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Abstract. It is shown constructively that a strongly extensional function of
bounded variation on an interval is regulated, in a sequential sense that is classically
equivalent to the usual one.

This paper continues the constructive study of monotone functions and functions of
bounded variation, begun in [3] and [4] (see also [5]). It can be read by anyone who
appreciates the distinction between classical and intuitionistic logic, and does not require
a detailed knowledge of the constructive theory of R, let alone any abstract constructive
analysis. However, the reader will find it helpful to have at hand a copy of [1], [2], [6], or
[10].
Throughout the paper, I will be a proper interval in R, Y a metric space,1 and

f : I → Y a mapping that is strongly extensional in the sense that

∀x∀y (f(x) 6= f(y) ⇒ x 6= y) ,

where, for two elements x, y of a metric space, x 6= y means ρ(x, y) > 0.
It is shown in [4] that an increasing function f : I → R is strongly extensional, and that

for all applicable x ∈ I the real numbers f(x−) = limt→x− f(x) and f(x+) = limt→x+ f(t)
exist. In the present paper we extend the latter result to prove the existence of sequential
one—sided limits for functions of bounded variation on I.
Let x be a point of I; if there exists y ∈ Y such that f(xn) → y for each sequence

(xn) in I ∩ (−∞, x) that converges to x, then we call y the sequential limit of f(t) as
t tends to x from below, and we write it

seq limt→x−f(t).

We make the obvious analogous definition of the sequential limit of f(t) as t tends to
x from above, and we write it

seq limt→x+f(t).

We say that f is regulated on I if

. seq limt→x−f(t) exists for each x ∈ I such that I ∩ (−∞, x) is nonempty,2 and

. seq limt→x+f(t) exists for each x ∈ I such that I ∩ (x,∞) is nonempty.

It is easy to prove by contradiction, using classical logic, that a function regulated in our
sense is regulated in the usual classical sense (see [7], page 139).

1We use ρ to denote the metric on any metric space.
2To prove that a set S is nonempty, it is not enough to show that ¬ (S = ∅) : we must construct a

point of S.
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An important type of function that, classically, is regulated but need not be everywhere
continuous is a function of bounded variation: that is, a function f : I → Y for which
there exists M > 0 such that

n−1X
k=0

ρ (f(xk+1), f(xk)) < M

for all strictly increasing finite sequences x0 < x1 < · · · < xn of points of I ([7], page 140,
Exercise 3). The classical proof that “bounded variation implies regulated” depends on
sequential compactness, an essentially nonconstructive property of closed bounded inter-
vals in R. Using a weak sequential property of compact metric spaces, and our sequential
notion of regulatedness, we prove the following result.

Theorem 1. A strongly extensional function of bounded variation that maps a proper
interval into a compact metric space is regulated.

We first recall the limited principle of omniscience (LPO):

LPO For each binary sequence (an) , either an = 0 for all n or else there
exists n such that an = 1.

Although LPO is essentially nonconstructive–it is false in both the intuitionistic and
the recursive models of constructive mathematics3–it can be used informatively when
it arises in the course of a constructive argument. We shall see several examples of this
later; for these we need to derive–constructively–a couple of consequences of LPO, the
first of which is a piece of constructive folklore whose full proof we include for the sake of
completeness.

Lemma 2. Assume LPO, let S = A1 ∪ A2 ∪ · · · ∪ AN , and let (sn) be a sequence in S.
Then either there exists i such that sn ∈ Ai for all sufficiently large n, or else there exists
j such that sn ∈ Aj for infinitely many n.

Proof. By a simple induction argument we reduce to the case where S is a union of two
subsets A and B. For each n set an = 0 if sn ∈ A, and an = 1 if sn ∈ B. Applying LPO
to the sequence (an) , we see that either sn ∈ A for all n or else there exists n such that
sn ∈ B. Now define an increasing binary sequence (λn) such that

λn = 0 ⇒ ∃k > n (sk ∈ B) ,
λn = 1 ⇒ ∀k > n (sk ∈ A) .

By LPO, either λn = 0 for all n, in which case sk ∈ B for infinitely many k; or else λn = 1
for some n, and therefore sk ∈ A for all k > n. q.e.d.

Lemma 3. Assume LPO. Then every sequence in a compact–that is, totally bounded
and complete–metric space has a convergent subsequence.

3Since LPO is trivially true in the classical model, neither it nor its negation can be proved within
intuitionistic set theory using intuitionistic logic.
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Proof. Let (xn) be a sequence in a compact metric space X. Using Theorem (4.8) on
page 96 of [2] and Lemma 2, we can construct, inductively, compact sets X0 = X ⊃ X1 ⊃
X2 ⊃ · · · such that for each k ≥ 1, Xk has diameter < 2−k and contains infinitely many
of the terms xn. It is then routine to construct a subsequence of (xn) that converges to
the unique point of

T∞
k=1Xk. q.e.d.

Next we state, without proof, two lemmas due to Ishihara.

Lemma 4. Let F be a strongly extensional mapping of a complete metric space X into
a metric space Y, let (xn) be a sequence converging to x in X, and let 0 < α < β. Then
either ρ (F (xn), F (x)) < β for all sufficiently large n, or else ρ (F (xn), F (x)) > α for
infinitely many n ( [8], Lemma 2).

Lemma 5. The following statement implies LPO: There exist a strongly extensional
mapping F of a complete metric space X into a metric space Y, a positive number t, and
a sequence (xn) converging to x in X such that ρ(F (xn), F (x)) > t for all n ([9], Lemma
1).

Our first significant new result is a constructive substitute for the Bolzano—Weierstraß
property.

Proposition 6. Let f be a strongly extensional mapping of a complete metric space X
into a compact metric space Y, and let (xn) be a sequence converging to x in X. Then
the sequence (f(xn)) has a convergent subsequence.

Proof. Setting n1 = 1, suppose we have computed n1 < n2 < · · · < nk such that
ρ(f(xn), f(x)) < 2−i−1 for all i ∈ (1, k] and for all n ≥ ni. By Lemma 4,

(i) either there exists nk+1 such that ρ(f(xn), f(x)) < 2−k−1 for all n ≥ nk+1

(ii) or else ρ(f(xn), f(x)) > 2−k−2 for infinitely many n.

In case (i) we proceed with the inductive construction. In case (ii), LPO holds, by Lemma
5; so, by Lemma 3, there exist integers nk+1 < nk+2 < · · · such that

ρ(f(xni
), f(xnj

)) < 2−j (*)

whenever i ≥ j ≥ k + 1. In this case, if 2 ≤ j ≤ k < i, then

ρ(f(xnj ), f(xni)) ≤ ρ
¡
f(xnj ), f(x)

¢
+ ρ (f(xni), f(x))

< 2−j−1 + 2−j−1 (as ni > nj)

= 2−j .

It now follows that this inductive procedure produces positive integers n1 = 1 < n2 <
n3 < · · · such that (*) holds whenever i ≥ j ≥ 2. Thus (f(xnk

))∞k=1 is a Cauchy sequence,
which, since Y is complete, converges to a limit in Y. q.e.d.

The following proposition takes the sting out of the subsequent proof of Theorem 1.
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Proposition 7. Let f be a strongly extensional function of bounded variation that maps
a proper interval I into a compact metric space Y, and let x be a point of I such that
(−∞, x) ∩ I is nonempty. Then there exists y ∈ Y such that for every sequence (xn) in
(−∞, x)∩ I that converges to x, the sequence (f(xn))∞n=1 has the unique cluster point y.

Proof. Let (xn) be any sequence in (−∞, x)∩ I that converges to x. By Proposition 6,
the sequence (f(xn))∞n=1 has a cluster point y. Suppose that y

0 is a cluster point distinct

from y. Choose subsequences (f(xnk))
∞
k=1 and

³
f(xn0k)

´∞
k=1

of (f(xn))
∞
n=1 converging to

y and y0, respectively. Let

0 < ε <
1

3
ρ(y, y0).

Then we can construct a subsequence (pm)
∞
m=1 of (nk)

∞
k=1, and a sequence (qm)

∞
m=1 of

(n0k)
∞
k=1 , such that

xp1 < xq1 < xp2 < xq2 < · · · ,
and such that for all m, ρ (f(xpm), y) < ε and (f(xqm), y0) < ε. Hence for each positive
integer ν,

νX
m=1

(ρ (f(xpm), (xqm)) + ρ (f(xqm , f(xpm+1))) > 2νε,

which is absurd as f has bounded variation. Thus y is the unique cluster point of the
sequence (f (xn))∞n=1 .
Now let (x0n) be another sequence in I ∩ (−∞, x) converging to x. By the first part of

the proof, the sequence
f(x1), f(x01), f(x2), f(x02), . . .

has a unique cluster point. Since it has the subsequence (f(xnk ))∞k=1 converging to y, that
unique cluster point must be y. q.e.d.

We can now give the

Proof of Theorem 1. Let I be a proper interval, Y a compact metric space, and
f : I → Y a strongly extensional function of bounded variation. Consider a point x
such that I ∩ (−∞, x) is nonempty; we must show that f has a left sequential limit at
x. Construct the point y ∈ Y as in Proposition 7. Given any sequence (xn)∞n=1 of points
of I ∩ (−∞, x) that converges to x, construct a subsequence (xnk

)∞k=1 of (xn) such that
(f(xnk

))∞k=1 converges to y. By Lemma 4, either

(i) ρ (f(xn), f(x)) < ε/2 for all sufficiently large n or

(ii) ρ (f(xn), f(x)) > ε/4 for infinitely many n.

In case (i), since f(xnk
) → y as k → ∞, we must have ρ (f(x), y) ≤ ε/2; whence

ρ (f(xn), y) < ε for all sufficiently large n. On the other hand, if (ii) holds, then so
does LPO, by Lemma 5; it follows from Lemma 2 that either ρ (f(xn), y) < ε for all
sufficiently large n or else ρ (f(xn), y) > ε/2 for infinitely many n. The latter possibility
is ruled out, since every subsequence of (f(xn))∞n=1 has a subsequence converging to y.
Thus in both possible cases (i) and (ii), ρ (f(xn), y) < ε for all sufficiently large n. Since
ε > 0 is arbitrary, we conclude that f(xn) → y as n→∞. This completes the proof that
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if x ∈ I and I ∩ (−∞, x) is nonempty, then seq limt→x−f(t) exists. A similar argument
shows that if x ∈ I and I ∩ (x,∞) is nonempty, then seq limt→x+f(t) exists. q.e.d.

Classically, a real—valued function of bounded variation can always be expressed as
a difference of two increasing functions; constructively, a sufficient but not necessary
condition for such an expression is that the variation of f on I ,

sup

(
n−1X
k=0

|f(xk+1)− f(xk)| : x0 < x1 < · · · < xn, each xk ∈ I
)
,

exist (see [3]). In the case Y ⊂ R it is because there is no general means of expressing a
function of bounded variation as a difference of two monotone functions that Theorem 1
is not an immediate consequence of the work in [4].
An inspection of the proofs of Proposition 7 shows that we used the assumption that

f has bounded variation only once, to establish the uniqueness of the cluster point y by
ruling out the existence of the sequences (pm)

∞
m=1 and (qm)

∞
m=1. The existence of these

sequences can be ruled out, to produce a modification of Proposition 7, and hence of
Theorem 1, if we assume that f has the following property (weaker than that of bounded
variation):

for each x ∈ I, each sequence (xn) of points of I ∩ (−∞, x) (respectively,
I ∩ (x,∞)) converging to x, and each δ > 0,

¬∀n (ρ(f(xn+1), f(xn)) ≥ δ) .

It is easily seen that a regulated function has this property.
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