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SUMMARY
Suppose N+1 events are regarded exchangeably. We begin by identifying

the coherent implications of asserting simultaneously the conditional previsions

P(Ey., | (Sy=2)) = a/N for values of a = 1,...,(N=1). We present a new proof that

if you make these assertions for every value of N, then coherency requires you

also to assert for every N that P[(S,=0)+(S5,=N)l = 1. The proof is based
directly on de Finetti's fundamental theorem of prevision. We continue the proof

scheme to identify all vectors py,, of coherent inferential assertions

PlEy., | (Sy=a)l = py, for values of a=0,..,N. We specify computable conditions

under. which such assertions are infinitely exchangeably extendible, and we
provide a comple'te parameterization of this class of assertions, identifying the
family of Polya inferences as a proper subclass. Cérollarg to this theorem, we

specify a computable procedure for determining precisely the value of predictive
probabilities P(E,,,|(Sy=a)) when the probability distribution of Syey 18

representable as any Binomial mixture distribution. The algorithm is based on
the moments of the mixing distribution. As an example of its application, we
compute the relevant conditional probabilities for a Binomial-Cantor mixture
distribution. Finally, we generalize the analysis to consider a sequence of N+|
discrete quantities that are regarded exchangeably, when each quantity may be
any integer in the set {0,1,...,K}. We establish the coherency of asserting

conditional probability distributions that mirror every histogram for which there

is at least one observation in each of the K+1 categories. However we also show

that such inferences require several accompanying assertions which are not
attractive in typical problems: if the histogram rule is followed for large N, it
must also be followed for small N; strictly positive histograms rhust be
accorded extremely small probabilities; and histogram categories must be
redarded subexchangeably over strictly positive histograms, a concept that is

defined precisely in the text.






0. Introduction and statement of the theorems. In a seminal paper,
de Finetti (1937) presented two central theorems in subjective probability A
theory. One of these results, now commonly termed “de Finetti's representation
theorem,” showed that an infinite sequence of zero-one random variables is
exchangeable if and only if the joint distribution of any finite sequence of them
is a unique mixture of a joint distribution of conditionally independent variables,
each having the same Bernoulli (6) distribution, mixed by a distribution F(6).
This theorem has drawn considerable interest and received widespread attention
in the literature which contains papers discussing various aspects and
generalizations. See for example Heath and Sudderth (1976), Diaconis (1977),
and Hill (1988) and numerous further references contained in these papers.

The other result, subsequently labeled by de Finetti as "the fundamental
theorem of probability” (de Finetti, 1974, 3.10) has been apparently widely
unnoticed, having only recently received new attention. See Bruno and Gilio
(1980) and Lad, Dickey, and Rahman (1990). In its simplest form, this theorem
states that when probabilities are asserted for any N events, then coherency
identifies precise bounds on the concomitant assertion of probability for any
other specifiable event. Its proof revolves on the fact that every coherent
prevision vector must lie within the convex hull of the set of ail possible vector
measurements for the quantities under consideration. The mathematical
statement of the theorem is so simple that it perhaps lacks immediate appeal.
‘et the implications of the “fundamental theorem” are deep for statisticians of
classical, Bayesian, or subjectivist persuasions, and are yet to be fully
appreciated. One purpose of the present paper is to show how this theorem can
be used in rather simple yet practical situations to obtain new and surprising
results both in sub jecti've probability theory and statistical methodology. Hence
we illustrate the theoretical potential of the general fundamental theorem of
prevision by using it to obtain three theorems that present serious questions for

practical areas of statistical inference.

Specifically, we begin by showing that if one is committed for every N
to use the predictor a/N for the conditional probability of success on an (N+ pst
event given a record of "a" successes among N other events with which it is
regarded exchangeably (a = 1,2,...,N-1) then this strategy is coherent if and only
if it is concomitantly asserted that sequences containing atl N+1 successes or
all failures are accorded probability equal to 1. Thus, a frequentist strategy
using only recorded history as a basis for inference about zero-one exchangeable
quantities is incoherent unless it is also asserted with certainty that only all
zeroes or all ones will be observed! It is clear that very few practicing
statisticians would or could confidently make this latter assertion in many
practical instances, and thus in these cases the "history only” strategy would be
incoherent. The conceptual content of our first result was known already to
Jeffreys (1939), but our analysis yields new and fuller algebraic detail.

Next, we replace the “history only” strategy of inference with a general

expression which incorporates every coherent inference strategy. That is, let

Pan = PlEy. (S = @)l denote the asserted conditional probability for an (N+1)St
event given "a” successes among N observed events with which it is regarded

exchangeably: and let p,,, denote a vector (pD'N.pLN. ,pN'N)T of such inferential
assertions. We show that any vector Py+q lying in the (N+1)-dimensional

hypercube represents coherent assertions, but that coherency also requires that
such assertions be accompanied by a specific upper triangular matrix for all
lower order conditional previsions based on fewer conditioning observations. In
addition, we derive computap/e conditions under which the assertions embodied
in py,, are infinitely exchangeably extendible. We show further that each

component of the cohering upper triangular matrix can be parameterized as

Pax = (@*og M (K+og o+ By ) Tor @ specific choice of oy .85 ) determined by

Pax and Py gy When this parameterization specifies o , = and Bay =B for



all "a" and K, it yeilds the well-known Polya inferences as a subfamily. But our
second result establishes a complete parameterization of all coherent inferences
concerning N+1 events regarded exchangeably. We display its range of
applicability with a numerical example of the Binomial-Cantor mixture
distribution for 25 events.

Finally, we study another companion problem to the first, extending its
context to allow each of the N+1 considered quantities to assume any value in
{0,1,...,K}. In this case we show that the “histogram only” prediction strategy,
which uses any strictly positive histogram based on N quantities as a conditional
probability distribution for an (Ns\l)St quantity, is coherent. However, we also
find that coherency would impose some annoying concomitant assertions.

To begin with, if you assert that you would use any positive histogram
based on a large number of observations as your conditional distribution for the
next observation, coherency requires that you also follow the “histogram only”
rule when conditioning upon any smaller number of observations as well! The
prescription to use the histogram rule when conditioning on a large sample but
not necessarily on a small sample is incoherent. .

Perhaps even more startling, the *histogram only” strategy has
embedded within it a coherency induced upper bound on the probability of
observing a strictly positive histogram on the basis of any finite number of
observed quantities. This bound decreases to 0 as N increases. In the extreme,
if you would assert strictly positive histogram mimicking conditional
probabilities for every N, then your probability for observing a strictly positive
histogram from the first M observations must equal 0, no matter what be the
value of M. The importance of this qualification is most easily recognized in
measurement prablems for large populations, where the categories of possible
measurement are crude, crude encugh that you expect to observe at least one
instance of each category value within a practical number of opportunities.
(Details of an example concerning milk yields from dairy cows are provided in

Section 4.) This very minimal expectation would preciude the systematic use of
histogram mimicking conditional probabilities. The assertion of positive
probability-that all category values will be observed within a finite number of
measurements requires that conditional probabilities involve some adjustment to
conditioning histograms.

Still another odd requirement of the “histogram only* conditioning rule
is that any two strictly positive histograms that are permutations of one
another must be accorded identical probabilities. The formal specification of
this result suggests a natural definition for the concept of subexchangeability of
quantities, a concept distinct from that of partial exchangeability.

None of these assertions that are required to accompany the "histogram
only” rule for inference seems warranted in many real problems. Thus, the
practical statistician would be driven away from systematic use of the
histogram rule except perhaps in very small scale problems.

The results proved in the present paper bear direct relation to Hill's
analysis of the structures of inference that he terms A(n) and H(n). See Hiil
(1968, 1987, 1988), Berliner and Hill (1988), and Lane and Sudderth (1978).
Whereas Hill's A(n) theory pertains to real valued quantities that do not involve
ties, and his H(n) theory merely allows ties, there is a sense in which our theory
for finite discrete quantities reguires ties amonq them. All our analysis
pertains to bounded discrete quantities that can take only a spec/fied finite
number of values, as in the standard case of a discretely calibrated measuring
instrument. Details will be easier to discuss once our results have been stated
formally and proved. A

Our results are made precise in Theorems 1, 2, and 3 below. They are
proved in Sections 1, 2, and 3, respectively. Section 2 includes a numerical
example which establishes exact inferences based upon a Binomial-Cantor
mixture distribution. Section 4 addresses the relevance of our theorems to

applied problems, and discusses them in comparison with Hill’'s work.
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The theorems are expressed in the formal language of de Finetti's

operational subjective theory of probability, the context which motivated their

development. We recognize that this language may not be too familiar, even to
readers who are partially écquainted with de Finetti’s general ideas. Since we
would like to expose this language and the manner of thinking it embeds, our
proofs of the three theorems are constructive and expository, supplemented by
geometrical representations and examples. The logic of our proof scheme is
based upon the central result of de Finetti (1937, 1949, 1974, 1975) that

coherency requires a prevision vector P(X,) to lie within the convex hull of the
set of possible observation vectors for X, called the realm of X, and denoted

by R(X,). A detailed exposition of the technical language of the operational

subjective theory and a generalization of de Finetti's fundamental theorem can

be found in the article of Lad, Dickey, and Rahman (1990).

THEOREM 1. If Ey,....Ey,, are logically independent events that are regarded
exchangeably, then it is coherent to assert concomitantly the (N-1) conditional
previsions P[E,,, I(SN=a)] = a/N for ewery conditioning event satisfying the
restriction S = é Ej=ae{1,2,...,(N-1)}. But any cohering distribution

assertion for the sum of all N+1 events, S must be representable in the

N+l
fotlowing two parameter form (with parameters denoted by o n+1 @D qLN,I):
P(Ss1=0) = g oy
PO =1 = ) o s
P(Sy,=a)  =qg ., = (1/a)IN/(N-a+1)] q, ,, fora=2,..N, and
P(Syar =N*1) = Gyt ey = 17 ooy = Gy ey 2INZINS DT+ P(N+1) - ()],
where 0 s Qouoy s 1. and

0 < ql.N,,‘ < (I‘QO_N,‘ )/{2[N/(N*‘)]“*W(N*])‘W(Z)]) < 1.
x=/
Here () represents the psi-function, defined for x 2 2 by ¥(x)=-%+ > a’},

asl

where ¥ is Euler's constant. If the specified conditional previsions are asserted

for every positive integer value of N, then coherency requires that for each

value of N it also be asserted that P[(S,=0) + (Sy=N)I = 1. .

THEOREM 2. Suppose Ey,...,Ey,, are logically independent events that are
regarded exchangeably. Any vector p,,, = (DD.N'DLN' ....|>N'M)T of conditional
prevision assertions py\ = PIEy,, [(s,=a)] for a=0,1,..,N is coherent as

long as it ties within or on the boundary of the (N+1)-dimensional unit
hypercube. Coherency requires that such assertions be accompanied by the

specific upper triangular matrix of all lower order conditional previsions,

Pyeinet = (P1.P2. - Py, ). that is generated by the recursive equations



Pa-1x-1 = Pa-1.x /11 ~Pax * Pa-y k) for K<N. The assertions py,, are
infinitely exchangeably extendible if and only if the associated main diagonal
vector of Py, vy (Po,0.P1,1. -,y N)» generates a sequence of successive

N
products {1, pga. PogP11 - - ﬂap”} that begins a completely monotone
(s

sequence. Computable conditions expressed in terms of Hankel determinants are

detailed in the text of our proof in Section 2. A necessary condition for infinite
exchangeable extendibility of the assertions py,, is that every row of Py, ., be
decreasing, and that every column and every diagonal be increasing. But this

condition is not sufficient. Finaily, each component Pax of a coherent
conditional prevision matrix Py, y., ¢an be parameterized in the form
PIE, | (Sg=a)1= (@ + oy )/(K + oz * By y) for OsasKsN,

where o ¢ and Bag are identified for 0 < a < K-1 by the equations

Xax = @ *  Pa(k-1) Pax /1Pa,k-1) “Pa ! »
and 33,'( = ‘(K‘a) + pa_(g_l) (1 - pa‘x) /[ pa,(K-|) - pa_K ] .
while g g = gy and Bx,x = BK-I,K . .

The statement of Theorem 3 is made most succinctly if we first

introduce the fotlowing definitions and notation.

DerINITION 1. Suppose X, = (X,,...,XN)T denotes a vector of N quantities, and
that the reaim of possibility for each component quantity is the set of integers

R(X{) = {0.,1,....K}. The (K+1)-category histogram for these quantities is

defined by the vector Hy, (X,) = (Ho(®y),Hi(X,),.... (X)), where the a'M

N

component, H4(X,) = Z‘ (X = a) is the number of the quantities that equal the
=

number @ € {0,1,...,K}. In general, the realm of possibility for the histogram is
the set of all (K+1)-dimensional vectors of nonnegative integers whose

component sum equals N:

R(Hy, (X)) = {hy,, [ 1T Dy, =N, and hy € (0,1, N)} .

Since every histogram considered in this article contains K+1
categories, we shall suppress this dimension notation in all further references

to histogram vectors H or h.

DEFINITION 2. A histogram h is said to be strictly positive if each of its

components is greater than 0. We denote this by writing h > 0. .

DEFINITION 3. Suppose Y = (Y1,...,YN)T denotes a vector of N quantities, and
the realm of Y is R(Y\) = {4y ;. Yy 5. -+ Yy p)- You are said to regard the
quantities ¥,..., Y, subexchangeably over &*(YN) € ®(Y)) if your assertions
P(Y = y,) are constant over permutations of the components of y, whenever
Uy € a*(YN). If a*(YN) = ®(Y,), then you are said to regard the quantities

exchangeably. .

THEOREM 3. Suppose X,,, = (Xy,...,X,,)T denotes a vector of iogically

independent quantities, and that the realm of possibility for each component
quantity is the set of integers ®(X;) = {0,1,... K}. Let X, denote the vector
containing the first N components of X,,,. If you regard the quantities

X1u.es Kyeq XChaNgeably, then it is coherent to assert concomitantly the



conditional probability distributions
PI(Xy,, = @] (H(X)=M)] = hy/N € (0,1) for eachae{0,....K}

for every strictly positive vector he R(H(X,)). However, if you do make these

assertions, coherency would also require that

(a) you assert the same form of conditional probability distribution when

conditioning on a positive histogram computed from any M <N quantities: ie.,

PI(Xyy = 3| (H(X) =] = Ng/M € (0,1) for eacha € {0,....K}:

(b) you regard the components of the histogram based on all N+1 quantities,

H(Xy, ) = (Ho(Xy,() . Hi(Xy,p) oo Hy (X, ). subexchangeably over the set of

strictly positive histograms, {h| he R(H(X,,,)), and h>0}

(©) your PLH(X, ) = (N+1-K 1,1, DI 2 PH(X,,,) = h] for every strictly

positive histogram h; precisely, for any strictly positive h, your

K
PIH(Xy, ) = 0 = [N+ 1K)/ TT hg T PLH(X, ) = (Ne 1=K 10 D) and

(d) for any fixed integer M s N, your probability for achieving a strictly

positive histogram from the first M quantities, PH(X,) > 0], is bounded above
by a computable number e(M.N.K). As a function of N, with M and K fixed, this

upper bound converges to 0 as N - o, .

1. Proof of Theorem 1: on the coherency of conditional prevision
assertions that avow P[E,,|(S,=a)] = a/N for each a € {1, ..., (N-1)}.

and their ‘surprising extendibility condition for every N. We shall begin
with a general specification of notation, followed by a numerical example for
the case N = 3. Then we shall proceed with the proof of Theorem 1, continuing
the example for expository purposes.

" Consider a vector of (N+1) completely logically independent events,
Ege; = (Eq.....Ey,,)T. which can be represented as
Byer = Ry N1 Gy L.y
The matrix Ry, ,N+1 includes as its columns all the (N+1)-dimensional vectors
that are possible numerical values of the vector Ey.y- We presume that the

columns of RN”,ZN*I are weakly ordered by the rule that the column vector R. j

precedes R., if the sum of its components is smailer ITR.J- <1"R.. The

symbol 1 denotes an appropriately dimensioned vector of 1's. Details of the

ordering of columns whose sums are equal will be irrelevant to our argument.

The components of the column vector czN*’ are the constituents of the partition
specified by the events (E,,, = R.j), for values of j = 1,...,2%"  These
constituent events are the 2¥*! summands that appear in the expansion of the
N
product ]-[(E; + E}). where E; = (1-E;). This product necessarily equals 1.
(& ’

The judgment to regard the events Ey,...,E,,, exchangeably means that
you regard as equi-likely any sequence of these events that yield the same sum
(the same number of “successes” among them). Notice that for each value of
a=0,1,..N+1, there are (N*1)c, distinct sequences that yield the sum S, = a.

Thus, algebraically the judgment of exchangeability impties that your prevision



for the constituent vector Czw is representable as
P(CZN»n) = N (ne2) Onez (1.2)
where
Mot (ep) 153 matrix whose jm column contains only (N'])C( i-1) nonzero
components, each equal to 1/(N")C( -1} these nonzero components
2
appear in column j immediately following the first > (N”)Ct

t:o

components, which each equal 0; and

Q. is some vector in the (N+1)-dimensional simplex,

- T Ta -
{ Qg = (g payeQy e Ot net) | Gyag 2 Opap. and 1iqy,, = 1)

The vector qy,, would rebresent your previsions for the partition generated by

the sum of the (N+1) events, {(Sy,,=0),(Sy., = 1), ... (S, = N+ 1)}, i Only you

would assert your previsions for these constituents.

The linearity of coherent prevision and your judgment to regard the

events E,, exchangeably imply that your prevision for the event vector Can be

represented as

P(Ey.)) = Byaq Nt TN*1 (yog) Qe

for some vector Gy, in the (N+1)-dimensional simplex. The goal of our analysis

is to study what further restrictions would be piaced on the allowable vectors

qy., by coherency if you would assert concomitantly the (N-1) conditional

previsions PIEy,,|(Sy=a)l=a/N for all values of @ ¢ {1.2,....(N-D)}.
First, a comment on our notation and a numerical example will be
helpful. Throughout this paper we subscript vectors and matrices by their

dimensions. Your understanding of our argument will be aided by your explicit

11

recognition now that the vector q,,, has one component for each of the possible

values of the sum of (N+1) events, Viz.. Qu.p = (Qg Nepe Q) NopeeerQeg ot -

EXAMPLE (N=3): Inorder to fix familiarity with our notation and construction,

let us display the vectors E,,, and CzN,,. and the matrices Ry, ;N1 and

M N+1 (yu9) fOr the case of N = 3. In this case,

'E,’ '0100011100011103
Es =|Ey|: Rgqg = (001001001101 1011
Es 000100101011 01 11
Eq 0000100101101 1 11
N P - 7
rE,EZET,E: (1 0 0 o oﬁ
E,E,F5E, 01/40 00
L EoE5E, 01/40 00
B\ EoE5E, 01740 00
B, E,E:E, 01/40 00
E,E,E3E, 0 0 1/6 0 0
E,E5E3E, 0 01/6 00
Cig =| E\E,E5E4| 5 and Mgs = |0 0 1/6 0 0
EE,E3E, 0 0 1/6 0 0
£ EE3E, 0 0 1/6 0 0
B E,EsE, 0 0 1/6 00
E,EoE3E, 0 0 0 1/40
E,E,E3E, 0 0 0 1740
EE,EzE, 0 0 0 1/40
EEoE3E, c 0 0 1/40
| E1EoEsEs | 000 o1

12



In particular, notice the satisfaction of the ordering property for the columns of
the matrix Ra,15. Column j precedes column k if the sum of its components is
smaller. We shall continue this numerical example throughout our development.
eoe
Having specified our notation and usage, let us proceed with the proof
of Theorem 1, identifying what further restrictions would be placed on the
vector qy,, if you would assert the conditional previsions P[Ey, |(sy=a)i=a/N
for all values of a € {1,2,...,(N-1)}. The affirmations of the theorem are that
such a collection of assertions is coherent, but that coherency implies specific
further restrictions on the probability distribution asserted for the sum of the

N+1 events, S,,,. Corollary to the theorem we shall also identify interesting
restrictions on the mere prevision for this sum, P(SN,,). and on the probability
distribution for the sum of any M < N+1 of the events, P(S= 0), P(S,= 1), ...,

P(Sy=M).
Now the coherency of conditional prevision requires that for any

quantity X and event E, asserted previsions must satisfy the relation

P(XE) = P(X|E) P(E).
Thus, when the conditional prevision P(X | E) is asserted as a specific number,
coherency again requires the concomitant assertion of

PIXE - P(X|E)E] = O,
where the symbol P(X | E) in this expression is replaced by whatever number has
been asserted. In fact, this statement is virtually the operational definition of
a conditional prevision assertion, P(X|E). In the context of the sequence of

events we are considering, this coherency requirement means that the assertions

we have specified in the form P[E,, | (Sy=a)] = a/N for each ae {1.2,....(N-1)}
are equivalent to the assertions P[E,, (Sy=a) - (a/N)(Sy=a)] = 0 for the same

values of 3. We can represent these assertions in our setup as follows.

13

To the matrix equation (1.1) which represents the (N+1) events as

Ey.p = Ry, oMt €

Nl N+l '

let us append another matrix equation that identifies the (N-1) quantities whose

previsions are restricted by coherency. We do this by defining a vector of

quantities denoted by Ay_; = (A, \..... Ay, )", defined componentwise by the
equations a_ = [Ey,,(Sy=a)-(@/N)(Sy=a)l  for a=12,..(N-1).  (13)
Since each of the quantities Aa,N is defined functionally in terms of the event
vector E, . we can write each quantitg Aa,N as a linear combination of the
constituents of the partition they generate, Agn = raTan Czw ., where the

coefficient vector raTzucl identifies etements of Con+t that represent event
sequences for which the sum of the first N events equals a. That is, the symbol
raTQNu denotes a row vector whose jth component equals 0 if the sum of the

first N components of the jth column of Ry, ,N+1 does not equal a, and whose

jth

does equal a. Evidently, the possible values of the quantity Agyare 0, (1-a/N),

component equals the value of the (N+1)St component less a/N if the sum

and (-a/N).

EXAMPLE (N=3) continued: Before considering a general algebraic expression

for the vector raTszl let us display the structure numerically in the application
toN=3:
ri' =(0-1/3-1/3-1/3 0 0 0 2/30 2/32/30 0 0 0 0)

rgfs =(0 0 0 0 0-2/3-2/30-2/30 0 0 1/31/31/30).

These vectors should be evident from applying their generating definition to the

matrix Rg,,s that was displayed in the introduction of this example. oo

14



Though this example is small, it should solidify your awareness of two

general features of a vector raTzrm. Since the sum of the first N components of
the jth column of Ry, ,N+1 can equal a only if the sum of ail (N+1) components

a-
equals either a or (a+1), the first 3 (N*1)c j components of raTpnet must
0
Met

equal 0, and the last _2 (N”)C j components of raT2N+| must equal 0. This is
dradd

by virtue of the arbitrary ordering we have chosen for the column vectors of the
matrix Ry,, ,N+1. Furthermore, of the first (N* ')Ca components following the
first QZ: (N+1)c j components tnat equal 0, Nc, of them will equal -(a/N) and the
remai:\der will equal 0. For of those columns of Ry, ,N+1 that sum to a, only
NCa sum to a over their first N components, and of these, all exhibit 0 as their
(N"l)St component. In similar fashion, of the next (N*‘)C(a,,,) components of
N+1 just preceding the final ”f (N+1)c j components that equal 0, N, of

J"'a

them will equal [1-(a/N)} and the remainder will equal 0. For of those columns

.
Fa2

of Ry,q oN+! that sum to (a+1), oniy NCa sum to a over their first N components,
and of these, all exhibit 1 as their (N+l)St component. For reasons that we shall

now explain, further details of the ordering of components of I’aTZN*I are

irrelevant to the remainder of our argument.

Denoting by R(A),_, ,N+t the matrix whose (N-1) rows are the vectors
we have been describing as raT,N+1 for a = 1,2,...,(N-1), we can consolidate all

the information about the quantities we have defined for this problem, writing

- By Ryoq, oN*!
Ay-1 = | BlA)y oM Cnet - (1.4)
1 1ToNe1

15

The three block components of this matrix equation (1.4) denote that
i) the events composing the vector Ey., are logically independent :
'ii) the (N-1) quantities composing A, _, are logically dependent,
specified by linearly independent funtions of the basic (N+1) events, E,,,: and
iii) the events composing the vector (ZZN,l are the constituents of the

partition generated by the components of Ey,,. Thus, they sum to 1.

Let us turn to the further structure imposed on the problem by the

conditional prevision assertions presumed in Theorem 1. Since the quantities

we have denoted by the vector A,_; are linear functions of C L to be explicit
R(A)N_"zN*l CzN,,, the linearity of coherent prevision requires that the presumed
P(A.,) = 0,_, be representable as

RN, N1 P(C o) = RCAN N THN+ (19) Qe = Oy
with the vector qy,, already constrained to the (N+1)-dimensional simplex.

Thus, we have identified the coherency constraints on q,,, as

P [ AN-I] = [ ON-I] = [R(A)N—l,zN"nzN",(M)] Q.o -
1 1 T (1.5)

Pz
We can simplify our analysis by deriving an explicit form for the product matrix
R(A)_; oN*1 MoN+1 (49)-
Notice that the matrix product R(A),_ ,N¢1 MyN+1 (y.p) Yields a matrix

with dimension (N-1)x(N+2). According to the manner in which the multiplicand
matrices have been constructed, the atn row of the product matrix exhibits 0 in

its first “a” places and in its last (N-a) places. As its (a+1)St component

appears the number

(RAML, ooy = NC (an) 7 N = a(N-a+ 1)/(N+ )N .
a,(a+1) a a

16
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As the (a’z)”d component of the a'" row of the product matrix appears the
number

(RGAMI, (5.9 = NCy [1-am] 7 N1y = (@ 1XN-a)/(Ns DN,
Thus, the ath row of the product matrix has the form

[RAMI,. = (075 -a(N-a*1)/(N*DN (a+DIN-a)/(N+ 1IN 0T(y-5)) .

EXAMPLE (N=3) continued: Our recurring numerical example displays this
result. The matrix R(A),, ¢ is the matrix whose two rows are the vectors rie
and rp' g displayed in this example just above. Thus, simple multiplication with
Ms.5 shows that

[ o -i/4 /73 0 O ]

R(A)z,16 Migi5 = 0 0 -1/3 1/4 0

Each of these rows exhibits the form we have just derived. L)

Thus, the conditional prevision assertions we are studying,

PIEy., [ (Sy=a)l=a/N for values of a = 1,2,...,(N-1), place (N-1) more linear
restrictions on the vector q,, . which is already required to lie in the

(N+1)-dimensional simplex. So there remain only 2 free components of qy,,

allowed by the satisfaction of all N linear constraints. And even these are not
completely free. Surely, for example, their sum cannot exceed 1. But they are

constrained even further. If we arbitrarily denote the free components by qq and

q (suppressing for the remainder of this Section their full denotations of Qo.N+1
and q, y.,) then the (N-1) restrictions represented by the equation
R(A)y-, Nt N+ (ng) Qop = Oy

yield the recursive solution
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4a = [@-1)/alliN-a+2)/N-a*Dlgg-y Tfora=2,...N. (1)

N
and Qo = 1-2.Gi .
) =0 N+)
which comes from the simplicial requirement that > q; = 1. This final equation
(zo

identifies the restrictions on both qg and q;.

The direct form of the recursive equations (1.6) shows all the

components of q,,, as functions of qg and qy, viz,

q = (1/2) IN/(N-a+1)] q for a=2.,N, and
N
Qe = 17 Qg = @ {1+ N X [a(N-a+ DI}, (1.7)
Q= >

Now the summation that appears in this restriction on qy,, Can be rewritten as

225 [a(N-a+1)]"!

o N
(N [T A+ T (N-ar1)]
asz2 4'2"
N =N 25 AT

(N-1)/ININ+ 1T+ 2 [WIN+1) - w01/ (N+1) ., (1.8)

where ¥(') is the so-called “psi-function” or “digamma-function” defined for
x-1
-+ 2 a’l ,

as=l

xz2 by Y(x)

and ¥ is Euler’s constant :
b 4
¥ = iMoo [QZ'a" - log x] = .5772156649...

See Abramovitz and Stegun (1964, p. 255). If you are not familiar with it,
notice that the psi-function is the discrete (integer) analogue of the logarithm
function. Now replacing the summation in (1.7) with this derived equivalent in

(1.8), we arrive at the representation

Quoy = 1= Gp = G 2INZINS {1 + w(N+1) - ¥(2)} .
Thus, the only restrictions on qq and qy are that they be nonnegative and that
o * G 2IN/(N+1)I{1 + W(N+1) - ¥(2)} £ 15 or equivalently, that

G = (1-q9) / Q2IN/NDIT + wNe1) - Y@ = By, (a0) . (1.9)
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where ¥(-) is the unbounded increasing psi-function mentioned above. The

function By, (q) expresses the upper bound on q; associated with the value of
Q- Notice that the limit of this upper bound on q; decreases to 0 as N becomes
large: 1imy, 00 By, (de) = 0.

Thus far we can conclude that it is coherent to assert the conditional
previsions P[E,,,|(Sy=a)l=a/N for a=12,..,(N-1). And we have precise
algebraic expressions for the 2-dimensional space of cohering vectors G2

identified as a function of N, specified by equations (1.7). A further question
we can address is what are the consequences of asserting conditional previsions
of this type for ewery value of N. The answer is the surprising result stated in
the final statement of our Theorem 1. Proving it requires a little more work.
Consider your previsions regarding the sum of only M of the (N+1)
events that you regard exchangeably, where M < (N+1) is a fixed number. It is
well known from the work of Diaconis (1977) and others that coherency requires

your previsions for the partition (S,=0), (Sy = 1), ..., (Sy=M) must be related
to the vector q,,, by the hypergeometric mixture equations -
NpleM P
Ps,= ) = 5 (U, Ne1=jDer o 7N Doy gy ey - (1.10)
n ) ‘Zo j GR)) M) ne)
We can replace the values of q¢j. ) (x+1) in equation (1.10) by their coherency
required equivalents, derived for values of j = 1,...,{M-1) from equation (1.7) as
Gjrintueny = N/ IGO0 G oy
Performing some algebraic reduction after this substitution then yields the
result
' YN M, (1)
P D) = Moy i) a2 L AL TR (AT
again for the values of j = 1,...,(M-1). Now the summands in equation (1.11)

satisfy the inequality

N1 /N Dey iy s 1 for =01, 1-1). (112)
This can be seen by substituting 1=N+1-M, S =M-2,and s = j-1. Then (1.12)
reduces to the well known form lCi < (“S)C(i*s) fori<land0<ss<5S.
Applying (1.12) to equation (1.11) yields the inequalities

PSy= 1) & MCj [N+2-M/(N+ 1)1 q, ,, when 15 )5 (1) (1.13)
Since we' have already seen in (1.9) that coherency requires Q) net S By (@) =0
as N oo, we can now conclude that for any finite integer M, P(1 £ S, < (M-1))
must equal 0. This substantiates the final statement that completes Theorem 1:
if you coherently assert the conditional previsions

PIEy,,[(Sy=a)l = a/N for values of a € {1,2,...,(N-1)} for every value of N,
then coherency requires that for each value of N you also assert the prevision
PI(Sy=0) + (Sy=N)] = 1.
Our proof of Theorem 1 is complete. We conclude this Section with a

geometrical representation of an example of the theorem, and a recognition of

two associated corollaries.
Figure 1.1 displays the set of pairs (q; \.,.q, y.,) that meet the

specified restrictions of Theorem 1 for increasing values of N, and translates

them into the set of M-tuples they would imply for cohering previsions for the
partition (S,,=0),(S,=1)....,(S,,=M) in the special case of M = 2, displayed in a
barycentric coordinate system. In this case the transformation equations (1.11)

reduce to yield P(S,=0),P(S,=1),P(S,=2)) as
P(S20) = To(00.q1) = Gg e * (N*DH {1+ NIY(N) - ¥ q;
P(Sp=1) = T1(qp.q1) = 2[N/(N+1)] Q) po . and

P(5222) = Toldoan) = 1= Qg oy = (N#1)TH(2Ne 1) + NIY(N) - ¥(2)1) q .., -
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Since the transformation from (qo_N,Pq"N,l) to T(qo,ani,w) is linear, the
transformation of the three extreme feasible pairs of (qo.qul.wl) for each
value of N yields the three vertices of the sub-simplex of cohering values of
prevision over the partition {(S;=0),(Sp=1),(S;=2)}. The extreme feasible
Pairs of (qy .9y () are the three extreme points (0,0). (0.By,,(qp)), and
(1,0), which satisfy equation (1.9). Notice in Figure 1.1 that the feasible set of
prevision vectors (P(S;=0),P(S;= 1),P(S,=2)) diminishes as N increases,
reducing in the limit to the line segment connecting the base vertices of the
simplex, (1,0,0) and (0,0,1). This corresponds to our algebraic recognition in

The limiting result, which applies when the conditional prevision

assertions P(Ey,, (S, =a)) =a/Nfora=1,..,(N-1) are made /or every valve of

N, relegates these conditional prevision assertions to assertions conditioned on
events that are themselves assessed with probability 0. It is worth noticing
that if one asserts P(1 s S, s N-1) = 0, then ary assertions P(E,,, | (S, = a)) for
a=1,..,(N-1) would be coherent.

Corollorg to Theorem 1 are two further items of interest. Firstly, the

conditions of the theorem allow great freedom in specifying one’s prevision for

the sum of the N+1 events under consideration. We prove this forthwith.

proving Theorem 1 that P(S, = j)» 0asN- o« for values of j=1 Lo (M1
CoroLLARY 1.1. Under the conditions of Theorem 1, coherency would allow
the assertion of P(Sy,,) as any number within [0, (N+1)].
’ N+l
(Sp= 1) PROOF: Using the coherency restriction that P(Sy,) = 2 a4, ., .and
©,1,0) @=o
q substituting the representations of qy,, identified in equation (1.7) yields
1,N+1 N
| P(Sye) = 0Gp* 1G4+ ZAIN/(N-a*l)]qt
arx
Bre1(Qo net) @:-6‘6:46) N=2 + (N 1= qg = qu2IN/(NS DT + w(N+1) - $()1)
’ (227,54,227) N=3
N=2 59 (.26,48,.26) N=4
N=3 T84 ST = (1) (1=qp) = N g [1 + W(N+1) - ¥(2)] . (1.14)
N=4 3 ¢ (374,252,374) N=49
s f;: (4473106,447) N =999 Thus, P(Sy,,) would equal a constant C for all atlowable (qg.q;) pairs satisfying
N=999 .053 ¢
o 1 qO N+1 (1.0,0) ©6,1) q,,N,., = [(N*‘)(I‘QO,N”)'C] / {N [] *W(N*l)“i’(?)”
(5,20 5= 20 = LN 1)-CI/IN 1+ %N 1) - Y1) - -
= \ o ey (NFDZINDT + W(N+ 1) - ¥(2)1).

(1.15)

Eigure 1.1. For increasing values of N, the set of pairs (qo'N,,.Q,’N,,) that
: This latter form is presented to highlight the awareness that the pairs (qq,q;)

satisfy 0 < g <1, and 0 s q; s (1-Gg)/ {2[N/(N+1)I{T + Y(N+1) - ¥(2)1),
is translated into the sub-simplex of cohering prevision assertions over the

partition {(5,=0).(Sp=1).(5;=2)}.

supporting the same assertion value of P(SNH) = C constitute negatively sloped

lines in (qq.q¢) space. Figure 1.2 depicts such lines superimposed on the convex
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hull of allowable cohering values of the vector (qD’N,,,q,,N,,). Notice in the

Figure that the slope of the hypotenuse of the convex hull of coherent assertion
values of (qq.qy) is less sharply negative than are the slopes of lines supporting

the assertion P(S,, ) = C. For the hypotenuse portrays the boundary of the
coherency restriction (1.9) that
qr s (1-qg)/ L2IN/Z(Ns DI + W(N+1) - ¥(2)}} = By, (qp) .

Comparatively, the slope of this hypotenuse is precisely one-half the siopes of

the lines representing constant valiues of P(Sy,,) in equation (1.15).

q1,N+1

P(Syep) = 172 (N+1)

P(Syyq) = 174 (N+1)

P(Syep) = 0 \

N N NN\

P(S,, ) = 3/4(N+1)

N+
P(SN+1) = (N+1) 1

Figure 1.2. The bold outlined triangle identifies values of (qo,qq) cohering with

conditional prevision assertions P[Ey,, | (Sy=a)] = a/N for every a € {1,2,... N-1}.

Lines depicted with slopes twice as sharply negative as the hypotenuse of this

triangle constitute pairs of (qo.q;) that support constant vaiues of P(S,,) at

various levels within [0,(N+1)]. This Figure is drawn to scale for N = 2.

The geometrical analysis displays that if you assert some value for

your P(S,,,) in addition to the conditional prevision assertions that we have

been studying, this would place one additional linear restriction on the
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components of qy,,. That is, P(S,,,) = > aQy y.y- This restriction identifies
q:o

a line segment within the triangle of allowable values for Gp.ne1 @ND Q, .. thus

reducing go;Jr freedom of choice to specifying a value e/ther for Qo.ne1 =

P(Sy, =0) or for q, ., = P(Sy,,=1). The pair of these values is then

restricted to lying on the appropriate line segment.
‘Throughout this Section we have focused on the coherent extendibility

of conditional probabilities asserting P[E,, |(Sy=a)l=a/N for each value of

a€{1,2,...N-1}. It is worth noting explicitly that coherency requires that
such assertions be accompanied by the same form of assertion when conditioning

on less than N events. This result constitutes a second Corollary to Theorem 1.

CoROLLARY 1.2. Under the conditions of Theorem 1, coherency requires the

concomitant assertion of conditional previsions for any M <N,

PIE,.,

(Sy=a)l=a/M  for every aef{l.2,...(M-1)}.
PROOF: In our derived formula (1.11) for P(S,= j), merely replace M by (N+1)
and j by a. The result is an expression identical to the representation for

P(Sy.1 = @) in equation (1.7), as required by Theorem 1. Thus, the structure of

the vector q,,,, is exactly that required to support the conditional probabilities
specified. v

Corotlary 1.2 constitutes the discrete counterpart to Hill’s resuit
(1968, 1988), using his terminology, that the assertion of A(n) implies the
assertion of A(k) for every k <n.

The substance of Theorem 1 contains two intriguing aspects for
statistical theorists. Firstly, for the Bayesian theorist who is unduly concerned
about inference seemingly based upon “improper prior distributions” when the

asserted distribution of events regarded exchangeably is viewed as a
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Binomial-Beta mixture: the “problem” with inference based on the improper
prior distribution is /o that there is no coherent distribution that would
support such assertions. Rather, the formal "problem” is that there are mary
distinct distributions that.would cohere with such inference. But that amounts
to no problem at all in the subjective theory of inference. Secondly, for the
objectivist frequentist statistician who would like exclusively to use observed
frequencies as conditional probability assertions, especially if the number of
conditioning quantities is great: a startling result is that coherency would

require the annoying concomitant assertion that P[(Sy= 0) + (S, = N)I = 1 for

every N. Our analysis shows that a systemat/c strategy to use conditioning
frequencies as conditional probabilities would be coherent only when these
extreme assertions also seem reasonable. In most cases, they would not.
Theorems 2 and 3, which we now address, generalize Theorem 1 in
interesting ways. Section 2 identifies coherency conditions for inferences
represented by conditional prevision assertions specified at values other than
a/N. Section 3 analgseé the situation that the quantities judged exchangeably
contain many possible values (but a specific finite number) in their realm, not

merely zero and one.
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2. Proof of Theorem 2: on the coherency of conditional previsions
asserting PIE,,, |(Sy=a)l = p, , € [0.1] for each a ¢ {0, ... N}, and
their infinite extendibility criterion. In formulating Theorem 2, we

generalize the conditional prevision assertions we have studied in Section | to
the full range of conditional prevision assertions that are allowable by

coherency with the judgment to regard the (N+1) events exchangeably. That is,

we consider the concomitant conditional prevision assertions of the form

PlEy. ;| (Sy=a)l =pgy € [0.11  for every a ¢ {0,....N}.
Notice that this formulation extends the sumber of conditional previsions

asserted by 2, since it specifies previsions for E,, conditional upon the events

(8,=0) and (S;=N) as well as upon the events (S,=a) for integer values of a
between | and (N-1). This formulation also generalizes the numerical values of

the conditional prevision assertions studied to allow any value of Pan€ [0,1],
rather than necessarily specifying the numbers p, , = a/N. We shall identify
coherency conditions on concomitant inferential assertions of py . Py e Py u

It will be helpful at this point to firm in your mind the recognition

that the symbols Pan denote values of conditiona/ probability assertions,
PIEy. | (Sy = a)l. as opposed to the symbols da,(n+1) which continue to denote
values of wicongit/onal probability assertions, P(Sw =a). Moreover, we shall
use the symbol py,, to denote the (N+1)-dimensional vector (o Pyyeer ,pN'N))T.

Our constructive program follows that of Section 1 identically, until

we come to the point of defining the individual quantities denoted by A, . in
equation (1.3), which we now define more generally as

Agn = B (547) - pg(Sy=all  for a=0,1,... N 2.1)
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Again, each of the quantities A,  is defined functionally in terms of the event
vector E,,. So again we can write Ag\ = raT?_N’l CzN,l . But now raTZNu is a
row vector whose ith component equals 0 if the sum of the first N components
of the it column of Ry.j oN+1 does not equal a, and equals the value of the

(N+ 1)55t component 1ess pg if it does. The possible values of the quantity Aa,n

are 0, (1-pg ), and (=pg ).

Now defining the matrix R(A)y, ,N+i as the matrix whose rows are the
(N+1) vectors so defined, we can write

Ay = RlAN, 01 Cogug
Assertion of the conditional previsions py,, = (Po.N'Pa,N---- .pN’N))T is equivalent
via coherency to the assertion P(AN,|)= 0,., - Thus, using the exchangeability
condition (1.2) we can now write (N+2) linear restrictions on the components of
Gy, Which must still lie in the (N+1)-dimensional simplex: '
0y, = P(AG)) = RA)g Nt MIN*1 (ng) Qe+ @G
N WPLK W

Solving these simultaneous equations yields the following solution:

N a
Gt = (10 T Oy TT g,/ Cpi11
Q-1
and 4z ) = V¢, T 1bi /(1P Gy oy for @ = 1o, (B0 (29)

Equations (2.2) specify a nontinear but invertible transformation from the vector

of conditonal prevision assertion values Py, = (Pgy. Py - 'pN,N))T to the vector

of cohering prevision assertion values gy,, = (qo.rM ) ...,q(N”),(N,,))T. Evidently,
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the components of the vector gy, cohering with an asserted vector Py, are
proportional to the sums of the various products of conditional odds ratios. The

form of transformation equation (2.2) makes it evident that any vector p,,,

lying strictly within an (N+1)-dimensional unit hypercube would represent a
coherent conditional prevision assertion, since it would transform into a vector

qQy., Within the (N+1)-dimensional simplex. It may be clarifying to notice that
the transformation formulas (2.2) from p,,,, to qy,, yield the well known
binomial solutions in the special case that you judge the events independently.

This case would be identified by your asserting PIE,,,|(Sy=a)l = p € [0,1] for
every a € {0,...,N}.

The inverse transformation from qy,, to py,, can be derived as that
specified by the nonlinear equations, for a=0,1,...,N,

Pan * (N+I)Ca Y [(N+1)C(a+]) Qo (ne) * (N+I)Ca Uz o)) - 23)

Equation (2.3) which is also derivable directly from Bayes’ Theorem, identifies
the remaining coherent conditional prevision vectors p,,,. These are the vectors
Py. 4ing on the surfaces of the (N+1)-dimensional simplex. That is, these are
the vectors generated using (2.3) beginning with vectors Q. that are convex

combinations of no more than N of the row vectors of an (N+1)-dimensional

identity matrix. We have proved the first assertion of Theorem 2: any vector of
conditional prevision assertions P[EN’,I(SN=a)] Zpay€l0.1] fora=0,.. ,Nis
coherent as long as the vector p,, lies within or on the boundary of the

(N+1)~-dimensional hypercube.
The next substantive content of Theorem 2 identifies a structure on the

components of the upper triangular matrix of conditional prevision assertions

Phep et = (P1.P2.-.-,Py,,) that coherency requires of anyone who asserts the
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conditional prevision vector Py.;- We shall prove this part of the theorem by

using the transformation we just developed between conditional prevision

vectors p and unconditional prevision vectors q, following the details of the
transformation from py,; to qy,, to ‘qN,l t0 Py = (Py ey o Pyt s+ Pcrn-r)

First, having specified the conditional previsions Py.; = (DD.N""'DN,N)T'
the components of qy,, = (qy ., .q,,N‘,,,...,qN,,,N,,)T would be those specified by
equations (2.2).

Now this vector qy,, reduces to qy,, = (qo‘N.q,.N,...,qN,N)T by means of
the finite exchangeability transformations studied by Diaconis (1977) and
others, which specify

dan= [Nca/(N”)Ca] Ga,(ne1) * [Nca/(N”)C(aH)] (a1),(ne1)
fora=0,1,...,N. Upon substitution of 93 (N+1) and Ua+1),(N+1) with their

representations identified in (2.2) these yield the components of q,,, as

Q. = i)/ (I-Pp ) . and generally

a-i

Gax = [G(un / (-pa)1 Neg ‘]jo [pjn/(1-pj )] fora=12,..N.

Finally, transforming q,,,, to p, via equations (2.3) yields the solution
Pa-0n-1) = Pla-nn’ [1- Pa.n * P(a-0)n 1, for a=1,...N, (2.4)

which appears in the second assertion of Theorem 2; equivalently,

Pan = = Pa-nn 1 = Paen) (- Pa-1),(u-)]. Tor a=1,.N. (25)

These equivalent equations can be read in two ways. In the first place,

equation (2.4) was derived to show the values of Pi(n-1) implied by coherency
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with the assertion of the conditional previsions py,, = (DD,N'DLN""'DN,N)T' In
these terms it is interesting to note that P(a-1),(n-1) depends only on the two
assertion vélues P(a-1),n 3N P - It should be evident how equation (2.4) can
De used iteratively to compute the entire vector p, from p,,,,, and then again to
compute py,_, from p,, and so on, down to the computation of py = pgg. This is

the form'or the structure on the upper triangular matrix of conditional

previsions Py, y.q = (P1.P2.-..,Py,) that is identified in the second statement
of Theorem 2. Alternatively, equation (2.5) can be read as specifying the

allowable pairs of assertions P(a-1).N and Pa.n that would provide coherent
extensions of the assertion P(a-1).(n-1)- Evidently, a coherent conditional

prevision assertion vector py,, can be extended to a corresponding vector one

dimension larger with some freedom. We can be more precise.

For the third assertion of Theorem 2 specifies necessary and sufficient
computable conditions distinguishing the conditional prevision assertions py,

that are infinitely extendible from those that are only finitely extendible.

De Finetti’s representation theorem for exchangeable distributions
yields part of this distinction directly. It states that the assertions p,,, are
infinitely exchangeably extendible if and only if they are associated with a
vector q,,, that satisfies the following representation:
for each value of a=0,1,...,N+1,

qa'(N*‘) = (N*’)Ca OJ'I ea (‘ _e)N"'a dF(e)
for some distribution function F(-).
Replacing the values of q(a,1) (ye) 3nd dg (y.y) in equation (2.3) by

their representation in this form, and applying a bit of algebraic reduction,
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yields the following equivalent statement of de Finetti’s result, which we state LEMMA 2.2, If the conditional previsions Py.; are infinitely exchangeably

as a Lemma. extendible then they specify an upper triangular matrix of cohering conditional
Lenra 2.1. The conditional prevision assertions py,; = (pg y.Py y---.Py W)’ previsions . . -
. o ' Po.o Po1 Po2 T Py
are infinitely exchangeably extendible if and only if each component is Pii Pro Pru
representable in terms of the same distribution function F(") as Pluet).(wet) = P22
of 1 631 (1-0)N-3 gF(e) )
Pan * . | NN )

to2!1(1-6)02 dF(e) + of' 63(1-0)N*1-2 gF(e)
0 . .
computed sequentially using equation (2.4), that exhibits the properties

of 1021 (1-0)N3 dF(e) ; i -
i decreases weakly with N for each a=0,1,...,N;
z = of1 0 dF(e]|(s, = a)) ) Pay N *
of ' 63(1-6)%2 dF() ii) pgy increases weakly with a for eachK = 1,2,...,N: and
Generally, for any integers j and k for which 0 € j<aand 0 < k < N-a, iii ) Pn-a,n Increases weakly with N for each a=0,1,...,N.
of Vol T (1-0)K 62 (1-e)N-K-2 yr(g) Each of these three properties imply the other two.
Pan = , . o ,
' . . PROOF: Suppose the assertions p,,, are infinitely exchangeably extendible.
UI‘ e]ﬂ“_e)k*l 697} (l_e)N-k-a dF(e) P pN | y g y
_ 1) Using the representations stated in Lemma 2.1, that
of 16" 1 (1-0)K dF(e] (S = a- )
= ‘ . Paw = of' 0dF(e](s,=a)) ,
of 1 0l (1-0)K dF(8](Syy = a-}))
of 1 6 (1-8) dF(8|(S, = a))
for some distribution function F(*), for eacha = 0, ..., (N+1) . A . and Pa.(ie)
o/t (1-8) dF(el(SN = a))
Lemma 2.1 is weaker than the claim made in Theorem 2. For the
lemma provides merely an existential statement, as opposed to a constructive It is evident that p, 2 Py (y,y) if and only if

statement. Theorem 2 identifies computable characteristics of p,,, which
Nel of 1 e dF(e](Sy=a)) of ' (1-6) dF(6](Sy=a)) 2 of' @ (1-8) dF(e] (S, =) .

determine whether the assertions are inf initely extendible or not. However, an
immediate usefulness of Lemma 2.1 is that, together with equation (2.4) it But this is true, for any value of N, by the fact that [of' 0 aF(6)12 < of ! 62 dF(e)
establishes a necessary computable condition for the infinite extendibility of for any distribution function F(-).

the conditional previsions py,,. We state this condition as Lemma 2.2.
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ii ) Similarly, using the representations from Lemma 2.1,

Uj' © (l "e) dF(el(SN-I = a))

Pan ) '
of ' (1-0) dF(8]| (S, = a)

of V82 dF(8|(Sy_, = @)

and Plas)n ~ )
of 1 0 dF(8|(Sy_, = @)

it is evident that pg \ = P(3,q)y If and only if
of ' © dF(8(S,_, = a)) of ' @ (1-0) dF(e](S,_, = 2)
s of ' 62dF(6](Sy., =) of ' (1-0) dF(8](Sy_, = a) .

But this is true for any value of N for the same reason, that for any distribution

function F(), [of' 0 dF(6)12 < of ! 62 dF(6).

iii ) Finally, using the representations from Lemma 2.1,

of ' 6 dF(8](Sy =N-2)) ,

P(n-a)n

of ! 62 dF(8](S, = N-a))

and Pln-aet) (1) = ’
of ! © dF(8](S, = N-a))

it is evident that P(N-a)n S P(N-a+1),(N+1) if and only if

[of 1 @ aF(8](Sy = N-2))12 = of 1 82 dF(6] (S = N-2)) ,

which again is true for any N for any distribution function F. v
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The equivalent conditions i, ii, and iii of Lemma 2.2 are necessary for
the infinite extendibility of the conditional prevision assertions p,,,,, but they
are not surricient. The stronger sufficiency conditions are derived from the
known 1-1 relationship between the family of distribution functions on the
interval [O, 11and the family of completely monotone sequences, a result known
as Hausdorff's Theorem. See Akhiezer (1965), Kartin and Studden (1966), and
Daboni (1982). The argument for sufficiency conditions procedes as follows.

First, notice that our equation (2.2) specifies a 1-1 transformation of

the matrix P(Nn),(wi) into the corresponding matrix

Q(Noz).(uoz) = (qo. Q1. qN*Z)

r N
%.0 %1 %2 " ()
QG G2 0 Gy ()
= Q2(2) ,

A1), (N+1) J

Now the infinite exchangeable extendibility of the conditional prevision

assertions p,,,, means that every diagonal element of Q(N,z) (nv2) MUSE De

representable as g j = of’ 6! dF(e) for the same distribution function F(),

according to de Finetti's theorem. Thus, these diagonal elements must be the
moments of some distribution function F(*). Hausdorff’s theorem implies then
that the sequence of diagonal elements of Q must be infinitely extendible as a
completely monotone sequence.

Computable conditions for a finite sequence {1,q, ,qz,.‘.,qN,,} 1o be

infinitely extendible as a completely monotone sequence are reported by Karlin
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and Studden (1966, pp. 106-107): for each K = 1,...,N+1,
L@ Q) =L s g S U=U(Gqy, .. Q)

where, writing K as 2m+1 oras 2m, depending on whether K is odd or even,
Aad] .

L@ sgey) = 2 D' a0y et (B / By

and m ) N _ _
U@ o) = Gy = 2 DT @y = ag-) 200 oo 1B / By -

ito

The symbol A, denotes a “lower Hankel determinant”:

for K=2m ; forK=2m~+1 ,
I i Q@ " dy G Q@ 4G 7 dpey
QG G2 QG 7 Qpeg @ B 4 7 Qpee
AK = AK =
Im Imer T & Im+r Iz 0 &

The symbotl ZK denotes an “upper Hankel determinant”:

for K=2m ; forK=2m+1 ,
Q792 978G " 9y " G+ 1-q 4G 7 G Iy
02" B39 " Qqe"Ime2 91702 Q2793 7 Gm+y"mee

>
"
L1
Foad
"

In 9+ %% Im™ Im+ B ST

The subscripts on the adjoint notation, adj’(m+ t—i,m+1(zx)- should read (m-i,m)
if K is an even number. (Notice that the dimension of the Hankel matrix (Zx) is

only mxm in that case.)

Finally, these conditions are related to the conditional probability

matrix Py, ) (v+1) DY the multiplication rule for conditional probabilities, which

[

requires that q; ; = TL pj j for i=1,...,N. Thus, the computable condition for
e )

the infinite exchangeable extendibility of an asserted inference vector

(Po.N Py N,....pN'N) is that for each K = 1,...,N, its associated vector

(Po.o,PI,; s s Py ) SaLISTiES

K-t K~1
L(Pgo. PogP 11, --- T[ Pii) % Pex = Ulpgo,PogPii. ... T[ Pii)
& [

K- K-
M Pij .n Pij
tz0 ¢s0

Although they have been ungainly to state, these conditions are simple

to compute. The following example will be useful for reference subsequently.

EXAMPLE 2.1. Suppose that the conditional prevision vector Ps=(Po,5.P1,5..-.Ps.5)
is asserted as (.1429, .2857, .4286, .5714, .7143, .8571). These happen to be
the conditional probabilities associated with 3 Binomial-Uniform mixture
distribution for Sg (equivalently, a Polya (6,1,1) distribution) rounded to the
nearest fourth decimal place. Applying the infinite extendibility criterion just

developed, the boundary conditions for the further assertion of pgg, that is,
P(E7 | (Sg=6)) amount to L = .87428571 < Pg.s € .87571429 =U , printed to

the nearest eighth decimal place. The associated full p; vectors corresponding

to these extreme extended assertions are computed using our iterative equations

(2.4 or 2.5), as p(lower) = (.1243, .2543, .3643, .5143, .6143, .7543, .8743) ,
and pr(upper) = (.1257, .2457, .3857, .4857, .6357, .7457, .8757). Sixteen-place

decimals were used in the computations. oo
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Before moving on to the concluding statement of Theorem 2, we should i
' Table 2.1. Coherent inferences P(E,s|(Sz4=a)) when the asserted probability

note a very useful corollary to this argument: if you regard the events o ) . i )
distribution for Sys is the Binomial-Cantor mixture. The four columns list the

, ting a mixture-binomial distribution for $ .t (the , ,
Ey. ..., Ey., exchangeably, asserting e vectors denoted in the text as the diagonal vector of Qag, Pas, oxos, and Bos.

infinitely extendible case) then every inferential probability assertion

P(E,., | (5y=2)) can be computed directly from the moments of the mixing '

. . , o . a Ha® s  PEss|Se=2) *3,24 Ba24
distribution, which constitute the main diagonal elements of the matrix we have ’
denoted by Q(y.z) (ve2)- The following example of the Binomial-Cantor mixture 0 10000 0.0247 0.6527 1.7852

, 1 0.5000 0.0625 0.7178 2.7613

) . ‘ ) o . 2 0.3750 0.0989 0.1647 -2.2780

distribution provides a striking example of the power of this result. 3 0.3125 0.1446 -0.3578 ~5.3693
4 0.2719 0.1993 0.7342 -0.9827
.5 0.2422 0.2414 5.3248 13.4414
. 6 0.2192 0.2648 13.9880 37.4935
EXAMPLE 2.2. Suppose that for a sequence of 25 events, opinions about 5, are 7 0.2009 0.2780 22.2260 58.8827
8 0.1860 0.2878 22.0425 58.4281
. . iy _ N 103 (1~ N-a 9 0.1737 0.2970 7.9684 25.1371
representable in de Finetti's form qgy = "Cy of 1 62 (1-6)""9 dF(e) , where _ 10 0.1632 0.3149 -4.1733 -1.3088
. - ) 11 0.1543 0.3688 -8.1859 -8.1806
specifically F(8) is the standard Cantor distribution. Using the direct moments 12 0.1466 0.5000 -8.2225 -8.2173
13 0.1398 0.6312 -1.0743 -4.0538
of this distribution, derived and calculated by Lad and Taylor (1992) the 1 0-1338 0.5851 23.5229 7-2813
15 0.1285 0.7030 62.7775 23.8321
corresponding matrix of inferential probabilities Ppq 24 Were computed according 16 0.1236 9.7122 36.1104 21.1381
‘ s 17 0.1192 0.7220 38.4645 14.3467
X . . . 18 0.1152 0.7352 13.2652 5.2663
to the procedure outlined in the text: calculate the diagonal elements of Py4.24 19 0.1116 0.7586 ~0.9560 0.7413
) 4 ) _ . 20 0.1082 0.8007 -5.3752 -0.3589
from the moments of F(-) using the equation pj; = Jtj,/#;: then generate the 21 0.1050 0.8554 -2.2760 0.1649
22 0.1021 0.9011 2.7608 0.7178
entire matrix P from the recursive equations that were identified as equation 23 0.0994 9.9375 1.7852 0.6527
24 0.0968 0.9753 1.7852 0.6527

25 0.0944

(2.4). The first 25 moments of the Cantor distribution to 4 decimal places are

printed in Table 2.1 in the column headed pj = gy 4. The associated vector of

conditional probabilities (Pg,24.D1,24, - ,D24_24)T appear in the column headed

P(E25{524=a) _ Again, the moments were entered to 16 decimal places to Theorem 2 finally concludes by distinguishing assertions that are

infinitely extendible as a Polya distribution from those that are infinitely

generate these results. The columns headed oz 94 and §5 24 Will be interpreted
extendible but defy representation in this form. This is achieved by determining

shortly. . i
a functional procedure that will parameterize the assertions p,,, in the form
Pan = (a *“a,N)/(N*“a,N* Ba, ), for a=0,1,..N. (2.6)
38
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This determination involves some work. For the representation of a
coherent p, \ by a pair (o Ba, satisfying (2.6) is not unique. In fact, the
representation in form (2.6) for the conditional previsions we have denoted by

(P y+-- Py ) WOUID be satisfied by any vector of (°‘a.N -Ba.N) pairs for which
Ba‘N = _(N-a) + (a"°<a’M)[(l _pa,N)/pa'N] . (2.7)

Figure 2.1 displays three lines of (°‘a,N -Ba,N) pairs that would represent

assertions of pg = 1/3, 1/2, and 2/3 . Their slopes are 2, 1, and 1/2,

respectively. The coherency restriction of py,, to the unit cube requires that
the slopes of these lines be nonnegative. Thus, for each value of a and N, either

[ogy 273 a0 By 2 -(N-a)1 or Loy < -3 a0 Byys-(N-a)].

=1/3
Pa,n

N a

0,0)

= 1/2

p = 2/3

/ (-8,-(N-8)) %a,N

Figure 2.1. Lines of (xgy.B5,) Pairs that would represent assertions of

Pan = 173, 1/2, and 2/3: By = -(N-a) + (a*“a,u)[(“Pa,N)/Pa,N]-
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Before progressing to the development of a parameterization of Pheys

notice the special case that previsions py,, supporting an infinite extension as a
Polya distribution are those that can be represented as
(“'B)N*l = (O(D'N 'BD.N 1 ""“N,N'BN,N) = (0(15) 'N"

for some positive values of « and §. For these would yieid the wetl known
conditional probabilities of the Binomial-Beta, or Polya distribution. Figure 2.2
(printed on page 42) shows how such assertions can be identified geometrically
by displaying the representation of one example of a conditional prevision vector
that can be represented by the Polya distribution. Every (c,,85) line
associated with the Polya (6,,8) distribution must intersect in the common
point («, B).

Thus, our second theorem identifies precisely how the Polya
distribution is properly included within the class of all exchangeable infinitely
extendible distributions. For an algebraic characterization criterion of this
subclass of coherent infinitely extendibie assertions, see the article of Hili,
Lane, and Sudderth (1988) on exchangeable urn processes.

Of course, there is no necess/ty that coherent conditional previsions
specify lines of (o<a nBa N) pairs that all intersect in one common point. In

contrast, Figure 2.3 (printed on page 43) suggests several different reasons why

an allowable assertion vector might not be representable as a Polya distribution.
As is displayed in the Figure, lines of (°‘a,N -Ba.u) pairs for neighboring values of
"a" may intersect inany of the four quadrants of (c,$) space, or they may not

intersect at all! This latter situation occurs whenever p, = Plas)N -
Finally, we can generate a unique representation of p,, in terms of a

vector (o By - oy By \) DY using equation (2.4), repeated here, which

related any three adjoining components of the conditional prevision matrix:
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e

(-5,0

- /

”

» X455

(-4 .-1) /

35
(-3,-2)
%25
-2,-3)
/ » %15
(-1,-4)
/ — g5
(0,-5)
Eigure 2.2. Conditional prevision assertions pg that are exchangeably infinitely

extendible as the Polya distribution, Polya(N,x.B). The parameters « and § are

identified by the common intersection point of all 6 lines defined by the

equations B g = -(5-a) + (@a+ o 5)(1-pg 5)/Py gl for @=0,1,2,3,4,5.
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35,5 84 ,5 83,5 82,5 1,5 B0,5
~ r . +
(-5,0)

Eigure 2.3. Conditional prevision assertions that are not representable as a

(-4,-1)

(-3,-2)

X455

0,5

B

Polya distribution. Circled points identify relevant intersections. Notice that

P15 = Do s, since their associated tines do not intersect.
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Pa-1).(n-1) = Pa-)n’/ 1! ~Pan*P@-ynl.  for a=1...N. (2.4)
Geometrically, equation (2.4) implies that the line of (ocp . B \) PaIrs

supporting p, , must intersect the lines of (ocg (. () B4 (n+1)) and
(x(ae1).(ne1) B(an).(nn)) péirs sSupporting P (y.1) @ P(a.1) (Ne1): respectively,
in a common point shared by the three of them. This interpretation is achieved
by replacing the expressions Pan: Pa,(n+1)’ and P(a+1).(N+1) in (2.4) by their
representations in terms of the pairs (g . B4 y) (g (ye1)- Ba,(ne1))r @00
((g1) (N+1)" B(ge1),(ne1))- respectively, applying equation (2.6). Equation (2.4) is

found to be satisfied only when these three lines of pairs intersect in a common

point. Algebraically, the solution equations for the common point (x,8) of the

three lines, expressed as a function of py \ and Py (y.1)> reads

o« = a3+ Pay Paer) /[PanPaquenl = Magen

(2.8)

and B = -(N+1-3) + pgy (i ‘Da.(Nw))/[Pa,N’pa,(Nol)] = B*a () -

Thus, we can use these equations to define the parameters o*p (y.) and

85 (N+1) that would uniquely characterize p, (N+1) 35

Pa(ner) = @* g (ner)) / IN*IT+ o*a o1 * B a o))
as specified in Theorem 2. Figure 2.4 displays the structure of this relation

geometrically.

Ba,nn pa,Nﬂ

. = 2/3
Ba n / Pa.n
" Py +1N+
(0.0}
* .-
BO,N + /

- - - 7 Y
cen, (y -8 ,-(N-8)3 %a,N

"
¥

(-8,-(N+1-8)) . Xa N+t

Xa,N+1

Eigure 2.4. A pair of lines (ocg (ya1). Ba (we)) aNd ((ae1) (Ne1)* B(as1) (ne1)) that
support the assertion Pa(n) = 2/3 are shown, along with the line (o<a v Ba N).
The pair (a*a'(N,‘). B*a,(m)) that we define to represent p, (N+1) is the unique

point where these three lines intersect. This point may appear anywhere in
either the I or 111 quadrant relative to the point {-a, -(N-a)).

Once you understand Figure 2.4, you will aiso understand that Figure
2.2 can be "filled in" to show that all conditional probabilities p, , for values of
N < S are also representable by the same Polya distribution. For every tine of
(aa'N,Ba‘N) pairs for N <5 must also intersect in the same common point {(«,8),
as required by (2.4). Similarly, you can sequentially “fill in* the lines of Figure
2.3 associated with the conditional probabilities Pan for values of N<5.

Beginning with a=0 and N=4, merely draw the line through (0,-4) and the
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intersection point of the lines associated with Pos and P1s- Then proceed to
a=1 and N=4, drawing the line through (-1,-3) and the intersection point of the

lines associated with py s and pa 5. (In fact, in this case as drawn, the lines do

not intersect. So merely draw the line between the two parallels. These three
lines then will all "intersect” at «.) Continue this process witha =2 and N = 4,
and so on until a=4. Then proceed to N=3.

On the other hand, in Example 2.1 we have already made computations
showing that Figure 2.4 can be *filled out” by a whole family of inferences about
E; that would agree with the Polya (6,1,1) inferences and all their associated
lower order inferences.

Our proof of Theorem 2 is completed.

3. Proof of Theorem 3: on the coherency requirements for

conditional probability distributions that mimic positive histograms.

The coherency of strictly positive histogram mimicking conditional probability
distributions can be made evident by embedding them in a coherent exchangeable

joint distribution for X,,,, that agrees with them. This is achieved as follows.
Consider any strictly positive h € R(H(X,,,,)). There are (N"')Ch distinct

vectors x,,, € R(X,,,) that yield this histogram h = h(x,,,). Given the presumed

assertion of exchangeability, the histogram conditioning rule implies that each

of these vectors must be accorded the same probability, which is representable

in several ways:

P(Xye1 = ¥er) = (= 1)/N] PIH(X) = D%y, )-eu] / Nopyex  (B1)
where hx is any component of h not equal to 1, and ex is the corresponding
echelon basis vector for (K+1)-dimensional space in that direction. It equals 1
in its * component, and 0 elsewhere. The factor (h«-1)/N assures the agreement

of the probability distribution for X, , with the required histogram mimicking
character of its conditional distributions based on strictly positive histograms.
Now select a probability distribution for H(X,) that accords arbitrarily small
probabilities to strictly positive histograms. With such a choice, the sum of
equations (3.1) over x,,, for which h(x,,) > 0 can be made less than 1.
Ascribing the remainder to the probability of all the nonpositive histograms, we
have identified a cohereni exchangeable probability distribution for X,,, that
supports the conditional distributions specified in Theorem 3.

Mechanics of the proofs of the qualifications to Theorem 3 rest on use

of the following three results:

R1) PI(Xy,  =2)(H(X,)=h(N))] = [(hy(N)+ 13/(N+ 1] PIH(X,, )= hN)+ @] .
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where h(N) represents any strictly positive histogram based on N quantities,

h4(N) is its component for category a € {0, ... K}, and e, is the echelon vector

with 1 in component a and O elsewhere;
R2) for every a € {0,... K} and for every h(N) > 0,
(ha(N/NTPIH(X) =h(N)] = [(ha(N)+ 1)/(N+1)] PIH(X,, J=h(N)+e,]: and
R3) for any integers a and b, each within {0,... K}, and for every h(N-1) > 0,
PIH(X,)=h(N-1)+ep] = C(ab) P[H(X,)=h(N-1)+e,] ,
where the proportionality constant is
C(@b) = [hyN~1)+11Ihy(N=1D1 7 [hy(N=1] [hy(N-1)+11 .
The first result, R1, follows directly from the exchangeability assertion
regarding the components of X, ,,. Thus, a corresponding statement is true if
the value of N is replaced by any smaller integer as well. The second resuit, R2,
fotlows from applying the histogram rule for X,,,, to the left-hand side of RI.
The third resuit, R3, follows from applying R2 to the relations between

PIH(X,)=h(N-1)+ep] and P[H(X,, )=h(N-1)+e,+e,] on the left-hand side, and
between P[H(X,)=h(N-1)+e,] and P[H(X,, )=h(N-1)+ e, +ey] on the right-hand

side.

Qualification (a) of Theorem 3 constitutes a generalization of the
Corotlary 1.2 we proved in Section 1. Backward induction allows that we need
prove only that the statement is true for M = N-1. That is, we need show only

that for any strictly positive histogram based on N-1 quantities, h(N-1) > 0,
PI(Xy=a) |[H(X,_)=h(N-1)] = hy(N-1)/(N-1) for each ae {0,... K}.

Now for any positive histogram h(N-1) and any a € {0,1,... K} ,

[(ha(N-1)+ 1)/NT PIH(X\) =h(N-1)+e,]

PI(Xy=a)[H(Xy.)=h(N-1)] = — 3.2)

P [(pN-1)* 1)/N] PIH(X)=h(N-1)+ey )
=0

47

Equation (3.2) derives from firstly applying R1 to PI(X=a) (H(X,,_,)=h(N-1))] for

the numerator. For the denominator, expand P[H(XN,')zh(N-l)] to the summation

K
:L‘OP[H(XN):n(N—I)'feb] according to the theorem of total probability, and apply

Rt to each of the summands.
Finally, applying R3 to each term in the denominator of (3.2) reduces

. K .
the right-hand side to [(hy(N-1)+1)/N]1/ 3 C(a,b) since the expression
b=o

PIH(X,)=h(N-1 J*ey] then cancels in the numerator and denominator. Simple

K
cancellations and the recognition that hp(N-1) = N-1 yield the desired
b:0

equality of qualification (a), that for every strictly positive histogram h(N-1),
PI(X\=a) [H(X\_)=h(N-1)] = hy(N-1)/(N-1) for each a € {0,... K).
Qualifications (b) and (c) of Theorem 3 follow from the iterative
application of qualification (a) to the probability of any histogram based upon
N+1 quantities. Choose any X, whose first K+| components are the integers

0.1,... K. The sufficiency of the histogram for exchangeable inferences requires
that

PIH(Xy, ) =N+ D] = NTepa ) Py, =%g,) (3.3)
as long as h(xy,,) = h(N+1). Iteratively applying the histogram rule to

P(Xy. = Xy.,) ON the basis of qualification (a) yields

K
P(Xy) *Xya)) = ﬂo [(ha(N+1)=1)UKL 7 NITP(X,,,, = 1,.,,).

Substituting this into (3.3) and cancelling the appropriate factorial expressions

yields for any strictly positive h(N+1),
oS
PIH(Xy, ) = BN+ D] = [N D KE/TT (g D] P(Xyy = 1) - B4)

In particular, PIH(X, )= (N+ 1=K, 1,1, ..., 1)1 = [(N# 1) KI / (N+1-K)] P(Xg.y = Tely) -
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Inversely, P(Xy,, = Ty.) = [IN+1-K) / (N+1) KIT PIH(X, ) =(N+ 1=K, 1,1, ... DT .
Substituting this expression into (3.4) yields the desired result, that for any

strictty positive h(N+1),
- K
PIH(X,,,)=h(N+1)] = [(N+1-K)/qﬂ (h5(N+1)] PIH(Xy, )=(N+ 1=K, 1,1, ., DT,

=0
which was 1o be proved.
This algebraic result establishes the stated subexchangeability of the

category components of histograms H(XN,,) over strictly positive histograms,

qualification (b). For the product of the components of a histogram is constant

over permutations of the components. It is also evident from this equation that
PIH(X,, )= (N+1-K,1,1,...,1)] 2 PH(X, ) = h(N+1)] for any h(N+1) >0, which is
qualification (c). Since this extreme probability will be used in what follows,
we denote it hence by Ppay = PIH(X, ) =(N+1-K, 1,1, DL

Finally, we consider qualification (d) of Theorem 3. To begin, we will

show that coherency requires a computable bound on ppy 4, Which vanishes as N

increases. To see this, notice firstly that
- * ﬁ' -1
PIH(X,,)>01 = (N+1-K) X [4 °na(Nﬂ)] Pmax 5 ! -

where the summation Z* runs over all strictly positive h(N+1) > 0. Thus, an

upper bound for pyay S

K
Pmax & (1K) ST nMe 01T} = NK) . (3.5)
azo

Since the summation S runs over all positive histograms h(N+1), it can be

replaced by the partial. sum over positive histograms that contain only two

MK
categories exceeding 1. This smailer sum equals X'y [T a(N+2-k-a)17.

as=d
(For each choice of two categories, the possible histogram component products
N-K
are the summands of > a(N+2-K-a), since all the other K-1 categories of these
a2
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histograms have components equal to 1.) Using the identity [a(N+2-K-a)]™! =

[a™!+ (N+2-K-a)"'1/(N+2-K) and the psi-function notation introduced in Theorem 1,
MK

the partial.summation Y [a(N+2-K-a)]"! = 2 [Q(N-K+1)- §(2)]/(N+2-K). So

a3l
M=K

X .
replacing 3 [‘TE ha(N+1)1"" in equation (3.5) by the partial sum 3. [a(N+2-K-a)]"!
T =1

a

gields TONK) < { [(N+1-K) (K+ 1)K/ (N+2-K)] [PIN-K+1) - 9(2)1 )", which goes to

0 as N=xo. Thus, any coherent assertion of pp,,, Must be smali relative to N.

Now suppose we fix M < N, and consider P[H(X,,)>0]. Firstly, notice
PIH(X,) = h(D) = 3 PIH(X,) = h(M) | H(X,,,,) = RN+ 1)] PIH(X,,,,) = h(N+ 1] ,
where the summation Z** runs over all h(N+1) 2 h(M) > 0. On the basis of
Bose-Einstein statistics, the number of these summands is thus N*"""KCK.
Now apply the exchangeability induced multiple category hypergeometric
distribution to the conditional probabilities in the summands of Z**. and apply
qualification (c) to P[H(X,,,) = h(N+1)]. This yields

K

PIH(X, ) =h(M)] = 5 ["(N"')Ch(m/N*‘CH] [(Nﬂ-K)/aT]o(ha(Nﬂ)l Pmax -

which reduces algebraically to

M F 2 YT —
Crgy [ 1=/ (e D1 7 N e i hen 7 Vv 13- 160 P -

Standard combinatoric arguments provide tnét each summand of
Z** [N”—Mch(Nﬂ)—h(M) / N_Kch(Nﬂ)—lK»r] is less than 1. For the numerator
expression of a summand is the number of ways that (N+1-M) items can be
distributed into (K+1) categories in such a way that the components in the
categories are restricted to equal h(N+1)-h(M). Presuming (K+1)s M= N, the
denominator equals the number of ways that a larger number of items can be

distributed into (K+1) categories with the components restricted to be at least

as large in every category. This denominator exceeds the numerator. So for any
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positive histogram h(1), we can identify an upper bound for P[H(X,)= h(M)] as
PIH(X,)=h(D] < €(MNK) = MCpany [N+ 1-)1/ (N 1) NI p
The first multiplicand of this product, ”Ch(m). does not depend at all upon N.
The second multiplicand, [(N+1-K)1/(N+1)1], is approximated by NX. The third
multiplicand, N”_”*KCK, is approximated by NK/K! The final multiplicand,

Pmax- IS known to converge to 0 as N increases. Thus, for any strictly positive

h(M), the probability P[H(X,)=h(M)] is required to be arbitrarily small when N is
sufficiently large. Since there are only a finite number of such positive
histograms, ”"CK, we can conclude the result stated as qualification (d).

Wwe have completed the proof of Theorem 3. We conclude this article
with some more specific remarks on the applicability of our resuits, and their

relationship to Hill’s theory of A(n) inference.

St

4. On the applicability of these three theorems, and their relevance
to Hill’s analysis of A(n) and H(n) inference. The theorems in the present
article are related to the inferential theory developed by Hilt (1968, 1987,
1988) which has come to be known as "A(n)” theory. Our comments in this
concluding Section wiil presume the reader’s famitiarity with Hill's work.

The basic similarity of our work to Hill’s lies in the shared approach of
initially specifying a collection of inferences (conditional probability
assertions) that would seem to be appropriate for a recognizable sampling
situation. This is followed by analyzing the coherency of these assertions with
an aim to uncovering any interesting concomitant assertions that coherency
would require. As noted by Hill, this approach allows the explicit representation
of very complex forms of reasoning which are not required to admit a
straightforward simplé characterization in terms of Bayes’ theorem.

The basic difference of our mathematical setup from Hill's arises from
a different attitude we presume toward the meaning of numerical observations
and the possibility of so-called ties among observations. Differences in the
scientific subject matter of applications can dictate different reasonable
representations of the measurement process. To illustrate our ideas in a
tangible way, we suggest the following practical situation.

Consider the milk yields during a standard 305-day milking period from
the population of all grade (non-registered) Holstein heifers (mothers with first
calf) living in the state of Wisconsin, none of which have been injected with the
bovine somatatropine hormone. This population numbers on the order of 250,000
cows. Informed opinions about this group of cows might well regard their
measured yields exchangeably. Healthy milk yields from such cows are on the
order of 18,000 pounds. The annual measurement from a complete census of one
cow’s yield would be the sum of two weighings per day over the miiking period.
To a commercial dairy that may desire to buy a heifer or a group of heifers from

a breeder, orders of magnitude that are needed to discriminate between heifers
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might be intervais of 100 pounds ranging from 15,000 pounds to 25,000 pounds.

Thus, we might define a quantity X; by coding the ith cow’s yield in discrete
units that cover 100 pound interval possibilities. Say X; = O represents a total
yield less than 15000 pounds; X; = | if the yield ranges from 13000 through

15099 pounds; ... ; and X; = 101 if the total yield is 25,000 pounds or more.

Although there do exist scales that can weigh liquids to much finer calibrations,
it would be wasted expenditure to use them in defining quantities for milk
yields from Holstein heifers, since finer distinctions that might be made would
never be worth the overall cost of generating them.

However, if someone were interested in 305-day milk yields from tiny
mammals (such as golden hamsters) beginning with their first litter, one would
require a much more finely calibrated weight measurement procedure to perform
a sensible discrimination exercise. Unit measurements calibrated to the nearest
100 pounds would be completely useless.

Whereas the mathematical setup of our theorems covers situations in
which we desire measurements to distinguish particular dairy cows from one
another, Hill’s setup is meant to distinguish differences very finely not only
among cows, but among cows & hamsters as well. His work pertains to
situations that allow measured quantities to vary over /mmernse ranges, with
calibrated measurement distinctions defined finely enough to distinguish minute
differences between units all across this wide range. To some extent, Hill’s
expansion of the A(n) theory to the H(n) theory which allows for ties through the
theoretical filter of aggiutinated masses and splitting processes, is generated
with a view to recogniz_ing small variations in measurements within species
weights and very large differences between species weights. In fact, many of
the conditional probabilities that are most interesting for Hill to compute
involve the probability that the next weight measurement comes from a new

species. Concern with this question has been central since his earliest work on
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A(n) wherein the analysis was based like ours on measurements from a finite
population that can exhibit exact ties (Hill, 1968).

Us}ng Hill's notation for the general situation, one way to understand
our setup is to identify his vaiue of r1 ('tne‘ number of distinct species or *types”)
as equal to 1. Our setup explicitly recognizes the realistic timitation in the
number of possible measurements that are regarded as distinct when the subject
population is restricted to a specialized, even though numerous, group. We are
weighing milk yields from the poputation of grade Holstein heifers in Wisconsin,
not milk yields from the population of all mammals on earth. Once this
difference is realized, it makes sense that the conditional probabilities we
specify to begin our problem involve conditioning observations from N subjects
where N is larger than K, the number of distinct measurements that can be
distinguished. In contrast, Hill’s work would characterize K as the infinity of
the continuum, with N some finite number. Seen in this context of a whole
family of problems, our Theorem 3 constitutes an extremely interesting result.
It allows and supports Hill’s results on the coherency of A(n). But the fact that
our upper bound on the probability of achieving a strictly positive histogram
from a sizeable number of crude measurements is arbitrarily close to 0, places
limits on one’s willingness to assert this inferential strategy in a practical
context that recognizes only bounded discrete measurements. The embarrassing
concomitant requirement of subexchangeability of histogram categories over
strictly positive histograms provides further grounds for suspicion.

A second way to compare our work with Hill's is to imagine that the
distinct cow types we are considering are refinements of the general Holstein

type, with the refinements ce//ned in terms of discrete ranges of milk yieids.
Accordingly, each of our exhaustive possible measurement values for X; (the
integers 0, 1, ..., K) would identify a distinct type. In these terms, Hill’s

parameter M would equal our K+1, rather than an unknown quantity. Apparent

“ties” among our measurements do mask real differences that are not worthwhile
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to notice. Hill has generated results relevant to this context, but in which real
number observations are recorded for each unit measured. Since his individual
measurements are proposed as differing mildiy within a type, only the average
measurement and the number of measurements of each type are recorded. The
inferential probabilities that Hill derives from A(n) in this context constitute
the predictive distribution of the true average measurements from many units of
each type, conditioned on the observed measurements of a few from each type.
In contrast, the probabilities that we have analyzed in the present paper
represent exclusively the probability distribution for the value of the next
observed measurement conditioned on specified measurement possibilities.

In a word, the results of our paper extend the type of analysis
developed in Hill’s A(n) theory to the purely finite and discrete realm found in
many practical applications, according to our specific finite interpretation of
the measurement process. The proof scheme for our theorems is based upon the
unifying structure of de Finetti’s fundamental theorem of probability, specified
as a simple proposition in linear algebra when applied to a finite discrete

problem.
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