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Abstract. It is shown constructively that a strongly extensional function of
bounded variation on an interval is regulated, in a sequential sense that is classically
equivalent to the usual one.

This paper continues the constructive study of monotone functions and functions of
bounded variation, begun in [3] and [4] (see also [5]). It can be read by anyone who
appreciates the distinction between classical and intuitionistic logic, and does not require
a detailed knowledge of the constructive theory of R, let alone any abstract constructive
analysis. However, the reader will find it helpful to have at hand a copy of [1], [2], [6], or
[10].

Throughout the paper, I will be a proper interval in R, Y a metric space,
f I —Y amapping that is strongly extensional in the sense that

Vavy (f(z) # f(y) = 2 # y),

where, for two elements x,y of a metric space, x # y means p(x,y) > 0.

It is shown in [4] that an increasing function f : I — R is strongly extensional, and that
for all applicable x € I the real numbers f(z~) = lim,_,,— f(x) and f(z™*) = lim,_, .+ f(t)
exist. In the present paper we extend the latter result to prove the existence of sequential
one-sided limits for functions of bounded variation on I.

Let  be a point of I; if there exists y € Y such that f(x,) — y for each sequence
(z,) in I N (—o0, z) that converges to x, then we call y the sequential limit of f(t) as
t tends to x from below, and we write it

1 and

seqlim,_,.— f(?).

We make the obvious analogous definition of the sequential limit of f(t) as t tends to
z from above, and we write it

seq lim,_, .+ f(2).
We say that f is regulated on [ if

> seqlim,_,,— f(t) exists for each = € I such that I N (—oo, ) is nonempty,? and

> seqlim,_, -+ f(t) exists for each x € I such that I N (z,00) is nonempty.

It is easy to prove by contradiction, using classical logic, that a function regulated in our
sense is regulated in the usual classical sense (see [7], page 139).

1We use p to denote the metric on any metric space.
2To prove that a set S is nonempty, it is not enough to show that = (S = @) : we must construct a
point of S.
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An important type of function that, classically, is regulated but need not be everywhere
continuous is a function of bounded variation: that is, a function f : I — Y for which
there exists M > 0 such that

>
p (f(@r+1), f(wr)) < M

k=0

for all strictly increasing finite sequences xg < x1 < -+ < x,, of points of I ([7], page 140,
Exercise 3). The classical proof that “bounded variation implies regulated” depends on
sequential compactness, an essentially nonconstructive property of closed bounded inter-
vals in R. Using a weak sequential property of compact metric spaces, and our sequential
notion of regulatedness, we prove the following result.

Theorem 1. A strongly extensional function of bounded variation that maps a proper
interval into a compact metric space is regulated.

We first recall the limited principle of omniscience (LPO):

LPO For each binary sequence (a,), either a,, = 0 for all n or else there
exists n such that a, = 1.

Although LPO is essentially nonconstructive—it is false in both the intuitionistic and
the recursive models of constructive mathematics®—it can be used informatively when
it arises in the course of a constructive argument. We shall see several examples of this
later; for these we need to derive—constructively—a couple of consequences of LPO, the
first of which is a piece of constructive folklore whose full proof we include for the sake of
completeness.

Lemma 2. Assume LPO, let S = Ay U A, U---U Ay, and let (s,) be a sequence in S.
Then either there exists i such that s, € A; for all sufficiently large n, or else there exists
j such that s, € A; for infinitely many n.

Proof. By a simple induction argument we reduce to the case where S is a union of two
subsets A and B. For each n set a,, =0if s,, € A, and a,, = 1 if 5, € B. Applying LPO
to the sequence (a,), we see that either s,, € A for all n or else there exists n such that
sn € B. Now define an increasing binary sequence (\,) such that

AM=0 = 3Jk>n(s;€B),
A =1 = Vk>n(sp€A).

By LPO, either A,, = 0 for all n, in which case s;, € B for infinitely many k; or else A,, = 1
for some n, and therefore s, € A for all £ > n. g.e.d.

Lemma 3. Assume LPO. Then every sequence in a compact—that is, totally bounded
and complete—metric space has a convergent subsequence.

3Since LPO is trivially true in the classical model, neither it nor its negation can be proved within
intuitionistic set theory using intuitionistic logic.
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Proof. Let (z,) be a sequence in a compact metric space X. Using Theorem (4.8) on
page 96 of [2] and Lemma 2, we can construct, inductively, compact sets Xo = X D X1 D
X, O --- such that for each & > 1, X, has diameter < 2~% and contains infinitely many
of the terms x,. It i{f—then routine to construct a subsequence of (z,) that converges to
the unique point of 2, X;. q.e.d.

Next we state, without proof, two lemmas due to Ishihara.

Lemma 4. Let F be a strongly extensional mapping of a complete metric space X into
a metric space Y, let (x,) be a sequence converging to x in X, and let 0 < oo < 3. Then
either p (F'(z,), F(z)) < B for all sufficiently large n, or else p (F'(z,), F(z)) > « for
infinitely many n ( [8], Lemma 2).

Lemma 5. The following statement implies LPO: There exist a strongly extensional
mapping F of a complete metric space X into a metric space Y, a positive number t, and
a sequence (z,,) converging to x in X such that p(F(x,), F(x)) >t for all n ([9], Lemma
1).

Our first significant new result is a constructive substitute for the Bolzano—Weierstrafl
property.

Proposition 6. Let f be a strongly extensional mapping of a complete metric space X
into a compact metric space Y, and let (x,) be a sequence converging to x in X. Then
the sequence (f(x,)) has a convergent subsequence.

Proof. Setting n; = 1, suppose we have computed n; < nz < --- < ng such that
p(f(xn), f(x)) <2772 for all i € (1, k] and for all n > n;. By Lemma 4,

(i) either there exists nj+1 such that p(f(z,), f(z)) < 27%71 for all n > ng+q
(ii) or else p(f(zn), f(z)) > 27%=2 for infinitely many n.

In case (i) we proceed with the inductive construction. In case (ii), LPO holds, by Lemma
5; so, by Lemma 3, there exist integers ng+1 < ng+2 < --- such that

p(f(xni)) f(xnj )) < 2_j (*)
whenever ¢ > j > k + 1. In this case, if 2 < j < k < ¢, then
i ¢
P(f(@n;), f@n)) < p flan;), f(@) +p(f(@n:), f(2))

<2797 427971 (as n; > ny)

=27,
It now follows that this inductive procedure produces positive integers n1 = 1 < ny <
n3 < --- such that (*) holds whenever i > j > 2. Thus (f(2n,))7Z; is a Cauchy sequence,

which, since Y is complete, converges to a limit in Y. g.e.d.

The following proposition takes the sting out of the subsequent proof of Theorem 1.
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Proposition 7. Let f be a strongly extensional function of bounded variation that maps
a proper interval I into a compact metric space Y, and let © be a point of I such that
(—o0,z) NI is nonempty. Then there exists y € Y such that for every sequence (x,) in
(—o0, )N I that converges to x, the sequence (f(x,)),—, has the unique cluster point y.

Proof. Let (z,) be any sequence in (—oo, ) NI that converges to x. By Proposition 6,
the sequence (f(z,)).=, has a cluster point y. Suppose-that 3’ is a cluster point distinct
(o)

from y. Choose subsequences (f(zn,))pe; and f (@) et of (f(xy)),—, converging to

y and 3, respectively. Let
1
0<e<3n(y).

Then we can construct a subsequence (pm) o—; of (ng)=;, and a sequence (g,) o=, of
(n},)p—, , such that
Tpy <Tgy < Tpp <Tg <y

and such that for all m, p (f(zp.,),y) < € and (f(xqn),y") < €. Hence for each positive
integer v,

X
(0 (f(@pm), (Cgm)) + 0 (f (g, [ (Xpm+1))) > 2ve,

m=1
which is absurd as f has bounded variation. Thus y is the unique cluster point of the
sequence (f (zn))y—y -
Now let (z,) be another sequence in I N (—o0,x) converging to z. By the first part of
the proof, the sequence

f(l'l), f(l'él_)7 f(xZ)v f(x/z)a cee

has a unique cluster point. Since it has the subsequence (f(2y,)),=; converging to y, that
unique cluster point must be y. q.e.d.

We can now give the

Proof of Theorem 1. Let I be a proper interval, Y a compact metric space, and
f I — Y a strongly extensional function of bounded variation. Consider a point z
such that I N (—oo,x) is nonempty; we must show that f has a left sequential limit at
x. Construct the point y € Y as in Proposition 7. Given any sequence (,,),~, of points
of I N (—oo,z) that converges to x, construct a subsequence (2, )=, of (z,) such that
(f(@ny))pey converges to y. By Lemma 4, either

(i) p(f(xn), f(z)) < /2 for all sufficiently large n or

(ii) p(f(xn), f(z)) > /4 for infinitely many n.

In case (i), since f(zn.,) — y as k — oo, we must have p(f(x),y) < &/2; whence
p(f(zn),y) < e for all sufficiently large n. On the other hand, if (ii) holds, then so
does LPO, by Lemma 5; it follows from Lemma 2 that either p(f(z,),y) < € for all
sufficiently large n or else p (f(z,),y) > /2 for infinitely many n. The latter possibility
is ruled out, since every subsequence of (f(z,)),—; has a subsequence converging to y.
Thus in both possible cases (i) and (ii), p (f (), y) < € for all sufficiently large n. Since
¢ > 0 is arbitrary, we conclude that f(z,) — y as n — oo. This completes the proof that
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if x € I and I N (—o0,x) is nonempty, then seqlim,_,.— f(t) exists. A similar argument
shows that if € I and I N (x, c0) is nonempty, then seqlim,_, .+ f(¢) exists. q.e.d.

Classically, a real-valued function of bounded variation can always be expressed as
a difference of two increasing functions; constructively, a sufficient but not necessary
condition for such an expression is that the variation of f on I,

Cou >

sup |f(xr+1) — flap)| ixo <x1 <-- <y, eachxp €1
£=0

exist (see [3]). In the case Y C R it is because there is no general means of expressing a
function of bounded variation as a difference of two monotone functions that Theorem 1
is not an immediate consequence of the work in [4].

An inspection of the proofs of Proposition 7 shows that we used the assumption that
f has bounded variation only once, to establish the uniqueness of the cluster point y by
ruling out the existence of the sequences (pm),—; and (¢m), —;. The existence of these
sequences can be ruled out, to produce a modification of Proposition 7, and hence of
Theorem 1, if we assume that f has the following property (weaker than that of bounded
variation):

for each x € I, each sequence (z,) of points of I N (—oo,x) (respectively,
IN(x,00)) converging to x, and each 6 > 0,

It is easily seen that a regulated function has this property.
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