th>Level</th>
<th>Full fees for MATH / STAT courses</th>
<th>Up to $1,000 for a MATH / STAT courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>400</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

1. All scholarships are available to students who are majoring in mathematics or statistics and are doing: (a) at least 66 points of MATH or STAT or other approved courses at 200-level; or (b) at least 84 points of MATH or STAT or other approved courses at 300-level; or (c) at least six MATH or STAT or other approved courses at 400-level.

2. The scholarships will pay for MATH or STAT courses only and at the domestic rate.

3. Holders of 300-level or 400-level scholarships will normally be expected to do some tutoring or marking for the department, for which they will receive additional remuneration.

Summer scholarships

Scholarships of up to $4000 are available for students who have taken 200-level, 300-level or 400-level courses in mathematics or statistics to do a summer research project (MATH/STAT 305, MATH/STAT 491). The application deadline for these scholarships is normally some time in August for projects commencing in November/December.

Other prizes

The following prizes are awarded annually for excellence in mathematics or statistics:

- **Cook Memorial Prize**: For final Honours students.
- **Page Memorial Prizes**: Two prizes at level 300.
- **Peter Bryant Memorial Prizes**: One prize each at levels 100 and 200.
- **Brent Wilson Prize**: For applied mathematics at level 300.
- **Gordon Petersen Prize**: For pure mathematics at level 200.
- **Statistics New Zealand Prize**: For statistics at level 300.

Postgraduate scholarships

Postgraduate scholarships will be offered on the basis of the student’s potential, as demonstrated by their performance at the Honours level and above. At any given time, a staff member would not normally be the senior supervisor of more than one student supported by a Departmental postgraduate scholarship These scholarships will pay full fees at the domestic rate plus a stipend determined by the Department, for one year in the case of a Master’s scholarship, and for up to three years in the case of a Doctoral scholarship. This amount may be reduced if the student accepts another scholarship. Holders of departmental postgraduate scholarships will normally be expected to do some tutoring or marking for the department, for which they will receive additional remuneration.

Other awards

- **Statistics New Zealand Maori and Pacific Islands Scholarships**: To assist a Maori and a Pacific Islander to attend university and obtain a statistics or mathematics undergraduate qualification ($3,500 per year for up to 3 years).
- **J. Connal Scholarships**: For BA students who excel in Latin, English, French, history or mathematics level 200. ($400 per year for 2 years). No application required.
- **Lord Rutherford Memorial Research Fellowship**: For outstanding merit and promise in physics, chemistry or mathematics at the postgraduate level ($20,000 per year for 2 years).
- **Sims Empire Scholarship**: For outstanding merit and promise in physics, chemistry, mathematics or medicine at the postgraduate level for study in Great Britain ($15,000 per year for 2 years).
- **Professor C. C. Farr Memorial Scholarship**: For students who are enrolled in an honours or postgraduate degree in physics and/or astronomy and/or mathematical physics ($500 per annum). No application required.

For details on applications for these awards, or if you have any questions, please contact the Scholarships Office:

Web: www.canterbury.ac.nz/scholarships

Email: scholarships@canterbury.ac.nz

The Scholarships Office also has a file on Māori and Pacific Islander students. An increasing number of these are available in science and commerce in particular.

Tutoring Work

There are opportunities for senior undergraduate and postgraduate students in mathematics or statistics to undertake paid tutoring work for our undergraduate courses. This can involve taking tutorial classes and supervising labs of around 20 students and is a great way to develop teaching skills and earn some extra money.
Career opportunities

Graduates with Bachelor’s degrees are employed as analysts, engineers, teachers, modellers, programmers, bankers, meteorologists, statisticians and auditors. According to a 2005 graduate employment survey undertaken for the New Zealand Vice-Chancellors’ Committee, nearly 50% of mathematics/statistics graduates do further study. Of those employed, 42% are in business services, 21% are in manufacturing and retail, 13% are in service industries, 10% are in government, health and community services, and 5% are in education. The average beginning salary for 2004 graduates in full-time employment in 2005 was around $38,500.

Employers include computer companies, banks and insurance companies, tertiary institutions, telecommunications companies, investment companies, the energy industry, market research companies, transportation companies, Statistics New Zealand and the retail industry.

Many employers want people who have a broad background in mathematics, statistics, computation and science. They value the ability to think precisely and reason logically; these are skills you will develop from your mathematical studies. While some jobs require specific mathematical or statistical skills, many employers will hire mathematicians and statisticians because of their general problem-solving abilities and their capacity for abstract thought: they want bright people they can train. Growth areas include financial mathematics and computing combined with mathematics. There is a severe shortage of people with statistical knowledge.

Potential employers

Government Organisations
- Government Communications Security Bureau
 – cryptography, signal processing, systems analysis.
- Land Transport Safety Authority of New Zealand
 – traffic modelling.
- The Treasury
 – economic forecasting and analysis.
- Ministry of Education
 – statistical analysis.
- Ministry of Fisheries
 – fisheries management, ecological modelling, analysis.
- Ministry of Health
 – statistical analysis, epidemiological modelling.
- Ministry of Social Development
 – statistical analysis.
- Accident Compensation Corporation
 – statistical analysis.
- Royal New Zealand Navy
 – signal processing, systems analysis.
- Statistics New Zealand
 – statistical analysis (e.g., of housing, trade, health).
- Environment Canterbury
 – resource management, modelling.
- Ministry of Research, Science and Technology
 – policy development and analysis.
- Department of Conservation
 – ecological statistics, possum control, modelling of invasive species.

Canterbury District Health Board
- modelling of disease processes.

Crown Research Institutes
- Industrial Research Limited
 – communications and signal processing, geothermal modelling, robotics.
- National Institute of Water & Atmosphere Ltd (NIWA)
 – oceanography, fisheries management, ecological modelling.

Commerce and Industry
- Meteorological Service of New Zealand
 – fluid mechanics, modelling.
- Orion
 – network analysis.
- Pacific Edge Biotechnology Ltd
 – biomathematics, biotechnology, bioinformatics, computational biology.
- CES Communications
 – cryptography.
- Rodgers & Partners Ltd
 – business consultancy and analysis.
- Tower Managed Funds Investments Ltd
 – actuarial analysis.
- Weyerhaeuser NZ
 – logistics co-ordination.

Education Institutes
- School mathematics teacher
 – mathematics, statistics.
- University teaching and research
 – technicians, tutors, research assistants, lecturers.
Research strengths
In pure mathematics, there are particularly strong researchers working in combinatorics, the foundations of mathematics, algebra, geometry, harmonic analysis, the potential theory of differential operators, and group theory.

The applied mathematics group has strengths in applied nonlinear differential equations, dynamical systems, computational mathematics, discrete mathematics and mathematical modelling. Applications include biological and physical systems, and biomedical, chemical and electrical engineering.

The statistics group has strong research interests in applied statistics, with particular applications in ecology, forestry, medicine and econometrics.

Members of the department are engaged in research in a number of fields within mathematics and statistics. Within the department we have a research centre, the Biomathematics Research Centre, and staff are members of many other research groups including the Allan Wilson Centre for Molecular Ecology and Evolution, the Centre for Bioengineering and the Centre for Mathematics in Industry. We have strong links to other departments, especially to biology, commerce, computer science, engineering and physics.

Academic staff and research interests

Bob Broughton: Mathematical education, numerical mathematics.

James Degnan: Phylogenetics and population genetics. The coalescent process applied to multiple species.

Mark Hickman: Symmetries of differential equations. Invariance under groups. Algebraic computing. Dynamical systems.

Alex James: Modelling of problems in combustion and ecology including larval fish growth and the role of environmental stochasticity.

Dominic Lee: Computational, Bayesian and nonparametric statistics, with applications in medical research, bioinformatics, signal processing and image processing.

Rua Murray: Dynamical systems. Ergodic theory. Numerical effects in dynamics. Approximation theory.

Chris Price: Numerical, non-smooth and global optimisation.

Carl Scarroitt: Spatial statistics, extreme value methods and spectral analysis with applications to problems in industry, environment and other sciences.

Charles Semple: Combinatorics, computational complexity and computational biology.

Mike Steel: Discrete and stochastic models, bioinformatics, theoretical biology and evolutionary genetics.

Bill Taylor: Probability, with emphasis on discrete probability processes and the connection between probability and logic.

Neil Watson: Partial differential equations and potential theory.

Postdoctoral and research staff

Britta Basse
Frank Lad
Bob Long
Joseph Stover
Bhalchandra Thatte

Technical staff

Paul Brouwers – Technician
Steve Gourdie – Senior Technician
Allen Witt – Senior Programmer/Analyst

Administrative staff

Julie Daly
Pauline Auger

Senior tutors and teaching staff

Liz Ackerley
Irene David
Jacqui Nokes

Jane Clucas
Pam Hurst
David Robinson
Help and advice

If you have any problems, you are always welcome to approach any member of staff for help. Academic staff and course administrators have two designated office hours per week during which they are happy to assist students. You may prefer to arrange an appointment by e-mail or by asking the lecturer after class or by leaving a message at reception.

The course web pages are also a valuable source of information. The ‘Undergraduate Students’ page has further details:

www.math.canterbury.ac.nz/php/undergraduate/

Please remember that staff members are always willing to help with genuine problems, but we won’t know you have a problem unless you tell someone.

Course changes and advice

If you would like advice about planning your course of study to match your career goals, please contact the student advisor at the College of Engineering, the College of Science or the College of Arts.

For specific academic programme advice, any of the course advisors listed below will help you decide which course best suits your needs.

Mathematics: Alex James, John Hannah
Statistics: Jennifer Brown
Honours: Jennifer Brown, Rick Beatson
Postgraduates: Chris Price

Personal tutors

If you list mathematics or statistics as a major subject then you will be assigned an academic staff member from the department as your personal tutor for the duration of your studies at UC. Your personal tutor is there to advise and support you with all sorts of academic and non-academic problems. He or she can offer advice on things like:

• choice of courses,
• applications for financial assistance,
• worries about exams,
• any problems you might have with deadlines.

You should feel free to turn to him or her at any time for advice and help.

Problems and complaints

• Depending on the problem, people to contact to get matters sorted out are your lecturers, course coordinators or administrators, tutors or class representatives. They may be able to provide help, or direct you to other places where you can seek support. Names and contact details of your class representatives are on the course web pages and the ‘Undergraduate Students’ webpage.
• For further advice contact the departmental grievance committee through the coordinator, Günter Steinke or through the Education Coordinator in the Student Union building.

Preparation courses

If you intend to enrol in one of the core mathematics courses, MATH 101 or 108, or core statistics courses, STAT 111 or 112, and feel that your background is inadequate, then the preparation courses that are run in January/February may be for you. These courses are advertised in the Enrolment Handbook and in the Student Guide. For more information see www.math.canterbury.ac.nz/courses/summer.

Frequently asked questions

How do I find out about my course?

All our courses have webpages containing course information which you should familiarise yourself with. You will be expected to access the course webpage regularly to download course material and look for news items. Course links are on the ‘Undergraduate Students’ page:

www.math.canterbury.ac.nz/php/undergraduate/

Some of the courses have course readers which contain material such as tutorial questions, lecture notes, formula sheets and tables etc, and all course details.

What if I have difficulty with the course material?

For help with this, you can see your lecturer during her/his office hours, you can ask your tutor in a tutorial, or you can go along to the help classes, where available. The course webpage or course news will contain details. Make sure you have specific questions to ask and that you have first worked at the problem yourself.

How do I organise my tutorials?

Many mathematics and statistics courses cater for very large numbers of students so tutorials are available at a number of times during the week. Tutorial enrolment is mainly done online and you can choose a time to suit your other commitments. You will be informed of how to do this during the first lecture. However, tutorial enrolment is often on a first-come first-served basis and if you leave enrolling until the last minute you may find the group you want is full. In exceptional circumstances, the course administrator will help find a time.

What do I do if I’m sick and miss an assessment?

Personal circumstances can cause you to miss a test or exam, or impair your performance in them. Look in the University Calendar or the Enrolment Handbook for the regulations concerning aegrotats, but you should also see the lecturer in charge of the course.

Do I need to attend tutorials?

No single element of any course is strictly compulsory. However, the importance of tutorials cannot be over-emphasised and many courses assign a percentage (typically 5%) of the assessment to tutorial attendance, preparation and/or participation. If you do not participate in tutorials, then you will have great difficulty passing the tests and examinations. You should regard tutorial attendance as compulsory if you plan to succeed.

What if I can’t understand the material even after seeking help?

Some people may need additional help even after all formal means of support have been tried. Some people take more than one attempt to pass a paper. A list of private tutors is available from our reception, if you need individual help.
Department facilities

The Department of Mathematics and Statistics has modern, well equipped teaching and research computer laboratories, classrooms and meeting rooms.

The computing facilities include cutting edge 64-bit Windows systems, as well as Linux and UNIX operating systems. The labs are fitted out with fully networked terminals designed to satisfy the performance demands of modern mathematical and statistical computing applications. Four computer labs in the basement of the building service all our undergraduate courses. These are complemented by two fully equipped labs on level 4 for our advanced honours and postgraduate students. These facilities have extended opening hours and are equipped with fast and reliable printing services. Research students have computer access provided in their departmental office. The departmental computing facilities can be accessed remotely from any computer with a broadband or network connection on or off campus, so you don’t even need to be physically in the building. The building itself has full wireless coverage.

A complete range of mathematical and statistical computing software is provided, along with all the usual IT packages. The leading technical computer languages in mathematics and statistics, MATLAB and ‘R’, are available, along with Maple for symbolic algebra. Other statistical computing is provided by SAS and Statistica.

The Bridges of Friendship Garden. The paths and bridges embody the famous Königsberg bridges problem. The problem is to find a path around all the bridges that crosses each bridge exactly once (without going around the far ends of the diamond), or to prove that it can’t be done. The layout of bridges is from the Prussian town of Königsberg.
100-level courses

MATH 101
Introductionary Mathematics with Applications 18 points
MATH101-09S1 (C)
Introduction to calculus, trigonometry and algebra. Emphasis on setting up mathematical models of problems, solving them and interpreting the solutions. Applications to the physical, life and earth sciences as well as to commerce and the humanities.
Restrictions: MATH 104, MATH 105, MATH 106, MATH 107, MATH 108, MATH 109, MATH 171
Enquiries: Pamela Hurst

MATH 108
Mathematics 1C 18 points
MATH 108-09S1 (C)
MATH 108-09S2 (C)
Introduction to the ideas, techniques and applications of linear algebra and calculus.
Restrictions: MATH 104, MATH 105, MATH 106
Enquiries: Department of Mathematics and Statistics reception

MATH 109
Mathematics 1D 18 points
MATH 109-09S1 (C)
MATH 109-09S2 (C)
MATH 109-08SU2(C)
Extension of the calculus and linear algebra introduced in MATH 108.
Prerequisites: MATH 106 or MATH 108.
Restrictions: MATH 104, MATH 105, MATH 107.
Enquiries: Günter Steinke (semester two course); Irene David (semester one and summer courses)

MATH 115
Discrete Mathematics 1 18 points
MATH 115-09W (C)
Discrete mathematics is that part of mathematics not involving limit processes. It includes logic, the integers, finite structures, sets and networks.
Enquiries: Bill Taylor

MATH 134
Logic and Computability 18 points
MATH 134-09S1 (C)
MATH 134-09SU1 (C)
Introduction to logic and computability.
Restrictions: PHIL 134, PHIL 144, MATH 144
Enquiries: Douglas Bridges

MATH 171
Mathematical Modelling and Computation 18 points
MATH 171-09S2 (C)
An introduction to mathematical modelling and simulation via case studies using standard computer packages. Structured programming for mathematical problem solving.
Recommended Preparation: MATH 108, currently enrolled in or have completed MATH 105 or MATH 109
Restrictions: EMTH 171
Enquiries: Alex James

MATH 199
AIMS - Advancing in Mathematical Sciences 36 points
MATH 199-09W (C)
This course is designed for secondary school students who may gain direct entry into level 200 university courses from school. It gives you the opportunity to study stimulating and interesting work while at school, and will prepare you well for second year mathematics.
Prerequisites: Subject to approval of the Head of Department.
Enquiries: Liz Ackerley

STAT 111
Statistics 1 18 points
STAT 111-09W (C)
Using statistics in real life situations. Emphasis on actual problems and real data sets. Introduction to Excel.
Restrictions: STAT 112, STAT 131
Enquiries: Jennifer Brown

STAT 112
Statistics 1 18 points
STAT 112-09S1 (C)
STAT 112-09S2 (C)
Using statistics in real life situations. Emphasis on actual problems and real data sets. Introduction to Excel.
Restrictions: STAT 111, STAT 131
Enquiries: Jennifer Brown
200-level courses

MATH 208
Logic A 22 points
MATH 208-09S1 (C)
Prerequisites: Any 18 points in Philosophy or Mathematics or Computer Science.
Restrictions: PHIL 225, PHIL 246, PHIL 346, PHIL 208, PHIL 308, MATH 308
Enquiries: Douglas Bridges

MATH 221
Algebra and Cryptography 11 points
MATH 221-09S1 (C)
The algebraic structure of integers and polynomials. Rings and finite fields. Introduction to cryptography.
Prerequisites: MATH 104 or MATH 105 or MATH 106 or MATH 107 or MATH 109 or MATH 115 or MATH 199
Restrictions: MATH 211, MATH 315
Enquiries: Peter Renaud

MATH 222
Groups and Symmetry 11 points
MATH 222-09S1 (C)
An introduction to the methods of abstract algebra via the study of symmetries and permutations.
Prerequisites: MATH 104 or MATH 105 or MATH 106 or MATH 107 or MATH 109 or MATH 115 or MATH 199
Restrictions: MATH 211
Enquiries: Ben Martin

MATH 231
Discrete Methods 11 points
MATH 231-09S2 (C)
An introduction to graph theory, a central area of discrete mathematics in which many real world problems can be interpreted and solved.
Prerequisites: MATH 104 or MATH 105 or MATH 106 or MATH 107 or MATH 109 or MATH 115 or MATH 199
Restrictions: MATH 211
Enquiries: Charles Semple

MATH 243
Analysis 2 11 points
MATH 243-09S1 (C)
This course gives a deeper understanding of the real number system, calculus and limits.
Prerequisites: MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199
Restrictions: MATH 212
Enquiries: Department of Mathematics and Statistics Reception

MATH 251
Linear Systems 11 points
MATH 251-09S1 (C)
Introduction to linear algebra. Linear systems, numerical solution of large linear systems, vector spaces, linear transformations.
Prerequisites: MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199
Restrictions: MATH 204, MATH 217, MATH 254, EMTH 203, EMTH 204
Enquiries: John Hannah

MATH 252
Matrix Algebra 2 11 points
MATH 252-09S2 (C)
Eigenvalues and eigenvectors, inner product spaces, orthogonality, quadratic forms, complex spaces.
Prerequisites: MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199
Restrictions: MATH 204, MATH 217, MATH 254, EMTH 203, EMTH 204
Enquiries: Rick Beatson

MATH 254
Linear Algebra 2 22 points
MATH 254-09S2 (C)
An accelerated course in linear algebra. Linear systems, complex vector spaces, linear transformations, eigenvalues and eigenvectors, inner product spaces, orthogonality, quadratic forms, numerical solution of large linear systems.
Prerequisites: B+ or better in (MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199).
Restrictions: MATH 204, MATH 217, MATH 251, MATH 252, EMTH 203, EMTH 204
Enquiries: Peter Renaud, John Hannah

MATH 261
Multivariate Calculus 11 points
MATH 261-09S1 (C)
An extension of the ideas of differentiation and integration to multivariate functions and to vector valued functions.
Prerequisites: MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199
Restrictions: MATH 204, MATH 218, MATH 219, MATH 264, EMTH 201, EMTH 202, EMTH 204, EMTH 210
Enquiries: Alex James

MATH 262
Differential Equations and Transforms 11 points
MATH 262-09S2 (C)
Prerequisites: MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199
Restrictions: MATH 204, MATH 218, MATH 219, MATH 264, EMTH 201, EMTH 202, EMTH 204, EMTH 210
Enquiries: Mark Hickman

MATH 264
Multivariate Calculus and Differential Equations 22 points
MATH 264-09S1 (C)
An accelerated course in calculus of several variables, vector fields and ordinary differential equations.
Prerequisites: B+ or better in (MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199).
Restrictions: MATH 204, MATH 218, MATH 219, MATH 261, MATH 262, EMTH 201, EMTH 202, EMTH 204, EMTH 210, EMTH 264
Enquiries: Alex James, Rua Murray
MATH 271
Mathematical Modelling and Computation 2 11 points
MATH 271-09S2 (C)
Prerequisites: ((MATH 171 or EMTH 171 or MATH 280 or MATH 281 or MATH 282) and (EMTH 201 or EMTH 202 or EMTH 204 or EMTH 210 or MATH 261 or MATH 264)) or (a high grade in (MATH 104 or MATH 105 or MATH 107 or MATH 109 or MATH 199) and Head of Department approval).
Restrictions: MATH 266, EMTH 271
Enquiries: John Hannah

MATH 282
Introduction to Scientific Computing 11 points
MATH 282-09SU1 (C)
Introduction to the mathematical software package, MATLAB, which integrates technical computation, graphics, visualisation, and programming. Limited entry. See Limitation of Entry regulations.
Prerequisites: MATH 104 or MATH 105 or MATH 199
or MATH 107 or MATH 109
Restrictions: MATH 280, MATH 281
Enquiries: Bob Broughton

STAT 212
Statistical Distributions 11 points
STAT 212-09S1 (C)
Distribution and densities, expectations, moments and MGF, discrete distributions, continuous distributions, sampling distributions.
Prerequisites: (MATH 104 or MATH 105 or MATH 106 or MATH 107 or MATH 108 or MATH 109 or MATH 199) and (STAT 111 or STAT 112 or STAT 131).
Restrictions: STAT 221, STAT 223, STAT 231
Enquiries: Department of Mathematics and Statistics reception

STAT 214
Statistical Inference 11 points
STAT 214-09S2 (C)
Probability, point estimation, confidence intervals, hypothesis testing and likelihood.
Prerequisites: [STAT111 or STAT112] and (MATH108 or MATH109 or MATH199)
Restrictions: STAT 221
Enquiries: Dominic Lee

STAT 216
Probability 11 points
STAT 216-09S1 (C)
Combinatorial probability, distribution theory, Markov chains and stochastic systems.
Prerequisites: STAT111 or STAT112 or MATH108 or MATH109 or MATH199
Restrictions: STAT 231, MATH 223
Enquiries: Bill Taylor

STAT 218
Computational Methods in Statistics 11 points
STAT 218-09S2 (C)
Computational techniques, data analysis and statistical inference.
Prerequisites: STAT111 or STAT112 or MATH108 or MATH109 or MATH199
Enquiries: Raazesh Sainudiin

STAT 222
Applied Statistics 11 points
STAT 222-09S1 (C)
A practical introduction to commonly used statistical practices. The emphasis is on real data and the application of statistical techniques.
Prerequisites: STAT 111 or STAT 112 or STAT 131
Restrictions: FORE 222, FORE 210, STAT 220
Enquiries: Jennifer Brown

STAT 224
Regression Modelling 11 points
STAT 224-09S2 (C)
Regression models are the most widely used statistical tools for examining the relationships among variables. This course will provide a practical introduction to the fundamentals of regression modelling.
Prerequisites: STAT 111 or STAT 112 or STAT 131
Restrictions: FORE 224, FORE 210, STAT 220
Enquiries: Carl Scarrott
300-level courses

MATH 301
Mathematics in Perspective 14 points
MATH301-09S2 (C)
MATH301-09S2 (D)
Topics in the history, philosophy, directions and culture of mathematics including significant results from the past and an outline of some major areas of progress in the 20th century.
Prerequisites: 36 points in Mathematics or Statistics or Engineering Mathematics at 100 level, and 44 points from the BA or BSc Schedule at 200 level in Mathematics, Statistics, Engineering Mathematics, related subjects, or other subjects with good grades, as approved by the Head of Department.
Enquiries: Clemency Montelle, John Hannah

MATH 305
Mathematics Project 14 points
MATH 305-07SU2 (C)
This 150 hour course provides students with an opportunity to develop mathematical or statistical research skills to extend and strengthen their understanding of an area of mathematics or statistics.
Prerequisites: 44 points from MATH 210-299, and approval of Head of Department.
Restrictions: STAT 305
Enquiries: Alex James and Ben Martin

MATH321
Fields and commutative rings 14 points
MATH321-09S1 (C)
An introduction to fields and rings, including applications to coding theory and the impossibility of constructions such as ‘squaring the circle’.
Prerequisites: MATH221 or MATH222 or (MATH254 or EMTH204 with Head of Department approval)
Restrictions: MATH 311
Enquiries: Günter Steinke

MATH 324
Cryptography 2 14 points
MATH 324-09S2 (C)
This course deals with the mathematical ideas underlying modern cryptography, including algebra, number theory and probability theory.
Prerequisites: MATH 221 and a further 11 points from MATH 210-299.
Enquiries: Department of Mathematics and Statistics Reception

MATH 333
Coding Theory 14 points
MATH 333-09S1 (C)
An introduction to the mathematics underlying communication codes, in particular linear codes.
Prerequisites: 22 points from MATH 221, MATH 222, MATH 231, MATH 251, MATH 252, MATH 254, EMTH 203, EMTH 204 or 22 points at 200 level Maths with Head of Department approval.
Restrictions: MATH 315
Enquiries: Charles Semple

MATH 334
Combinatorics 14 points
MATH 334-09S2 (C)
Modern combinatorics and discrete mathematics with an emphasis on design theory.
Prerequisites: 22 points from MATH 221, MATH 222, MATH 231, MATH 251, MATH 252, MATH 254, EMTH 203, EMTH 204 or 22 points at 200 level Maths with Head of Department approval.
Restrictions: MATH 315
Enquiries: Günter Steinke

MATH 335
Computability theory 14 points
MATH335-09S2 (C)
Mathematical models of computation. Computability and non-computability. Abstract complexity theory.
Prerequisites: 22 points from MATH221-282 or EMTH200-204 or EMTH210-271; or Head of Department approval
Restrictions: MATH208, MATH308
Enquiries: Douglas Bridges

MATH 342
Applications of Complex Variables 14 points
MATH 342-09S2 (C)
Prerequisites: (22 points from MATH 219, MATH 264, EMTH 204) or (MATH 261 and MATH 262) or MATH 243 or EMTH 202
Restrictions: MATH 319
Enquiries: Rua Murray

MATH 343
Metric, Normed and Hilbert Spaces 14 points
MATH 343-09S1 (C)
An introduction to those parts of modern analysis essential for many aspects of pure and applied mathematics, physics, economics and finance.
Prerequisites: (MATH 243 or MATH 264 or EMTH 202 or EMTH 204) or (22 points from MATH 200 or EMTH 200 as approved by the Head of Department).
Restrictions: MATH 312
Enquiries: Department of Mathematics and Statistics Reception
MATH 352
\textbf{Applied Matrix Algebra A} \hspace{1cm} 14 points
MATH 352-09S1 (C)
Introduction to computational optimisation and the associated linear algebra.
\textbf{Prerequisites:} MATH 251 or MATH 252 or MATH 254 or EMTH 203 or EMTH 204.
\textbf{Recommended Preparation:} MATH 280 or MATH 282 or MATH 271
\textbf{Restrictions:} MATH 317
\textbf{Enquiries:} Ian Coope

MATH 353
\textbf{Applied Matrix Algebra B} \hspace{1cm} 14 points
MATH 353-09S2 (C)
Introduction to the theory and application of eigensystems and the associated linear algebra.
\textbf{Prerequisites:} MATH 252 or MATH 254 or EMTH 203 or EMTH 204.
\textbf{Recommended Preparation:} (MATH 251 or MATH 352) and (MATH 271, MATH 280, MATH 281 or MATH 282)
\textbf{Restrictions:} MATH 317
\textbf{Enquiries:} Bob Broughton

MATH 361
\textbf{Partial Differential Equations} \hspace{1cm} 14 points
MATH 361-09S1 (C)
An introduction to the methods of solution for partial differential equations and to their applications.
\textbf{Prerequisites:} 22 points from MATH 219, MATH 261, MATH 262, MATH 264, EMTH 202, EMTH 204.
\textbf{Restrictions:} MATH 314, MATH 318, MATH 319
\textbf{Enquiries:} Mark Hickman

MATH 363
\textbf{Dynamical Systems} \hspace{1cm} 14 points
MATH 363-09S2 (C)
An introduction to nonlinear systems, the use of linearisation techniques and bifurcation theory.
\textbf{Prerequisites:} 22 points from MATH 219, MATH 261, MATH 262, MATH 264, EMTH 202, EMTH 204.
\textbf{Recommended Preparation:} MATH 252, MATH 254 or EMTH 203
\textbf{Restrictions:} MATH 318
\textbf{Enquiries:} Rua Murray

MATH 371
\textbf{Vector Calculus and Modelling} \hspace{1cm} 14 points
MATH 371-09S1 (C)
Applications of calculus in solving applied problems in science and engineering. Techniques for modelling and solving physical continuous systems.
\textbf{Prerequisites:} MATH 219 or MATH 264 or MATH 261 or MATH 262 or EMTH 202 or EMTH 204.
\textbf{Restrictions:} MATH 318
\textbf{Enquiries:} Phil Wilson

MATH 381
\textbf{Advanced Scientific Computing} \hspace{1cm} 14 points
MATH 381-09S2 (C)
The use of advanced MATLAB routines for numerical methods in a range of topics including: the solution of nonlinear algebraic equations; systems of ordinary differential equations; two-point boundary value problems; partial differential equations; nonlinear optimization; numerical integration; numerical approximation.
\textbf{Prerequisites:} (MATH 261 or MATH 262 or MATH 264 or EMTH 202 or EMTH 204) and (MATH 266 or MATH 271 or MATH 280 or MATH 282)
\textbf{Restrictions:} MATH 366, MATH 367
\textbf{Enquiries:} David Wall
STAT 305
Statistics Project 14 points
STAT 305-08SU2(C)
This 150 hour course provides students with an opportunity to develop mathematical or statistical research skills to extend and strengthen their understanding of an area of mathematics or statistics.
Prerequisites: 33 points from STAT 210-299, and approval of Head of Department.
Restrictions: MATH 305
Enquiries: Alex James and Ben Martin

STAT 312
Sampling Methods 14 points
STAT 312-09S1 (C)
Sampling techniques and designs. Special sampling designs for surveys of animal populations.
Prerequisites: 11 pts from STAT 212, STAT 214, STAT 222, STAT 224 and a further 11 pts from STAT 210 to STAT 299.
Enquiries: Jennifer Brown

STAT 313
Computational Statistics 14 points
STAT 313-09S2 (C)
Data analysis and statistical inference based on permutation methods, EDF methods, bootstrap and resampling methods, kernel methods and Markov chain methods.
Prerequisites: 11 points from STAT 212, STAT 214, STAT 222, STAT 224 and a further 11 points from STAT 210-299 and (MATH108 or MATH109 or MATH199).
Recommended Preparation: STAT 218 and (MATH 109 or MATH 199).
Enquiries: Raazesh Sainudiin

STAT 314
Bayesian Inference 14 points
STAT 314-09S1 (C)
Estimation and testing from the Bayesian viewpoint.
Prerequisites: 11 points from STAT 212, STAT 214 and a further 11 points from STAT 210-299 and (MATH 109 or MATH 199).
Recommended Preparation: STAT 212 and STAT 214
Enquiries: Dominic Lee

STAT 315
Multivariate Statistical Methods 14 points
STAT 315-09S2 (C)
Prerequisites: 11pts from STAT 212, STAT 214, STAT 222, STAT 224 and a further 11 pts from STAT 210 to STAT 299.
Recommended Preparation: MATH 252 or MATH 254
Enquiries: Carl Scarrott

STAT 317
Time Series Methods 14 points
STAT 317-09S1 (C)
Analysis of sequentially collected data including data modelling and forecasting techniques.
Prerequisites: 11 points from STAT 212, STAT 214, STAT 222, STAT 224 and a further 11 points from STAT 210-299, ECON 211, MSCI 210) and (MATH 109 or MATH 199).
Recommended Preparation: 11 pts from MATH 251, MATH 252, MATH 254 and 11 pts from MATH 271, MATH 282, STAT 216
Enquiries: Department of Mathematics and Statistics reception

STAT 391
Special Topic: Generalised Linear Models 14 points
STAT 391-09S1 (C)
An introduction to generalised linear models and the statistics package ‘R’.
Prerequisite: Head of Department approval
Enquiries: Jennifer Brown

STAT 318
Data Mining 14 points
STAT 318-09S2 (C)
Parametric and non-parametric statistical methodologies and algorithms for data mining.
Prerequisite: 11 points from STAT 210-299 and (a further 11 points from STAT 210-299 or 11 points from COSC200-299 or any other relevant subject with Head of Department approval)
Enquiries: Marco Reale
The semesters indicated for these courses are listed as a guide only. The courses may be offered in semester 1 or semester 2 depending on the availability of the lecturer. All 400-level courses are offered subject to sufficient student demand and staff availability, which will be determined at the beginning of each semester.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Points</th>
<th>Enquiries</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH401</td>
<td>Dynamical Systems 1</td>
<td>15</td>
<td>David Wall</td>
</tr>
<tr>
<td>MATH405</td>
<td>Bioinformatics</td>
<td>15</td>
<td>Mike Steel</td>
</tr>
<tr>
<td>MATH406</td>
<td>Mathematical Models in Biology</td>
<td>15</td>
<td>Alex James</td>
</tr>
<tr>
<td>MATH408</td>
<td>Financial Mathematics</td>
<td>15</td>
<td>Ian Coope</td>
</tr>
<tr>
<td>MATH409</td>
<td>Cryptography 2</td>
<td>15</td>
<td>Department of Mathematics and Statistics Reception</td>
</tr>
<tr>
<td>MATH410</td>
<td>Approximation Theory</td>
<td>15</td>
<td>Rick Beatson</td>
</tr>
<tr>
<td>MATH412</td>
<td>Unconstrained Optimization</td>
<td>15</td>
<td>Chris Price</td>
</tr>
<tr>
<td>MATH414</td>
<td>Computational Methods</td>
<td>15</td>
<td>Bob Broughton</td>
</tr>
<tr>
<td>MATH416</td>
<td>Differential Systems</td>
<td>15</td>
<td>Mark Hickman</td>
</tr>
<tr>
<td>MATH418</td>
<td>Measure and Integration</td>
<td>15</td>
<td>Rua Murray</td>
</tr>
<tr>
<td>MATH420</td>
<td>Hilbert Spaces</td>
<td>15</td>
<td>Department of Mathematics and Statistics Reception</td>
</tr>
<tr>
<td>MATH422</td>
<td>Algebra and Symbolic Computation</td>
<td>15</td>
<td>John Hannah, Mark Hickman</td>
</tr>
<tr>
<td>MATH424</td>
<td>Wavelets and Data Compression</td>
<td>15</td>
<td>Peter Renaud</td>
</tr>
<tr>
<td>MATH426</td>
<td>Differential geometry</td>
<td>15</td>
<td>Günter Steinke</td>
</tr>
<tr>
<td>MATH428</td>
<td>Topology</td>
<td>15</td>
<td>Douglas Bridges</td>
</tr>
<tr>
<td>MATH429</td>
<td>Combinatorics</td>
<td>15</td>
<td>Charles Semple</td>
</tr>
<tr>
<td>MATH430</td>
<td>History of Mathematics</td>
<td>15</td>
<td>Clemency Montelle</td>
</tr>
<tr>
<td>MATH431</td>
<td>Special Topic in Mathematics (Computability Theory)</td>
<td>15</td>
<td>Douglas Bridges</td>
</tr>
<tr>
<td>MATH433</td>
<td>Mathematics in Perspective</td>
<td>15</td>
<td>John Hannah</td>
</tr>
<tr>
<td>MATH437</td>
<td>Representation Theory</td>
<td>15</td>
<td>Ben Martin</td>
</tr>
<tr>
<td>MATH439</td>
<td>Topics in Algebra</td>
<td>15</td>
<td>Günter Steinke</td>
</tr>
<tr>
<td>MATH441</td>
<td>Mathematical Economics</td>
<td>15</td>
<td>Douglas Bridges</td>
</tr>
<tr>
<td>MATH443</td>
<td>Metric, Normed and Hilbert Spaces</td>
<td>15</td>
<td>Department of Mathematics and Statistics Reception</td>
</tr>
</tbody>
</table>
The Klein bottle: an example of a non-orientable surface. Picture a bottle with a hole in the bottom. Now extend the neck. Curve the neck back on itself, insert it through the side of the bottle without touching the surface, and extend the neck down inside the bottle until it joins the hole in the bottom. A true Klein bottle in four dimensions does not intersect itself where it crosses the side. Unlike a drinking glass, this object has no "rim" where the surface stops abruptly. Unlike in a balloon, a fly can go from the outside to the inside without passing through the surface (so there isn't really an "outside" and "inside").
Engineering mathematics and statistics courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Level</th>
<th>Points</th>
<th>Prerequisites/Coursework</th>
<th>Enquiries</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMTH 171</td>
<td>Mathematical Modelling and Computation</td>
<td>18</td>
<td>EMTH 171-09S2 (C)</td>
<td>An introduction to mathematical modelling and simulation via case studies using standard computer packages. Structured programming for mathematical problem solving.</td>
<td>Alex James</td>
</tr>
<tr>
<td>EMTH 202</td>
<td>Calculus</td>
<td>15</td>
<td>EMTH 202-09W (C)</td>
<td>Differentiation and integration of multivariate functions and vector valued functions; transform methods for solving differential equations.</td>
<td>John Hannah, Rick Beatson</td>
</tr>
<tr>
<td>EMTH 203</td>
<td>Linear Algebra</td>
<td>15</td>
<td>EMTH 203-09W (C)</td>
<td>Linear systems; numerical solutions of linear equations; vector spaces and linear transformations; eigenvalues and eigenvectors; inner product spaces, orthogonality and quadratic forms; complex spaces.</td>
<td>John Hannah, Rick Beatson</td>
</tr>
<tr>
<td>EMTH 204</td>
<td>Calculus and Algebra</td>
<td>30</td>
<td>EMTH 204-09W (C)</td>
<td>An accelerated course in linear algebra and calculus of several variables; linear systems and equations; vector spaces and linear transformations; eigenvalues and eigenvectors; inner product spaces, orthogonality and quadratic forms; vector fields and ordinary differential equations.</td>
<td>Alex James, Peter Renaud</td>
</tr>
<tr>
<td>EMTH 210</td>
<td>Engineering Mathematics</td>
<td>15</td>
<td>EMTH 210-09S1 (C)</td>
<td>Partial differentiation, differential equations, integration, Fourier series and linear algebra.</td>
<td>Phil Wilson</td>
</tr>
<tr>
<td>EMTH 391</td>
<td>Engineering Applied Mathematics and Statistics</td>
<td>12</td>
<td>EMTH 391-09S2 (C)</td>
<td>Elementary probability and statistics, distributions, estimation and confidence intervals, goodness of fit tests. Partial differential equations, their use in modelling engineering applications, methods of solution and properties of these solutions.</td>
<td>Carl Scarrott</td>
</tr>
<tr>
<td>EMTH 410-417</td>
<td>Special topics</td>
<td>15</td>
<td></td>
<td></td>
<td>Department of Mathematics and Statistics reception</td>
</tr>
<tr>
<td>EMTH 600-610</td>
<td>These papers are available for students on the</td>
<td></td>
<td></td>
<td></td>
<td>Department of Mathematics and Statistics reception</td>
</tr>
</tbody>
</table>

Restrictions:
- EMTH 202: Subject to approval of the Dean of Engineering and Forestry
- EMTH 271: Subject to approval of the Dean of Engineering and Forestry
Contact information

Please contact us if you have further questions regarding our courses or research.

Head of Department
Professor David Wall
Email: mathhod@math.canterbury.ac.nz

Enquiries
Level 4 of the Erskine Building.
Phone: +64 3 364 2600
Fax: +64 3 364 2587
Email: enquiries@math.canterbury.ac.nz
Web: www.math.canterbury.ac.nz
Postal address:
Department of Mathematics & Statistics
University of Canterbury
Private Bag 4800
Christchurch 8140
New Zealand

University of Canterbury Contact Centre
For more information about study options or an enrolment pack get in touch with the Contact Centre on:
Freephone: 0800 VARSITY
Phone: +64 3 364 2555
Email: enrol@canterbury.ac.nz
Web: www.canterbury.ac.nz/enrol