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Abstract. Matrix trace inequalities are finding increased use in many areas such as analysis,

where they can be used to generalise several well known classical inequalities, and computational

statistics, where they can be applied, for example, to data fitting problems. In this paper we give

simple proofs of two useful matrix trace inequalities and provide applications to orthogonal regression

and matrix nearness problems.
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1. A Matrix Trace Inequality. Theorem 1.1. Let X be a n× n Hermitian

matrix with rank(X) = r and let Qk be an n × k matrix, k ≤ r, with k orthonormal

columns. Then, for given X, tr(Q∗
kXQk) is maximized when Qk = Vk, where Vk =

[v1, v2, . . . , vk] denotes a matrix of k orthonormal eigenvectors of X corresponding to

the k largest eigenvalues.

Proof. Let X = V DV ∗ be a spectral decomposition of X with V unitary and

D = diag[λ1, λ2, . . . , λn], the diagonal matrix of (real) eigenvalues ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn. (1.1)

Then,

tr(Q∗
kXQk) = tr(Z∗

kDZk) = tr(ZkZ
∗
kD) = tr(PD), (1.2)

where Zk = V ∗Qk and P = ZkZ
∗
k is a projection matrix with rank(P ) = k. Clearly,

the n × k matrix Zk has orthonormal columns if and only if Qk has orthonormal

columns. Now

tr(PD) =
n∑

i=1

Piiλi
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with 0 ≤ Pjj ≤ 1, j = 1, 2, . . . , n and
∑n

i=1 Pii = k because P is an Hermitian

projection matrix with rank k. Hence,

tr(Q∗
kXQk) ≤ L,

where L denotes the maximum value attained by the linear programming problem:

max
p∈Rn

{
n∑

i=1

piλi : 0 ≤ pj ≤ 1, j = 1, 2, . . . , n;
n∑

i=1

pi = k

}
. (1.3)

An optimal basic feasible solution to the LP problem (1.3) is easily identified (noting

the ordering (1.1)) as pj = 1, j = 1, 2, . . . , k; pj = 0, j = k+1, k+2, . . . , n, with L =∑k
1 λi. But P = EkE

∗
k gives tr(PD) = L where Ek is the matrix with orthonormal

columns formed from the first k columns of the n× n identity matrix, therefore (1.2)

provides the required result that Qk = V Ek = Vk maximizes trQ∗
kXQk.

Corollary 1.2. Let Y be an m × n matrix with m ≥ n and rank(Y ) = r and

let Qk ∈ Rn×k, k ≤ r, be a matrix with k orthonormal columns. Then the Frobenius

trace-norm ||Y Qk||2F = tr(Q∗
kY

∗Y Qk) is maximized for given Y , when Q = Vk, where

USV ∗ is a singular value decomposition of Y and Vk = [v1, v2, . . . , vk] ∈ Rn×k denotes

a matrix of k orthonormal right singular vectors of Y corresponding to the k largest

singular values.

Corollary 1.3. If a minimum rather than maximum is required then substi-

tute the k smallest eigenvalues/singular values in the above results and reverse the

ordering (1.1).

Theorem 1.1 is a special case of a more general result established in Section 3.

Alternative proofs can be found in some linear algebra texts (see, for example [3]).

The special case above and the Corollary 1.2 have applications in total least squares

data fitting.

2. An Application to Data Fitting. Suppose that data is available as a set of

m points in Rn represented by the columns of the n×m matrix A and it is required

to find the best k-dimensional linear manifold Lk ∈ Rn approximating the set of

points in the sense that the sum of squares of the distances of each data point from

its orthogonal projection onto the linear manifold is minimized. A general point in

Lk can be expressed in parametric form as

x(t) = z + Zkt, t ∈ Rk, (2.1)
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where z is a fixed point in Lk and the columns of the n× k matrix Zk can be taken

to be orthonormal. The problem is now to identify a suitable z and Zk. Now the

orthogonal projection of a point a ∈ Rn onto Lk can be written as

proj(a, Lk) = z + ZkZ
T
k (a− z),

and hence the Euclidean distance from a to Lk is

dist(a, Lk) = ||a− proj(a, Lk)||2 = ||(I − ZkZ
T
k )(a− z)||2.

Therefore, the total least squares data-fitting problem is reduced to finding a suitable

z and corresponding Zk to minimize the sum-of-squares function

SS =
m∑

j=1

||(I − ZkZ
T
k )(aj − z)||22,

where aj is the jth data point (jth column of A). A necessary condition for SS to be

minimized with respect to z is

0 =
m∑

j=1

(I − ZkZ
T
k )(aj − z) = (I − ZkZ

T
k )

m∑
j=1

(aj − z).

Therefore,
∑m

j=1(aj − z) lies in the null space of (I − ZkZ
T
k ) or equivalently the

column space of Zk. The parametric representation (2.1) shows that there is no loss

of generality in letting
∑m

j=1(aj − z) = 0 or

z =
1
m

m∑
j=1

aj . (2.2)

Thus, a suitable z has been determined and it should be noted that the value (2.2)

solves the zero-dimensional case corresponding to k = 0. It remains to find Zk when

k > 0, which is the problem:

min
m∑

j=1

||(I − ZkZ
T
k )(aj − z)||22, (2.3)

subject to the constraint that the columns of Zk are orthonormal and that z satisfies

equation (2.2). Using the properties of orthogonal projections and the definition of

the vector 2-norm, (2.3) can be rewritten

min
m∑

j=1

(aj − z)T (I − ZkZ
T
k )(aj − z). (2.4)
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Ignoring the terms in (2.4) independent of Zk then reduces the problem to

min
m∑

j=1

−(aj − z)TZkZ
T
k (aj − z),

or equivalently

max tr
m∑

j=1

(aj − z)TZkZ
T
k (aj − z). (2.5)

The introduction of the trace operator in (2.5) is allowed because the argument to

the trace function is a matrix with only one element. The commutative property of

the trace then shows that problem (2.5) is equivalent to

max tr
m∑

j=1

ZT
k (aj − z)(aj − z)TZk ≡ max trZT

k ÂÂ
TZk

where Â is the matrix

Â = [a1 − z, a2 − z, . . . , am − z].

Theorem 1.1 and its corollary then show that the required matrix Zk can be taken to

be the matrix of k left singular vectors of the matrix Â (right singular vectors of ÂT )

corresponding to the k largest singular values.

This result shows, not unexpectedly, that the best point lies on the best line which

lies in the best plane, etc. Moreover, the total least squares problem described above

clearly always has a solution although it will not be unique if the (k + 1)st largest

singular value of Â has the same value as the kth largest. For example, if the data

points are the 4 vertices of the unit square in R2, A =


 0 1 1 0

0 0 1 1


, then any

line passing through the centroid of the square is a best line in the total least squares

sense because the matrix Â for this data has two equal non-zero singular values.

The total least squares problem above (also referred to as orthogonal regression)

has been considered by many authors and as is pointed out in [4, p 4]

“. . . orthogonal regression has been discovered and rediscovered many

times, often independently.”

The approach taken above differs from that in [1], [2], and [4], in that the derivation is

more geometric, it does not require the Eckart-Young-Mirsky Matrix Approximation

Theorem (see, for example, [4]), and it uses only simple properties of projections and

the matrix trace operator.
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3. A Stronger Result. The proof of Theorem 1.1 relies on maximizing tr(DP )

whereD is a (fixed) real diagonal matrix and P varies over all rank k projections. Since

any two rank k projections are unitarily equivalent the problem is now to maximize

tr(DU∗PU) (for fixed D and P ) over all unitary matrices U . Generalizing from P to

a general Hermitian matrix leads to the following theorem.

Theorem 3.1. Let A,B be n× n Hermitian matrices. Then

max
Uunitary

tr(AU∗BU) =
n∑

i=1

αiβi

where α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn are the eigenvalues of A and B

respectively, both similarly ordered.

Clearly, Theorem 1.1 can be recovered since a projection of rank k has eigenvalues 1,

repeated k times and 0 repeated n− k times.

Proof. Let {ei}n
i=1 be an orthonormal basis of eigenvectors of A corresponding to

the eigenvalues {αi}n
i=1, written in descending order. Then

tr(AU∗BU) =
n∑

i=1

e∗iAU
∗BUei =

n∑
i=1

(Aei)∗U∗BUei =
n∑

i=1

αie
∗
iU

∗BUei

Let B = V ∗DV where D is diagonal and V is unitary. Writing W = V U gives

tr(AU∗BU) =
n∑

i=1

αie
∗
iW

∗DWei =
n∑

i,j=1

pijαiβj

where the βj ’s are the elements on the diagonal of D, i.e. the eigenvalues of B and

pij = |(Wei)j |2 .

Note that since W is unitary, the matrix P = [pij ], is doubly stochastic i.e. has non-

negative entries and whose rows and columns sum to 1. The theorem will therefore

follow once it is shown that for α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn

max
[pij ]

n∑
i,j=1

αiβjpij =
n∑

i=1

αiβi (3.1)

where the maximum is taken over all doubly stochastic matrices P = [pij ].

For fixed P doubly stochastic, let

χ =
n∑

i,j=1

αiβjpij .

If P �= I, let k be the smallest index i such that pii �= 1. (Note that for l < k, pll = 1

and therefore pij = 0 if i < k and i �= j and also if j < k and i �= j). Since pkk < 1,
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then for some l > k, pkl > 0. Likewise, for some m > k, pmk > 0. These imply that

pml �= 1. The inequalities above mean that we can choose ε > 0 such that the matrix

P ′ is doubly stochastic where

p′kk = pkk + ε

p′kl = pkl − ε

p′mk = pmk − ε

p′ml = pml + ε

and p′ij = pij in all other cases.

If we write

χ′ =
n∑

i,j=1

αiβjp
′
ij

then

χ′ − χ = ε(αkβk − αkβl − αmβk + αmβl)

= ε(αk − αm)(βk − βl)

≥ 0

which means that the term
∑

αiβjpij is not decreased. Clearly ε can be chosen to

reduce a non-diagonal term in P to zero. After a finite number of iterations of this

process it follows that P = I maximizes this term. This proves (3.1) and hence

Theorem 3.1.

Note that this theorem can also be regarded as a generalization of the classical

result that if {αi}n
i=1, {βi}n

i=1 are real sequences then
∑

αiβσ(i) is maximized over all

permutations σ of {1, 2, . . . , n} when {αi} and {βσ(i)} are similarly ordered.

4. A Matrix Nearness Problem. Theorem 3.1 also allows us to answer the

following problem. If A,B are Hermitian n×n matrices, what is the smallest distance

between A and a matrix B′ unitarily equivalent to B? Specifically, we have:

Theorem 4.1. Let A,B be Hermitian n × n matrices with ordered eigenvalues

α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn respectively. Let ||·|| denote the Frobenius

norm. Then

min
Qunitary

||A−Q∗BQ|| =
√√√√ n∑

i=1

(αi − βi)2. (4.1)
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Proof.

||A−Q∗BQ||2 = tr(A−Q∗BQ)2

= tr(A2) + tr(B2)− 2 tr(AQ∗BQ)

(Note that if C,D are Hermitian, tr(CD) is real.)

So by Theorem 3.1

min ||A−Q∗BQ||2 = tr(A2) + tr(B2)− 2max
Q

tr(AQ∗BQ)

=
∑

α2
i +

∑
β2

i − 2
∑

αiβi

=
∑

(αi − βi)2

and the result follows.

An optimal Q for problem (4.1) is clearly given by Q = V U∗ where U, V are

orthonormal matrices of eigenvectors of A, and B respectively (corresponding to sim-

ilarly ordered eigenvalues). This follows because A = UDαU
∗, B = V DβV

∗, where

Dα, Dβ denote the diagonal matrices of eigenvalues {αi}, {βi} respectively and so

||A−Q∗BQ||2 = ||Dα − U∗Q∗V DβV
∗QU ||2

=
∑

(αi − βi)2 if Q = V U∗.

Problem (4.1) is a variation on the well-known Orthogonal Procrustes Problem

(see, for example, [2]) where an orthogonal (unitary) matrix is sought to solve

min
Qunitary

||A−BQ||.

In this case A and B are no longer required to be Hermitian (or even square). A

minimizing Q for this problem can be obtained from a singular value decomposition

of B∗A [2, p 601].
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