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Abstract

We consider modeling procedures for multiple time series which aim to address

the challenge of providing both a good representation of the structure, and an efficient

parameterization. We first review a method, applied to vector autoregressions of low

order, which uses conditional independence graphs to identify a sparse structural

autoregressive representation. We show by an example how this may be extended to

identify a sparse structural form of an ARMA(1,1) model for a series of seven daily

US dollar term rates. The identified structure reveals the pivotal role of the series of

two year rates, and highlights sources of heteroscedasticity.

Vector autoregressions of high order are widely used to provide an empirical

approximation to multiple time series structure, but the large number of parameters

in these models restricts the possible maximum lag when the series is of moderate

length. We present, and illustrate by example, a simple extension of the vector

autoregression in which the predictors are smoothed functions of the past variables.

This allows information from higher lags to be used in a model of relatively low order,

and can improve forecasts at higher lead times.
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1 Introduction

The pth order vector autoregressive model, or VAR(p) model, for a stationary, m dimen-

sional, time series xt = (xt,1, xt,2, . . . , xt,m)′, is characterized statistically by the fact that

the prediction of xt from all past values xt−1, xt−2, . . . , is a linear combination of the finite

set xt−1, xt−2, . . . , xt−p. In some practical applications it is clear that this provides a very

good approximation to the structure of the series for some relatively small value, say 1, 2

or 3, of the order p. In other cases it may only provide a good approximation by using a

relatively high order, in which case the need to estimate a very large number of coefficients

will adversely affect the application of the model to prediction.

In this paper we first consider the case of low order autoregressions and how we might

find an efficient, i.e. sparse, parameterization of the model. We have two reasons for seeking

an efficient parameterization. Firstly, even in the case of a low order model, reductions

in the number of coefficients can reduce prediction error variance, particularly when the

dimension m is large. Secondly, a parameterization which is parsimonious in its use of

coefficients more strongly supports a causal interpretation of that representation. Used

with other relevant background knowledge it may assist in the understanding of the true

mechanisms giving rise to the series. We will present an approach to this problem using

structural VAR models, that permit contemporaneous dependence between the series. We

show how methods based on conditional independence graphs between contemporaneous

and lagged values, may be used for identifying parsimonious models of this form.

There are many reasons why a vector autoregressive moving average model, with rel-

atively low autoregressive and moving average orders p and q, the VARMA(p,q) model,

may be appropriate for a series. For example a VAR(1) process with added observation

error has a VARMA(1,1) representation. Also, if we only observe m − 1 components of

an m dimensional VAR(1) process, they will, in general, be represented by a VARMA(1,1)

model. The VARMA process is characterized statistically by the fact that the prediction

x̂t of xt from all past values xt−1, xt−2, . . . , is in fact a linear combination of the finite set

of variables xt−1, xt−2, . . . , xt−p and et−1, et−2, . . . , et−q, where et is recursively defined as

the prediction error, or linear innovation, xt − x̂t. We shall show how the methods based

on conditional independence graphs may be extended to structural VARMA model, using

an application to a VARMA(1,1) model for seven daily US dollar term rates.

There has been much research into methods for finding simplifying structure of mul-
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tivariate time series, based on VAR and VARMA models forms. For example Box and

Tiao (1977) consider a linear transformations of the given series to a new set of series that

have a particular canonical structure that reflects their predictability. Peña and Box (1987)

propose a simplifying structure for time series in terms of a smaller number of factor series.

The reduced rank VAR models of Ahn and Reinsel (1988) provide a more parsimonious

parameterization by identifying structure in the parameter matrices of VARMA models.

Tiao and Tsay (1989) propose a method of identifying a transformation of the series that

results in scalar component models. Collectively, these determine a vector ARMA struc-

ture, but presented in a form in which any simplifying structure is captured by component

models of lower order.

Despite these advances, for empirical applications, and particularly in forecasting, it is

still usual to use a high order VAR model to approximate the structure of multiple time se-

ries. These models are only asymptotically correct, and for consistent estimation, the order

used must increase with the length of series available. The estimation of the large number

of parameters in such a higher order model, adversely affects its predictive performance.

Doan, Litterman and Sims (1984) address this problem by using a Bayesian method for

estimating the VAR. We shall use an approach that retains a low order model, but still

incorporates past values at higher lags into the predictor. We do this by constructing a

standard set of predictors which are exponentially smoothed combinations of past values.

In the final part of this paper we explore this approach; a generalization of the standard

VAR(p) model which requires the user to select a single smoothing constant. It has the

potential to improve the forecasting ability of the VAR model, particularly at higher lead

times.

2 The Structural VAR model and its graphical rep-

resentation.

The VAR model for which we seek an efficient parameterization has a structural form

which allows for contemporaneous dependence through a matrix coefficient Φ0:

Φ0xt = d + Φ1xt−1 + Φ2xt−2 + · · · + Φpxt−p + at. (1)

One requirement of this model is that the variance matrix D of at is diagonal. A further

condition, on Φ0, is that it represent a recursive (causal) dependence of each component
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of xt on other contemporaneous components. This is equivalent to the existence of a re-

ordering of the elements of xt such that Φ0 is triangular with unit diagonal. The model

may be transformed to canonical form by dividing through by Φ0, in which form xt is

expressed as a linear combination xt−1, xt−2, . . . , xt−p with an error term et = Φ−1
0 at. This

is the linear innovation, having variance Σ related to D by

Σ−1 = Φ′
0D

−1Φ0. (2)

The model (1) is not unique, in that the transformation to the canonical form, which is

unique, may be reversed by the choice of any matrix Φ0 which satisfies (2). Each possible

ordering of the series gives a different form of (causal) structural model. Our objective is

to discover such an ordering which gives a model representation (1) requiring a relatively

small number of coefficients. This will not be possible in all cases. The method we use to

explore the possibilities will reveal this to us.

The model (1) may be represented by a directed acyclic graph (DAG) in which the

components of xt, xt−1, . . . , xt−p form the nodes, and causal dependence is indicated by

arrows linking nodes. The nature of the model is that all arrows end in nodes representing

the contemporaneous variables on the left hand side of (1). Some arrows will start from the

past, and some from other contemporaneous variables. As an illustration, we reproduce

a structural model presented by Reale and Tunnicliffe-Wilson (2001). The data were 9

years of monthly values of three variables of the Italian monetary system; the re-purchase

agreement interest rate, the average interest rate on government bonds, and the average

interest rate on bank loans. The DAG representing the chosen structural VAR(2) model

for these series is shown in Figure 1. The numbers attached to the links are the coefficients

in the linear predictor for the corresponding contemporaneous variable.

These coefficients are estimated by single equation ordinary least squares (OLS) re-

gression. This is fully efficient under our working assumption, that the vector series is

Gaussian. Our methods are also applicable, and the properties of the estimates given by

the regression are reliable, under wider conditions, such as et being I.I.D., presented for

example in Anderson (1971).

We now describe the exploratory tools used to identify the model in this example. The

first step is to identify the overall order p of a VAR model for the series. The second

and central step is to construct a sample conditional independence graph (CIG) for the

variables xt, xt−1, . . . , xt−p which form the nodes of the graph. Being based upon statistical
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Figure 1: The DAG representation of the structural VAR(2) identified for the Italian monetary
variables.

correlations, the only causality which can be deduced from this is that indicated by the

arrow of time. Nevertheless, it may serve to suggest the direction of dependence between

contemporaneous variables by admitting only a small number of possible simple DAG

interpretations. The corresponding structural VAR models are then fitted and refined by

regression and a model selection criterion such as AIC, Akaike (1973), used to select the

best.

The statistical procedures are based on a data matrix X which in the general case

consists of m(P + 1) vectors of length n = N − P , composed of elements xi,t−u, t =

P + 1 − u, . . .N − u, for each series i = 1, 2, . . . , m, and each lag u = 0, 1, . . . , P , for some

chosen maximum lag P . In the first step of overall order selection, for each order p we

fit, by OLS, the saturated structural VAR regressions of the m contemporaneous (lag 0)

vectors on all the vectors up to lag p. Using the sums of squares Si from these regressions

we form the AIC as n
∑

logSi + 2k, where k = pm2 + m(m − 1)/2 is the total number

of regression coefficients estimated in the regressions. For the saturated model the causal

order of the contemporaneous variables does not affect the result. Each one is included

only as a regression variable for a subsequent variable in the chosen ordering. We then

select the order p which minimizes the AIC. In this way we selected the order p = 2 for

the Italian monetary series, which is in agreement with that found in a previous analysis

by Bagliano and Favero (1998).

The next step is to construct the sample CIG for the chosen model order p. This CIG

consists of the same nodes as those shown in Figure 1, representing the variables up to lag
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2. In general a CIG is an undirected graph, defined by the absence of a link between two

nodes if they are independent conditional upon all the remaining variables. Otherwise the

nodes are linked. In a Gaussian context this conditional independence is indicated by a

zero partial autocorrelation:

ρ (xi,t−u, xj,t−v|{xk,t−w}) = 0, (3)

where the set of conditioning variables on the right is the whole set up to lag p, excluding

the variables on the left. As shown by Whittaker (1990), the set of all such partial correla-

tions required to construct the CIG is conveniently calculated from the inverse W , of the

covariance matrix V of the whole set of variables, as

ρ (xi,t−u, xj,t−v|{xk,t−w}) = −Wrs/
√

(WrrWss) (4)

where r and s respectively index the lagged variables xi,t−u and xj,t−v in the matrices V

and W . In the wider linear least squares context, defining linear partial autocorrelations

as the same function of linear unconditional correlations as in the Gaussian context, (3)

still usefully indicates lack of linear predictability of one variable by the other given the

inclusion of all remaining variables.

To estimate the CIG we use in place of V the sample covariance matrix V̂ formed from

the data matrix X, but including only lags up to p. We then need a statistical test to

decide which links are absent in the graph. We are only concerned with links between

contemporaneous variables and between contemporaneous and lagged variables, because

these are the only ones that appear in the structural model DAG. The test we use is to

retain a link when |ρ| > z/
√

(z2 + ν)) ≈ z/
√
n− p, where z is an appropriate critical

value of the standard normal distribution. This derives from two results. The first is the

standard, algebraic, relationship between a sample partial correlation ρ̂ and a regression t

value given by ρ̂ = t/
√

(t2 + ν) (see Greene, 1993,p 180). The second is the asymptotic

normal distribution of the t value for time series regression coefficients, given for example

by Anderson (1971, p211). Of course we should properly apply multiple testing procedures

when applying the test simultaneously to all sample partial autocorrelations, but that is

not a practical option. Our attitude is similar to that advocated by Box and Jenkins

(1976) for the identification, for example, of autoregressive models using time series partial

autocorrelations. We use these values to suggest possible models; after fitting these we

apply more formal tests and diagnostic checks to converge on an acceptable model.
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To return to our example, the critical value for significance at the 5% level is 0.207.

Figure 2 shows the appropriate subgraph of the CIG of the lagged variables constructed

using this threshold, with the addition of two links, x3,t − x1,t−1 and x3,t − x2,t−2 shown by

broken lines. These are included because their partial autocorrelations are very close to

the threshold. The series are only of moderate length so that some additional power for

detecting non-zero partial correlations is justified. We next proceed to determine which
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3,t-1
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Figure 2: The CIG estimated for the Italian monetary series.

DAG representations are consistent with the CIG in (2), or are nearly so, allowing for

statistical uncertainty. For this purpose we use, in an inverse manner, the moralization

rule of Lauritzen and Spiegelhalter (1988), by which we can form the CIG that would

arise from any hypothesized DAG interpretation. This rule, is to insert an undirected link

between any two nodes a and b for which there is a node c with directed links both a → c

and b → c. In this case c is known as a common child of a and b, and the insertion of a new,

moral, link as marrying the parents. After doing this for the whole graph the directions

are removed from the original links.

Of course we attach the arrow of time to links from the past to the present, so the

challenge is to clarify the directions of the recursive ordering of contemporaneous variables.

In this example the main point to note is the clear absence of a link x2,t−1−x3,t. A moral link

would be expected here unless we assign the direction between contemporaneous variables:

x2,t → x3,t, which also opens up the possibility that x2,t − x3,t is a moral link. There is

no similar clear indication of the remaining choice of contemporaneous links, though the

exclusion of directed cycles, such as x2,t → x3,t → x1,t → x2,t, limits the possibilities.
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We do note however that x2,t−1 − x1,t might be explained as a moral link, by assuming

the direction x1,t → x2,t. By such considerations we were led to the model represented

in Figure 1. By the AIC this model is judged better than the saturated model, with 11

fewer parameters. Details are given in Reale and Tunnicliffe-Wilson (2001) of one other

model for these series which shared this property but which required one more parameter.

Moralization of Figure 1 in fact yields a CIG which differs from Figure 2 by the inclusion of

extra links x3,t−1−x1,t, x3,t−2−x1,t, x2,t−2−x2,t and x2,t−2−x1,t, which were not detectable

from the length of data available. Our general conclusion is that inspection of Figure 2

lead us swiftly to the specification of a good structural model for these series; one which

on the evidence of the AIC represents the structure as well as the full VAR(2) model with

fewer than half the parameters, and with improved predictive ability.

3 Structural ARMA modeling - an example

We here present a novel extension to structural ARMA modeling, of the methods intro-

duced in the previous section . We do this by use of a single example. We consider a

series of seven daily dollar term rates over the period from 30th November 1987 to 12th

April 1990, excluding non-trading days. The maturity terms are 6 month, 1, 2, 3, 5, 7

and 10 years. Figure 3 illustrates just the six month, two year and ten year rates. The

movements in the series are clearly highly correlated . Our starting point is a saturated

canonical multivariate ARMA(1,1) model characterized by 98 ARMA coefficients and 21

correlations between the innovation series. This had been previously estimated for these

seven series in order to provide a simulation model for assessing financial trading over a

long period. The model is of the form

xt = Φ1xt−1 + et − Θ1et−1, (5)

where et is Gaussian white noise with covariance matrix Σ. The parameters were estimated

by maximum likelihood using the method of Tunnicliffe Wilson (1973) to maximize the

concentrated likelihood − 1
2
n log det Σ̂, where Σ̂ is the sample covariance matrix of the

innovations series et. The innovations are regenerated from the mean corrected series, for

given values of the coefficient matrices Φ1 and Θ1, by the recursion for t = 1, 2, . . .:

et = xt − Φ1xt−1 + Θ1et−1. (6)
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Figure 3: Six-month (solid line), two year (broken line) and ten year (dotted line) dollar term
rate series.

Because data was plentiful the problem of transient non-stationarity in the series et due to

lack of knowledge of e0 was dealt with by setting e0 = 0, discarding the first 39 values of

et and using just the remaining 600. The length n therefore refers to this number.

Our plan is to identify and estimate a structural multivariate ARMA(1,1) model:

Φ0xt = Φ∗
1xt−1 + at − Θ∗

1at−1, (7)

where the variance matrix D of at is diagonal. The equivalence between (5) and (7) is

given by Φ∗
1 = Φ0Φ1, Θ∗

1 = Φ0 Θ1Φ
−1
0 , at = Φ0et and Φ0V Φ′

0 = D. The same recursive

(causal) structure for Φ0 is assumed as for the structural VAR model (1), and our aim

again is to identify a model of the form (7) in which the matrices Φ0 and Φ∗
1 are sparse.

Consider (7) as defining a directed acyclic subgraph in the 3m variables consisting of

(the components of) xt, xt−1 and at−1 with independent errors at. Because at−1 is not

defined until we have identified the structural model and know Φ0, we cannot simply apply

our graphical model identification procedure to this set of variables. We do however know

the lagged canonical residuals et−1 accurate to Op(n
− 1

2 ), as a result of estimating (5). We
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can then achieve our aim in two steps. In the first we apply the procedure to the data

vectors corresponding to the component variables of xt, xt−1 and et−1. We can replace at by

et because this is a linearly equivalent set of variables. In defining the partial correlations

it will not therefore affect the links within components of xt and between these and the

components of xt−1. Once these links are defined, then so are the structural residuals at.

This is the main step because it identifies the causal ordering within xt. In the second step

the links between xt and at−1 can be identified by subset regression if further parsimony is

sought.

Table 1: Partial correlations for structural ARMA modeling.

xt,1 xt,2 xt,3 xt,4 xt,5 xt,6 xt,7

xt,1 1.000
xt,2 0.720 1.000
xt,3 0.021 0.113 1.000
xt,4 0.038 0.017 0.689 1.000
xt,5 0.019 -0.019 0.154 0.270 1.000
xt,6 -0.044 -0.013 -0.050 0.042 0.544 1.000
xt,7 0.038 0.006 -0.055 0.010 0.115 0.658 1.000

xt−1,1 0.892 -0.660 0.009 -0.034 -0.023 0.022 -0.030
xt−1,2 -0.619 0.846 -0.110 -0.025 0.047 -0.010 0.008
xt−1,3 0.018 -0.086 0.654 -0.392 -0.172 0.108 -0.011
xt−1,4 -0.040 -0.002 -0.396 0.570 -0.121 -0.085 0.029
xt−1,5 -0.234 -0.020 -0.135 -0.168 0.732 -0.393 -0.104
xt−1,6 0.027 -0.022 0.042 -0.040 -0.426 0.820 -0.557
xt−1,7 -0.021 -0.002 0.044 -0.003 -0.135 -0.606 0.957

xt,1 x xt,3 xt,6 xt,7

xt-1,7xt-1,6xt-1,5xt-1,4xt-1,3xt-1,2xt-1,1

txt,2 xt,4 xt,5

Figure 4: The CIG derived from Table 1 for structural ARMA model identification.
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For this example we therefore construct the data matrix X from the 21 data vectors

corresponding to xt, xt−1 and et−1, and from this form the corresponding sample partial

autocorrelation matrix. The elements of this are shown in Table 1 for the links, within xt

and between xt and xt−1, of interest in identifying the contemporaneous causality. Figure

4 shows the corresponding sub-graph of the CIG, constructed using a significance level of

5% corresponding to a critical value of 0.081. We have used broken lines to indicate the

three most marginal links.

We now note a property of this graph, that the subgraph linking the components of

xt is identical with the CIG of the linear innovations series et from model (5), which is

shown in Figure 5. This is because the covariance structure of et is precisely the covariance

t,1 t,3 t,6 t,7tt,2 t,4 t,5e e e e e e e

Figure 5: Conditional Independence Graph derived for the dollar term rate innovation series.

structure of xt conditioned on the past variables used to predict it; in this case xt−1 and

et−1. The causal structure of et can be studied in isolation and this is a theme of Swanson

and Granger (1997) who suggest that a linear causal structure may be appropriate in many

cases. In Reale and Tunnicliffe Wilson (2001) the possible DAG interpretations of Figure

5 are explored as an illustration of graphical modeling in the standard case of multivariate

data without lagged structure. They found in this case 28 models which were statistically

indistinguishable interpretations, and estimated one of them, shown in Figure 6. The

t,1 t,3 t,6 t,7tt,2 t,4 t,5
0.890.520.81

0.09

0.80 0.93

0.10

0.82e e e e e ee

Figure 6: A directed graph which explains the independence graph shown in Figure 5, with the
regression coefficients associated with the links.

structural error vector at resulting from this estimation should have diagonal covariance

matrix, so inspection of its sample correlation matrix provides an initial diagnostic check of

the fitted DAG. In this example, Reale and Tunnicliffe Wilson (2001) found clear evidence

of model inadequacy in the form of a significant cross-correlation between the structural
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residuals a1,t and a3,t. Introducing a further directed link, from the innovation e3,t to e1,t

in Figure 6, rectified this inadequacy.

We can build upon the results of this innovation series modeling as we move to struc-

tural model identification based upon the CIG of Figure 4. We shall hope that the extra

information in this figure will help to distinguish among, and reduce, the various DAG

interpretations possible for Figure 5, considered as an isolated subgraph. We shall assess

any tentatively identified model by regressing each component of xt on other specified el-

ements of xt and xt−1, and all elements of et−1, forming the deviance as before. When

diagnostic checking suggests that an acceptable structural model of the form (7) has been

found, it will then be re-estimated by maximum likelihood for full efficiency, including, at

least initially, all coefficients of the lagged terms at−1. There is not space to give a com-

xt,1 x xt,3 xt,6 xt,7

xt-1,7xt-1,6xt-1,5xt-1,4xt-1,3xt-1,2xt-1,1

txt,2 xt,4 xt,5

Figure 7: The first DAG identified for the structural ARMA model.

plete account of our model exploration, but the strategy is to consider which directions of

contemporaneous dependence are compatible with the relative sparseness of links from the

past, having considered the implications of moral linkage. We first considered the ordering

shown previously in Figure 6. One reason for this is that x3,t is a convincing candidate

from this Figure as a pivotal variable, the influence from which then spreads out to the

other variables. Using this ordering we selected the lagged variables from those indicated

by the links in Figure 4. This resulted in the model represented in Figure 7 and referred

to as A in Table 2, which presents the evidence from the fitting criteria relative to the

saturated model.

The link xt−1,3 → xt,1 had also been introduced as a possibility along with xt,3 → xt,1

following the finding for the innovations model that et,3 → et,1 was required and both

are moderately significant. Other than these, 9 of the links from lagged variables which
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Table 2: Comparisons of structural ARMA models.

reduction in increase in relative relative relative
model no. of pars. deviance AIC HIC SIC

A 44 74.71 -13.29 -88.60 -206.75
B 44 58.55 -29.45 -104.76 -222.91

MLE of B 44 83.17 -4.83 -80.14 -198.30

appear in Figure 4 also occur in the model and 8 of the other 9 can be accounted for by

moralization. The remaining link, xt−1,3 → xt,6 was found to be quite insignificant. This

model is preferable to the saturated model according to all three criteria in Table 2.

Although this is a good model, we explore other possible models which are similarly

compatible with the CIG, in an attempt to discover how precisely this structural ordering

is determined. We first consider model B with a reversal of ordering between variables

four and five as shown in Figure 8. The results in Table 2 show that a deviance gain of

0.119
(4.2)

0.551
(25.3)

0.425
(17.7)

0.748
(25.9)

0.531
(15.7)

0.800
(45.6)

0.933
(90.8)

0.101
(2.8)

0.817
(21.7)

0.991
(179.5)

-0.742
(-24.8)

0.987
(187.3)

-0.519
(-15.1)

-0.431
(-14.7)

(187.4)
0.991

(21.7)
0.784

-0.327
(-11.1)

-.789
(-44.4)

0.980
(161.2)

-0.025
(-2.7)

-0.868
(-37.6)

0.959
(81.8)

(-3.6)
-0.131

-0.749
(-18.7)

0.966
(112.7)

-0.108
(-3.7)

xt,1 x xt,3 xt,6 xt,7

xt-1,7xt-1,6xt-1,5xt-1,4xt-1,3xt-1,2xt-1,1

txt,2 xt,4 xt,5

Figure 8: The final DAG identified for the structural ARMA model.

approximately 16 is achieved with no net change in the number of parameters. We have

here a clear indication of model preference which was not possible by consideration of

the innovations alone. The residual correlation matrix is shown in Table 3. The largest

value is 0.1053 between variables 5 and 6. All the values in this table are close to those

of the corresponding sub-model fitted to the innovation series, so no improvement can

be expected by introducing further lagged variables. A similar reversal of the ordering

between variables 6 and 7 drastically increased the deviance and is not otherwise reported.

However, a reversal of order between variables 1 and 2, i.e. a replacement of xt,2 → xt,1
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Table 3: Residual correlation matrix for the structural ARMA model.

1 1.000
2 -0.001 1.000
3 0.000 -0.001 1.000
4 0.040 0.066 0.000 1.000
5 0.035 -0.036 0.000 -0.001 1.000
6 -0.014 -0.034 -0.056 0.065 0.105 1.000
7 0.036 0.044 -0.024 0.011 0.045 -0.004 1.000

1 2 3 4 5 6 7

by xt,1 → xt,2 and xt−1,2 → xt,1 by xt−1,1 → xt,2, increased the deviance by only 0.5, so

the two possible orderings are statistically indistinguishable. Our conclusion is that model

B is best, with the MLEs of the coefficients (t values) of the links shown in Figure 8 and

the likelihood criteria for the maximum likelihood estimation of this final model shown in

Table 2. Series 3, the two year rate, is the pivotal variable, but series 1 and 2 appear to

be only weakly linked to the remainder, and their ordering is not critical. The number of

autoregressive coefficients shown in Figure 8 is 26, compared with 70 for a saturated model

and this reduction is acceptable according to all the criteria shown.

The contemporaneous recursive ordering defines the residual series at as orthogonal

components of the residual innovations et. The variances of these orthogonal innovations

are shown in Table 4 in comparison with the canonical variances of et. Apart from the

pivotal series xt,3, the recursive modeling accounts for a substantial fraction of the canonical

innovation variance, with xt,4, xt,6 and xt,7 being most nearly determined.

Table 4: Variances of canonical and orthogonal innovations (times 10000).

Series 1 2 3 4 5 6 7
Canonical variance 58.5 57.6 60.8 53.9 49.5 45.9 41.5

Orthogonal variance 20.9 41.7 61.2 3.9 11.3 3.2 2.7

The components xt,1 and xt,2 are much less precisely dependent upon the remainder.

The orthogonal innovations also appear to reflect different sources of heteroscedasticity. In

particular, as shown in Figure 9, the absolute values of the canonical residuals for the five

year rate series, show noticeable autocorrelation at low lags which is not evident in the
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absolute canonical residuals for the same series.

Figure 9: The sample autocorrelations of the absolute canonical residuals and the absolute
stuctural residuals, showing evidence of heteroscedasticity in the latter. The plot shows the two
standard error limits about zero for the sample autocorrelations of white noise.

In this example we have therefore achieved our aim of identifying a parsimonious model

form with no loss of predictive ability. We have also found a convincing representation of

the flow of information both from the past to the present, and between contemporaneous

values, with the two year rate variable being of greatest importance and the five year rate

of secondary importance. The sources of heteroscedasticity are also better identified in this

model.

4 An extension of vector autoregression

The models we now present are an extension of the standard VAR model, to be used in a

similar manner as an empirical tool, primarily for the purpose of forecasting, and secondly

for characterizing the series properties by estimating their joint spectrum.

The models are, formally, a sub-class of the vector ARMA models. However, the

moving average part is of a fixed and simple form, requiring the specification of a single

smoothing coefficient θ. The models were first motivated by a continuous time model

presented in the univariate case by Belcher, Hampton and Tunnicliffe Wilson (1994). The

idea is to use a set of smoothed functions of past values of the series as linear prediction

variables. If θ = 0 these functions of the past reduce to the usual lagged values of the

series and the model simplifies to the standard vector autoregression. The discrete time
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model is described in the univariate case by Morton and Tunnicliffe Wilson (2000a), and

an application of the continuous time version to the bivariate case given in Morton and

Tunnicliffe Wilson (2000b). They call the extended autoregressions ZAR models. Here,

we present the discrete time form of the model for multiple time series showing how it can

be fitted and used for forecasting. These VZAR models are applied in a similar manner to

the high order VAR models, with the aim of obtaining a good approximation to the second

order structure of the series. Examples in the univariate case show that, for a given order

of model, a much better approximation may be obtained by these extended models than

by a simple autoregression, and the improvement is not very sensitive to the choice of θ.

Of course, if the series is truly represented by a low order autoregression, then a higher

order will be required within the class of extended models.

The smoothing is based upon powers W k of an operator W applied to the time series

xt, where W is defined, in terms of the backward shift operator B, by

W =
B − θ

1 − θB
. (8)

Because W is a unimodular transformation, having unit gain at all frequencies, the se-

ries W kxt all have the same spectrum and autocovariance structure as xt, when that is

stationary. We form the series x(k)t = W kxt recursively for k = 1, 2, . . . using

x(k)t = −θx(k − 1)t + x(k − 1)t−1 + θx(k)t−1 (9)

taking x(0)t = xt. Because x(k)t includes a component (−θ)kxt, we will remove this to

form smooth combinations of past values alone, as

x̃(k)t = x(k)t − (−θk)xt =
[
W k − (−θ)k

]
xt. (10)

For example x̃(1)t = (1−θ2)(1−θB)−1xt−1, which is proportional to a lagged exponen-

tial weighted moving average (EWMA), and x̃(2)t = (1−θ2){(1+θ2)B−2θ}(1−θB)−2xt−1.

The plots in Figure (10) show the weights which are attached to past values by x̃(k)t in the

case θ = 0.5 and for k = 1, 2, . . . , 5. Regression upon exponentially weighted combinations

of past values was used by Bray (1971) for prediction of unemployment from the rate of

growth of GDP. His regressors were obtained by successive application of EWMAs with

increasing values of the smoothing parameter so that his weights were all positive. When

applying (9) to a time series sample x1, x2, . . . , xn we will start from t = 2 and will need to

choose a value of x(k)t for t = 1. Because the gain of the operator W is 1 at all frequencies,
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Figure 10: From the top down, the weights attached to past values by the operation defined in
(10), using θ = 0.5, and for orders k = 1, 2, . . . 5.

a natural choice is x(k)1 = x(k − 1)1 = . . . = x1, which is equivalent to assuming that

x(k)t = x1 for all t ≤ 0. In Figure (11) we illustrate the application of powers of W and W 4

to one of a set of three time series which we shall use in a subsequent example to illustrate

the estimation and forecasting of the model. The model we fit to our vector time series xt

is the regression

xt = c + ξ1 x̃(1)t + ξ2 x̃(2)t + · · · + ξp x̃(p)t + et (11)

in which ξk are matrix coefficients. This is a canonical form of the model, in which the

errors et have covariance matrix Σ. Provided these coefficients are full, i.e. there are

no elements constrained to be zero, the parameters can be estimated with full efficiency

by OLS applied to the separate single equation regressions for each element of xt. A

structural model which includes contemporaneous regressors, and having errors at with

diagonal covariance matrix D could also be fitted. This is exactly equivalent to (11) if

there are no parameter constraints. We shall use the canonical form because prediction

from the past is our aim. The models naturally form a nested class as p increases.

We can overcome concern about the effects on the regression of the transient errors

at the start of x(k)t by introducing extra terms in (11) which allow for these effects.

We suggest that a maximum model order P is chosen. The data matrix for the regres-
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Figure 11: From the top down, a series together with the series resulting from applying the
operation defined in (10) for orders k = 1 and 4, and using θ = 0.5.

sion consists of the m(P + 1) vectors x(k)t i, t = 1, 2, . . . , n, for k = 0, 1, . . . , P and

i = 1, 2, . . . , m. We augment this with the P vectors of impulse responses of the oper-

ators W k for k = 1, 2, . . . , m. These are the responses illustrated in (10), and are readily

generated using (9), but starting from t = 0, and setting xt = 0 for all t except x0 = 1. The

values of x(k)t so generated for t = 1, 2, . . . , n then comprise the required impulse response

vectors. We advise that these vectors are included, whatever order p ≤ P of model is fitted,

in each of the single equation regressions of (11). It is in theory only necessary to include

impulses corresponding to W k for k ≤ p. The reason for our advice is for comparability

with standard vector autoregression. In the case θ = 0, the inclusion of the impulses is

equivalent to dummy variables for the effects in lagged regression of unknown values xt for

t = 0,−1, . . . , P − 1. The net effect of this is to use only regression vectors with elements

of xt−k for t = P +1, P +2, . . . , n. The advantage of using fixed P when fitting any order p

of model up to P , is that the dependent vector in the regressions remains the same, rather

than reducing in length with increasing p. This is better for comparing the prediction

error variances from models of increasing order. We shall use a criterion such as AIC,

Akaike(1973), HIC, Hannan and Quinn (1979) or SIC, Schwarz (1978) for comparing the

models, with the deviance (minus twice the log likelihood) defined as n log Σ̂ and penalized

by 2pm2 for the AIC, 2pm2 log log n for the HIC and pm2 log n for the SIC. The estimate Σ̂

is the sample value formed from the residuals êt without correction for parameter degrees
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of freedom.

5 Properties of the ZAR models

Before we show the example we give some further properties of the new models. First,

consider the regression model (11) in the case when xt is a weakly stationary vector process.

Because we can invert (8) to get B = (W + θ)/(1 + θW ), any combination of past values

Bkxt, by expansion of Bk in terms of W k, can also be expressed as a combination of

the regressors x̄(k)t. The VZAR models therefore have the same asymptotic predictive

potential as the class of VAR models.

Secondly, we write the model in the form.

ξ(W )(xt − µ) = (ξ0 − ξ1W − ξ2W
2 − · · · − ξpW

p)(xt − µ) = et. (12)

where ξ0 = 1 +
∑

ξk(−θ)k. We have here reversed the corrections of W k given in (10), and

gathered all these into the coefficient ξ0. The net coefficient of xt from all the terms in (12)

is still therefore 1, which is the value of ξ(W ) evaluated at W = 1. If we now substitute

W = (B − θ)/(1 − θB) into (12) and simplify, we obtain:

φ(B)(xt − µ) = (1 − φ1B − φ2B
2 − · · · − φpB

p)(xt − µ) = (1 − θB)pet. (13)

The matrices φk are the usual autoregressive coefficients of a VARMA model, but the

operator (1 − θB)p is a scalar moving average, acting on the error vector et which we now

assume is white noise. Provided therefore, that detφ(B) has no zeros for B < 1, model

(13), and hence also model (12), represents a weakly stationary VARMA process with

mean µ. Now (8) represents a Möebius transformation, of the unit disk to itself, so the

stationarity condition may be equivalently expressed by the requirement that det ξ(W ) has

no zeros for W < 1. The coefficients ξ−1
0 ξk therefore occupy the same parameter space as

that of a standard VAR.

Other, spectral, properties of the model are given for the univariate case by Morton and

Tunnicliffe Wilson (2000a), and these readily generalize to the multivariate case. A final

property of the model, which is not presented elsewhere, is the state space representation,

given for the mean corrected variables by



Θ I 0 · · ·
. . .

. . .
. . .

. . .

· · · 0 Θ I
ξ0 −ξ1 · · · −ξp







x(0)t

x(1)t
...

x(p)t




=




I Θ 0 · · ·
. . .

. . .
. . .

. . .

· · · 0 I Θ
0 0 · · · 0







x(0)t−1

x(1)t−1
...

x(p)t−1




+




0
...
0
et



. (14)
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The model (12) appears in the last line of this representation, with the previous lines

recursively defining the variables x(k)t. The equation should be divided through by the

matrix on the left, to bring it into the standard form. The observation equation is simply

the selection of the first m state variables. These state equations are not minimal, but

there is little to be gained by reducing them to a minimal representation, provided the

square root form of the Kalman filter is used to avoid any problem with exactly estimated

states. It is possible to use (14) with the Kalman filter to derive the exact likelihood of the

model, avoiding the estimation of the transients. The estimation by regression is however

very straightforward, and the most useful application of (14), again with the Kalman filter,

is to multi-step forecasting.

6 An example of modeling three quarterly series.

The series which we use for illustration are three USA macro-economic indicators, the

treasury bill rate, the GDP in current dollars, and the unemployment rate. This is a

selection of the variables used by Doan, Litterman and Sims (1984) in their Bayesian

autoregressive model. We use the quarterly seasonally adjusted values from 1959 quarter

1 to 2000 quarter 2. For estimation we will exclude the final three years of data, retaining

them for illustration of out of sample forecasts. We apply the logarithmic transformation

to our three series before fitting the model, and we also difference the second series. Figure

12 shows plots of the series.

We first describe the result of fitting a standard vector autoregression to the three

series. The AIC selected a model order 8, although the HIC selected order 3. Because we

are attempting to approximate the structure of the series for the purposes of forecasting,

and do not suppose that there is a true finite order, the AIC is the more appropriate

criterion. We did examine the results from fitting the order 3, but the forecasts did not

follow the series at all well. The results of fitting the model and extrapolating the final 3

years of data, from 1997 Q3 to 2000 Q2, are shown in Figure 13.

By comparison, the order chosen for the ZAR model, using θ = 0.5, was 5. In fact this

was the first minimum and the AIC reduced to a lower value at lag 9 and continued to

reduce. The HIC indicated order 2. The forecasts from the ZAR(5) model are shown in

Figure (14).

One can only draw limited conclusions from one example, and our aim is mainly to

21



Figure 12: Three USA macro-economic indicators used for the model example. All series consist
of quarterly values from 1959 Q1 to 2000 Q2. The first is the interest rates, the second is the
quarterly change in the logarithm of the GDP and the third is the unemployment rate.
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Figure 13: Out of sample forecasts of the three USA macro-economic indicators over the period
from 1997 Q3 to 2000 Q2, with further forecasts to 2003 Q2, obtained using a standard VAR(8)
model.

Figure 14: Out of sample forecasts of the three USA macro-economic indicators over the period
from 1997 Q3 to 2000 Q2, with further forecasts to 2003 Q2, obtained using the vector ZAR(5)
model.
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compare and contrast the two models. Although we do not show them, we remark first

that the model residuals and their sample autocorrelations were generally similar, showing

no clear preference for one model. However, the lower AIC was for the ZAR model, by

17.0, and a within sample forecasting comparison showed that at lead time 6 the ZAR

model had lower mean square forecast error, by 35%, 8% and 26% respectively, for all

three series. Before commenting on the out of sample forecasts, we draw attention also

to Figure 15, which shows forecasts produced by a continuous time ZAR model of order

4. This was estimated by maximum likelihood, using the Kalman filter to evaluate the

likelihood. In this case, the logarithms of the GDP series were used without differencing

and the forecasts are shown of the original values of this series. The error limits shown on

all the forecasts represent 95% confidence.

The main difference in the out of sample forecasts is that both the discrete and contin-

uous ZAR models show the unemployment continuing to decrease over the last three years.

The almost continuous decline of unemployment over the last 7 or 8 years, associated with

a continuing healthy economy, has appeared to suggest a structural break in the normal

pattern of economic cycles. However, the ZAR models manage to forecast this continuing

decline, on the basis of estimation from data up to 1997 quarter 2. They do however

predict a reversal around the end of 2000. By contrast with the ZAR model, the standard

VAR model forecasts show little movement at higher lead times.

Figure 15: Out of sample forecasts of the three USA macro-economic indicators over the period
from 1997 Q3 to 2000 Q2, obtained using the vector CZAR(4) model.

As Morton and Tunnicliffe Wilson (2000a) point out, the ZAR model can achieve a

finer resolution of the spectrum at lower frequencies, and this can result in improvements

to forecast accuracy at higher lead times. We show some of the spectral properties of the

ZAR(5) and AR(8) models in Figures (16) and (17) respectively. We display the spectral

densities of the interest rate and unemployment rate series and the coherency between
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them. These reflect a strong dependence at very low frequencies and around frequencies

associated with the five-year economic cycle. The ZAR model resolves some of the features

more clearly. In fact there is evidence of spectral features at frequencies corresponding to

periods of 5, 10 and 2.5 years, the last of these being clear also in the growth rate spectrum

which we do not show.

Figure 16: The spectra of the interest rate series and unemployment rate series, together with
the coherency between the series, as estimated by the vector ZAR(5) model.

Figure 17: The spectra of the interest rate series and unemployment rate series, together with
the coherency between the series, as estimated by the vector AR(8) model.

There are still many questions to be resolved regarding the ZAR model, for example

the appropriate choice of the parameter θ in any given example. There may be dangers in

over-fitting the low frequency structure of the series if θ is chosen too large. We require

order selection criteria which are reliable and also assess the forecasting ability of the model

at higher lead times. The example we have shown does however suggest that this new class

of models can achieve real improvements in forecast accuracy.

7 Conclusion

We have presented two new directions of development in multivariate time series modeling,

with real examples to demonstrate their value. We hope they will provide useful additions

25



to the range of modeling methods for multivariate time series which has been built up over

the years, and which we have briefly reviewed. It may be possible to combine the different

approaches, such as the two methods we have presented here, to achieve further advances

in the aims of multivariate time series modeling.
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