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Abstract

Structural vector autoregressions allow contemporaneous series dependence and

assume errors with no contemporaneous correlation. Such models having a recursive

structure can be described by a directed acyclic graph. An important tool for identi-

fication of these models is the conditional independence graph constructed from the

contemporaneous and lagged values of the process. We determine the large sample

properties of statistics used to test for the presence of links in this graph. A simple

example illustrates how these results may be applied.
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1 Introduction

We consider the structural p-th order vector autoregressive model (SVAR) of a stationary,
m dimensional, time series xt = (xt,1, xt,2, . . . , xt,m)′, of the form

Φ0xt = d+ Φ1xt−1 + Φ2xt−2 + · · ·+ Φpxt−p + at. (1)

We require (a) that the variance matrix D of at is diagonal and (b) that Φ0 represent
a recursive (causal) dependence of each component of xt on other contemporaneous com-
ponents. This is equivalent to the existence of a re-ordering of the elements of xt such
that Φ0 is triangular with unit diagonal. We also require that Φp has at least one non-zero
element.

A given process xt generated by such a model has in general many statistically equiv-
alent representations of the same form, corresponding to different causal orderings of the
contemporaneous dependence. We suppose, however, that there is one representation which
is sparse in the sense that many of the elements of the coefficient matrices are zero. This
sparseness may be represented by a directed acyclic graph (DAG) with nodes correspond-
ing to the m(p + 1) series elements which appear in (1). The only links in this graph are
to, and between, contemporaneous values of xt, in the direction of causality, corresponding
to the non-zero elements of Φi.

In a previous paper, Reale and Tunnicliffe Wilson (1999), we advocated an approach
to identifying the model (1) using a conditional independence graph (CIG) on the same
nodes, estimated using a sample of xt of length N . In that paper we only considered
tests for links to, and between, contemporaneous values of xt. We made brief reference to
standard results to justify these tests. In the next section of this paper we give a formal
derivation of the sampling properties of the test for a link in the CIG between any pair of
nodes xt−r,i and xt−s,j for lags r and s from zero to some maximum lag k ≥ p. In general
this test is non-standard, in that the variance of the statistic is not the same as that for
the CIG of independent samples from a multivariate normal distribution. The exception
is that in large samples the variance is the same if one node has zero lag.

In the final section we describe the structure of the CIG for model (1) and present a
simple example illustrating the application of our results.

2 Sampling properties of the test statistic.

Following Whittaker (1990) the CIG of the Gaussian variables xt−k,i for lags k = 0, 1, . . . , K
and series i = 1, 2, . . . , m, is determined by the matrix of pair-wise partial correlations of
the variables conditional upon all the remaining variables. The nodes corresponding to a
pair of variables are linked if and only if their partial correlation is non-zero. The starting
point for estimation of these partial correlations is the data matrix X consisting of the
collection of contemporaneous and lagged data vectors (xK+1−k,i, . . . , xN−k,i)

′. The sample
values of the partial correlations may then be derived from the estimated covariance matrix
of the variables, V̂ = X ′X/T where T = N − K. We assume here that the time series

3



or data vectors have been mean corrected. Our test is to reject ρ = 0, for the partial
autocorrelation ρ between a particular pair of variables, if |r| > c where r is the sample
value of ρ and c is some critical value. To determine c we use the relationship between r
and the t coefficient of one member of the pair of variables, in the regression of the other

member of the pair upon that and all the remaining variables. This is r = t/
√

(t2 + ν) (see

Greene, 1993, p. 180). We therefore proceed to determine the large sample properties of
t. The important point here is that ordinary least squares regression does not in general
furnish the correct standard error of the regression coefficient in this time series context.
This is because the regression will, in general, be upon variables which are both in the past
and the future and consequently the regression errors are not white noise.

Let y, in the set xt−k,i, be the variable selected as the regressor, and w be the remaining
variables in this set. Let Y and W be the corresponding subsets of the data matrix X.
Let M = Var (w), P = Cov (w, y), M̂ = T−1W ′W and P̂ = T−1W ′Y , the elements of M̂
and P̂ being sample covariances of xt. We assume that xt does follow the model (1) so
that the necessary conditions apply (Priestley, 1994, p. 324–330) for consistency of these
sample values: plim M̂ = M and plim P̂ = P . The solution of the least squares equations
W ′Wβ̂ = W ′Y for the vector of regression coefficients therefore satisfies plim β̂ = M−1P =
β. Use this to define the asymptotic error series of the regression, et = y−wβ, which may
be expressed in the form

et =
∑
i,r

ψi,rxt−r,i. (2)

By construction, Cov (w, e) = 0 and we may re-formulate the least squares equations as

M̂
[
T

1
2 (β̂ − β)

]
= T

1
2

[
T−1W ′E

]
(3)

where E is the data vector corresponding to et. The elements of D = T−1W ′E are the
sample values of Cov (w, e). Being finite linear combinations of the sample covariances of
xt, they therefore satisfy (Priestley, 1994, p. 337–339).

T
1
2D

d→ MVN (0, Q), (4)

where we use E (D) = 0 and Q is limT→∞ Var (T
1
2D). The elements of Q are

limT→∞ T−1Cov (
∑

t xj,t−uet,
∑

s xl,s−wes) =

=
∑

i,r

∑
k,v ψi,rψk,v limT→∞ T−1Cov (

∑
t xj,t−uxi,t−r,

∑
s xl,s−wxk,s−v) =

=
∑

i,r

∑
k,v ψi,rψk,v

∑
m (γi,k,m−r+vγj,l,m−u+w + γi,l,m−r+wγm−u+v) ,

(5)

where γi,j,k = Cov (xi,t, xj,t−k).

We require construction of a consistent estimate Q̂ of Q and propose the following
approach which performs well. We first express (5) using the components of the spectrum
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S of xt, as

∫ 1
2

f=− 1
2

{
ψ(B)Sψ(B−1)′Bw−uSl,j + [ψ(B)S]l [ψ(B)S]j B

−w−u
}
df. (6)

Here we use the backward shift operatorB to aid interpretation, substituting B = exp(2πif)
to evaluate the integral. The operator ψ(B) is defined by et = ψ(B)xt and is consistently
estimated using the regression coefficients β̂. Writing (1) as xt = Φ(B)at the spectrum S
is given by:

S = Φ(B)−1D[Φ(B−1)−1]′, (7)

which is consistently estimated by OLS estimation of (1). The integral may be evaluated
numerically with no difficulty. An important practical point is that the estimated model
must be stationary. This may be ensured by padding the observed series xt, following mean
correction, with K zeros at the start and finish. The regression estimates then become the
multivariate Yule-Walker estimates, which are known to be stationary (Reinsel, 1993, p.
89–91).

Again using plim M̂ = M we have from (3) that

T
1
2 (β̂ − β)

d→ MVN (0,M−1QM−1). (8)

where of course M is consistently estimated by M̂ . For comparison, the limiting variance
matrix from the OLS regression is M−1σ̂2

e .
In general these variance matrices differ. However, in the particular case that the

chosen regressor is a contemporaneous variable, they agree, so that the regression standard
errors may be used. This may be seen from (6) in which ψ(B)Sψ(B−1)′ reduces to σ2

e

and ψ(B)S to an operator with no positive powers of B, so that the second component
of the integral becomes zero. Then Q reduces to Mσ2

e . In practice the estimates of these
variance matrices are also identical in finite samples if the order p used to estimate (1) is
set equal to the maximum lag K. This is a consequence of Yule-Walker estimation which
ensures that the model autocovariances, derived here via the model spectrum, are equal to
the sample autocovariances up to lag K.

Now let β̂ be the estimate of the coefficient relating to a particular link in the CIG,
and let σ̂β be the consistent estimate of its true standard error. We therefore reject the

presence of a link if |t| = |β̂|/σ̂β exceeds the appropriate critical value of a standard normal
variable. We evaluate the performance of this ‘correct’ test in the next section for a simple
illustrative example and compare it with the ‘incorrect’ test using the wrong standard error
from the OLS regression.

3 Application to a simple example

Consider the bivariate structural autoregression of order two given by

xt,1 = 0.7xt−1,1 + at,1

xt,2 = 1.5xt,1 − 0.5xt−2,2 + at,2.
(9)
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This model is purposefully chosen to be simple to illustrate the point of the paper. It is
represented in Figure 1a by a DAG linking nodes up to lag 2. Figure 2a shows the CIG
which may be deduced from this. It contains a new link corresponding to the moralization
rules (Whittaker, 1990, p. 75–77). From this CIG alone we are not able to rule out the
possibility that the original model contained a directed link, xt,1 ← xt−2,2, in the place of
this new link.

Consideration of the CIG with nodes up to lag 3 does rule this out. Figure 2a shows
the DAG extended to this lag by simply shifting the structure backwards. The solid lines
of Figure 2b shows the CIG derived from this; the broken line on this figure is that of a
link xt−1,1 − xt−2,2 which would not arise if the link xt,1 ← xt−2,2 were not present in the
original model. A test which confirms the absence of the broken line therefore identifies
the correct model.

We have simulated samples of length 200 from (9) and applied the tests of section 2 for
the presence of the link xt−1,1 − xt−2,2. Using 1000 samples and a nominal size of 5%, we
found the correct test rejected the link for 4.8% of samples. The incorrect test rejected for
10.9% . In this example the variance of the t statistic using the correct value for σ̂β was
0.96, and that using the incorrect variance was 1.47. The importance of using the correct
test is clearly demonstrated.

xt-2,2xt,2 xt-1,2

xt,1 xt-1,1

(a)

xt-2,2xt,2 xt-1,2

xt,1 xt-1,1

(b)

Figure 1: (a) The DAG representation of the model 9 to lag 2, and (b) its corresponding CIG

xt-2,2xt,2 xt-1,2

xt,1 xt-1,1 xt-2,1

xt-3,2

(a)

xt-2,2xt,2 xt-1,2

xt,1 xt-1,1 xt-2,1

xt-3,2

(b)

Figure 2: (a) The DAG representation of the model 9 to lag 3, and (b) its corresponding CIG
with the broken line showing the link to be tested.
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