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Project and client

The University of Canterbury and Pest Control Research were to investigate the residual-
trap-catch (RTC) methodology for monitoring low-density possum populations. The
research detailed in this report was carried out for the Animal Health Board between July
1999 and April 2000.

Objectives

To improve the precision of possum monitoring estimates by investigating the
use of more trap-lines containing fewer traps and comparing their precision
and cost-effectiveness at two field sites in the North and South islands.

To improve the statistical analysis of possum monitoring data by investigating
the use of bootstrap methods to provide more precise and accurate estimates
of confidence intervals for the residual-trap-catch (RTC) index.

To identify possible alternative sampling designs that could improve the
precision and accuracy of low-density possum monitoring.

M ethods

Field trials were conducted in the North Idand (Tutukau) and South Island
(Hohonu) to compare the relative precision of RTC estimates and confidence
intervals using 5 trap-lines containing 20 traps, 10 trap-lines containing 10
traps and 20 trap-lines containing 5 traps.  In addition times to set and check
the traps were recorded to compare the relative cost-efficiency of the three
designs.

Simulated trap-catch data were used to obtain arange of true RTC values
characteristic of low-density populations. The simulated data were used to
compare the precision and accuracy of confidence intervals calculated using
the standard method specified in the NPCA trap-catch protocol with a range of
aternative bootstrap methods. Precision and accuracy were determined by
comparing mean square errors (MSE), coverage and balance.

Results

The estimates of RTC for the three designs ranged from 5% to 7.07% for
Tutukau and 3.67% to 6.73% for Hohonu. The most precise RTC estimates
were obtained from the 20 lines of 5 traps designs.  As expected the cost of
the designs increased as the number of trap-linesincreased. At Tutukau the
design with 20 lines took 27% longer than the design with 5 lines but had a
33% increase in precision. At Hohonu there was a 33% increase in cost but
only a 14% improvement in relative precision.

Monitoring designs that had only five lines of traps gave poor resultsin terms
of the precision, coverage and balance of the confidence intervals.

The simulated data provided a good fit when compared to the field data. The
biased corrected percentile method bootstrap method (BCP) gave the most
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precise and accurate calculations of confidence intervals having the lowest
MSE’s, better coverage and more balance. The results using the standard and
BCP methods indicated that the RTC was likely to fall outside the confidence
intervals more than 95% of the time (range 81-96%). The RTC estimates
falling outside the confidence intervals were more likely to fall above the
upper confidence limit 90% of the time when using the standard method and
between 52% and 83% of the time when using the BCP method.

Conclusions

Designs with alarger number of shorter trap-lines had the highest relative
precision, but had the highest field costs. A balance between precision and
cost must be met but the importance of having accurate and reliable estimates
of residual population size should be understood and appreciated.

The bias corrected bootstrap method (BCP) had the best performance for
estimating confidence intervals among the methods used in this study. This
method gives the confidence intervals better coverage and more balance
compared to the standard method.

Confidence limits need to be used with caution because there are dways a
proportion of the true RTC estimates that fall outside of them. This
proportion is more likely to be above rather than below the confidence
intervals especialy when the standard method is used to calculate confidence
intervals. When the true RTC falls above the confidence interval it means
there will be more possums in the residual population than the monitoring
results indicate.

Problems of poor accuracy and precision of estimates of RTC and confidence
intervals because of small sample sizes is compounded when low-and very
low-density populations are monitored because of low animal counts from
trap-lines.

Spatially extensive designs are more likely to provide more precise measures
of possum populations. These designs would suit the use of alternative
lightweight monitoring devices that will provide larger sample sizes and better
Spatial coverage.

Systematic line placement rather than random line placement, as specified in
the trap-catch protocol, could provide better estimates of possum density when
using trap-catch methods. Systematic sampling should be easier to implement
in the field.

A measure of the proportion of a survey areathat contains possums may be a
more appropriate method to monitor very low - density possum populations,
e.g., those that are targeted for disease eradication.

Recommendations

RTC estimates for low-density possum populations calculated using the trap-
catch protocol should not be used on their own without reference to their
associated confidence intervals. Basing decisions to pay contractors on
specified RTC levels without reference to confidence intervals is not
recommended.
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* Improvements to the trap-catch protocol, (e.g., using more complex
techniques to analyse data and estimate confidence intervals, using shorter
lines with fewer traps, and systematically locating trap-lines) will not address
the underlying problems associated with small sample sizes. Consideration
needs to be given to investigating aternative sampling methods that will
provide larger sample sizes and to using systematic sampling designs.

» The proportion of an operational areathat contains possumsis amore
informative measure than the proportion of traps that capture possums when
measuring very low - density populations. To estimate the proportion of an
area that contains possums, the animals do not need to be caught in leg-hold
traps and removed. This allows the use of more lightweight monitoring
devices that record the presence of possums only, rather than traps that record
the presence and numbers of possums.

» Designs with alarge number of shorter trap-lines rather than designs with a
small number of longer trap-lines are recommended when using the trap-catch
protocol as away to improve precision.

* Monitoring with only five trap-linesis not recommended. Estimates of
confidence intervals cannot be considered reliable when they are based on
small sample sizes such asfive trap-lines.

» Bias-corrected bootstrap methods should be used in preference to the standard
method to calculate confidence intervals for estimates of RTC.

University of Canterbury Pest Control Research



2. | ntroduction

The University of Canterbury and Pest Control Research were contracted to investigate
the residual-trap-catch (RTC) methodology for monitoring low-density possum
populations. The research detailed in this report was carried out for the Animal Health
Board between July 1999 and April 2000.

3. Background

3.1  Trap-catch protocol

The aim of the Animal Health Board (AHB) for possum (Trichosurus vulpecula Kerr)
control isto reduce populations to levels that prevent the spread of bovine tuberculosis.
To do this effectively it is necessary to determine accurately when control operations

need to be undertaken, and how successful they have been. Often monitoring the success
of the control operation determines whether possum control contractors have achieved the
targets specified in their contracts or whether further control work is necessary.

The National Possum Control Authority (NPCA) has developed a standard protocol for
monitoring possum population densities (NPCA 2000) in an attempt to achieve these
requirements. The protocol defines a method to estimate possum densities using the
proportion of leg-hold traps that capture possums over a predetermined number of trap-
nights. Most commonly the estimate is calculated after possum control has been
undertaken and thisis termed the residual trap-catch or RTC. The protocol specifies how
many traps are to be used per trap-line, where the traps are to be located in the field and
how the capture datais to be analysed. The principal specifications are: the trap-lines are
located randomly; the lines contain a specified number of traps; and the number of trap-
lines is determined by the size of the area monitored.

Recently there have been concerns that the existing protocol may not be able to measure
possum population size precisely enough when possum population densities are low.
Specifically the main concern is that the sample size, i.e., the number of individual trap-
lines, is not large enough to obtain a precise estimate for meaningful results. To help
resolve this issue the protocol has recently been modified (NPCA February, 2000) to
increase sample sizes by reducing the number of traps per line and increasing the number
of trap-lines.

This project was undertaken to investigate the trap-catch protocol specificaly to identify
methods to further improve the precision of low-density population estimates. This would
give the AHB and contracting agencies more confidence in decisions that specify control
targets, control timing and measures of control contractor’s success.

University of Canterbury Pest Control Research



Three areas were identified where improvements could be made. These were:

1 Increasing the number of sample units, i.e., the number of trap-lines.
2 Analysing the survey data using different statistical procedures.
3 Investigating aternative sampling designs.

This project was funded by the AHB in two parts and both parts should be read in
conjunction. Part 11 was undertaken by Landcare Research to provide a decision support
system for possum control contracting agencies to help them interpret RTC estimates and
their associated confidence intervals. It aso includes an evaluation of alternative
methods to estimate confidence intervals in addition to those investigated in this report.

3.2  Designing protocolsfor low-density populations

Two of the most frequently asked questions when monitoring population densities are
how many sample units should be used and how large should the sample unit be? When
using the trap-catch protocol the sample unit isthe trap-line and this is used to estimate
the sample mean.

To answer this question some background is needed. A design with less effort within
sample units (i.e., fewer traps per line) but with many sample units (i.e., more trap-lines)
is a spatially extensive design. Survey effort is concentrated among the many sample
units. A design with afew sample units, i.e., more traps per line and fewer trap-linese.g.,
afew, long trap-lines, is a spatially intensive design. Survey effort is concentrated within
sample units.

The spatialy extensive design will allow good coverage of the survey area, but will
produce less reliable data from each sample unit. The spatially intensive design will have
poor coverage of the survey area but will produce more reliable data from each sample
unit.

Every animal population is different, but a number of wildlife studies have found that
gpatially extensive designs provide a more powerful monitoring tool for low-density
populations than the intensive design (Roughton and Sweeney 1982, Millard and
Lettenmaier 1986, Wilson and Weisburg 1993, , Link et al. 1994, J. Van der Meer 1997,
Brown and Miller 1998, Hargreaves 1998). Deciding on the optimal design for
monitoring low-density populations is a balance between the within- and among-sample
unit efforts. It should also take into account the relative costs of collecting data from
within- and among-sample units (Gates 1981).

3.3  Analysisof low-density population monitoring data
Analysis of data from surveys of animal populations can be complicated when there are
many zero counts in the data, e.g., the data from a trap-line that catches no possums will

be zero. Typically, low-density possum populations will have many zero counts. The
same problem occurs with patchily distributed populations, e.g., afew trap-lines may
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have high catches while the rest may have low, or zero catches. Standard statistical
analyses have been developed for normally distributed data but data that contain many
zeros are not normally distributed.

Data from trap-lines are often zero when monitoring low-density possum populations so
the data becomes skewed to the right. This skewness, combined with small sample sizes,
can reduce the accuracy of the confidence interval of the estimated RTC when standard
statistical methods are used. There are two options to help overcome this problem.
These are:

1 Transform the data so it appears more normal.
2 Use statistical methods that allow for the non-normality, or skewness, in the data.

Option 1 is not generaly recommended for data that contain many zeros, because of
potential biases that can be introduced, and this was not investigated. We investigated
Option 2 and concentrated our investigation on bootstrap methods for estimating
confidence intervals for RTC estimates. Further statistical methods are evaluated in Part
.

Bootstrap methods for confidence intervals are computer-intensive techniques that
repeatedly sample data. The distribution of the sample estimates is used to estimate the
confidence interval. Computationally these techniques are more complex than the
method currently used (i.e., Yty ., , [5E) but the widespread use of computers with

suitable software, such as Traplog (McAuliffe 2000), makes them easier to use.
3.4  Confidenceintervalsand precision

The importance of understanding and using confidence intervals and how to interpret
trap-catch data are covered more fully in Part 11. However, for completeness, the concept
of a confidence interval is briefly reviewed here.

When a population is monitored the survey results are used to estimate the population
size. Inthe case of possum monitoring the estimate isthe RTC index. There will always
be some uncertainty about how accurately the RTC estimate reflectsthe true RTC. The
degree of this uncertainty is measured in the confidence interval. For example, a 95%
confidence interval is a statement that there is a 95% chance that the true RTC falls
between the upper and lower confidence limits.

Two ways to improve the confidence, or precision, of the estimate are:

1 Touselarge samplesizes. A monitoring design that uses more trap-lines will
give amore precise estimate than a design that uses fewer trap-lines. Consider a
simplistic example where 100 traps are to be used to monitor possums. Ignoring
for amoment the difference in survey effort, these 100 traps could be either laid
out as 20 lines of 5 traps, or 5 lines of 20 traps. The design with 20 lines of 5
traps has a sample size of 20, while the design with 5 lines of 20 traps has a
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sample size of 5 or 1/4 the sample size. The design with the larger sample size
should have better precision.

2 To haveless sample variation. Continuing with the above example, if the trap-
lines contain too few traps, the comparative estimates from each line will be more
variable. Thiswill give high sample variation and will reduce precision.

A balance between the number of lines and the number of traps per line needs to be
reached. On one hand alarge sample size (i.e., many trap-lines) will improve precision,
but if the lines are too short (i.e., too few traps per line) precision will be reduced. A
study undertaken by Webster et al. (1999) retrospectively analysed data from Wellington
Regional Council and the Department of Conservation. They found that the same
precision could be achieved if 5 lines of 20 traps, 15 lines of 5 traps, or 9 lines of 10 traps
were used. Therefore, to obtain better precision than five lines of 20 traps, more than 15
lines of 5 traps or 9 lines of 10 traps are required.

To find the optimal balance between lines of traps and traps per line the cost of the
different survey design options needs to be considered. The cost of establishing and
maintaining 5 lines of 20 traps may not be the same as the cost for 15 lines of 5 traps.
Also the cost difference between these two designs may depend on habitat type.

4, Objectives

* To improve the precision of possum monitoring estimates by investigating the use
of more trap-lines containing fewer traps and comparing their precision and cost-
effectiveness at two field sitesin the North and South islands.

* Toimprove the statistical analysis of possum monitoring data by investigating the
use of bootstrap methods to provide more precise and accurate estimates of
confidence intervals for the RTC index.

* To identify possible alternative sampling designs that could improve the precision
and accuracy of low-density possum monitoring.

5. M ethods

51 Field trials

Combinations of 5, 10, and 20 traps per line were used in the field trials. These
combinations were chosen because these were the combinations recommended in the
NPCA protocol and they are multiples of 100 traps. Five trap-lines were used for the
lines containing 20 traps, 10 trap-lines for the lines containing 10 traps and 20 trap-lines
for the lines containing 5 traps.

Two field trials were conducted: Tutukau, Central North Island in January 2000 and
Hohonu, Westland, in March 2000. Tutukau contains low hills covered with mature pine

University of Canterbury Pest Control Research
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forest and Hohonu is flat and covered with kamahi/podocarp/hardwood forest. These
sites were used because they were recorded as having low-density possum populations
with RTC levels that are typical for areas that have recently undergone possum control.

At each study site 300 traps were set using the three different line lengths. Because of the
large number of trap-lines (i.e., 35), it was not possible to start the lines at random points
as specified in the NPCA protocol. Therefore the start points were located no less than
40 m from aroad or track and at least 200 m from each other as specified in the protocol
for linesthat are parallel to each other. The lines were located in five groups of seven
trap-lines, i.e., within each group there were 1 line of 20 traps, 2 lines of 10 traps and 4
lines of 5 traps. This layout ensured that the different line lengths were interspersed
within arestricted random pattern.

Traps were set and checked for 3 fine nights and the number of possums captured, the
number of possum escapes, the number of sprung traps and the number of non-targets
captured were recorded as specified by the protocol. In addition estimates of time to
move aong the line, to move between lines, and to set, check and remove traps were
recorded. These estimates were used to calculate the costs of locating, checking and
removing lines using the different line lengths.

The relative precision of the three monitoring designs was determined by the ratio of the
width of the confidence interval to the RTC. The relative precision was compared among
the three sample designs for data from each field trial.

The cost-€fficiency data for each line length was calculated using the following formula,
Time= Itg + Itcc + Ica + 1(t-D)cw,

where there arel lines, t traps, ¢; isthe cost of installing and removing atrap, c. isthe
cost of checking atrap, ¢, isthe cost of moving among trap-lines, and ¢, is the cost of
moving within trap-lines. Because the cost of checking atrap will differ between
whether atrap catches a possum or not, we assumed the proportion of traps catching a
possum was the same among the three designs and a constant, ¢, was used.

5.2  Comparison of methodsto estimate confidence intervals

To compare bootstrap methods for estimating confidence intervals, a model to simulate
trap-catch data was used to calculate exact confidence limitsand RTC's. A negative
binomial distribution was used to simulate skewed data that is characteristic of trap-catch
results. Comparing it with the actual trap-catch data collected from the field trials
checked the suitability of the smulated data.

The model used simulated trap-catches for a range of low-density populations, i.e.,
1.67%, 3.33%, 5.00% and 6.67% RTC. The survey designs were the same as those used
inthefield tria i.e., 5 lines of 20 traps; 10 lines of 10 traps; and 20 lines of 5 traps. To
extend the range of the simulations an additional design with 25 lines of 4 traps was also
used.

University of Canterbury Pest Control Research
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For each combination of survey design and target RTC 1000 sets of trap-catch data were
simulated. Estimates of 95% confidence intervals were calculated for each data set using
arange of methods. These included the standard method,

recxty , . LBE

a2
and seven bootstrap methods:

The standard bootstrap method (Manly 1997, p. 34),

The first-percentile method (Manly 1997, p. 39, Efron 1979),

The second-percentile method (Manly 1997, p. 41, Hall 1992),

The bias-corrected percentile method (Manly 1997, p. 44, Efron 1981),

The accelerated bias-corrected method (Manly 1997, p. 49, Efron 1987, Efron and
Tibshirani 1986),

The bootstrap-t method (Manly 1997, p. 56), and,

Hall’s Bootstrap-t transformation method (Manly 1997, p. 59, Fletcher and
Webster 1996, Hall 1992).

S A

No

The suitability of the bootstrap methods was determined by comparing them with each
other using four measures. These were:

1. The bias of the confidence limits. The bias was calculated as the difference
between the true percentile limit and the estimated limit. True percentile limits of
the sample mean were calculated using a negative binomial probability generating
function.

2. The mean square error (MSE). The MSE is the sum of the square of the bias and
the variance and can be considered an overall measure of accuracy and precision
of the confidence limits. The smaller the MSE, the better the accuracy and
precision.

3. The coverage of the confidence interval. Coverage is the proportion of the
confidence intervals where the true population mean was between the upper and
lower confidence limits. With 95% confidence intervals that have ideal coverage,
the true population mean should be between the upper and lower limits 95% of
the time.

4. The balance of the confidence interval. The balance is the proportion of times the
true mean falls above the upper limit and below the lower limit. With 95%
confidence intervals that have ideal coverage and balance, the true population
mean will fall above the upper limit 2.5% of the time, and below the lower limit
2.5% of the time.

University of Canterbury Pest Control Research
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6. Results

6.1 Fieldtrials
6.1.1 Relative precison

The estimates of RTC for the three monitoring designs at Tutukau and Hohonu were all
within the range of what would be considered low-density possum populations. The
lowest RTC estimate was 3.67% from the 5 lines of 20 traps at Hohonu and the highest
was 7.07% from the 10 lines of 10 traps at Tutukau (Table 1). As expected the relative
precision was best (i.e., lowest) at both study sites for the designs that had the largest
sample size, i.e., the 20 lines of 5 traps. Conversely the relative precision was worst (i.e.,
highest) for the designs that had smaller sample sizes, i.e., the five lines of 20 traps at
Tutukau, and the ten lines of ten traps at Hohonu (Table 1).

Table 1. Estimates of RTC, their confidence intervals’ and relative precision of three monitoring
designs at two locations.

RTC Upper CI Lower CI Relative

% precision
Tutukau 5lines, 20 traps  5.00 8.87 1.13 1.55
10 lines, 10 traps  7.07 11.89 2.24 1.37
20 lines, 5traps  5.07 7.73 2.40 1.05
Hohonu 5lines, 20 traps  3.67 5.93 1.40 1.24
10 lines, 10 traps  6.73 11.61 1.86 1.45
20 lines, 5traps  6.53 10.04 3.03 1.07

6.1.2 Cost-€fficiency

Timesto install and remove traps (c;) and check traps (c;) were similar at both study sites
(i.e., ¢ =2.00 min and c; = 0.15 min) when the average of al the time estimates were
compared. Timesto move among lines (c,) and within lines (c,) were longer at Hohonu
than at Tutukau. Thiswas attributed to the denser forest understory present at Hohonu.
The average times were ¢, =5.88 min and ¢,, = 0.59 min for Tutukau, and c; = 7.15 min
and ¢,y = 0.71 min for Hohonu.

Total time estimates for the three trap-line designs varied from 300.45 to 379.80 min at
Tutukau and 319.15 to 415.60 min at Hohonu. As expected the design with the 5 lines of
20 traps had the least time expended while the design with 20 lines of 5 traps had the
most (Table 2).

University of Canterbury Pest Control Research
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Table 2. Cost estimates (time in minutes) for three monitoring designs at two locations.

Cost estimate (min)

Tutukau 5 lines, 20 traps 300.45
10 lines, 10 traps 326.90
20 lines, 5 traps 379.80
Hohonu 5 lines, 20 traps 319.15
10 lines, 10 traps 351.30
20 lines, 5 traps 415.60

At Tutukau the proportional extratime to survey more, shorter lines compared with
surveying 5 lines of 20 traps was similar to the gain in precision: the design with 20 lines
took 27% longer than the design with 5 lines and there was a 33% improvement in
relative precision; and the design with 10 lines took 9% longer than the design with 5
lines and had a 12% improvement in relative precision.

However, at Hohonu the proportional extratime required to survey more lines was not
matched with the proportional gain in relative precision. The design with 20 lines took
33% longer than the design with 5 lines but had only a 14% improvement in relative
precision. The design with ten lines took 32% longer than the design with five lines and
had a 17% loss in relative precision. (Figure 1).

Tutukau Hohonu

40% - 40% -
30% - 30% ~ OExtra time

i 20%
20% O Gain in relative
10% - 10% ~ precision

0% 0%
20 lines 10 lines 20 lines 10 lines

Figure 1. Proportional extra time to survey more, shorter lines and proportional gain in relative
precision for designs with 20 and 10 lines compared to design with 5 lines of 20 traps at the two
field sites.

6.2  Comparison of methodsto estimate confidence intervals

6.2.1 Simulation model

There was no evidence that data simulated from the negative binomial model did not
provide a good fit when compared to the real trap-catch data from Tutukau and Hohonu.
Five of the six sets of field data were well simulated by the negative binomial model.

There was no evidence of lack of fit for the three data sets from Tutukau i.e., 5 lines of 20
traps (x> = 1.76, P = 0.63), 10 lines of 10 traps (x* = 2.21, P = 0.53) and 20 lines of 5
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traps (x* = 2.69, P = 0.44). The Hohonu data also showed no evidence of lack of fit for
the design with 10 lines of 10 traps (x* = 0.23, P = 0.97) and 20 lines of 5 traps (x* =
3.01, P=0.39). Thedesignwith 5 lines of 20 traps at Hohonu had trap-catch data that
was different from the data modelled, (x* = 8.73, P = 0.03). This difference was
attributed to these lines having no lines of zero possum catch while the model predicted
that, on average, 1.5 lineswould have a zero catch. While not perfect, the negative
binomial model was considered a suitable model to use to simulate low-density possum
trap-catch data.

Three parameters were set in order to use the negative binomial model to simulate trap-
catch data. The shape parameter r was fixed at 1 and the values of the other two
parameters p and n were varied to simulate line trap-catch over 3 nights for the four
different population mean RTC values and four different numbers of lines (Table 3).

Table 3. Values of the negative binomial parameter p used to simulate line trap-catch data over 3
nights for four RTC and different survey designs. The sample size is the number of lines. The
total number of traps is fixed at 100. The parameter r is fixed at 1.

Number of lines

Mean RTC 5 10 20 25
1.67% 0.50 0.67 0.80 0.83
3.33% 0.33 0.50 0.67 0.71
5.00% 0.25 0.40 0.57 0.63
6.67% 0.20 0.33 0.50 0.56

6.2.2 Comparison of bootstrap methods

The accelerated-bias-corrected percentile (method 5), the bootstrap-t (method 6) and
Hall’ s bootstrap-t transformation (method 7) were not suitable for estimating trap-catch
confidence intervals because the elements in the simulated data were often identical and
had zero variance. These methods involve dividing by the variance, or average deviation,
and thisis not possible with a zero variance. One approach to deal with this problem
would be to ignore the bootstrap sample that has identical elements. However, when
using small sample sizes this occurs frequently and would bias the resullts.

Of the other bootstrap methods, we found that the bias-corrected percentile method (BCP,
method 4) gave better results compared with methods 1, 2 and 3 (see Appendix 1 for how
to calculate the BCP). The BCP method gave the lowest MSE, the best coverage and
was the most balanced. Therefore we compared the results from this method with the
standard method currently used in the trap-catch protocol. Full results of the comparisons
using the other methods are given in Appendix 2.

6.2.3 Comparison of MSE
The mean square error (MSE) using the BCP method was smaller compared with the
standard method for both the upper (Figure 2) and lower confidence limits (Figure 3)

when using the five-trap-line design. The lower confidence limit had the largest
difference in MSE between the standard and BCP methods (Figure 3). There was little
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difference in M SE between the standard and BCP methods for the designs that had 10
trap-lines or greater. The MSE decreased as the number of trap-lines increased especially
when increasing from 5 trap-lines to 10 trap-lines (Figures 2 and 3). There was very little
reduction in MSE when increasing from 20 to 25 trap-lines. Also the MSE increased as
the average RTC increased for both the BCP method and the standard methods.

60 -

501 —e— Standard 1.67%

—— Standard 3.33%

401 —— Standard 5.00%

LImJ 30 4 —>— Standard 6.67%
= - @ - -Bias corrected 1.67%
20 - - i - -Bias corrected 3.33%
- + - -Bias corrected 5.00%
10 | - - % - -Bias corrected 6.67%

0 ‘

5 10 20 25
Number of lines

Figure 2. MSE of the upper confidence limit with four levels of RTC calculated using the
standard and bias-corrected confidence interval methods. The MSE is lower, or better, for the
bias-corrected method. As the number of lines increase, the MSE decreases for both methods.

18 -
16 -
14 ~
—e— Standard 1.67%
127 — = Standard 3.33%
w 10 A —— Standard 5.00%
%’ g —>— Standard 6.67%
---@--- Bias corrected 1.67%
67 -..m--- Bias corrected 3.33%
41 ---A--- Bias corrected 5.00%
2 ---X-- - Bias corrected 6.67%
0

5 10 20 25

Number of lines

Figure 3. MSE of the lower confidence limit with four levels of RTC for the standard and bias
corrected confidence intervals.
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6.2.4 Coverage of the confidenceintervals

The coverage of the confidence interval (i.e., the proportion of the times the true RTC fell
within the confidence intervals) improved as the number of lines increased for both the
methods. Coverage was below the ideal 95% for most of the designs (Figure 4). By
definition a 95% confidence interval should include the true mean on 95% of occasions.
Only the BCP method achieved this and only then with some of the designs that had more
than 20 lines (Figure 4). When 5 lines were used, coverage was below 90% for both
methods and al RTC levels.

100 -
%1 —e— Standard 1.67%
%1 —=— Standard 3.33%
g :g : —a— Standard 5.00%
% 90 - —>— Standard 6.67%
EJ 88 | ---@--- Bias corrected 1.67%
S 86 - ---m-- - Bias corrected 3.33%
84 ---A-- - Bias corrected 5.00%
82 ---X-- - Bias corrected 6.67%
80

5 10 20 25

Number of lines

Figure 4. Total coverage with four different designs, and four levels of RTC for the standard and
bias-corrected confidence intervals. Total coverage should be 95%, i.e., the true mean should fall
within the 95% confidence interval 95% of the time.

6.2.5 Balance of the confidenceintervals

Both the BCP method and standard methods failed to provide balanced coverage of the
confidence intervals (i.e., the smulated RTC did not fall above and below the upper and
lower confidence intervals the same number of times). When the standard method was
used the smulated RTC' s that were outside the confidence intervals were amost al
(90%) above the upper limit (Figure 5). The confidence intervals from the BCP method
were more balanced than the standard method. With this method when the smulated
RTC'swere outside the confidence interval they fell above the upper limit between 52%
and 83% of thetime.

The lower limit of the confidence intervals calculated using the BCP method was never
negative or zero. However, the confidence intervals calculated using the standard method
gave, on average, negative lower limits for the design with 5 lines with an RTC of 1.67%,
3.33%, 5.00% and 6.67% and for the design with 10 lines with an RTC of 1.67%.
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1
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ax 07 ' . . ---m--- Bias corrected 3.33%
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Figure 5. The proportion of times the true mean fell above the upper confidence limit (when it
was outside the confidence interval) using four levels of RTC. The proportion should be 0.5.

7. Discussion and Conclusions

71 Field trials

The relative precision of the three monitoring designsi.e., 5, 10, and 20 lines, increased
when more, shorter trap-lines were used. As expected, the cost of the surveys increased
as the number of lines increased, e.g., the design with the highest relative precision (i.e.,

20 lines of 5 traps) also had the highest cost in both field trials.

There are many advantages of having a more precise estimate of RTC, the most important
being that the calculated success of the control operation can be more confidently relied
on to be the correct result. Whileit isimportant to focus on how to improve precision by
using more survey lines, this needs to be balanced against the increased cost of using
these designs. To achieve an equivalent cost to using the standard 5 lines of 20 traps, 16
lines of 5 traps or 9 lines of 10 traps would have to be used. These designs would have to
give more precise estimates otherwise there would be no advantage gained in using them.
The importance of having accurate and reliable estimates of RTC needs to be stressed. It
may be worth accepting higher monitoring costs if more accurate and reliable estimates

of residual population size are to be realised.

These combinations of lines and traps are similar to the recommendations made by
Webster et al. (1999) where designs with similar expected precision were considered.
When 3 nights of trapping is undertaken Webster et al. recommend that 15 lines of 5 traps
or 9 lines of 10 traps have similar precision to 5 lines of 20 traps.
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One of the factors in determining the cost of a survey isthe distance lines are apart. This
is difficult to determine. Each survey is different because of the type of terrain and the
random location of the lines. The costs of the surveys undertaken in this study can be
used as a guide to the relative costs of these adternative designs.

The differences in the RTC among the three designs used in the field was unexpected,
especially those recorded at Hohonu. The trap-lines for each design were interspersed
between each other so similar RTC estimates were expected. However, at Hohonu the
design using 5 lines of 20 traps recorded an RTC of 3.67% while the design using 10
lines of 10 traps recorded an RTC of 6.73%. Unlike the simulated data used to generate
RTC's, the field data could not be used to determine which RTC estimate was the most
accurate. The confidence interval for the estimates overlapped and there was no
statistical evidence of a difference in RTC among the field designs, but considering that
the same population was measured at the same time, this difference is hard to reconcile
and the accuracy of RTC should be quetioned.

7.2  Estimation of confidence intervals using bootstrap methods

The three more complex bootstrap methods to estimate confidence intervals, i.e., the
accelerated bias-corrected percentile, the bootstrap-t, and the Hall’ s bootstrap-t
transformation were expected to provide more accurate confidence intervals than the

other methods used. These methods are not recommended for low-density trap-catch data
because of the problems with zero variance. Removing any data sets with zero variance
and or adjusting for bias could allow these methods to be used, but this adds a degree of
complexity to the analysis.

Of the other bootstrap methods, the BCP performed the best. The BCP method, along
with the standard method for estimating confidence intervals had the lowest MSE and
achieved the best coverage in terms of the proportion of times the true mean was included
in the confidence interval. However, the coverage of the 95% confidence intervals was
not 95% for either method.

Theoretically a 95% confidence interval is expected to include the true RTC 95% of the
time. In practice we can expect that for every 20 control operations monitored, one (5%)
will have the true RTC outside the confidence interval if there was correct coverage. The
true RTC that falls outside the limit will either be higher than the upper limit, or lower
than the lower limit of the confidence interval. This“error-rate” iswhat is expected, even
if it is not explicitly stated or fully understood by the possum control industry. However,
even with the two methods that gave the best coverage, (i.e., the BCP and the standard
method), the actual coverage of the 95% confidence intervals was about 90% (Figure 4).
Therefore in redlity there is a /10 chance that the true RTC will fall outside of a
confidence interval rather than the theoretical 1/20 chance (Figure 6). On average, for
every 10 control operations monitored, one of these is likely to have atrue RTC that is
either higher than the upper limit, or lower than the lower limit of the confidence interval.
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true rtc

rec
H—

Figure 6. Theoretical RTC estimates from 20 control operations that are monitored with 95%
confidence intervals calculated and the true RTC is known. Two of these, or 10%, do not include
the true RTC (i.e, they have a 90% coverage). If the confidence intervals had the correct
coverage (i.e.95%) then only one, or 5%, would be expected to not include the true RTC.

The next question is when there is a confidence interval that does not include the true
RTC, will the true RTC tend to be on the high side or on the low side of the confidence
interval? This question concerns the balance of the confidence interval. For an even
balance the true RTC should have an equal chance of faling above or below the
confidence interval. Figure 6 shows a balanced example where the true RTC fell above
the interval and below the interval. Figure 7 gives an example of an unbalanced
confidence interval where the true RTC falls above the upper limit for two of the
confidence intervals. In these two cases the residual population levels are higher than the
results suggest.

rec
H—

Figure 7. Theoretical RTC estimates from 20 control operations that are monitored with 95%
confidence intervals calculated and the true RTC is known. Two of these do not include the true
RTC. However, this example is unbalance because the true RTC falls above both confidence
intervals rather than above and below as in Figure 6.

The standard method for calculating confidence intervals did not produce balanced
confidence intervals because for the 10% of the time that the true RTC fell outside of
their range it fell above the confidence intervals in 90-100% of the cases (Figure 5).
Therefore the 10% of control operations that have “incorrect intervals’ have a 90-100%
chance of indicating that there is a lower possum population density than is actualy the
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case. Although this may be good for contractors, it may not be so good for reducing Tb
levels.

The reason for the occurrence of an imbalance of confidence intervals is because trap-
catch data collected from low-density possum populations is commonly skewed. This
occurs because there are often lines with either no possums or very few possums
captured. The BCP method did not give an ideal balance but it did provide more
balanced results than the standard method. When the BCP method was used, the true
RTC fell above the confidence interval approximately 70% of the time.

One of the uses of RTC estimates and their associated confidence interval isto decide
whether a possum control operation is successful. If it is deemed successful, then further
control is not often specified. 1n cases where the true RTC actually falls outside the
confidence interval, it ismost likely to occur above the confidence interval, and a repeat
control operation may be necessary but would not be identified. Another use of RTC
estimates isto set atarget of possum density that will prevent the transmission of Th from
possums to domestic stock. If the results from monitoring operations are mideading, i.e.,
the true RTC is higher than the confidence interval suggests, then management decisions
based on RTC target levels need to be more robust by considering this uncertainty.

Another advantage of the BCP method is that the lower limit of the confidence interval is
never negative. The standard method gave negative lower limits using the simulated data
for the designs using five trap-lines. In practice when the lower limit is negative it can be
reported asa 0% RTC. Thisisameaningless measure because if at least one possum
were caught in atrap, then the true RTC cannot be 0%.

Overall, this study has indicated that the BCP method was the best of the bootstrap
methods used in this study for estimating confidence intervals for RTC when using data
collected from low-density possum populations. The method was the most likely to
include the true RTC in the correct proportion (i.e., 95% of the time). It also produced
more balanced confidence intervals and the lower limit cannot be negative. The BCP
method for confidence intervals has been incorporated into Traplog (McAuliffe 2000) as
a user specified option.

Regardless of the method used, the precision and accuracy of confidence intervals
improved if the number of trap-lines was increased. Monitoring with more, shorter lines
is preferable to monitoring with fewer longer lines. However no reliable method to
estimate confidence intervals was found when only five trap-lineswere used. Therefore
possum monitoring with only five trap-lines should is not recommended.

7.3  Alternative survey designs

The discussion so far has focused on modifying the existing trap-catch protocol by using
different numbers of traps along lines, different numbers of lines, and different methods
to estimate confidence intervals. If control agencies are targeting very low possum
densitiese.g., below 2% RTC, it is appropriate to consider alternative sampling methods.
When low-density populations are monitored it is difficult to reliably estimate RTC
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because the chance of catching a possumis small. The challenge isto design a survey
where, if no possums are caught, there is a high probability that there are no possums
present rather than there being possums present but not being able to be detected (Brown
and Boyce 1996). We discuss two possible design improvements that could improve the
chance of detecting possums in very low-density populations using traps.

7.3.1 Line placement

An advantage of using a design that has alarger sample size, (i.e., more trap-lines), is that
the sample can be more spatially extensive. This potential advantage can be lost if the
lines do not give coverage of the study area but are clustered in one location. The use of
random line placement has this potential risk. The recommended minimum 200-m
spacing between lines and recommendations for stratifying the area in the NPCA protocol
goes some way to avoid possible clustering. However, if the strata are too large, spatial
coverage may not be achieved using random line placement.

Better spatial coverage of trap-lines could be achieved using stratification on a finer scale
than is currently used and have, for example, one or two lines per stratum. Another
method isto systematically locate trap-lines so that there is even spatial coverage over the
study areaor, if astratified design is used, even spatial coverage within each stratum
(Simmonds and Fryer 1996, Gilbert 1987, p. 89, Ratti and Garton 1980). There are many
variations on systematic sampling, but in the simplest design, trap-lines would be more
regularly spaced over the study area or stratum.

Locating lines systematically has been discussed within the industry for some time and
there has been criticism that the variance of systematic sampling cannot be properly
estimated when the sample is analysed as a smple random sample. Thiswould be true if
the possum populations have a periodic pattern that matches the interval of the systematic
sample, e.g., if there were patches of high possum abundance every 400 m and lines were
placed at 400-m intervals, or if there was a population density trend, e.g., a gradient from
high to low possum abundance (Lohr 1999). The variance of systematic sampling will
then be either under- or over-estimated respectively. If thereisno pattern or trend, the
use of the smple random sampling formulae will give an unbiased estimate of variance.

In practice a number of studies in ecology have found that systematic sampling gives
more precise survey estimates than simple random sampling (e.g., Simmonds and Fryer
1996, Skalski et al. 1992, Kraft et al. 1995).

A further advantage of systematic sampling isthat it is often logistically easier to
undertake in the field (Peshkova 1970, Gilbert 1987, p. 89, Ratti and Garton 1980). With
random sampling the field worker has to locate the next start point for the line. They have
to know where they are when they finish the preceding line to be able to move to the
next-closest line. 1n systematic sampling there are less decisions to make in the field —
the lines are all equally spaced apart. Knowing the exact location of the preceding line is
not so critical when the next line is afixed interval away. When there are fewer decisions
there is less chance of making the wrong decision (Ratti and Garton 1980).
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Another reason why systematic sampling can have fewer survey errors than simple
random sampling is that systematic sampling ensures that no line istoo far from any other
line. Consider the situation where within a stratum there are six lines to survey and these
have been randomly placed. Five of these lines are within 300 m of each other and the
sixthis4 kmaway. Even with perfect training, human nature is such that chances are the
sixth line is not placed where it should be and is placed closer than 4 km away. No one
would admit to doing this but it does happen in practice. With systematic sampling this
situation would be less likely to occur because no one line would be located along
distance from another.

7.3.2 Alternative monitoring methods

One of the difficulties with monitoring very low density populationsis the problemin
dealing with discrete numbers. Thisis best explained by example. Consider two possum
populations, one at high and one at low density. The high-density population has an RTC
of 20%. Over 3 nights 100 traps caught 60 possums. However, if there had been 61
possums caught, the RTC would have been 20.33% or a 1.67% increase. The low density
population has an RTC of 2%. Over 3 nights 100 traps caught six possums. Now
consider the effect of catching one more possums. If 7 possums were caught the RTC
increases from 2% to 2.33% — a 16.67% increase. Consequently the effect of catching
one or two more possums when monitoring low densitiesis larger than when monitoring
high densities. The low-density RTC estimate is more "sensitive” to small differencesin
trap-catch rates. This raises the question whether counting numbers or catches is the best
way to monitor low densities?

An alternative monitoring design for very low-density populationsis to determine the
proportion of an area that has possums present rather than trying to measure their
abundance. Possum trap-catches are spatially aggregated. When one possum is caught in
atrap, there is an increased chance of capturing another possum in an adjacent trap
(Faddy et al. 2000). Therefore catching two possums compared with one may not
necessarily mean that the population is twice as large. The count of trapped possums, at
very low density, may be less informative than a measure of the proportion of the area
where possums are present. There are various ways to design a monitoring scheme to
detect such proportions (Brown and Boyce 1996, Thomas and Abery 1995) and these
may be viable and effective alternatives to estimating residual populations for targeting
very low density populations.

If monitoring were to focus on detecting the proportion of the area where possums are
present, rather than estimating possum numbers from trap-catch rates, it may be more
effective to use alternative monitoring devices that measure the presence or absence of
possums. When monitoring data are presence/absence data rather than count data it is not
necessary to mark or remove possums, which makes it less labour-intensive. Also the
aternative monitoring devices could be smaller and more compact alowing more to be
used in the field, which would provide larger sample sizes and better spatial coverage. In
addition the devices would not need to be checked daily, which could substantially

reduce monitoring cost.
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8. Recommendations

* RTC edtimates for low-density possum populations calculated using the trap-
catch protocol should not be used on their own without reference to their
associated confidence intervals. Basing decisions to pay contractors on
specified RTC levels without reference to confidence intervals is not
recommended.

* Improvements to the trap-catch protocol, (e.g., using more complex
techniques to analyse data and estimate confidence intervals, using shorter
lines with fewer traps, and systematically locating trap-lines) will not address
the underlying problems associated with small sample sizes. Consideration
needs to be given to investigating aternative sampling methods that will
provide larger sample sizes and to using systematic sampling designs.

» The proportion of an operational areathat contains possumsis amore
informative measure than the proportion of traps that capture possums when
measuring very low - density populations. To estimate the proportion of an
areathat contains possums, the animals do not need to be caught in leg-hold
traps and removed. This allows the use of more lightweight monitoring
devices that record the presence of possums only, rather than traps that record
the presence and numbers of possums.

» Designs with alarge number of shorter trap-lines rather than designs with a
small number of longer trap-lines are recommended when using the trap-catch
protocol as away to improve precision.

» Monitoring with only five trap-linesis not recommended. Estimates of
confidence intervals cannot be considered reliable when they are based on
small sample sizes such asfive trap-lines.

» Bias-corrected bootstrap methods should be used in preference to the standard
method to calculate confidence intervals for estimates of RTC.
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11. Appendices

11.1 Calculation of the Bias-Corrected Percentile (BCP) M ethod

Bias corrected percentile method (Manly 1997, p. 44, Efron 1981). This
method involves calculating a value p, which is the proportion of bootstrap
estimates where RTC, > RTC. The lower confidence limitsisthe

100(¢(2z, - z,,,))" percentile of the bootstrap distribution of estimates, RTC,

and the 100(¢(2z, + z,,,,))" percentile is the upper limit, where z, the value

from the standard normal distribution that is exceeded with probability p and
@2z, - z,,,), the proportion of the standard normal distribution less than

22,-2,,,.
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11.2 Comparisons of bootstrap methods
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Average ClI Standard M SE Coverage (%)
Deviation
Method E[RT # Lower Upper Lower Upper Lower Upper Lower Upper Total
C] Lines (2.5) (25) (95
Standard 1.67% 5 -0.90 422 0962 2512 1918 6.312 0.1 11.1 888
10 -0.19 355 0545 1.736 0457 3.058 05 75 920
20 0.03 329 0432 1392 0242 199 0.2 156 84.2
25 0.07 321 0422 1326 0222 1841 0.3 13.8 859
3.33% 5 -1.10 766 1620 4.021 5.487 16.170 0.6 133 861
10 0.18 658 0958 2810 1445 7.919 0.3 86 911
20 0.74 593 0795 2090 0.793 4.442 05 84 911
25 0.88 586 0.788 1860 0.717 3.472 0.6 58 93.6
5.00% 5| -1.28 11.36 2260 5.805 10.828 33.809 0.4 11.6 88.0
10 0.72 914 1351 3540 2706 12.710 0.4 10.0 89.6
20 1.62 862 1092 2581 1364 6.666 05 6.1 934
25 1.76 829 1081 2457 1332 6.083 0.8 72 920
6.67% 5| -1.31 1456 2784 7.215 16.439 52.050 0.2 121 877
10 132 1204 1677 4452 4.059 20.035 0.2 9.0 908
20 245 1099 1379 3296 2222 10.983 05 9.3 90.2
25 265 1063 1311 2891 1994 8.468 0.5 6.9 926
Bias 1.67% 5 0.58 390 0523 2299 0501 5351 3.7 106 857
Corrected 10 0.60 385 0507 1756 0409 3.092 2.8 39 933
20 0.64 382 0464 1428 0357 2119 2.2 25 953
25 0.64 377 0442 1352 0330 1901 15 22 9.3
3.33% 5 1.23 6.82 0967 3568 1.349 13.403 3.2 139 829
10 1.36 6.79 0886 2896 0.993 8.393 2.6 58 916
20 1.54 6.43 0810 2173 0.814 4778 2.8 49 923
25 1.57 635 0779 1895 0.750 3.724 1.8 29 953
5.00% 5 1.96 996 1416 5.050 2724 26.613 29 143 828
10 2.20 928 1245 3592 1.851 12.983 2.6 92 882
20 2.60 914 1122 2734 1577 7.706 24 43 933
25 2.56 876 1088 2533 1337 6.486 1.8 50 932
6.67% 5 266 1268 1.783 6.244 4220 42502 3.2 153 815
10 310 1206 1561 4.456 2.881 20.050 2.0 82 898
20 357 1152 1391 3403 2244 11616 2.3 51 926
25 355 1110 1324 3.022 1891 9.151 1.2 38 95.0
Standard 1.67% 5 0.05 327 0622 1943 0390 4.561 1.7 188 795
Bootstrap 10 0.15 322 0532 158 0287 2821 1.0 177 813
20 0.17 315 0450 1343 0211 1950 05 156 839
25 0.18 310 0439 1289 0203 1822 0.7 13.8 855
3.33% 5 0.51 6.05 1134 3135 1291 12371 2.2 199 779
10 0.75 6.00 0935 2567 0.897 7.113 13 129 858
20 0.96 570 0820 2020 0.704 4.328 0.8 123 86.9
25 1.05 569 0804 1815 0.667 3.379 11 74 915
5.00% 5 1.05 9.03 1636 4549 2.682 24.624 1.7 196 787
10 1.47 839 1341 3248 1.832 11935 1.9 13.8 843
20 1.93 831 1116 2499 1257 6.365 13 72 915
25 1.99 806 1.108 2400 1.257 5.954 11 82 907
6.67% 5 162 1163 2055 5666 4.224 40.689 25 195 78.0
10 227 11.08 1662 4.082 2787 18.691 1.0 133 857
20 283 1061 1420 3189 2.052 10.691 13 10.0 887
25 293 1035 1338 2826 1851 8357 1.2 82 90.6
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First  1.67% 5 0.32 338 0469 2054 0271 4.819 1.9 188 793
Bootstrap 10 0.35 333 0450 1.637 0.222 2.866 1.0 85 905
Per centile 20 0.38 327 0429 1391 0197 2003 0.7 62 931

25 0.38 323 0412 1336 0181 1.857 0.7 59 934

3.33% 5 0.90 6.23 0932 3295 0.967 12.858 24 176 80.0
10 1.06 621 0860 2685 0.763 7.474 14 11.7 86.9

20 1.22 589 0795 2090 0.639 4.463 1.0 85 905

25 1.30 588 0771 1876 0.606 3.529 15 55 93.0

5.00% 5 1.61 931 1414 4792 2241 25.867 2.3 181 79.6
10 1.86 865 1226 3405 1544 12430 1.8 122 86.0

20 2.24 855 1078 2593 1205 6.737 11 73 916

25 2.28 829 1084 2466 1187 6.126 11 72 917

6.67% 5 226 1195 1757 5915 3475 41.806 2.7 190 783
10 274 1140 1547 4247 2487 19.261 15 10.8 87.7

20 319 1092 1392 3316 1967 11.173 15 83 902

25 326 1062 1309 2921 1719 8.655 1.0 63 927

1.67% 5 -0.06 300 0743 1789 0578 4551 2.2 222 756
Bootstrap 10 0.03 301 059% 1526 0387 2894 13 191 796
Per centile 20 0.04 294 0488 1316 0.289 2.084 0.7 163 830
25 0.05 290 0471 1265 0275 1963 0.6 150 844

3.33% 5 0.34 566 1324 2934 1815 12518 2.3 209 76.8
10 0.55 569 1023 2405 1173 6.842 13 151 836

20 0.78 543 0868 1.952 0.879 4.400 0.8 147 845

25 0.86 544 0849 1761 0.829 3.39% 0.6 114 88.0

5.00% 5 0.79 848 1871 4198 3.602 24.045 1.9 224 757
10 121 799 1449 3065 2294 11.874 13 171 816

20 1.68 799 1182 2402 1524 6.218 0.8 94 898

25 177 777 1160 2328 1508 5948 0.6 10.7 887

6.67% 5 131 1098 2369 5296 5723 40.832 25 205 770
10 195 1061 1791 3884 3444 18.681 1.0 142 8458

20 253 1025 1472 3.079 2402 10.668 0.8 116 87.6

25 268 1026 1383 2739 2165 8.003 0.9 99 892
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