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Abstract

This paper displays the productive role of the judgment of exchangeability and even

conditional exchangeability that should replace the misleading assertion of independence

of various experts' opinions regarding uncertain situations. The application is technically

rather complicated, and a basic understanding of exchangeability in its simple applications

is presumed. One component of the analysis is novel. It identi�es how we might learn about

one exchangeable sequence of events from the outcomes of another exchangeable sequence.

The substantive content of the the paper concerns the use of personal probabilities by experts

in assessing the sex of human skulls found in anthropological investigations. Although we

initially value the two experts' assertions exchangeably, we learn to value one of the expert's

assertions more than the other's. Moreover we identify precisely how much to value the

elicitation from a second expert after we have already learned the assertion of the �rst.

Valuation is based on a decision theoretic procedure assessing reduction in risk.

1 Introduction

In every �eld of expertise, even the most knowledgeable acclaimed experts are uncertain! Whether
in medicine, engineering, �nance, physical, human, plant or animal sciences, practicing experts
have become accustomed to asserting their uncertain judgments in the form of probabilities. In
this context which has become generally recognised in the past �fty years, the problem of for-
malising a precise value for obtaining a second or third expert's opinion has become paramount.
Somewhat of a vestige from the lost aura of \certain" scienti�c knowledge, a second opinion
is commonly referred to as an \independent" opinion if the second expert is unknown to the
�rst, or at least if the results of the �rst's assessment are unknown to the second. Indeed, the
statistical results of the original paper that will be extended and improved in this present article
rely on this \assumption" of independence in its formulations.

However in any �eld in which expertise is formally accredited, either by a license or a
degree whose award is based on success in an examination by already quali�ed examiners,
the probabilistic concept of \independence" of experts' assessments is not at all relevant to a
statistical analysis in which \you," the statistician, wish to make use of the experts' judgments
as data to inform yourself. Even when the analyses of two experts are unknown to one another,
a statistician or other decision maker would surely adjust his/her conditional probability for the
second expert's probability assessment given the value of the �rst ... precisely because both are
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recognised as accredited experts! To expand this idea, you are uncertain as to what probabilities
the two experts will assert that a speci�ed event in the realm of their expertise will occur. So you
can assert your own probability distribution over the possible values of their pair of assertions. In
doing so, you would recognise that your assertion for the value of the second expert's probability
would be di�erent if you knew what the �rst expert had asserted than if you did not. This is
precisely what it means to say that you do not assess their judgments independently.

Happily, the extensive analysis of the judgment of exchangeability, derived mathematically
from the subjective understanding of probability, is directly relevant to this problem. It allows
for substantive developments of statistical analytic work that has been begun using the \as-
sumption of independence" merely as a condition for achieving a result, even when the concept
of independence should be recognised as irrelevant to the situation. If two assessors really are
both expert in their substantive �eld of knowledge, you would want to regard the pair of their
probability assertions regarding any particular event exchangeably, and as strongly interdepen-
dent. Moreover, if one of their skills is much greater than the other's, you would surely want to
learn about this. Nonetheless in this case too, you would typically still regard their assertions
dependently.

The present article portrays the role of exchangeability in illuminating this issue by re-
formulating the analysis of a study that has already generated results based on the supposed
\independence" of experts' assessments. The empirical study by Cencetti et al. (1995) exam-
ined the probabilistic assertions of two anthropologists who have been asked to judge a sequence
of skulls as to whether each is from a male or a female. The goal of the work was to assess
the amount of information gain to be expected from obtaining a second expert's opinion. The
framework for the analysis we propose here is far more complex, and will allow a whole range
of interesting questions to be examined.

The relevance of exchangeability to the statistical analysis is fairly complicated, and in one
aspect it is quite new. The reader will need to pay close attention to which quantities are being
judged exchangeably, and also will need to recognise the distinction between exchangeability
and partial exchangeability. In the application here it is partial exchangeability in the form of
conditional exchangeability that is asserted. A readable technical introduction to the topic can
be found in Lad (1996).

The analytic framework we develop will be recognised as relevant to a whole host of diag-
nosis problems under uncertainty in medicine, engineering, business and science. We defer this
discussion until our concluding comments. Without further ado, let us turn to our problem. We
shall use the same notation as do the original authors, and we refer the reader to their paper
for more ornate details of context and substantive background.

2 Identifying the Sex of a Skull: the experimental data and

notation

The article of Cencetti et al. (1995) attempts to assess the value of a second opinion by studying
the probability assertions of two expert anthropologists who examine 200 skulls selected from
the Museo Nazionale di Antropologia ed Etnologia in Florence, Italy. Unbeknown to these two
experts, 104 of the skulls were those of males, and 96 were those of females. In fact, the
sex for each skull was known to the study designers from records held by the museum. The
order in which the skulls were presented to the experts for analysis was chosen by a lottery
without replacement. Each of the two anthropologists was asked to assert a probability that
each skull was from a male, using only the nearest probability values of 0; :05; :10; :::; :90; :95; 1.
The analysis by Cencetti et al. is based on the assertion that the two probability assessments
\are independent." In what follows, we shall provide a reasonable form of analysis based on a
judgment to regard the pairs of their assertion values exchangeably across male skulls and across
female skulls. The extent of dependence of opinions between experts for any given skull can
be learned then from the data. Interestingly, although the pair of probability assertions for the
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�rst skull examined are also regarded exchangeably, the data of the probability pairs provides
useable information to determine the extent to which this judgment should persist.

The two experts' names are identi�ed by the letters S andG. For each skull we de�ne a vector
of quantities (M;PS ; PG) where M denotes the event identifying whether the skull is that of a
male, PS denotes the probability value for male asserted by S, and PG denotes the probability
value for male asserted by G. The complementary event of a female is denoted by F � (1�M).
Notice that there are 441 possible values for the pair of probability components of any quantity
vector (M;PS ; PG) since each of the probability assertion values has 21 possibilities, and the
two are logically independent. (This means that none of the pair possibilities is impossible
in principle, according to their de�nition.) The boldface vector PM shall denote the vector
of all the paired probability assertion values for the male skulls, and PF will do so for the
female skulls. When we refer to any speci�c possible probability pair vector, as opposed to the
unknown quantity, we shall use the lower case notations pM and pF , respectively. To denote the
probability assertion pair for the 201st skull (a new skull to be assessed after we make inferences
from the data on the 200 skulls) whose sex is unknown, we shall use the symbol P 201, with a
speci�c possibility for this pair denoted by p201.

Of course the value of M for any particular skull is unknown to anyone who is not one of
the experiment's designers, but is known to the designers. We shall describe here the designers'
attitudes toward the sequence of (PS ; PG) pairs (hereafter referred to as \your" attitudes) in
such a way that we can specify the coherent inferences conditioned on the experimental data of
both the experts' probability assertions. Our primary goal is to compute your coherent inference
regarding the sex of a skull in the case that it is not known for sure from records (say, a newly
found skull) but that upon examining the new skull, the two assessors specify their own personal
probability assertion values. We would like to distinguish this inference based on both experts'
assertions from the inferences made if probabilities are elicited exclusively from each one of the
two. Moreover, distinct inferences can be determined for the experts' probabilities for any future
skull whose sex is already known to you, and also for any future skull whose sex is unknown to
anyone.

3 Coherent exchangeable opinions regarding the experts'

assertions

We shall presume you regard the vector pairs (PS ; PG) of assertion values exchangeably across
the sequence of male skulls, and also across the sequence of female skulls, for you regard them
symmetrically across permutations of the orders of the pairs within the sequences. (Virtually
everyone would regard these pairs exchangeably within sequences, because the order in which the
skulls are presented to the experts has been chosen by lottery.) However, this exchangeability
of opinion allows that you are willing to learn from the data how sharply the experts can
identify the sex of the skulls. Moreover, we shall presume that the assertions are in�nitely
exchangeably extendible, at least as an approximation. (See Diaconis and Freedman, 1980, or
Lad, 1996.) This aspect of opinion is based on the fact that the two anthropologists are already
recognised experts on skulls. You might expect that if they were to learn something new and
really substantial regarding skull identi�cation in the course of their subsequent examination
career, this might occur only after seeing many, many more skulls. Nonetheless you might
also recognise that the process of formalising uncertain judgments numerically via probability
assertions is a relatively new prospect for an anthropologist. Thus, you might make a distinction
between how you would feel about how the experts' sequence of probability judgments might
continue if they were not to learn the results of this assessment exercise and how you would
feel about their subsequent assessments if they did! In the former case you would reasonably
extend your extendible judgments. In the latter case you might extend them or you might not,
depending on what was learned. This distinction is discussed in Lad (1996).

The analysis of inferences regarding a 201st skull in this paper presupposes that your ex-
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changeable opinions do extend to judgments of that skull. That is, your predictive probability is
derived on the supposition that the experts have not been informed by the results of this study.
The analysis in the case that your exchangeable judgments are not extended because of what
the experts will have learned from the results of the exercise would be better left until after
the results are aired. This distinction is akin to the general problems in which the result of a
measurement of a process is recognised to e�ect the continuing conditions of the process.

As to the probability pairs asserted for any particular skull, presumably you would initially
regard any particular pair (the components of the �rst pair you observe) symmetrically. (As a
statistician, you are only informed that both of the assessors are recognised experts.) However
you may well be willing to learn from the data that one of the experts tends to give higher (or
lower) probabilities for male to the male skulls than does the other expert, and tends to give
higher (or lower) probabilities for female to female skulls. To the contrary on the other hand,
you may learn to continue to regard the pair of experts' assessments virtually exchangeably for
any given skull! In contradistinction to the question as to whether to extend the exchangeable
judgments to assessments of future skulls, the decision as to whether to continue to regard the
assertions of the two probability assessors exchangeably can be embedded into the structure of
the joint distributions for the assessments as they are regarded by you, the experiment designer.

To see precisely how this works, we need to consider carefully the coherent logic of the rele-
vant probability assertions, to arrive at a useful representation. In the �rst place, the coherency
condition for conditional probabilities tells us directly that

P [M201j(P 201 = p201)(PM = pM )(PF = pF )]

=
P [(PM = pM )(PF = pF )M201(P 201 = p201)]

Numerator + P [(PM = pM )(PF = pF )F201(P 201 = p201)]
: (1)

On the left-hand-side of equation (1) is the predictive probability that a 201st skull is male,
given the pair of probabilities that it is male asserted by the experts and given also the record
of the experts' probability assertions for the 104 known male skulls and for the 96 known female
skulls. Suppressed in the notation is the fact that the designers (you) know the correct sexes
of the skulls for which the experts have asserted these probabilities. The analysis would be
di�erent if the correct sexes of the 200 experimental skulls were not known.

To clarify our bearings in this analysis, notice that the data of the P (M) assertion pairs from
experts S and G have already been recorded for the known male and female skulls. Thus, what
we should like to compute is the value of equation (1) conditional on each of the 441 possible
assertion probability pairs for the 201st skull, p201, and conditioned as well on the speci�c data
values of pM and pF . These data of 200 assertion pairs will provide the basis for the several
likelihood functions (information transfer functions) used in the inference.

Now a simple factoring of the compound probability appearing in the numerator of (1) yields
an equivalent useful representation as the product of three conditional probabilities:

P [(PF = pF )j(PM = pM )(P 201 = p201)M201] P [(PM = pM )(P 201 = p201)jM201] P (M201) : (2)

Similarly, the second summand in the denominator of (1) factors into

P [(PM = pM )j(PF = pF )(P 201 = p201)F201] P [(PF = pF )(P 201 = p201)jF201] P (F201) : (3)

In the next two Sections we shall elucidate details of the component probabilities in ex-
pressions (2) and (3) respectively, particularly the �rst two multiplicand probabilities in each
product.

4 Analysing the assertions PM ; PF and P 201 conditioning onM201

It is evident from the product expressions (2) and (3) that we need to analyse our understanding
of the experts' probability assertion sequences PM = pM and PF = pF along with the asser-
tions for the new skull, P 201 = p201, as we would understand them conditioned on the 201st
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skull being male, M201, and again conditioned on it being female, F201. We shall begin our
analysis by conditioning on M201 in three subsections with extensive discussion. The analysis
conditioning on F201 will be equally extensive, but will be similar in structure. Thus, its results
can be reported more e�ciently in Section 5, capitalising on the developments that we now
describe.

4.1 Exchangeability of the assertions regarding male skulls, given M201

We shall begin our analysis of the three multiplicand probabilities in (2) with the term P [(PM =
pM )(P 201 = p201)jM201], for it succumbs most easily to familiar arguments based on exchange-
ability. Remember and beware, that this part of the analysis of (1) conditions on the new skull
(of unknown sex) being assessed is male. Moreover, this analysis presumes that the assertion of
exchangeability regarding probability assessments of the known male skulls does extend to the
201st skull, conditioning of course on it being a male skull.

In the context of your exchangeable assertions regarding the sequence of probability pairs
asserted for known male skulls, and additionally for the new skull conditional on it being male,
the su�cient statistics for any particular vector of observations and the conditioning assertion
pair is the histogram showing how many of the probability pairs fall into each of the 441 categories
that are logically possible. Of the 104 male skulls plus the new skull (conditional on it being
male), we shall denote byHM (pM ; p201) the vector of numbers of the probability pairs that fall
into each of the categories. The number of observations in any histogram category is denoted
merely by HMi(pM ; p201).

Given this opinion structure, de Finetti's representation theorem speci�es that a designer's
joint probability mass function for the histogram of the assessed probability pairs must be
mixture multinomial, and the mass function for any particular sequence of pairs given the
histogram must be uniform over all permutations of any sequence that gives rise to it. In
extensive notation, a designer's joint probability mass function for any particular vector of the
experts' probability assertion values, (pM ; p201), has the form

f(pM ; p201jM201) =

Z
�1

Z
�2

:::

Z
�441

441Y
i=1

�i
HMi(pM ; p

201
) dF (�1; �2; :::; �441) (4)

for each possible vector of probability assertions by the experts. The mass function for the his-
togram vector implied by (pM ; p201) would be this same value multiplied by NCHM (pM ; p

201
),

the combinatorial multinomial coe�cient.
To complete this opinion structure we need only identify some reasonable form for the initial

mixing distribution F (�1; �2; :::; �441) that appears in the integral of (4). The easiest resolution
here, and also quite reasonable through the interpretation of of prior opinion as information based
on a number of equivalent observations (see Good, 1965), is through use of a natural conjugate
Dirichlet form. We can locate the initial Dirichlet mixing function parameters by constructing
the initial expectation for the parametric theta values through a conditioning argument, and
then select an appropriate scale that might represent the strength of opinion of the experimental
designers.

4.1.1 Locating the initial Dirichlet mixture for males, and choosing the scale

Of course there are as many initial mixing functions as there are people to assess them. At this
point in these investigations, we shall limit our analysis to a single considered opinion regarding
the probability assertions of the two experts, focusing as much on the procedure as on the detail
of the content. Variations on the opinions expressed can be studied subsequently in a Bayesian
style robustness exercise.

The Dirichlet distribution over �441 is characterised by 441 parameters, �441. The relative
sizes of these alpha speci�cations can be located by specifying your initial probability for each

5



(pS ; pG) pair as the experts' assessments for the �rst skull they examine. The scale is then
chosen as a proportionality constant to determine the sum of the alphas.

An initial distribution over the �441 parameters will be motivated by two considerations.
First is the fact that the anthropologist experts may well not be very expert at recognising
and assessing their own uncertainties via numerical probability assertions. In this regard they
may also not be experienced at paying a monetary price for overexhuberant probabilities as are
business practitioners, for example. The practice of assessing their uncertainties as probabilities
would be fairly new to them. As a result, one considered feature of their assertions is that they
would be regarded as too willing to assert virtual certainty in their judgments, even when their
knowledge is infact mistaken! As a result, the initial mixture will be weighted in terms of :3
times a distribution that masses :91 on (1; 1), :04 on (1; 0), :04 on (0; 1), and and masses :01 on
(0; 0). The remaining :7 weight will be massed across a digital exponential joint mass function
that will now be explained.

We shall locate this aspect of the Dirichlet function by describing an appropriate joint p.m.f.
for values of a (PS ; PG) assertion pair within the unit square, massed on the 441 possibility
points. This aspect of the p.m.f. will be based on an idea of how precisely the skulls would
exhibit readable clues to their sex. Moreover, we would like the initial mixing density to be
symmetric with respect to PG and PS , being aware that this feature of the mixing distribution
may change as data accumulates if that is what the data suggests.

We shall construct this joint p.m.f. by �rst considering a p.m.f. for the sum of the assertions,
� = PS + PG, and then considering a conditional p.m.f. for either summand, PS or PG, given
the value of their sum. Knowing that the skull in question is from a male, and that the assessors
S and G are both experts, you might well specify your mass function for the sum of their
probabilities by a digitised increasing exponential function that masses only on the prescribed
41 possibilities from 0 to 2 in increments of :05. Algebraically, this function has the form

f(�) = K(�)e��(2��) (5)

over the 41 possibilities of the sum, �, just mentioned. The proportionality constant K(�)
merely assures that f(�) sums to 1 over the 41 possibilities. Remembering that each expert's
assertion values are accurate only to within :025, this p.m.f. represents only that higher probabil-
ity assertions are more likely than lower assertions, and that they rise exponentially by category.
The growth rate (negative decay rate to the left from 2) is parameterised in this form by �.

Now given the sum of their assertion values, you would initially regard either individual's
assertion symmetrically about 1=2 of the sum value, as you have no reason initially to suspect
that one of the experts asserts higher probabilities for male skulls than does the other. Again,
an exponential rate of decay in either direction, parameterised here by �C , would yield the
conditional p.m.f.

f(pSj�) = K(�C ;�)e
��C jpS��j (6)

massed on pS units withinin the interval of allowable mass points bounded by [max(0; 1 �
�);min(1;�)].

On the basis of this argument, a construction for the joint p.m.f. for (PS ; PG), deriving
merely from a translation of the product of equations (5) and (6), would have the form

f(pS; pG) = K(�; �C)e
��(2�pS�pG))e��C jpS=2�pG=2j (7)

over the lattice of (pS ; pG) possibilities set in the unit-square. This form is obviously symmetric
with respect to permutations of its arguments. The parameter � is an accuracy parameter,
increasing with your attitude toward the success of the experts in assessing the skulls as male.
The parameter �C is a mutuality parameter, increasing with the extent to which you believe the
assessors will agree with one another in their assessment.

Finally, merging the two components of the prior speci�cation of the Dirichlet parameters,
we can identify the location of the parameters via a mixed p.m.f. derived from a weight of .7
on equation (7) and a weight of .3 on a p.m.f. that masses .91 on ((PS ; PG) = (1; 1)), .04 on
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((PS ; PG) = (1; 0)), .04 on ((PS ; PG) = (0; 1)) and .01 on ((PS ; PG) = (0; 0)). To cut a long story
short at this point, the scale of the Dirichlet parameters has been chosen so that the sum of the
location parameters equals 10. This is the value of the \equivalent number of observations" that
identi�es the strength of the prior information. The sum of 10 identi�es a rather mild opinion.

The location of the initial Dirichlet mixture shown in Figure 1 is based on equation (7) with
a choice of � = 2:5 and �C = 5. To get your bearings, know that with these speci�cations of �
and �C , the doubly exponential p.m.f. component based on equation (7) places probability :84
that PS is at least :5, :47 that it is at least :8, and :25 that it is at least :9. You, the reader,
may regard these probabilities as too pessimistic regarding the experts' abilities, but notice that
it is being mixed with the pmf with all weight on the four corner points of the unit-square, :94
being on (1; 1). Nonetheless as mentioned, a robustness study is surely possible relative to other
speci�cations. The sharpness of �C exhibits double the strength of expected mutuality of the
two experts' assessments.

As it turns out, the weight of .3 on the mass function only on the four corner points of the
unit-square visually dominates the .7 weight on the exponentially distributed component. Thus,
Figure 1 displays the exponential p.m.f. of equation (7) on the left-hand-side separately from
the resulting choice of alpha parameters for the Dirichlet prior on the right-hand-side.
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Figure 1: The graph at left displays the joint folded exponential p.m.f. of equation (7) that
determines :7 of the weight on the initial Dirichlet location parameters, while the graph at right
displays the complete array of Dirichlet location parameters derived from the weighted mixture
of the p.m.f. at left and :3 of the weight on the one massing .91 on (1,1), .04 on (0,1), .04 on
(1,0), and .01 on (0,0), and using a total scale on the parameters to sum to 10.

4.1.2 The histogram of assertions regarding male skulls

It is merely a technical matter at this point to present the histogram of the probability assertion
pairs for the 104 male skulls. This appears at the left-hand-side of Figure 2. At the right-hand-
side appears a visual presentation of this histogram augmented by the alpha parameters of the
initial Dirichlet mixing distribution, which is relevant to the Polya probabilities for the observed
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assertion data that we now discuss. Of course to complete this computation, notice that the
histogram will need to be supplemented sequentially by a single observation component in each
category to represent the possibility of the 201st assertion pair �tting into that category. Figure
2 is displayed merely to present a visual idea of what the experimental data are saying to this
point.
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Figure 2: At left is the histogram of probability assertion pairs (PS ; PG) for the 104 male
skulls. At right appear the sum of each histogram category and its corresponding initial alpha
speci�cation.

The observant reader may well be surprised, as we were, in observing that histogram. For
it appears that expert S is far more pro�cient than is expert G at identifying male skulls! (For
your information, and to aid your musing, the marginal histograms of probability assertions
by G and by S for the male skulls are shown in Table 1.) Notice, for example, that all of S's
probabilities exeed :5, and 90% of them exceed :9; whereas G asserts probability near to 0 for 5 of
the skulls, and rather di�use probabilities for skulls that S assesses with probabilities exceeding
:75, even those as high as :9. Moreover, the empirical cdf of G's probabilities stochastically
dominate those of S over the entire range of possibilities short of certainty. Rather than get
lost in discussion at this point, however, we leave the reader to mull over this as we continue to
develop the full details of the complete structure of the analysis.

Table 1. Marginal Histograms for the PG and PS Assertions Regarding the Male Skulls.

p 0 :05 :10 :15 :20 :25 :30 :35 :40 :45 :50

H(pS) 0 0 0 0 0 0 0 0 0 0 0
H(pG) 5 0 0 0 2 0 6 0 1 7 0

p :55 :60 :65 :70 :75 :80 :85 :90 :95 1

H(pS) 0 1 1 2 4 4 1 10 17 64
H(pG) 2 0 2 4 5 6 0 2 1 61
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4.1.3 Polya probabilities for the data on male skulls

As is well-known (see Lad, 1996, p. 322) in this Dirichlet-multinomial mixture context, equation
(4) integrates to yield an individuated Polya mass function for the experts' probability assertion
sequence. The detailed equation to compute these probabilities is

f(pM ; p201jM201) =
�(
P441

i=1 �i)
Q441
i=1 �(�i +HMi(pM ; p201))

�(105 +
P441

i=1 �i)
Q441
i=1 �(�i)

(8)

Remembering that pM is �xed by the experimental data, but that p201 is variable, depending
on what the two experts might assert about the new skull (the 201st skull), it is useful to recognise
that equation (8) reduces to

f(pM ; p201jM201) = K (��(p201) +HM�(pM ; p201)) (9)

presuming that the assertion for the new skull, p201, falls into category * of the 441 possibilities.
The proportionality constant in equation (9) is

K =
�(
P441

i=1 �i)
Q441
i=1 �(�i +HMi(pM ))

�(105 +
P441

i=1 �i)
Q441
i=1 �(�i)

(10)

The results of this computation appear visually by the right-hand-side of Figure 2, modulo
the addition of 1 to every point on that grid. The proportionality constant, which will be relevant
to the total computation of equation (1), equals 1:1188 � 10(�167).

4.2 Exchangeability of the assertions regarding female skulls, conditioned on

(PM = pM ) and M201

We now shift our analysis to the �rst term of the factored expression (2), P [(PF = pF )j(PM =
pM )(P 201 = p201)M201]. That is, we need to discuss your opinion about the two experts'
probability assertions for the female skulls, conditioned on the knowledge you obtain from ob-
serving what they had asserted for the skulls that were known to be male, (PM = pM ) and
also conditioned on their assertions for the 201st skull presuming it too to be male.

To begin, remember in what follows that the assertions PF = pF are the numerical proba-
bility values for the event that each skull is male, in the state tht you, the experimenter, know
that the skulls are all females! Recognise therefore that since the assessors are anthropological
experts you are going to be expecting their assertion values to be small, generally less than .5
and actually closer to zero rather than large. We mention this now just to help you get your
bearings in following some symmetric transposition arguments that follow.

The experimental setup continues to merit your assertion of exchangeability of the vector
pairs in the sequence PF = pF . However the fact that we are now conditioning on (PM =
pM )(P 201 = p201)M201 means that the exchangeable representation equation (4) translates in
this context to

f(pF j(PM = pM )(P 201 = p201)M201) =

Z
�1

Z
�2

:::

Z
�441

441Y
i=1

�
HFi(pF )
i dF [�1; �2; :::; �441j(PM = pM )(P 201 = p201)M201] (11)

This equation (11) is quite similar to (4). Interestingly, however, the mixture distribution
here requires the initial mixing function of the parameters �441 to be posterior to the observed
probability assertion pairs by the experts for the male skulls! (Additionally, the condition is
supplemented distinctly by each of the possible assertion pairs for the 201st skull, P 201 = p201.)
Thus, an initial mixture over �441, the probability pair parameters for female skulls, must be
transformed to a posterior conditional on the assessed probabilities for the known male skulls.
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4.2.1 Specifying the Dirichlet mixture for females, and informing it with the as-

sertion data on male skulls

The required mixture can be computed simply enough using Bayesian inference. The natural
form for the initial mixture on �441 would again be Dirichlet, but with �441 parameters gen-
erated by a 180 degree rotation of the male parameter matrix about its center point, (:5; :5).
Algebraically, this means that �(pS ; pG)F = �(1�pS ; 1�pG)M . Computationally, it is achieved
by ipping the rows of the alpha matrix for males up and down to reverse their order, and again
ipping the columns back and forth to reverse their order. Conceptually, this means that your
expectations regarding the incidence of an (pS; pG) pair for a female skull are identical to your
expectations regarding the incidence of the pair (1 � pS; 1 � pG) for a male skull. There is no
need to display the results of this generating procedure because you can imagine the results from
examining Figure 1 and merely inverting the scales on the PS and PG axes to read from 1 to 0
rather than from 0 to 1.

The second stage of transforming this prior form to a posterior form given the results of the
experts' assertions requires an explanatory remark. The observable clues to the anthropologist
that a skull is from a male are precisely complementary to the clues that the skull is from a
female. Thus, you might expect that if you learned that one expert was much more precise in
asserting high probabilities for male to the male skulls, you would imagine that person also to
tend to be more precise in asserting low probabilities for male to female skulls. However the
making of these two judgments regarding any two skulls are not precisely mirroring activities.
Thus, rather than formulating the likelihood function for the female �441 components based on
the probability pairs asserted for the male skulls as a Dirichlet form from a pure Binomial mass
function, we suppose you would want to reduce the informative power of the data on male skulls
to a fraction of its power in informing us about assessments for male skulls. For now, we will
specify the fraction as :3, yielding the likelihood function as

L(�441;PM = pM ) =
441Y
i=1

�
:3HMi(1� pM ;1� p

201
)

i : (12)

The expressions 1� pM and 1� p201 in that likelihood function denote that each of the
probability components of the vector pairs pM and p201 is arithmetically inverted to its additive
reciprocal of 1� p.

The left-hand side of Figure 3 displays the numerical results of the weakened transformed
histogram of equation (12), while the right-hand side displays the sum of these histogram values
with the initial alpha parameters of the Dirichlet form, to yield the alpha parameters representing
the mixing function F [�1; �2; :::; �441j(PM = pM )(P 201 = p201)M201] that pertain to the integral
mixture equation (11).

4.2.2 The histogram of assertions regarding female skulls

Parallel to the presentation of Figure 2, the left-hand-side of Figure 4 portrays the histogram of
the 96 pF assertion pairs for the female skulls that fall into each of the 441 possible categories.
On the right-hand-side appear these histogram values augmented by the alpha parameters of the
mixing Dirichlet function for the female skulls, which had been displayed on the right-hand-side
of Figure 3.

For the moment once again, we defer detailed comment on the content of the histogram,
leaving you to mull over the fact that again expert S appears to be more knowledgable in skull
identi�cation than is G, although this is not quite so clearcut as it seemed for male skulls.
Whereas G asserts probability near 0 for a higher number of skulls than does S, the remainder
of G's assertions are spread widely across the domain of possibilities, so that the empirical
cdf for S's assertions dominate those of G for probability assertions above :05. G even asserts
probabilities (of male) near 1 for �ve of those female skulls whereas S does so only for one of
them. Moreover, both experts appear to be somewhat more uncertain in their assertions than

10
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Figure 3: At left is the transposed histogram of assertions for male skulls, diminished by a factor
of .3. At right is the sum of this diminished histogram with the initial alpha speci�cations for
the female skull assertions.

they were for male skulls. The marginal histograms for the assertions of S and G are shown in
Table 2.

Table 2. Marginal Histograms for the PG and PS Assertions Regarding the Female Skulls.

p 0 :05 :10 :15 :20 :25 :30 :35 :40 :45 :50

H(pS) 27 13 18 7 2 5 3 5 3 5 0
H(pG) 41 0 11 3 4 1 4 2 6 4 0

p :55 :60 :65 :70 :75 :80 :85 :90 :95 1

H(pS) 0 0 1 1 0 1 0 2 2 1
H(pG) 2 3 3 0 3 2 0 2 0 5

4.2.3 Polya probabilities for the data on female skulls

Polya probabilities for the observed assertion pairs of the experts on female skulls that result
from the Dirichlet-Binomial mixture are displayed visually on the right-hand-side of Figure 4.
Algebraically, they derive from equations similar to (8), (9) and (10). However the computa-
tional detail is a bit di�erent because of the di�erent way that the variable vector p201 appears
in the equation as part of the \initial �i." The computational equations are

f(pF jpM ; p201;M201) =

K
�(��(p201) + :3(HM�(pM ) + 1) +HF �(pF )) �(�

�(p201) + :3(HM�(pM )))

�(��(p201) + :3(HM�(pM )) +HF �(pF )) �(��(p201) + :3(HM�(pM ) + 1))
(13)

presuming that the assertion for the new skull, p201, falls into category * of the 441 possibilities.
The proportionality constant in equation (13) is

11
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Figure 4: At left is the histogram of assertions for the 96 female skulls. At right appears the sum
of this histogram with the corresponding Dirichlet alphas that are posterior to the observations
on the male skulls.

K =
�(10 + :3(105))

Q441
i=1 �(�i + :3HMi(pM ) +HFi(pF ))

�(96 + 10 + :3(105))
Q441
i=1 �(�i + :3 HMi(pM ))

(14)

4.3 The matrix of numerator probabilities

The �nal computational step in producing the numerical results for the numerator of equation
(1) factored in expression (2), requires merely that we multiply equations (9) and (13).

We have now completed a computable representation of the multiplicand components of the
numerator of equation (1). In the next Section we shall perform the similar compuational steps
of the second denominator term, expression (3).

5 Analysing the experts' assertions conditioning on F201

All the computational proceedings of this Section will mimic those in Section 4, except that we
shall be conditioning on the 201st skull being female. As a result the order in which the prob-
ability assessments for the male and the female skulls will be reversed. Thus, the explanations
will be rather terse for now, just in order to get the results down. More extensive commentary
will appear subsequently in discussion.

We shall be computing the second term in the denominator of equation (1), which is detailed
in factored form as expression (3).

5.1 Exchangeability of the assertions regarding the female skulls, given F201

Given that the new skull is female, the pair of assertions by S and by G are regarded exchangeably
with their assertions for the other 96 female skulls. Again, a multinomial mixture mass function
is required to represent the p.m.f. f(pF ; p201jF201), similar to equation (4).
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5.1.1 Locating the initial Dirichlet mixture for females, and choosing the scale

The initial mixing function for the female skulls is the 180 degree rotation of the mixing function
for males as described in Subsection 4.1.1. Hopefully it requires no further explanation at this
time. For the record, it is displayed in two portions in Figure 5.
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Figure 5: The graph at left displays the joint folded exponential p.m.f. of equation (7) that
determines :7 of the weight on the initial Dirichlet location parameters, while the graph at right
displays the complete array of Dirichlet location parameters derived from the weighted mixture
of the p.m.f. at left and :3 of the weight on the one massing .91 on (0,0), .04 on (0,1), .04 on
(1,0), and .01 on (1,1), and using a total scale on the parameters to sum to 10. It should be
evident that these graphs are merely rotations of the graphs displayed in Figure 1.

5.1.2 The histogram of assertions regarding female skulls

Figure 6 displays at left the histogram of the experts' assertions regarding the 96 known female
skulls. At right it shows the sum of these category counts with the alpha values of the initial
Dirichlet mixing density.

The reader may wish to reexamine the marginal histograms of assertions for the female skulls
by S and by G, which has appeared in Table 2.

5.1.3 Polya probabilities for the data on female skulls

The Polya probilities that derive from the Dirichlet mixture for the assertions regarding female
skulls can be examined visually from the right-hand-side of Figure 6, since they are proportional
to those values. The argument supporting this mimics the parallel discussion in Subsection
4.1.3.
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Figure 6: At left is the histogram of probability assertion pairs (PS ; PG) for the 96 female
skulls. At right appear the sum of each histogram category and its corresponding initial alpha
speci�cation.

5.2 Exchangeability of the assertions regarding male skulls, conditioned on

(PF = pF ) and F201

Again, we regard the assertions about male skulls exchangeably given the results on the female
skulls, deriving a mixture distribution parallel to that shown in Section 4.2.

5.2.1 Specifying the Dirichlet mixture for males, and informing it with the

assertion data on female skulls

Figure 7 shows at left the initial Dirichlet parameters for the assertions regarding male skulls,
but supplemented by the weakened rotated histogram of results regarding female skulls. Re-
member that the initial Dirichlet parameters without this supplemental information have already
appeared in Figure 1. Since the histogram of assertions regarding male skulls has also already
been displayed, the right-hand-side of Figure 7 shows only the \updated" prior parameters of
the left-hand-side with the histogram components for the male skulls added to them.

5.2.2 The histogram of assertions regarding male skulls

The results of this subsection already appear as described in Figure 7. That �gure merely shows
the male skull histogram added onto the augmented male skull Dirichlet parameters.

5.3 Polya probabilities for the data on male skulls

The computational equations for f(pM jpF ; p201; F201) would mimic those of equations (13) and
(14).
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Figure 7: At left are the initial Dirichlet parameters for male skulls augmented by the weak-
ened rotated histogram of assertions regarding female skulls. At right, these augmented prior
parameters appear in summation with the male skulls assertion histogram.

5.4 The matrix of denominator probabilities

The computation of the second term in the denominator of equation (1) now requires merely
the multiplication of the two matrices of probabilities based on the various possibilities of p201
that we described in Sections 5.1.3 and 5.3.

6 Computing the inference from the experts' assertions pertain-

ing to a newly found skull

Our analysis has allowed us now to compute numerical values of equation (1) for various values
of p201, yielding P [M201j(P 201 = p201)(PM = pM )(PF = pF )]. This appears graphically on the
right-hand-side of Figure 8 for each possible (pS ; pG) pair of p201. Substantively, these results
are of interest by comparison with the probabilities P (M201j(P 201 = p201), the probability you
assert that the 201st skull is male given only the two experts' assertions, not their assertion
records on the known male and female skulls. The matrix of these probabilities appears in the
left-hand-side of Figure 8. It is computed merely as the relevant initial Dirichlet � values for
the male skulls relative to the sum of these same alpha values for the male skulls plus their
corresponding values for the female skulls.

The visual comparison of the two sides of Figure 8 illuminates the inference regarding the
usefulness of the two experts' opinions that can be gleaned from the data. The most immediate
impression is that the posterior surface on the right-hand-side of Figure 8 is no longer symmetric.
Rather, it has shifted higher on the side of S's large probabilities than on G's large probabilities,
and it also shifts lower on the section of S's low probabilities than it does for G. These visual
impressions will be con�rmed and formalised algebraically via the concepts of risk reduction and
information gain in the next Section.
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Figure 8: The matrix of conditional predictive probabilities de�ned by equation (1), given the
predictive probabilities that the 201st skull is from a male given the probability assertions by G
and by S.

7 Comparing the information contained in each expert's

probability assertion to the information contained in both

Our �nal e�ort is directed to comparing the inference regarding the 201st skull if we are given
only the value of PS or PG for that skull, not the both of them, but still conditioning on the
evidence of both experts' assertions for the two hundred skulls of known sex.

To begin, Table 3 displays your posterior probability for M201 given only the assertion
probability by S or by G for that skull, based on the experimental data of the assertions for
the 200 known skulls. This Table conveys the inferential use you would make of S's or G's
probability assertions regarding M201 in formulating your own assertion probability for M201.
These probabilities show a fairly regular ascending order based on both experts' assertion levels,
but there are some anomalies in both columns as you can see for yourself.
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Table 3. Predictive Probability for M201 given only the single assertion PS or PG for the 201st

skull, but given all the experimental data on the assessments for known skulls.

Conditioning p PS PG
0 0.0199 0.0754

0.0500 0.0710 0.1036
0.1000 0.0835 0.0640
0.1500 0.0765 0.0833
0.2000 0.3669 0.2536
0.2500 0.2052 0.2014
0.3000 0.4319 0.5864
0.3500 0.3641 0.4646
0.4000 0.6914 0.2880
0.4500 0.3667 0.6673
0.5000 0.6830 0.6830
0.5500 0.7541 0.6472
0.6000 0.7232 0.5193
0.6500 0.8271 0.6296
0.7000 0.7493 0.8463
0.7500 0.9133 0.8543
0.8000 0.8083 0.9149
0.8500 0.9752 0.9672
0.9000 0.9659 0.8935
0.9500 0.9794 0.9900
1.0000 0.9973 0.9864

The paper of Cencetti, et al. (1995) presents the numerical results of a procedure designed
by Di Bacco (1992) to assess the value of eliciting the probability from a second opinion on
the basis of the expected value of the information it would contain. Basically, the procedure
presumes that the personal loss incurred by making an incorrect assessment of the sex of a skull
is the same, no matter which is the correct sex of the skull. Such a loss would be incurred by
asserting probability of male exceeding 1/2 for a female skull, or by asserting probability of male
less than 1/2 for a male skull. The numerical computation in the Cencetti report presumes that
the assertive assessments by the two experts are independent. The measure of the information
gain expected from the elicitation is basically the reduction in risk expected from hearing and
using what the expert might say. Applied to expert S for example, the measure reduces to

�S = E(
1=2 � P (M201j(PS = p) and data)

1=2
) (15)

for various values of p when P (M201j(PS = p) and data) is less than 1=2. If this exceeds 1=2 it
is replaced in the formula by 1 � P (M201j(PS = p) and data). In the case that the probability
has not yet been elicited, the computation is based on the expectation of S's probability given
the experimental data. You can imagine the modi�cations to this measure that occur when PG
is elicited instead of or in addition to PS , and whether the computation is made prior to or
posterior to the experimental data on the 200 skulls.

In the present article we have computed the posterior probabilities for the new skull being
male, M201, conditioned upon either or both of the experts' elicited probabilities, so we can
now apply DiBacco's information measure for each expert to derive the expected gain through
reduced risk that would be achieved by asking that expert alone, or asking them both. The
computation of the gain expected from asking both experts is made at �rst based only on your
distribution for what the experts might say. These results appear in Table 4.

17



Table 4. Measures of Information Gain Expected from the Elicitation of One or Both Experts'
Probabilities, both prior to observing the experimental data and posterior to the data.

prior to data posterior to data

�S 0.7645 0.8456
�G 0.7645 0.7398
�S;G 0.8152 0.8900

However, we can also derive the expected information gain from asking a second expert after
having heard the response of the �rst expert. In this case, the information measure (15) is
modi�ed to

�Sj(PG=p�) and data = E(
P (M201j(PG = p�) and data)� P (M201j(PS = p)(PG = p�) and data)

P (M201j(PG = p�) and data)
)

(16)
with similar modi�cations as to equation (15) when the various conditional probabilities in
equation (16) exceed 1=2 or are less than 1=2. The expectation is computed with respected to
the conditional distribution of S's probability assertion, given the value of G's assertion as p�.
The results of these computations appear in Table 5.
Table 5. Measures of Information Gain Expected from the additional elicitation of the second
expert's probability given that you know the assertion of the �rst. The conditioning assertion
value for the expert is printed in column 1; the second and third columns present the measures
of expected gain from asking each of S and G as the second expert, knowing the conditioning
value of the �rst's assertion, but prior to the data on the 200 skulls. Columns four and �ve
present these measures again, but conditioned on the experimental data. Column six presents
the di�erence in the gains expected from asking S in addition to G less the gain expected from
asking G in addition to S, based on the same elicited probability response from G and from S
in the �rst elicitation.

Conditioning p �Sj(PG=p) �Gj(PS=p) �Sj(PG=p) and data �Gj((PS=p) and data Di�erence

0 0 0 0.5725 0.4513 0.1212
0.0500 0.0106 0.0106 0.0610 0.2590 -0.1979
0.1000 0.0302 0.0302 0.1865 0.1418 0.0447
0.1500 0.0575 0.0575 0.0584 0.0262 0.0322
0.2000 0.0923 0.0923 0.7258 0.4235 0.3023
0.2500 0.1344 0.1344 0.4666 0.3379 0.1287
0.3000 0.1841 0.1841 0.8943 0.5595 0.3348
0.3500 0.2419 0.2419 0.6399 0.2685 0.3714
0.4000 0.3089 0.3089 0.7086 0.2805 0.4281
0.4500 0.3862 0.3862 0.8745 0.5680 0.3064
0.5000 0.4756 0.4756 0.2730 0.2730 0
0.5500 0.3862 0.3862 0.4524 0.3688 0.0836
0.6000 0.3089 0.3089 0.6396 0.4015 0.2381
0.6500 0.2419 0.2419 0.5357 0.0410 0.4947
0.7000 0.1841 0.1841 0.0958 0.5169 -0.4211
0.7500 0.1344 0.1344 0.2701 0 0.2701
0.8000 0.0923 0.0923 0 0 0
0.8500 0.0575 0.0575 0 0 0
0.9000 0.0302 0.0302 0.0617 0 0.0617
0.9500 0.0106 0.0106 0 0 0
1.0000 0 0 0 0 0

It is evident now just how systematically the information provided by S's probability asser-
tions is to be valued more highly than that provided by G's. At only two probability assertion
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levels (.05 and .70) by expert S is the amount of information expected from the elicitation of
G's probability greater than that expected from eliciting S's probability after G had asserted
the same level as S.

8 Substantive Conclusions

We began this study presuming that you regard the two experts' probability assessments ex-
changeably, regardless of whether the skull in question is male or female. Moreover we assessed
exchangeably the sequence of probability pairs by the two experts conditionally separately on
the skulls being male or being female. The histograms of probability assertions turned out to
be far from symmetric, however, both for male skulls and for female skulls. The assertions of
expert S appeared to be more informative to you in forecasting than did those of G. Based on
the partial exchangeability structure on the assertion pairs, we learned just how much more to
value the ellicitation of a probability from S than from G. Assessment of the gain in value from
S's assertions relative to G's were formalised in the decision theoretic expectational measure of
risk reduction.

9 Methodological Comments

While the substantial results of this analysis are rather conclusive, our analysis should be recog-
nised in its technical limitations which can be investigated further.

In the �rst place the use of the Dirichlet mixture distributions allows that the computed
results on forecasting probabilities P (M201jdata) are somewhat bumpy, a feature exacerbated
whenever \holes" of probabilty pair categories were not observed occurring in the histogram. It
would be worthwhile to compare the results computed here to those based on more integrated
forms of prior distributions such the tractable forms of special functions or the logistic normal
distribution on the unit-simplex, which allow positive covariance between neighboring categories,
rather than uniformly negatively covariances between categories as is required by the Dirichlet.

A second limitation should be recognised in the sharp speci�cation of the weakening param-
eter value of :3 in formulating the likelihood function (information transfer function) detailing
how observations for male skulls inform us about the experts' judgments on female skulls, and
vice-versa. (This refers to Sections 4.2 and 5.2.) It would be interesting to soften this parameter
speci�cation by mixing it over other reasonable values to study its inuence.

Finally, the 0� 1 loss structure on forecasting errors (no loss if the skull is diagnosed appro-
priately with a probability exceeding 1=2 for male skulls and less than 1=2 for female skulls, and
an equal sized loss for misdiagnosis of either sexed skull should be recognised as appropriate to
the speci�c problem studied here. However for other problems that are structurally similar, such
as medical diagnosis, other forms of loss functions should be admitted, allowing even a di�erent
speci�cation of loss for the doctor and for the patient.
Acknowledgments: Joint work on this project was begun by correspondence while Frank Lad
was supported as a research visitor to University of Perugia during June, 1998.
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