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Abstract

The extent of mathematical analysis for electro-permeabilization of biological
cells has thus far been constrained to spherical models. In this paper, the spherical
model is extended to a prolate spheroidal balloon model, which is considered more
representative of many real cells under actual field conditions.

It is shown that the size dependence of the dielectric voltage breakdown for the
spheroidal cells can be eliminated. This also reduces the dependence of the breakdown
on the eccentricity of the spheroidal cells over a range of shapes. It is shown that
dielectric breakdown of needle shaped cells will occur at higher applied fields than
spherical ones.

1 Introduction

Mathematical models of the onset of electro-permeabilization of the membrane of biological
cells has been widely cited with respect to spherical models [7, 12, 14]. This is relevant
to a number of simple micro-organisms or special cell types such as cysts. Furthermore, a
spherical model is conceptually simple to visualize and analytically succinct.

However, many micro-organisms have elongated cell forms. Further, under application
of an electric field, spherical cells may become prolate due to the compression force in a
direction perpendicular to the field [1] such that the spherical model is not valid at the
actual time of electro-permeabilization. Hence the simple spherical model may not be a
good predictor of when electro-permeabilization will occur.
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In this paper, the spherical model is extended to a prolate spheroidal balloon model,
which is considered more representative of many real cells under actual electric field condi-
tions. Only spheroids aligned parallel to the applied electric field are considered, although
both parallel and perpendicular alignments have been observed [1].
§ 2.1 describes the typical processes used in electro-permeabilization techniques and lists

some basic facts. In § 3 we derive the pertinent results for the prolate spheroid model. The
trans-membrane potential drop is derived from static considerations of Laplace’s equation
in § 3.2. This analysis is modified slightly, together with a homogenisation technique, to
derive an effective time constant for the leakage of the polarisation charge from the prolate
spheroid membrane in § 3.3. These two sections provide the theoretical development to
enable the derivation of two important parameters used in electro-permeabilization, namely
the resistivity factor and the surface charge leakage time constant. The resistivity factor,
which is determined by the geometry and relative resistivities associated with the cell,
is important in determining how the applied potential field is converted into a trans-
membrane potential in the cell, and this in turn will model when membrane dielectric
breakdown will occur. It is shown that the spheroidal eccentricity1 does not effect this factor
as much as the relative associated resistivities, and the membrane thickness. However, the
spheroidal eccentricity has a major effect on the time constant associated with temporal
redistribution of surface charge density, and this time constant can become very large in
needle shaped cells.
In § 3.4 it is shown how the dependence of the dielectric breakdown on the size of

the prolate spheroidal cells can be eliminated. This also reduces the dependence of the
breakdown on the eccentricity of the spheroidal cells for a range of fatter spheroidal shapes.
However, it is shown that needle shaped cells will have dielectric breakdown at higher
applied fields than fatter ones.
Finally in Appendix A.2 we list pertinent results for the spherical balloon model, this

is so that we may contrast them with the results derived in § 3.

2 Electro-permeabilization

A typical electro-permeabilization setup is shown in Figure 1, which depicts a cell sus-
pended in a conducting medium and where electrodes are placed at each end of the medium.
There are three distinctly different medium regions, outside the cell, the cell membrane,
and inside the cell, denoted by subscripts o, m, i, respectively. When a large enough
potential difference is applied across the outside medium, a transmembrane potential is
developed. Perforation of the membrane medium may then occur.

2.1 Physical considerations

In modelling the process of electro-permeabilization, there are several physical constants
which need to be measured or approximated in order to obtain realistic results from a

1Defined in § 3.1
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Figure 1: Typical electro-permeabilization experimental setup

theoretical model. For the purpose of this analysis it is assumed that the membrane of
a cell is a simple medium of low conductivity, which has specific capacitance Cm of the
order of 1µF·cm−2. The membrane thickness is very small in comparison to the cell size
and the dimensions of the external medium container. The size of the cell can vary greatly
depending on the type of cell. A typical cell may have radius a of 1-100µm and a membrane
thickness d several orders of magnitude smaller than the radius; typically 0.01µm.

In previous experimentations on balloon models [4, 6, 5] the external medium was a
solution of domestic tap water with a conductivity of 14.3×10−3S·m−1. However, in general,
this value could be anywhere from distilled water 0.3×10−3S·m−1 to an ionic solution with
a much higher conductivity, depending on the concentration of the salts. The dielectric
permittivity of distilled water is 81.1ε0 =72×10−9F·m−1. As biological cells have permeable
membranes, the inside of the cell will have similar physical properties, at least within an
order of magnitude.

The electric field E(x) prescribes how the current density J(x) flows through the con-
ductive medium, with conductivity σ. The fields are assumed to obey Ohm’s law

J = σE,

where x prescribes the location in space determined by a 3-tuple of Cartesian co-ordinates.
The other vector field important to our investigations is the polarisation field P(x). This
is related to the electric field through

P = χE,

where the susceptibility χ = ε0(ε − 1), and ε0 and ε are respectively, the permittivity of
free space, and the relative permittivity of the medium being considered.
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Figure 2: Co-ordinates of prolate spheroidal cell model with semi-focal distance c = 0.8,
d = 0.02, and ξo = 1.15.

3 Prolate spheroid model

A prolate spheroid is essentially a distorted sphere. Consideration is given to the case of
the electric field being parallel to the major axis as this is a comprehensive mathematical
exercise in its own right. However in practice, experimental results [2, 7, 13] suggest that
cells will align themselves either parallel or perpendicular to the field. Cells may also
deform in either direction under an intense electric field depending on the ratio of the
specific resistance of the external medium to that of the internal medium [1]. We shall
consider only the parallel alignment case in this paper.

3.1 Coordinates

Elliptic coordinates are based on confocal ellipses, just as spherical coordinates are based
on confocal circles, e.g. confocal ellipses are shown in Figure 2. Prolate spheroidal coordi-
nates are formed by rotating elliptic coordinates around the major axis. The foci of the
coordinates are set at x = y = 0, z = ±c. A Cartesian point (x, y, z) can be uniquely
expressed in terms of foci points ±c, and the spheroidal coordinates {ξ, η, φ} as

z = cηξ,

x = c
√
(ξ2 − 1)(1− η2) cosφ,

y = c
√
(ξ2 − 1)(1− η2) sinφ,

with latitude coordinate η ∈ [−1, 1], and azimuthal angle φ ∈ [0, 2π].
The scalar factors for each of the co-ordinate differential lengths for the spheroidal
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co-ordinates can be defined as ([11], pages 1284 et. seq.)

hξ = c

√
ξ2 − η2

ξ2 − 1 , hη = c

√
ξ2 − η2

1− η2
, hφ = c

√
(ξ2 − 1)(1− η2). (3.1)

A prolate spheroid is the surface generated for ξ a constant. For the outer surface of
the spheroidal cell, this will be denoted by ξo. The inner surface is described by ξi. The
outer spheroid is set to have foci on the z axis at ±c. The major axis is cξo along the z
axis, and the minor axis c

√
ξ2o − 1 on the x or y axes. If e is the eccentricity of the ellipse,

with e < 1, i.e. the ratio of the minor to the major axes of the ellipse, then ξo = 1/
√
1− e2.

For the co-ordinate system based on confocal ellipsoids, there is a difficulty concerning
the membrane thickness, as the distance between confocal ellipsoids is not constant. If
d is used to denote the membrane thickness at the z-axis end of the spheroid, and when
d << 1, it can be shown that the thickness in the middle of the spheroid is d/e+O((d/e)2).
This indicates that for a prolate spheroid, the membrane will be thicker at its middle
when compared to the end caps; see Figure 2 or 3. However, such a varying membrane
thickness may be representative of real cells under electric fields due to compressive forces.
While the overall cell structure elongates, the membrane may thin at the major axis end
regions. Mechanical compression in these regions has been offered as a mechanism by
which electro-permeabilization might occur [2, 3]; although it was the subject matter of [4]
to offer that dielectric breakdown rather than mechanical compression produced the holes
in the membrane.
The inner surface of the membrane at ξi is used to select the membrane thickness at

η = ±1, then d = c(ξo − ξi), and ξo is chosen from ξo = 1/
√
1− e2 where c = a/ξo while a

is the major axis of the ellipse.

3.2 Potential distribution

A spheroidal shell has a major axis a with ξo = a/c and a membrane of thickness d at
η = ±1 as shown in Figure 2 or 3. There are two boundaries between media, one at ξo,
and the other at ξi.
For stationary fields the electric field can be represented by an electric potential, as

−∇Φ. For conducting media the divergence of the electric field is zero, so that the potential
in the three regions of the medium is given by the solution to Laplace’s equation. In prolate
spheroidal co-ordinates ([11], Chapter 10) these solutions are of the form

Φi =

∞∑
l=0

alPl(ξ)Pl(η), 1 ≤ ξ < ξi,

Φm =

∞∑
l=0

(
blPl(ξ) + clQl(ξ)

)
Pl(η), ξi < ξ < ξo,

Φo = −E0cξη +
∞∑
l=0

dlQl(ξ)Pl(η), ξo < ξ <∞, (3.2)
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Quantity Name Units Quantity Name Units

σi intracellular conductivity S/m ρi intracellular resistivity Ω·m
σm membrane conductivity S/m ρm membrane resistivity Ω·m
σo extracellular conductivity S/m ρo extracellular resistivity Ω·m
Rm membrane specific resistance Ω·m2 RS sphere model specific resistance Ω·m2

Gm membrane specific conductance S·m−2 RT total leakage specific resistance Ω·m2

Cm specific capacitance of membrane F/m2 εm membrane relative permittivity
ε0 permittivity of free space F/m ε relative permittivity
χ medium susceptibility C/m2

a major axis of spheroidal cell model m d membrane thickness on major axis m
e eccentricity of prolate spheroid c semi-foci distance for ellipse m
ξo outer size of spheroidal cell ξi inner size of spheroidal cell

List of Symbols

where: Φi, Φm, and Φo are the medium potentials, and ξ and η are the prolate spheroidal
co-ordinates of any point in the medium, with respect to the foci at ±c. The sequences
{ai}, {bi}, {ci}, and {di} are constants associated with the particular fields. The form
of the potential field generated by the uniform electric field is Φ = −E0z = −E0cξη,
and this has been used in the right-hand-side of (3.2). The functions Pl(ξ) and Ql(ξ) are
respectively, Legendre polynomials of order l, and Legendre functions of the second kind
of order l; the latter possessing a singularity at ξ = 1.
By considering boundary conditions at ξ = ξo and ξ = ξi, for respectively, the tangential

electric field and the normal current density, the following equations are found[
1

hη

∂Φ

∂η

]
ξ=ξo

= 0,

[
1

hη

∂Φ

∂η

]
ξ=ξi

= 0,[
− σ

hξ

∂Φ

∂ξ

]
ξ=ξo

= 0,

[
− σ

hξ

∂Φ

∂ξ

]
ξ=ξi

= 0,

where the square brackets are used to denote jump conditions in the field quantities across
the appropriate surface ξ =constant. Coefficients al, bl, cl, and dl (for l �= 1) are all
zero by orthogonality of Legendre polynomials, and the coefficients a1, b1, c1, and d1
can be calculated, as shown in Appendix A.1. These remaining coefficients are listed in
Appendix A.1 and are utilised in deriving the expressions used later in this subsection.
Hence the potentials are

Φi = a1ξη, 1 ≤ ξ < ξi, (3.3)

Φm =
(
b1ξ + c1Q1(ξ)

)
η, ξi < ξ < ξo, (3.4)

Φo =
(
−E0ξc+ d1Q1(ξ)

)
η, ξo < ξ <∞. (3.5)

Equi-potential lines for a spheroidal model cell are shown in Figure 3(a) and the current
flow is depicted in Figure 3(b). The equi-potential lines are uniformly spaced in potential.
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Figure 3: Fields for an exaggerated cell wall thickness model spheroidal cell; d = 0.15,
e = 0.70: (a) Equipotential lines for a prolate spheroidal cell in a uniform electric field.
(b) Current flow for a prolate spheroidal cell in a uniform electric field.
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Figure 4: Fields for an exaggerated cell wall thickness model spherical cell; d = 0.15,
a = 1.0: (a) Equipotential plot of a spherical cell in a uniform electric field. (b) Current
flow for a spherical cell in a uniform electric field.

The cell used in this figure has a membrane conductivity of 1/20 of the external medium
and the internal medium, i.e. σm = σo/20 and σi = σo; with d/a = 0.15. This figure
should be compared with similar results for the spherical model as shown in Figure 4. The
eccentricity of the spheroid is e = 0.70 and c has been adjusted so that the volume of
the spheroidal cell is equal to that of the spherical cell. The spherical cell depicted has
the same medium parameters and membrane thickness d as used in the spheroidal case.
The spherical cell is assumed to have radius a = 1.0. Equi-potential lines for the spherical
cell are shown in Figure 4(a) and the current flow for the cell is shown in Figure 4(b). In
Figures 4(b) and 3(b), the lines of current flow are orthogonal to the equi-potentials.



Wall, Shanks, & Bodger 9

A trans-membrane potential can be defined as the difference between the potential on
the outside and inside of the membrane, so

∆0Φ(E0) =Φ(ξo, η)− Φ(ξi, η),
=(−E0cξo + d1Q1(ξo)− a1ξi)η,

=− SoE0cξoηf(σσσ). (3.6)

Here the conductivity factor is

f(σσσ) =

(
1− d1Q1(ξo)

E0cξo
+ a1

ξi
E0cξo

)
/So, (3.7)

and where for notational convenience we have defined the geometric factor

So = (1 +Qoo), with Qoo =
−Q1(ξo)

ξoQ′1(ξo)
,

which is purely a function of the eccentricity of the spheroid and is shown in Figure 5.
When e = 1, So = 3/2 and Qoo = 1/2, equation (3.6) reduces to equation (A.2) for the
sphere. It is also observed that ∆0Φ is dependent on η, which is comparable to the cos θ
term described in the spherical membrane model in Appendix A.2.
The conductivity factor f(σσσ) defined in (3.7), with σσσ denoting the triple σo, σm, σi, has

the coefficients a1 and d1 defined in Appendix A.1. In Appendix A.1 it is shown that f(σσσ)
has an analytic form

f(σσσ) =

σo

(
1
Qio
(σi − σm)− ( σmQii + σi) +

ξi
ξo
σm(1 +

1
Qii
)

)
Qoo

[
1
Qio
(σi − σm)(σm − σo) + (

σm
Qii
+ σi)(

σo
Qoo

+ σm)

] ,
and terms Qii and Qio are defined. When the membrane thickness d is small, an asymptotic
expression can be found for f(σσσ). Further, in the limiting case, σm << σi and σm << σo
and d is small, this expression becomes

f(σσσ) =
σmσod[

1
Qio
(σi − σm)(σm − σo) + (

σm
Qii
+ σi)(

σo
Qoo

+ σm)

] .
The above formulae should be compared with the similar and well known formulae for the
sphere listed in Appendix A.2.
In Figure 6(a) the conductivity/resistivity factor is plotted for several spheroid eccen-

tricities against log10(ρm/ρi), when ρo = ρi with a major axis thickness d = 0.01a. It is seen
that the eccentricity has only a small effect on the resistivity factor, and that the factor is
more sensitive to membrane thickness when the spheroid is close to spherical. This can be
seen from the curves plotted in Figure 6(b). In Figure 6(b) the resistivity factor is plotted
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Figure 5: The geometric shape factor So as a function of spheroid eccentricity e.

for several membrane thicknesses for a comparison. It is observed, for the spheroid, for
d = 0.01, and ρm three orders of magnitude greater than ρi, that f is approximately unity.
For thicker membranes ρm need only be two orders of magnitude greater than ρi for f ≈ 1.

We emphasize that the thickness of the cell membrane d is held fixed while consideration
of eccentricity is made.
When σm = 0 it follows that f(σσσ) = 1, and it is then seen from (3.6) that the potential

difference produced across the membrane is

∆0Φ = −SoE0cξoη, (3.8)

with maximum absolute value E0cξoSo. Because cξo = a is fixed, So varies as can be seen
from Figure 5, it hence follows that ∆0Φ is dependent on the eccentricity e of the cell2.
The η term in (3.6) implies that the maximal trans-membrane voltage is reached at the
point of the cell closest to the electrode on the z axis, i.e., η = 1, or −1, which is parallel to
the applied electric field. The voltage across the membrane drops to zero, perpendicular to
the applied field, and therefore electro-permeabilization will tend to occur in the vicinity
of the cell membrane nearest the electrodes.
As ξo = a/c, it is seen that taking the limit as c→ 0 yields So → 3

2
(see also Figure 5)

and equation (3.8) degenerates to the spherical model potential drop of equation (A.2).
One immediate deduction therefore is that the trans-membrane potential is reduced with
narrower spheroids and the highest potential difference is achieved with a spherical cell.
This is because for the narrower spheroids the term So is less than 1.5 and can be as low
as 1.
In Figures 7 and 8 we provide diagramatic evidence of this effect. Figure 7 shows a cell

of constant volume, where the volume of the sphere and prolate spheroid are equal and are
2Through the dependence of the prolate spheroidal co-ordinates on e.
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Figure 6: Conductivity factors f(σσσ) as a function of spheroid eccentricity and membrane
thickness for the prolate spheroid cell model when ρo = ρi. (a) f(σσσ) for spheroid when
σo = σi and membrane thickness is d/a = 0.01 for e = 1.0, and e = 0.5, and e = 0.17,
and finally with e = 0.15. (b) f(σσσ) for spheroid when σo = σi and membrane thickness
d/a = 0.001, d/a = 0.005, d/a = 0.01, and d/a = 0.1, all with e = 0.5.
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Figure 7: Equipotential fields for an equi-volume spheroidal cell when σm = σo/20 and
σi = σo; with d = 0.15: (a) c = 0, a = 1.0 (b) ξo = 2, (c) ξo = 1.5, (d) ξo = 1.25, (e)
ξo = 1.125, (f) ξo = 1.12.

given by

V =
4

3
πa3,

=
4

3
πc3ξo(ξ

2
o − 1),

respectively. It is observed that as the eccentricity e is increased that the spheroid becomes
longer (i.e. a is not constant). As a consequence this spheroid feels the effect of a larger
electric field gradient. The potential can be crudely estimated by counting the number
of equipotential lines emanating from the spheroid — as the lines are uniformly spaced
with respect to potential. The trans-membrane potential can therefore be determined by
differencing the equipotential lines outside and inside the cell.
For the major axis a being kept constant, as shown in Figure 8, it can be observed that

the electric field gradient in the membrane is reduced on the narrower spheroids.
The electric potential generated at the poles of a spheroidal non-conducting cavity of

size ξo embedded in a medium of conductivity σo under the same field E0 is identical to the
value given by (3.8). Note that the maximum trans-membrane potential depends linearly
on f , and hence with a lower resistivity ratio ρm/ρi membranes (c.f. Figure 6), a higher
potential E0 is required to cause breakdown.
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Figure 8: Equi-potential fields for a constant major axis spheroidal cell when a = 1.0,
σm = σo/20 and σi = σo; with d = 0.15: (a) c = 0, (b) ξo = 2, (c) ξo = 1.5, (d) ξo = 1.25,
(e) ξo = 1.125, (f) ξo = 1.12.

Many cells produce a natural trans-membrane voltage. This potential in the equilibrium
state is caused by the thermodynamic forces (Nernst potential) enforcing an electrochemical
balance due to the concentration gradient of chemical ions across the cell membrane. When
the cell is not in equilibrium the trans-membrane potential can exhibit time varying features
([9], Chapter 4). Typically the natural transmembrane potential is the order of 70mV
uniformly across the membrane with the interior of the cell being negative with respect to
the exterior. As the potential differences add linearly it is seen that the potential difference
across the membrane closest to the positive electrode will be larger than that nearest to
the negative electrode, and that asymmetrical dielectric breakdown of the membrane will
occur.

The analysis used in this section calculates the transmembrane potential due to the
interfacial polarisation and is as such a stationary or static calculation. This can be a
useful approximation when the temporal changes to the polarisation are slow and the
displacement current can be neglected [12]. The time constant which can be used to
calculate temporal behaviour is considered next.
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3.3 Relaxation time constant

To take into account temporal changes in the polarisation charges that build up on the
membrane of the cell it is required to estimate the macro specific resistivity enabling the
leakage of this charge from the cell membrane. To this end we derive an approximate
expression for this resistivity by setting d ≡ 0, or equivalently letting ξi → ξo. Analysis
of the spheroidal model in this case proceeds in a similar manner to the last section by
excluding the potential Φm in the equations (3.2).
Solving Laplace’s equation in this new geometry by similar techniques to those of § 3.1

yields

Φi = a1P1(ξ)η,

Φo =
(
−E0cξ + d1Q1(ξ)

)
η,

where now the field Φm is not present so that the set {bi, ci} are trivially zero, and

a1 =−
E0cσoSo(

σo + σiQoo

) ,

d1 =−
E0c(σi + σo)

Q′1(ξ)

(
σo + σiQoo

) . (3.9)

The electric field normal to the spheroid is

E =
1

hξ

∂Φi
∂ξ

= −SoE0cξoη

[
σo

ξohξ(σo + σiQoo)

]
,

and the current density normal to the spheroid is

J =σiE,

=− SoE0cξoη

[ √
ξ2o − 1σiσo

ξo
√

ξ2o − η2(σo + σiQoo)

]
. (3.10)

The jump in the normal component of the polarisation defines the polarisation surface
charge density, denoted by ρS, and on the surface of the spheroid it is

ρS =− χE0Soη

[ √
ξ2o − 1(σi − σo)√

ξ2o − η2(σo + σiQoo)

]
, (3.11)

where the susceptibility χ = ε0(ε − 1) is assumed to have the same value both inside and
outside the spheroid. This charge density can be thought of as producing an internal field
directly opposing the applied electric field so effecting the electric field inside the spheroid.
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Figure 9: The geometric Shape factor aS(e) as a function of spheroid eccentricity e.

Observe from these equations (3.9)–(3.11)that when the spheroid is needle shaped, i.e.
ξo → 1, that E, J and ρ will all be very large near η = ±1.
It can be seen by comparison of (3.10) with (3.8) that the term on the left-hand-side of

(3.10), in square brackets, corresponds to an anisotropic leakage conductance varying with
η. To eliminate the η variation, and so produce a circuit model of the charge leakage, it is
necessary to average this density over the cap of the spheroid. This homogenisation of the
current density will have an effect on the analysis of § 3.4 and this is discussed following
equation (3.21). The homogenisation technique then yields a specific conductance, denoted
by GPS, to the leakage of surface charge from the end cap of a spheroid and it is given by

GPS = 1/RPS = S(ξo)
σiσo

(σo + σiQoo)
, (3.12)

with the eccentricity factor for the spheroid

S(ξo) =

√
ξ2o − 1

cξ2oF (ξo)
.

The generalised hypergeometric function F in this expression has an asymptotic expansion

F (ξ) =

(
1− 1

6ξ2
− 1

40ξ4
+O( 1

ξ6
)

)
.

The size factor for the spheroid S(ξ)a is plotted against eccentricity in Figure 9. Note in
the limit as the spheroid reduces to a sphere, i.e. e→ 1, then S(ξo)→ 1/a and Qoo → 1/2.

The equation (3.12) can be interpreted as determining the current leakage from two
specific resistances ρi/S(ξo) and ρoQoo/S(ξo) connected in series, where ρi = 1/σi and
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Figure 10: The normalised time constant τPS/Cmρi.

ρo = 1/σo. If the specific resistance of the membrane is denoted by Rm = 1/Gm, and as
this resistance is in parallel with the former two, the total specific leak resistance, when
denoted by RT , is given by

RT =
RmRPS

(Rm +RPS)
,

=
Rm(ρi +Qooρo)

S(ξo)Rm + (ρi +Qooρo)
,

=
(σo − σiQoo)

S(ξo)σiσo +Gm(σo + σiQoo)
.

Compare these formulae with the spherical model in Appendix A.2.
The capacitance per unit area associated with a spheroidal membrane can be calculated

from the formula Cm = ε0εm/d, where ε0 is the permittivity of free space and εm the
relative permittivity of the membrane.3 This is an approximation in this model as the cell
membrane in the spheroidal model has differing thickness. This formula is however correct
to order d/a and this is a useful approximation as d/a << 1.
The time constant, which is a measure of how fast the charge carriers can move in

response to the temporal excitation electric field, is then τPS = CmRT . Rm is typically
about two orders of magnitude larger than the leakage resistance e.g. Rm = 10Ω ·m2, which

3For a lipid bilayer this is typically about 3.
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means a useful approximation to τPS is

τPS = Cm(ρi + ρoQoo)/S(ξo). (3.13)

Observe that the time constant can become very large as e → 0 because of the 1/S(ξo)
term in this equation and is shown in Figure 10.

3.4 Time dependence

The previous subsections enable calculation of the static polarisation charge build-up on
the cell due to current flow through the medium. In this section we allow for temporal
changes in the applied electric field.
When considering the effect of time dependence of an applied field it is obvious that

a steady state is not achieved instantaneously. Thus there is a temporal redistribution
of polarisation surface charge distribution on the spheroid; where it is assumed that this
redistribution is a first order process governed by a time constant τ [12]. It is possible to find
the equations governing the temporal changes in the trans-membrane potential difference
from the dipole moment of the underlying polarisation of the media. This approach has
been taken by [7, 5]. We take the more direct approach used by [12] of modeling the
trans-membrane time behaviour of the interfacial potential difference directly.
The response function p(t) is a first order process governed by a time constant τ . It

can be assumed that the build up of p depends on the difference between the current state
and the forcing function, p̃(t)

dp(t)

dt
=
1

τ
(p̃(t)− p(t)). (3.14)

Solution of this equation yields

p(t) =
1

τ

∫ t

−∞
p̃(s) exp[−t− s

τ
] ds, (3.15)

with an initial condition p(0) = 0.
If the applied electric field varies as a function of time i.e., E0 = E0(t), then the

polarisation is also temporally varying, and we can model the time variation in the trans-
membrane potential by a process similar to equation (3.14). This means that the interfacial
potential is

∆Φ(t) =
1

τ

∫ t

−∞
∆0Φ(E(s)) exp[−

t− s

τ
] ds,

with ∆0Φ given by equation (3.6), and the appropriate time constant is τ = τPS. It follows
that the build-up of the trans-membrane potential is

∆Φ(t) = ∆0Φ(E0)(1− exp[−t/τPS]), (3.16)
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when the applied electric field is the uniform field used in the last section and it is applied
at time t = 0.
With the application of a sinusoidal electric field E(t) = E0 cosωt into (3.15)

∆Φ(t) =
∆0Φ(E0)

1 + (ωτPS)2
(cosωt+ ωτPS sinωt), (3.17)

is obtained. Equation (3.17) has an amplitude

U =
∆0Φ(E0)√
1 + (ωτPS)2

, (3.18)

and if (ωτPS)
2 >> 1, then (3.18) can be approximated by

U =
∆0Φ(E0)

ωτPS
. (3.19)

This approximation will be valid with high frequency excitation or when the cells are needle
shaped (see Figure 10 which plots time constant against eccentricity of the cell).
Using the expression for τPS given in (3.13) in this equation shows

U =
E0ηcξoSof(σσσ)S(ξo)

ωCm(ρi + ρoQoo))
. (3.20)

The resistivity factor will reduce the amplitude of the trans-membrane potential if ρm is
not large with respect to ρi and ρo. The thickness of the membrane will have a large effect
on this factor when e is close to 1, whereas the eccentricity of the spheroid has a minor the
effect as is shown in Figure 6(a).
Equation (3.20) is dependent upon both the size, though cξo = a, and eccentricity,

through S(ξo) and Qoo, of the spheroidal cell. However, if the resistivity of the external
medium is chosen to match that of the internal cell, then ρo = ρi, and (3.20) becomes

U = −E0ηf(σσσ)aS(ξo)

ωCmρi
. (3.21)

Equation (3.21) is independent of major axis size of the spheroid, but it is dependent upon
the eccentricity of the prolate spheroid through aS(ξo). However, from Figure 9, this term
is roughly constant for 1 > e > 0.8. Therefore, if either the frequency or the relaxation time
constant is large enough, the size and shape dependence of the trans-membrane potential
is eliminated for a range of prolate spheroids. This means that dielectric breakdown is
possible at a constant field amplitude for a large range of prolate spheroidal cell shapes
and sizes.
Notice again in this time dependent case, the deduction from equation (3.21) is that the

trans-membrane potential is reduced with narrower spheroids and the highest potential is
achieved with a spherical cell.
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In the limit as ξo → 1, the spheroid is eccentric, e → 0, and the spheroid is needle
shaped, then the polarisation charge density is located near to the end points η = ±1,
with the charge density on the rest of the cell near to zero. This means the spheroid
has a very small radius of curvature in the neighbourhood of the poles and this implies
breakdown will occur very close to the poles prior to elsewhere on the cell membrane4.
Then the term aS(ξo) is very small in equation (3.21) for such cells thus implying the
averaged trans-membrane potential is small for such cells. It should be observed that the
term S(ξo) resulted from the homogenisation utilised in deriving (3.12) and comes from
the time constant τPS which is also very large in this case. Examination of (3.18) shows
that large time constants will reduce the maximum amplitude potential difference and is
to be expected. It should also be noticed though that the breakdown, even in the case of
needle shaped cells, is independent of the cell size a.

4 Discussion

The membrane of the prolate spheroid model does not have uniform thickness due to the
use of confocal ellipses. However, this may be representative of real cell behaviour under
electric field induced compression forces.

Dielectric breakdown is a peak voltage phenomena and membrane thickness may be
overlooked if only the maximum trans-membrane potential is of interest. Current flow
through the cell peaks at the poles of the spheroid. This, and the assumption that the peak
trans-membrane voltage is not affected by the variation in membrane thickness elsewhere
on the cell, leads to the consideration that the effective membrane thickness is that at the
poles.

The prolate spheroidal model could yield better predictions of non-spherical cell be-
haviour in electric fields. It may also provide more information into cell rotation and
alignment, by considering the energy to form the dipole, both parallel and perpendicular
to the applied field.

The model developed is based on a static electric field. The time dependence of these
equations is only an approximation, valid at low frequencies where the displacement current
is not dominant. Electro-permeabilization is generally carried out with time dependent
fields and the cell membrane dielectric breakdown is generally size dependent. It is a
current area of research to minimize this size dependence [5], and it has been shown in this
paper how this can be achieved with prolate spheroid type cells that are not too elongated.

It has been shown that asymmetrical breakdown with cells having a natural trans-
membrane voltage will occur.

4This is due to the η term in (3.21).
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5 Conclusions

A spherical model of electro-permeabilization of biological cells has been extended to a
prolate spheroid model, which is more representative of many real cells under actual electric
field conditions.
The model yields the equi-potentials and current flow through the mediums which make

up the cell cytoplasm, the membrane and the solution in which the cells are suspended.
The highest potential difference across the membrane occurs at the cell ends along the
major axis of the prolate spheroid. This gives rise to a charge polarization from which
electro-permeabilization is likely to occur.
It has also been shown that for a range of eccentricities of the spheroidal model that

electric breakdown can be arranged to occur independent of cell size and exact eccentricity.
This may be useful in experimental usage of electro-permeabilization techniques.
Perhaps a surprising result emerging from this analysis is that the dielectric breakdown

will occur at lower applied electric fields with more spherical shaped cells than with needle
shaped cells.
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A Appendix

A.1 Prolate model equations

In the case of the prolate spheroid, consideration of the boundary conditions yield
1 −1 −Q1(ξi)/ξi 0
σi −σm −σmQ′1(ξi) 0
0 1 Q1(ξo)/ξo −Q1(ξo)/ξo
0 σm σmQ

′
1(ξo) −σoQ′1(ξo)




a1
b1
c1
d1

 =


0
0
−cE0

−cσoE0

 .

This has solutions

a1 =
cE0

D
σoσm

Q1 (ξi)

ξi

Q1 (ξo)

ξo

(
1 +

1

Qii

+
1

Qoo

+
1

QiiQoo

)
,

b1 =
cE0

D
σo

Q1 (ξi)

ξi

Q1 (ξo)

ξo

(
σi(1 +

1

Qoo
) +

σm
Qii
(1 +

1

Qoo
)

)
,

c1 =
cE0

D
σo

Q1 (ξo)

ξo
(σm − σi)(1 +

1

Qii
),

d1 =
cE0

D

Q1 (ξo)

ξo

(
(σm − σi)(σo +

σm
Qoo

) +
Qi0

Qoo
(σo − σm)(σi +

σm
Qii
)

)
,

D = −Q1 (ξo)

ξo

Q1 (ξi)

ξi

[
1

Qio

(σi − σm)(σm − σo) + (
σm
Qii

+ σi)(
σo
Qoo

+ σm)

]
.
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where

Qio =
−Q1(ξi)

ξiQ′1(ξo)
, Qoo =

−Q1(ξo)

ξoQ′1(ξo)
, Qii =

−Q1(ξi)

ξiQ′1(ξi)
.

Note

P1(x) = x, Q1(x) =
x

2
ln

(
x+ 1

x− 1

)
− 1,

and

Q′1(x) = Q0(x)−
x

x2 − 1 , with Q0(x) =
1

2
ln

(
x+ 1

x− 1

)
,

with the equations for the Legendre functions holding for x > 1.
The conductivity factor is

f(σσσ) =

(
1− d1Q1(ξo)

E0cξo
+ a1

ξi
E0cξo

)
/So

=
σo
D

QiiQio

(
Qoo(σi − σm)− (

σm
Qii

+ σi) +
ξi
ξo
σm(1 +

1

Qii
)

)

A.2 Spherical model

A spherical shell has a radius a and a membrane of thickness d. There are two boundaries
between media, one at a, and the other at a− d. The potential at any point in the media
is given by the solution to Laplace’s equation ([10], pages 435-441) [8], and is of the form

Φi =
∞∑
l=0

alr
lPl(cos θ), 0 ≤ r < a− d,

Φm =
∞∑
l=0

blr
l + clr

−(l+1)Pl(cos θ), a− d < r < a,

Φo = −E0r cos θ +

∞∑
l=0

dlr
−(l+1)Pl(cos θ), a < r <∞, (A.1)

where: Φi, Φm, and Φo are the medium potentials, and r and θ are the polar co-ordinates
of any point in the medium, with respect to the sphere centre. The sequences {ai}, {bi},
{ci}, and {di} are constants associated with the particular fields. The form of the potential
field generated by the uniform electric field is Φ = −E0z = −E0r cos(θ), and this has been
used in the right-hand-side of (A.1).
Applying boundary conditions at r = a, and r = a− d, gives a set of equations which

can be reduced by the orthogonality of the Legendre polynomials; all al, bl, cl, and dl terms
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with l �= 1 must be zero. The remaining coefficients are listed in Appendix A.3 and are
utilised in deriving the expressions in this appendix.
A trans-membrane potential can be defined as the difference between the potential on

the outside and inside of the membrane, so

∆0Φ = Φ(a, θ)− Φ(a− d, θ),

= (−E0a +
d1
a2
− a1(a− d)) cos θ,

= −3
2
aE0 cos(θ)f(σσσ), (A.2)

where the conductivity factor f(σσσ) is defined as

f(σσσ) =

(
1− d1

E0a3
+ a1

(a− d)

E0a

)
2

3
,

=
2σo

(
2σm + σi + (σm − σi)

(
a−d
a

)3 − 3σma−d
a

)
(2σm + σi)(2σo + σm) + 2

(
a−d
a

)3
(σi − σm)(σm − σo)

.

This can be simplified by the approximation d� a, so implying

(
a− d

a
)3 = 1− (3d)/a) +O((d/a)3),

which results in

f(σσσ) =
σiσo

(
2d/a

)
2d
a

(σi + 2σo)σm + (σi − σm)(σo − σm)(2d/a)
2d
a

.

In the limiting case when σm << σi, σm << σo then this expression becomes

f(σσσ) = 1/

[
1 + (2 +

σi
σo
)

(
aσm
2dσi

)]
.

It can be seen from this equation when σm = 0 that f(σσσ) = 1, it then follows from (A.2)
that the maximum potential difference produced across the membrane is −3

2
E0a.

5 It
hence follows that ∆0Φ is always dependent on the radius a of the cell.
Analysis of the spherical model when d ≡ 0 yields the specific conductance to the

leakage of charge from the surface of a sphere, denoted by GS as

GS = 1/RS =
σi2σo

a(σi + 2σo)
,

this equation can be interpreted as leakage from two specific resistances aρi and 0.5aρo in
series where ρi = 1/σi and ρo = 1/σo. It follows that when the specific resistance of the

5This is the potential generated at the pole of a spherical non-conducting inclusion of radius a in a
medium of conductivity σo under the same field E0.
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membrane is denoted by Rm = 1/Gm and it is reasoned that this resistance is in parallel
with the former two, the total leak resistance is denoted by RT and is given by [12, 5]

RT =
RmRS

(Rm +RS)
,

=
a(σi + 2σo)

2σiσo + aGm(σi + 2σo)
,

=
Rma(ρi + 0.5ρo)

Rm + a(ρi + 0.5ρo)
.

A.3 Spherical model equations

The boundary conditions for the spherical membrane model, can be solved by rearranging
the conditions and placing them in matrix format:

1 −1 −(a− d)−3 0
σi −σm 2σm(a− d)−3 0
0 1 a−3 −a−3
0 σm −2σma−3 2σoa

−3




a1
b1
c1
d1

 =


0
0
−E0

−σoE0

 ,

This matrix equation has solutions

a1 =
−E0

D
9σoσma

3,

b1 =
−E0

D
3E0a

3σo(2σm + σi),

c1 = −
E0

D
(σm − σi)(a− d)3,

d1 =
E0

D
a3(−3σma3σo − 3σia2dσo + 3σma2dσo − 6σmσia2d+ 3σmσia3 + 3σiad2σo
+ σmd

3σo + 6σmσiad
2 − 3σmad2σo − σid

3σo + 6σ
2
ma

2d− 2σmσid3

− 6σ2mad2 + 2σ2md3),

where

D =
1

a6(a− d)3

[
(2σm + σi)(2σo + σm) + 2

(
a− d

a

)3

(σi − σm)(σm − σo)

]
.


