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ABSTRACT – We derive the most general relation that coherency
requires of the simultaneous assertion of a probability mass function for
the sum of N+1 ordered events, and a conditional probability function for
the final event given each possible value of the sum of the first N events.
We then use this relation to characterise the family of all distributions
on N+1 events that support the well-known sequential forecasting equa-
tions (conditioning only on a sum) that are motivated by exchangeable
assessments. Surprisingly, this intriguing family is much larger than
the family of exchangeable distributions, but is included within the fam-
ily of all pairwise exchangeable (and thus equiprobable) distributions.
Of course the sum is not generally a sufficient statistic for this family.
We display some small numerical examples, and we discuss the impli-
cation of this discovery for applied sequential forecasting.
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RÉSUMÉ – Nous dérivons la relation la plus générale que la cohérence
demande entre l’assertion simultanée de la loi de probabilité pour la
somme de N + 1 événements ordonnés et la probabilité conditionnelle
pour l’événement final, etant donnés tous les possibles valeurs de la
somme des premiers N événements. Ensuite nous employons cette re-
lation pour caractériser la famille de toutes le lois de probabilité sur
N + 1 événements qui supportent les bien connues équations pour la
prévision en série (en conditionnant seulement à une somme) qui dérive
d’assignations échangeables. Avec surprise, cette famille “intrigante"
est beaucoup plus grande que la famille de lois échangeables, mais elle
est incluse dans la famille des lois deux à deux échangeables (et ainsi
équiprobable). Naturellement la somme n’est pas en général une statis-
tique suffisante pour cette famille. Nous montrons des petits exemples
numériques et nous discutons les implications de cette découverte pour
les applications à la prévision en série.

1 Introduction

In his seminal lectures at the Institute Henri Poincaré on the concept of
coherent prevision, de Finetti (1937) introduced both his now-celebrated
“representation theorem” for exchangeable distributions and the lesser
known “fundamental theorem of prevision.” The latter theorem iden-
tifies the bounding coherent implications of any finite list of prevision
assertions (including perhaps conditional previsions) on the further as-
sertion of prevision for any other specific quantity. For an exposition
and extensive discussion, see Lad (1996).

The most important applications of the structure of exchangeable
distributions using sufficient statistics (the sum in the case of events,
the histogram in the case of more general quantities) have been to se-
quential forecasting. This is achieved in the case of events via the
equations

P(EK+1 SK = a) =

(
K+1

a

)
P(SK+1 = a + 1)(

K+1
a+1

)
P(SK+1 = a) +

(
K+1

a

)
P(SK+1 = a + 1)

(1)

for a = 0, 1, ..., K, at least in the “usual case” that P(SK+1 = a) > 0 for
each value of a = 0, 1, ..., K + 1. The subscripted symbol SK denotes the
sum of the first K events. When N + 1 events are regarded exchange-
ably, all equations of the form of equation (1) hold for each value of
K = 1, 2, ..., N. For this reason they are called “sequential forecasting
equations.” The article of de Finetti (1952) addresses the unusual case
in which some of the probabilities P(SK+1 = a) may equal zero. For a
general study of conditional assessments allowing zero probability for
the conditioning events, see Coletti and Scozzafava (1996).

In the present article we use the fundamental theorem of previ-
sion to develop a surprising result: that the family of all distributional
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assertions that support equations (1) is much larger than merely the
exchangeable distributions. We characterise this “intriguing family of
distributions” and we study and exemplify some of its properties. In Sec-
tion 2 we remind the reader of a preliminary inversion relation between
sequential conditional forecasting probabilities and the distribution for
a sum that is honoured by exchangeable distributions. We use this “in-
triguing” relation in subsequent algebraic details. We then begin our
analysis in Section 3 with a derivation of the most general relation be-
tween a probability mass function for the sum of N + 1 events and the
inferential conditional probabilities P(EN+1 SN = a) for a = 0, 1, ..., N
that is required by coherency. In Section 4 we characterise the structure
of intriguing distributions by appending the inversion relation of Sec-
tion 2 to these general coherency conditions. Section 5 presents small
numerical examples of non-exchangeable but intriguing distributions.
These provoke us in Section 6 to establish that intriguing distributions
are properly contained within the family of all pairwise exchangeable
distributions. We conclude in Section 7 with some commentary on the
meaning and applicability of intriguing distributions to statistical prob-
lems of sequential forecasting.

The keen reader will have noticed something unusual in our syntax
to this point, for example in our allusion to "the sum of specific events."
Throughout this article, we use analytic conventions favoured by de
Finetti in his construction of the operational subjective theory of prob-
ability. For the unfamiliar reader, the following “translations” should
make both our syntax and semantics understandable. Our “events” are
numbers that would correspond to the indicator function of events in the
measure theoretic formulation of probability (so, in particular, the sum
alluded to in the Abstract is nothing else that the number of “successes”
out of N “trials”). “Prevision” corresponds to an expectation, and is de-
noted by a capital letter P. Of course, all previsions (expectations) for
events are also probabilities, thus meriting the unified notation for these
two operators. Other quantities that are not events correspond to gen-
eral (non 0 − 1 valued) random variables. Previsions for quantities that
are not indicator events are merely expectations of random variables.
Whenever parentheses surround an arithmetic expression that may be
true and may be false, e.g. (SK = a), the entire parenthetical expression
denotes an event that equals 1 if the interior expression proves true,
and 0 if false.

2 A preliminary relation and the question it poses

Studying a characterisation of inference regarding exchangeable events,
Lad, Deely and Piesse (1995) examined the inversion equations relat-
ing the probability mass function for the sum of N + 1 events, P(SN+1 =
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a) , for a = 0, 1, ..., N+1, to the N+1 conditional assertions of P(EN+1 SN =
a) , for a = 0, 1, ..., N. Denoting the latter N+1 conditional probabilities
by the vector pN+1 ≡ (po, p1, ..., pN )T and the unconditional probabili-
ties for the sum by the vector qN+2 ≡ (qo, q1, ..., qN+1 )T, the inversion
equations are

qo = 1

1+

N∑
a=0

(
N + 1
a + 1

) a∏
i=0

pi

1 − pi

,

and

qa =
(

N + 1
a

) a−1∏
i=0

pi

1 − pi
qo , for a = 1, ..., N + 1. (2)

That is, if a distribution over N + 1 events is exchangeable, then the
components of the vector qN+2 cohering with the asserted vector pN+1
are proportional to the products of sequentially expanding numbers of
conditional odds ratios. These equations invert the sequential forecast-
ing equations (1) which are expressed in the notation of pN+1 and qN+2
as

pa =

(
N+1

a

)
qa+1(

N+1
a+1

)
qa +

(
N+1

a

)
qa+1

, for a = 0, 1, ..., N (3)

at least in the usual case of strictly positive probability mass functions
for SN that we mentioned in the Introduction. We also restrict our at-
tention to this case in the present article.

Although the inversion equations (2) are implied by the judgment
to regard the N + 1 events in question exchangeably, adherence to them
does not require that the individual events are assessed exchangeably.
For exchangeability forces a stronger requirement than (3): a simi-
lar equation would be required for the conditional probability of each
one of the N + 1 events Ei given that the sum of the other N equals
a. It also forces the sufficiency of SN+1 for the distribution of EN+1.
Nonetheless, all distributions that satisfy equations (2) do share some
of the properties of exchangeable distributions, and are intriguing for
several reasons. We refer to them as “intriguing distributions”. The
most important of the shared properties are the sequential forecasting
equations (3) conditioned on the sum of the ordered events. However
we show that although intriguing distributions properly contain the ex-
changeable distributions, they are properly contained in the family of
all pairwise exchangeable distributions.

The satisfaction of the intriguing equations (2) merely for a par-
ticular size of N does not imply via coherency the satisfaction of the
corresponding equations of the same form for N − 1. However, the as-
sertion of the p.m.f. values for the sum of N + 1 events (the vector qN+2)
concomitantly with equations (2) does imply the p.m.f. values for the
sum of only the first N events, SN. In defining the family of intriguing
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joint distributions over the ordered events EN+1 ≡ (E1, E2, ..., EN+1 ), we
require the satisfaction of the intriguing equations (2) based on N + 1
events as it is stated, and also the satisfaction of the corresponding equa-
tions for all “smaller sizes of N.” Let us state this formally as a definition.

Definition: A joint distribution over the ordered vector of events EN+1
is an intriguing distribution if, for every n = 1, 2, ..., N, the proba-
bility mass function for the sum, qn+2, of the ordered vectors of events
En+1 and the corresponding conditional probability function, pn+1, sat-
isfy equations (2) (written with n in place of N).

Before investigating this family, let us develop the general coherent
relations between qN+2 and pN+1 that govern every joint distribution over
EN+1.

3 Coherent relations between the distribution
for a sum and conditional probabilities for the
final event given the accumulated sum

Consider N +1 events about which are asserted both a probability distri-
bution for their sum (via the vector qN+2), and a conditional probability
function for the final event given each possible value of the sum of the
first N events (via the vector pN+1). To avoid complications, we con-
sider here only problems in which pN+1 lies strictly within the (N + 1)-
dimensional unit-hypercube, not on the boundary. The reason is evident
in equation (2). On their own of course, coherency would restrict the
vector qN+2 only to lie within the (N+1)-dimensional unit-simplex, while
allowing pN+1 to lie anywhere within the unit-hypercube of the same di-
mension. But what are the strongest coherency conditions required of
their simultaneous assertion, supposing nothing more than that pN+1 is
strictly within the hypercube, not on its boundary? (This would imply,
of course, that qN+2 is also strictly within the unit-simplex, not on its
boundary).

In the first place, it should be recognised that the 2N + 3 quanti-
ties assessed via qN+2 and pN+1 can all be expressed as functions of only
N+2 events: EN+1 and (SN = a) for a = 0, 1, ..., N. The smallest partition
these events generate that is relevant to every probability presumed to
be asserted via pN+1 and qN+2 is constituted by the 2N + 2 events we
shall denote by

C1
a ≡ (SN = a)EN+1 and Co

a ≡ (SN = a)ẼN+1

for a = 0, 1, ..., N, where Ẽ denotes the negation of the event E. Arith-
metically, Ẽ ≡ 1 − E. Using this notation for the constituents of the
partition, notice that

(SN+1 = a) = Co
a + C1

a−1 and (SN = a) = Co
a + C1

a .
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The assertion of probabilities specified by qN+2 and pN+1 implies a
unique probability distribution over these constituents via the 2N + 3
linear restrictions it places on their cohering valuations. We shall denote
the induced probability valuations for these constituents by α i

a ≡ P(Ci
a)

for the values of a = 0, 1, ..., N and i = 0, 1, referring in short to the vector
of all these α i

a as α .
It is instructive to exhibit the details. Let us begin by constructing

the algebraic restrictions on a probability distribution over this partition
of events that are imposed merely by the assertion of values for the
N + 1 conditional probabilities pN+1 strictly within the unit-hypercube,
(0, 1)N+1. These would imply the N + 1 equations

α 1
a = pa (α 1

a + α 0
a ) , for a = 0, 1, ..., N (4)

for the reason that P[(SN = a)EN+1] = P[EN+1 (SN = a)]P(SN = a). An
additional universal restriction on the values of the α i

a is the summation
constraint over the partition:

N∑
a=0

1∑
i=0

α i
a = 1 . (5)

These N + 2 equations in 2N + 2 unknowns exhaust the coherency re-
strictions entailed in the assertion of the conditional probabilities pN+1.

Since it is well-known that any assertion of conditional probabilities
of the type expressed by pN+1 within the unit-hypercube is coherent,
there surely exist many vectors α > 0 of solutions to equations (4) and
(5). Particular solutions could be identified by arbitrarily selecting prob-
abilities for N of the constituents, i.e., N components of α .

However there is a more informative way to understand the solutions
to the iterative constraints. Notice that any one of the solutions for
the vector α would determine the cohering values of qN+2, since each
qa = α 0

a + α 1
a−1. Thus, there surely exist many choices of values for

numbers we denote by β1, β2, ..., βN , each within the interval (0, 1) for
which

α 1
a = βa+1qa+1

for a = 0, 1, ..., N − 1, and

α 0
a = (1 − βa)qa

for a = 1, 2, ..., N. In the context of strictly positive probability mass
functions qN+2, these values of βa then correspond to the conditional
probabilities P[EN+1 (SN+1 = a + 1)], since α 1

a ≡ P[EN+1(SN = a)] must
also equal P[EN+1(SN+1 = a+1)]. Moreover for the special cases of a = N
and a = 0, these two equations require respectively that βN+1 = 1 and
β0 = 0. So the N free choices for components of α correspond to N
component values of a vector β N = (β1, β2, ...βN ) each within (0, 1).
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Now restating the restrictions of equations (4) and (5) in terms of
these values of βa yields the system of N equations

βaqa = pa−1[βaqa + (1 − βa−1)qa−1] , for a = 1, ..., N (6)

along with an (N + 1)st equation

qN+1 = pN[qN+1 + (1 − βN )qN] (7)

and of course the (N + 2)nd summation equation that forces the compo-
nents of qN+2 to sum to 1. Equation (7) corresponds to the case of (4)
when a = N, recalling that α 1

N = qN+1.
Equations (6) and (7) amount to N + 1 non-linear relations of qN+2

to pN+1, expressed in only N unknowns, the components of the vector
β N. Now if a mass function vector qN+2 were actually asserted concomi-
tantly with the pN+1, the first N of these equations (6) yield solutions for
the vector β N, which coherence would require to lie within (0, 1)N. The
(N + 1)st equation (7) then specifies a further compatibility condition.
This can be seen from the solution of this system in terms of the vector
β N. The first N equations (6) resolve to

βa =
a−1∑
r=0

(−1)r qa−1−r

qa

a−1∏
i=a−1−r

pi

1 − pi
, for a = 1, ..., N (8)

which coherency would require each to lie within the interval (0, 1),
since α 1

a−1 = βaqa.
Inserting these solutions for βa into the (N + 1)st equation (7) then

yields the following compatibility condition between the components of
qN+2 and pN+1:

qN+1 (
1 − pN

pN
) = qN −

N−1∑
r=0

(−1)rqN−1−r

N−1∏
i=N−1−r

pi

1 − pi
. (9)

Equation (9) together with the restrictions of equation (8) that each
βi lie within (0, 1), represent the general coherency conditions on the
simultaneous assertion of qN+2 and pN+1 for which we have searched. It
does not presume exchangeability. Let us state this result formally as a
theorem.

Theorem 1: A strictly positive probability mass function for the sum of
N + 1 ordered events, qN+2, coheres with a conditional probability func-
tion pN+1 if and only if together they specify values of β1, β2, ..., βN each
within the interval (0, 1) via equation (8) and they also comply with the
restriction of equation (9).

A simple example when N = 2 should suffice for the moment. Sup-
pose p3 = (.25, .5, .75). The assertions of q4 either as (.3, .2, .2, .3) or as
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(3/11, 5/22, 5/22, 3/11) would both satisfy equations (8) with β 2 = (.5, .5)
and β 2 = (.4, .6) respectively, and they both also satisfy equation (9).
However the assertion of q4 = (.15, .1, .1, .65) would be incoherent since
it satisfies (8) with β 2 = (.5, .5) but not (9). The vector q4 = (.1, .2, .3, .4)
on the other hand would not even satisfy equation (8).

4 Identifying the structure of intriguing distri-
butions

The judgment of exchangeability regarding the events EN+1 implies a
relation between the components of qN+2 and pN+1 that is stricter than
equation (9). It is the relation that we expressed in Section 2 via the “in-
triguing equations” (2), and which we restate here more simply without
the proportionality constant:

qa ∝
(

N + 1
a

) a−1∏
i=0

pi

1 − pi
, for a = 0, 1, ..., N + 1, (10)

using the convention that
∏−1

i=0 ≡ 1. Of course the proportionality is
determined by the sum of the specified values of qa.

Since (9) is a more general condition than (10), one finds that equa-
tion (9) is satisfied when the components of qN+2 are replaced by their
expressions in pN+1 stipulated by (10). Moreover, using the restrictions
of (10) in the equations (8) yields the specific solutions

βa ≡ P(EN+1 SN+1 = a) =
a

N + 1
, for a = 1, 2, ..., N. (11)

Let us state this constructed result formally as a theorem.

Theorem 2: An intriguing probability distribution on N + 1 ordered
events requires the specific conditional probability assertions

P(EN+1 SN+1 = a) =
a

N + 1
, for a = 1, 2, ..., N .

It is interesting that for each value of a this is only one of the N + 1
similar restrictions that must hold if the N + 1 events were regarded
exchangeably. For in that case the equation

P[(SN+1 = a)Ei] =
a

N + 1
P(SN+1 = a)

must hold for every i = 1, ..., N + 1. An event of this form can occur
in

(
N

a−1

)
different ways, each assessed under exchangeability with the

probability qa/
(

N+1
a

)
. Summing them yields this result.
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It is also interesting that intriguing distributions allow great range of co-
herent assertion values for the conditional probabilities P(EN+1 SN = a).
In fact any vector pN+1 within the unit-hypercube coheres with many
intriguing distributions. Nonetheless, while the seemingly appealing
assertions

P(EN+1 SN = a) =
a
N

for each a = 1, 2, ..., N − 1 can be a coherent array of assertions for
any finite value of N, coherency then would require the same structure
of conditional assertions for all “smaller values of N”, which is not so
appealing. Moreover, the assertion of

P(EN+1 SN = a) =
a
N

for every value of N

and a = 1, 2, ..., N − 1 would be incoherent! See the article of Lad, Deely,
and Piesse (1995) for details.

Notice now that the N conditions of equation (11) exhaust the coherent
implications of the intriguing equations (2 or 10) for the joint distribu-
tion of EN+1, for a specific value of N. These, then, are N linear conditions
on probabilities for the constituents of the partition generated by EN+1.
Remember, however, that by definition, if the distribution on EN+1 is to
be considered intriguing, the marginal distribution on EN must be in-
triguing too: thus, conditions of the form of equation (11) must pertain
to each “smaller value of N” as well! At this point let us address the
implications of this reductive aspect of intriguing distributions on EN+1.

4.1 Restrictions induced by the reductive aspect of in-
triguing distributions

It is evident that the intriguing conditions (11), together with the asser-
tion of the p.m.f. for the sum of the N + 1 events denoted by qN+2, imply
the p.m.f. for the sum of the first N events as well. For when equations
(11) hold, we can compute

P(SN = a) = P[(SN = a)EN+1] + P[(SN = a)ẼN+1]

= [
a + 1
N + 1

] P(SN+1 = a + 1) + [1 −
a

N + 1
] P(SN+1 = a).(12)

So the feature of intriguing distributions over EN+1 that they must
margin to an intriguing distribution over EN implies N − 1 more linear
conditions on the partition probabilities in the form of equations (11)
at this level. Continuing, then, the further reduction to a marginal
distribution that is intriguing over EN−1 places N − 2 more restrictions;
and so on down to the final condition on the distribution for E2 that
P[(S2 = 1)E2] = P(S2 = 1)/2. As a result of all these reductive implica-
tions of our definition then, the family of all intriguing distributions on
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EN+1 is specified by

N + (N − 1) + (N − 2) + ... + 1 =
N(N + 1)

2

linearly independent linear conditions on the probabilities for the con-
stituents of the partition generated by EN+1.

4.2 The dimension of the intriguing family

Our constructive discussion has also resulted in a theorem on the di-
mensionality of the family of intriguing distributions. Of course the
family of all coherent distributions over EN+1 has dimension 2N+1 − 1.
(We presume the logical independence of the events). The loss of 1 di-
mension from the size of the partition these events generate is due to the
summation constraint on probabilities over a partition. Moreover, the
dimension of the family of exchangeable distributions on EN+1 is only
N + 1, recognised as the unit-simplex in this dimension. It is charac-
terised by the distribution over the sum of the events, SN+1. This result
derives from the fact that exchangeability places

(
N + 1

1

)
− 1 +

(
N + 1

2

)
− 1 + ...

(
N + 1

N

)
− 1 = 2N+1 − N − 2

further linear restrictions on the family of all distributions. Thus,

2N+1 − 1 − (2N+1 − N − 2) = N + 1

is the dimension of the exchangeable family.
Using the same algebraic logic of coherency, we can recognise that

the intriguing conditions specify only N(N + 1)/2 conditions through the
required conditions identified in Theorem 2, that

P(EK+1 SK+1 = a) =
a

K + 1
,

for a = 1, 2, ..., K and K = 1, 2, ..., N. We thus understand the following:

Theorem 3: The dimension of the family of all intriguing distributions
over the logically independent ordered events EN+1 is 2N+1−1−N(N+1)/2.

Table 1 displays the relative sizes of D(F ), D(E ), D(I ), and D(PE)
for selected values of N, where F , E, I , and PE represent the fami-
lies of all distributions, exchangeable distributions, intriguing distri-
butions, and pairwise exchangeable distributions, respectively. Condi-
tions of pairwise exchangeable distributions are equivalent to those of
equiprobable distributions. Thus, their dimension over EN+1 arises from
merely N linear restrictions additional to the summation constraint:
D(PE) = 2N+1 − 1− N. A complete analysis of PE is deferred until Section
6 after we study some suggestive examples for the cases of N = 2 and
N = 3.
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Table 1. Dimensions of various families of distributions.

N D(F ) D(E ) D(I ) D(PE)
1 3 2 2 2
2 7 3 4 5
3 15 4 9 12
4 31 5 21 27
5 63 6 48 58

10 4095 11 4044 4085

5 Examples of special cases when N = 2 and N =
3

The case of N = 1 is trivial, involving only the events E1 and E2.
They generate a partition of size 4. The only intriguing condition is
P[(S2 = 1)E2] = P(S2 = 1)/2. Supplemented by the p.m.f. assertion
q3 = (q0, q1, q2), this is enough to identify the intriguing distributions
(N = 1) as the exchangeable distributions over two events.

The simple algebra is worth displaying, since it formalises the log-
ical process that will be followed in larger cases as well. The central
equation required by coherency is

P




E1
E2

1

(S2 = 0)
(S2 = 1)
(S2 = 2)

(S2 = 1)E2




=




?
?

1

qo
q1
q2

q1/2




=




0 1 0 1
0 0 1 1

1 1 1 1

1 0 0 0
0 1 1 0
0 0 0 1

0 0 1 0







c1
c2
c3
c4


 .

(13)

The first equality identifies all the probability assertions that have been
presumed in the problem. To the right of the second equal sign appears
firstly the matrix whose columns list all the possibile observation val-
ues of the unknown column of quantities whose probabilities are being
asserted (or not) listed after the P operator at the far left. This matrix
is known as the realm matrix for the vector of quantities. The first
two of the quantities in the vector, E1 and E2, generate the exhaustive
list of possibilities under consideration. Nowhere in the specification
of the problem are their probabilities asserted. Thus, their assertion
values are denoted by a question mark “?”, in the vector of probability
assertion values. The remaining events in the quantity vector are all
defined by functions of E1 and E2. Their assertion values, expressed
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generally in terms of components of q3 in keeping with the restriction
on intriguing distributions, should be understood as numbers. The in-
triguing condition should be recognised in the final row of this linear
equation: P[(S2 = 1)E2] = P(S2 = 1)/2, in the context that P(S2 = 1) has
been specified asserted at the value of q1. It is the principle of coherency
that requires the satisfaction of equation (13). For a coherent prevision
(probability in this case) vector must lie within the convex hull of the
columns of the realm matrix. The convexity is assured by the third line
in the vector equation, which requires the components of c4 to sum to 1.

The five linear restrictions on c4 have rank 4 since the partition
events defined by S2 surely sum to 1. Thus, as long as the assertion
vector q3 = (qo, q1, q2) is nonnegative and sums to 1, these assertions
are coherent. Moreover the restrictions identify precisely one cohering
probability mass function for E2 via the solution for c4: c1 = qo, c2 = q1/2,
c3 = q1/2, and c4 = q2. This, obviously, is the exchangeable distribution
on E2 specified by q3, for it ensures that P(E1Ẽ2) = P(Ẽ1E2). So in
the case of N = 1 the intriguing distributions are the same as the ex-
changeable distributions and the equiprobable distributions, and are
characterised by the family of distributions on the sum, S2.

5.1 The case of N=2

Now when N = 2, the central equation expands to

P




E1
E2
E3

1

(S3 = 0)
(S2 = 1)
(S3 = 2)
(S3 = 3)

(S3 = 1)E3
(S3 = 2)E3

(S2 = 1)E2




=




?
?
?

1

qo
q1
q2
q3

q1/3
2q2/3

(q1 + q2)/3




=




0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0

0 0 1 0 0 0 1 0







c1
c2
c3
c4
c5
c6
c7
c8




.

(14)
The final row constraint in this equation comes from applying the sum
reduction equation (12), which yields P(S2 = 1) = (2/3)P(S3 = 2) +
(2/3)P(S3 = 1) = (2/3)(q1 + q2), and then realising that P( (S2 = 1)E2) =
P(S2 = 1)/2. It is evident from the displayed equation that there are only
seven linearly independent restrictions on the constituent probabilities
c8. Thus, there is one dimension of free choice in their solution in addi-
tion to the three dimensions of choice in the specification of the vector
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q4. These four dimensions of freedom represent the four dimensions of
the family of intriguing distributions in the case of N = 2.

Algebraically, the solutions to the constituent probabilities are

cT
8 = (qo, 2q1/3 − c3, c3, q2/3, q1/3, (q2 − q1)/3 + c3, (q1 + q2)/3 − c3, q3) .

(15)
For each choice of q4 in the three-dimensional unit-simplex, there is a
whole dimension of solutions to the cohering constituent probabilities,
parameterised here by the value of c3. Thus, the space of intriguing
distributions is larger than that of the exchangeable distributions by
one dimension, as we had seen in Table 1. Limitations on the value of c3
(and thus on the length of this one-dimensional line segment) depend
on the companion assertion of q4. It turns out that if q1 > q2, then
c3 ∈ ( (q1 − q2)/3, (q1 + q2)/3); whereas if q1 < q2, then c3 ∈ (0, 2q1/3).

Further features of the general solution can be seen in this exam-
ple. It is easily determined, for example, from these solutions that the
individual events must be regarded equiprobably, and thus pairwise ex-
changeably. For P(E1) = P(E2) = P(E3) = q1/3 + 2q2/3 + q3. This feature
is worth checking, because we know that the intriguing distributions
include but exceed the exchangeable ones, which of course are equiprob-
able. Alternatively, this same result can be seen by checking that these
intriguing distributions all respect the property of pairwise exchange-
ability. This results from the observation that P(E1(1 − E2) ) = c2 + c6 =
(q1+q2)/3, while P( (1−E1)E2) = c3+c7 = (q1+q2)/3, the same value. Sim-
ilarly, we find that P(E1(1−E3) ) = P( (1−E1)E3) = 2q1/3+q2/3−c3, which
can easily differ from (q1 + q2)/3. Although all intriguing family mem-
bers are equiprobable (and equivalently pairwise exchangeable), com-
plete exchangeability holds only for those members for which c3 = q1/3.

However, not all pairwise exchangeable distributions are intriguing!
Consider, for examples, the pairwise exchangeable distributions identi-
fied by c8 = (1, 5, 5, 1, 1, 5, 5, 1)/24 and c8 = (7, 1, 1, 7, 7, 1, 1, 7)/32. (The
pairwise exchangeability is checked more easily by noticing that they are
equiprobable distributions). These distributions on E3 support different
distributions on the sum S3, q4 = (1, 11, 11, 1)/24, and q4 = (7, 9, 9, 7)/32,
respectively. Interestingly however, both of these distributions would
imply p3 = (.5, .5, .5) by direct computation; whereas this specification
of p3 would imply the distribution q4 = (1, 3, 3, 1)/8 via the inverted
intriguing equations (2). So the distributions corresponding to these
two specification of c8 are both pairwise exchangeable, but neither is
intriguing. We shall analyse this situation generally in Section 6 after
a brief glance at the case of N = 3.

Despite the fact that intriguing distributions are defined by the ex-
changeable relation of the conditional forecasting probabilities to the
distribution of the sum, the sum is not a sufficient statistic for the infor-
mative content of observations for the general intriguing family mem-
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ber. This property is commonly referred to as “predictive sufficiency.”
Observe in this example that

P(E3 E1Ẽ2) = c6/(c2 + c6) = (c3 − q1/3 + q2/3)/[(q1 + q2)/3] , and
P(E3 Ẽ1E2) = c7/(c3 + c7) = [(q1 + q2)/3 − c3)/[(q1 + q2)/3] , while

P(E3 (S2 = 1)) = (c6 + c7)/(c2 + c3 + c6 + c7) = q2/(q1 + q2) .

These three conditional probabilities would all be equal only in the case
of c3 = q1/3, the exchangeable member of the intriguing family.

5.2 The case of N=3

When N = 3, the central equation expands to

P




E1
E2
E3
E4

1

(S4 = 0)
(S4 = 1)
(S4 = 2)
(S4 = 3)
(S4 = 4)

(S4 = 1)E4
(S4 = 2)E4
(S4 = 3)E4

(S3 = 1)E3
(S3 = 2)E3

(S2 = 1)E2




=




?
?
?
?

1

qo
q1
q2
q3
q4

q1/4
2q2/4
3q3/4

(3q1/4 + q2/2)/3
(q2/2 + 3q3/4)(2/3)

q1/4 + q2/3 + q3/4




=




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

− − − − − − −−
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

− − − − − − −−
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

− − − − − − −−
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

− − − − − − −−
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

− − − − − − −−
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0




c16 .

(16)
Again, the final three constraint values of the previsions are determined
by applying the reduction equation (12) to the p.m.f. values for S4
yielding the p.m.f. on S3, and then again on S2. The eleven linearly
independent constraints on the components of c16 generate the following
solution with five degrees of freedom, parameterised by the choices of
c5, c6, c7, c9, and c14:

cT
16 = (qo, q1/4, 3q1/4 − c5 − c9, −q1/2 + q2/6 + c5 + c9,

c5, c6, c7, q1/4 + q2/3 + q3/4 − c5 − c6 − c7,
c9, q1/2 + q2/3 − c5 − c6 − c9, q2/3 − q3/4 − c7 + c14,
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−q1/4 − q2/3 + q3/2 + c5 + c6 + c7 − c14, q2/6 + q3/4 − c14,
c14, q3/4, q4) .

The derivation of such results is conducted most easily with algebraic
programming software such as MAPLE. The five free choices of ci along
with four components of q5 exhaust the dimension of the intriguing fam-
ily in this case.
We now turn to a proof that all intriguing distributions are equiproba-
ble, and thus pairwise exchangeable.

6 Intriguing distributions are equiprobable dis-
tributions

In Section 5.1 we have observed examples of equiprobable distributions
that are not intriguing. Nonetheless, every intriguing distribution is
equiprobable. This can be proved by finite induction.

Firstly, we have observed that intriguing distributions are equiprob-
able when N = 2 and when N = 3. Now suppose that an intriguing
distribution specified for some value of N is equiprobable for the implied
intriguing distribution specified by N − 1. We shall prove that the con-
ditions imposed by the intriguing property of the full distribution at the
Nth stage then imply that the distribution is also equiprobable through
this stage.

Consider the equation

EN − EN+1 = (SN+1 = N)
−(SN+1 = 1)EN+1 − (SN+1 = 2)EN+1 − ⋅ ⋅ ⋅ − (SN+1 = N − 1)EN+1

−2(SN+1 = N)EN+1

+(SN = 1)EN + (SN = 2)EN + ⋅ ⋅ ⋅ + (SN = N − 1)EN (17)

which we shall now prove by enumeration. Probabilities for each of
the events on the right hand side of equation (17) have been specified
through the presumed assertion of qN+2 and the conditions that make the
distribution intriguing. Once we have certified that equation (17) holds,
we shall notice that probabilities for all the right-hand side events sum
to 0. Thus, we will have proved that P(EN ) = P(EN+1), establishing that
intriguing distributions for any finite vector of events are equiprobable.

As to equation (17), let us check its validity for each of the four
possible observation pairs of (EN, EN+1), these being (0, 0), (1, 0), (0, 1),
and (1, 1).

If (EN, EN+1) = (0, 0), then every term on the right-hand side of
equation (17) must equal 0: for every summand term in the second
through fourth lines of the identity includes either EN or EN+1 as a
factor; moreover, the single term in the first line must also equal zero,

15



since in this case the sum SN+1 can equal at most N − 1. So the equation
holds.

Now suppose (EN, EN+1) = (1, 0). In this case every term among the
summands on the second and third lines of the right-hand side equals 0,
because of the factor EN+1 that occurs in each. In addition, in this case
the numerical value of SN may equal only the values 1, 2, ..., N − 1 or N.
In the first N − 1 of these cases, there is exactly one positive summand
in the fourth line of the right-hand side corresponding to each of these
possibilities, exactly one of which must then equal 1, as required for the
equation to hold. Finally, in the case that SN = N, under this scenario it
must also be true that SN+1 = N. In this case, the only nonzero term on
the right-hand side would be the first term, (SN+1 = N), which equals 1.
Thus, the equation must hold.

If (EN, EN+1) = (0, 1), then all summands on the right-hand side that
include the factor EN must equal 0. All remaining terms contain as a
factor exactly one of the events (SN+1 = 1) through (SN+1 = N), exactly
one of which must equal 1. Of these, if SN+1 equals any of 1 through
N − 1, then only that relevant term appearing in line 3 will equal −1
(on account of the negative sign) while all other terms, including the
two terms containing the event (SN+1 = N), will equal 0. Both sides of
the equation will then equal −1. Whereas, if SN+1 = N, then only those
two terms including the factor (SN+1 = N) are nonzero, the first term
(in line 1) with a coefficient of +1 and the second term (in line 3) with
coefficient −2. Thus, again, both sides of the equation (17) would equal
−1, as required to establish that it holds.

Finally, suppose (EN, EN+1) = (1, 1). In this case the value of SN
can only equal one of the values 1, 2, ..., N − 1, or N. If it does equal N,
then SN+1 must equal N + 1. In this case, every term on the right-hand
side of equation (17) equals 0, so the equation holds. But if SN = N − 1,
then only the terms (SN+1 = N) and (SN = N − 1)EN equal 1, while the
term −2(SN+1 = N)EN+1 would then equal −2, forcing the entire right-
hand side to equal 0 as required, since all other terms on the right-hand
side would equal 0. Whereas if SN equals any of 1 through N − 2, then
SN+1 must equal correspondingly 2 through N − 1. There is exactly one
positive and one negative term on the right-hand side in each of these
cases, establishing that the equation holds. We have now covered all
cases, so equation (17) is established.

Let us now consider the prevision required for both sides of equation
(17) according to the linearity required by coherency. First consider
the fact that for any a = 1, ..., N − 1, P( (SN+1 = a)EN+1) = aqa/(N +
1) as required by the intriguing property of the distribution we have
established as Theorem 2. Furthermore,

P( (SN = a)EN ) =
a
N

P(SN = a) =
a
N

( a + 1
N + 1

qa+1 + [1 −
a

N + 1
] qa

)
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as we have established by the reduction equation (12) for P(SN = a).
Assessing prevision for both sides of equation (12) by substituting

these values on the right-hand side then yields

P(EN ) − P(EN+1) = qN

− q1/(N + 1) − 2q2/(N + 1) − ⋅ ⋅ ⋅ − (N − 1)qN−1/(N + 1)
− 2NqN/(N + 1)
+ (1/N)[(2/(N + 1))q2 + (N/(N + 1))q1]

+ (2/N)[(3/(N + 1))q3 + ((N − 1)/(N + 1))q2]
+ ⋅ ⋅ ⋅ + ((N − 1)/N)[(N/(N + 1))qN + (2/(N + 1))qN−1]

= 0 . (18)

The fact that the right-hand side of equation (18) equals 0 is recog-
nised by collecting terms with common factors.

7 Concluding remarks

The sequential forecasting equations conditional on the sum of preced-
ing events that are motivated by exchangeability have been found to
specify coherent inferences for a much larger family of distributions
than merely the exchangeable ones. The single feature that charac-
terises this larger intriguing family is the regularity of the conditional
probability function that they honour: P(EN+1 SN+1 = a) = a/(N + 1) for
a = 0, 1, ..., N + 1.

Our identification of this family of distributions can prove useful
for two reasons. In some instances, a forecaster may specifically reject
the constancy of probability over permutations of occurrences that ex-
changeability requires. A simple example would be the sequential order
of males and females who enter a lecture hall. In many cultural contexts
one might well assess sequences in which females arrive in clusters of
a specific size as more likely than sequences in which every female is
interspersed between two males. Nonetheless, one may yet recognise as
appropriate the abovementioned conditional probabilities that charac-
terise the intriguing distributions. In such a case one could coherently
use the intriguing forecasting equations conditioned on a sum.

Secondly, it is not at all uncommon that inexperienced investigators
routinely collect data, sometimes quite interesting, on a sum of events
without recording the complete sequence of individual responses. For
many reasons that an analyst might not want to regard exchangeably
the actual sequence of responses that were not recorded, the coherent
intriguing inferential equations may still prove appropriate and useful
for inferential data summary, even if the sum is not formally sufficient.

It has long been known that the exchangeable distributions are char-
acterised by the sufficiency of the sum of any N events for the conditional
probability of any other event, equivalent to conditioning on the complete
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ordered sequence of occurrences and non-occurrences. (A completion of
this result extends it by characterising forms of partial exchangeability
in terms of the dimension of the sufficient statistic vector supporting
a distribution. This is described in a beautiful article by Diaconis and
Freedman (1984).) At any rate, for those intriguing distributions that
are not exchangeable then, there will be a difference between the con-
ditional probability for EN+1 given the sum of N events and the condi-
tional probability given the complete ordered sequence that generates
that sum. Our investigations into the systematic structure on bounds
for the order of magnitude of these differences are proceeding.
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