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Abstract
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basis function interpolation problems. We give both theoretical and numerical results
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1 Introduction

Let Φ : Rd → R, X = {x1, . . . , xN} be a set of N distinct points in Rd and f be a real
valued function which we can evaluate at least at the xi’s. Define

SΦ,X =

{
g : g =

∑N
i=1 λiΦ(· − xi)

where
∑N
j=1 λjq(xj) = 0, for all q ∈ πd1

}
. (1)

We consider the problem of finding an element s of SΦ,X + πd1 satisfying the interpolation
conditions

s(xi) = f(xi), for all xi ∈ X. (2)

Assume Φ is strictly conditionally positive definite of order 2 and X is unisolvent for πd1 .
Then there is a unique element of SΦ,X + πd1 satisfying the interpolation conditions (2).
This setting includes popular choices of the basic function such as the thin-plate spline,
Φ(·) = | · |2 log | · |, and minus the ordinary multiquadric, Φ(·) = −√| · |2 + c2. In this paper
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we consider various ways of formulating the interpolation problem, showing in particular
that a certain inexpensive change of basis can dramatically improve its conditioning.

The usual way to formulate this problem is in terms of the functions {Φ(· − xi)} and
some basis {p0, p1, . . . , pd} for πd1 . Then the interpolation conditions together with the side
conditions taking away the extra degrees of freedom introduced by the polynomial part
can be written as

Aλ+ Pc = f and P Tλ = 0, (3)

where
Aij = Φ(xi − xj), Pij = pj(xi),

and f = [f(x1), . . . , f(xN)]
T . It is well known [7, 10, 12] that the matrix

AΦ =

[
A P
P T O

]
, (4)

of this usual formulation is frequently badly conditioned, even when the number of nodes is
small. Indeed many authors have commented on the numerical difficulties that solving this
system presents [12, 8, 7, 10]. However, frequently in numerical analysis a change of basis,
or other reformulation, can make a highly intractable problem tractable. Indeed, in the
case of the RBF interpolation equations changing to the basis of cardinal functions would
result in the interpolation matrix becoming the identity and the system being perfectly
conditioned and trivial to solve. Unfortunately, finding the cardinal RBFs would be more
computationally expensive than solving the system itself. Hence, our goal is to find less
expensive but still highly effective preconditioners for the interpolation system.

In this paper we establish properties of a preconditioning method for the RBF inter-
polation equations which was first presented in Sibson and Stone [12]. In the following
section we give a detailed account of the preconditioning method. In Section 3 we prove
that the construction produces a symmetric positive definite matrix B whenever the nodes
X are unisolvent for π2

1. In Section 4 we show that for certain functions Φ, B is a ho-
mogeneous function of scale. Hence, its condition number, and the relative clustering of
its eigenvalues, are independent of scale. Section 5 contains a proof that the elements
Bij decay like |xi − xj|−κ when |xi − xj| is large. For the multiquadric κ is three and
for the thin-plate spline κ is two. Sections 6 and 7 contain numerical results for different
SCPD2 basic functions over a range of data sets and scales. These numerical results show
that using this inexpensive O(N logN) flop preconditioner and variants of it, dramatically
improves the conditioning of RBF interpolation problems. See Figure 1 below. Finally,
Section 8 discusses the effects of roundoff error when using a fast technique to compute
the product of the preconditioned matrix and a vector.

2 A preconditioning method

A general approach to preconditioning interpolation problems with SCPD2 basic functions
in R2 [12, 1] is to choose Q as any N × (N − 3) matrix whose columns are orthogonal to P
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(a) Multiquadric basic function.
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(b) Thin-plate spline basic function.

Figure 1: Sorted 2-norm condition numbers of the unpreconditioned matrices, AΦ, (top)
and of the preconditioned matrices, S, (bottom) for fifty thousand random data sets of
size one hundred.

and has rank N − 3. Letting λ = Qµ and premultiplying (3) by QT gives the new system
to be solved for µ, or equivalently λ,

Bµ = QTf where B = QTAQ. (5)

The three polynomial coefficients can then be found by a small subsidiary calculation. Note
that we can view the jth column of the product AQ as the values of the corresponding
new basis element,

Ψj(·) =
N∑
i=1

qijΦ(· − xi).

For the multiquadric and the thin-plate spline these Ψ elements have r−1 and log r growth
respectively as r gets large. This can be seen in Figures 2 and 3 below.

The construction presented in this section produces a matrix Q such that B is positive
definite for any set of distinct nodes X = {x1, . . . , xN} ⊂ R2, which are unisolvent for π2

1.
The construction is appealing in that for “interior” points xj of X it is local. That is, for
such points the entries in the j-th column of Q depend only on the geometry of the nodes
near xj and not on any properties of nodes far away.

Choose W as a closed bounded convex polygonal region of R2 such that X ⊂ W .
Suppose without loss of generality that {xN−2, xN−1, xN} is unisolvent for π2

1. We will
refer to these points as special points. They are generally chosen so that they are well
spread throughout W . In our experience, and that of Sibson and Stone, for typical data
sets the choice of special points is not at all critical, as long as the triangle they define
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Figure 2: Ψ elements for the preconditioner of this paper. Multiquadric basic function.
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Figure 3: Ψ elements for the preconditioner of this paper. Thin-plate spline basic function.

has largish area. However, for contrived data sets, such as all but a very few points on
a straight line, the choice of special points becomes important. In these cases we have
observed that bad choices of special points can lead to large condition numbers. However,
the strategy of choosing the three special points to maximise the area of the corresponding
triangle has always led to small condition numbers.
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The regionW is first divided into panels by intersecting a Voronoi diagram of the points
of X with the region W . We denote this panelling of W by

VW (X) =
N⋃
i=1

Vi

where Vi is the Voronoi panel about the ith centre and is defined by

Vi = {x ∈ W : |x− xi| < |x− xj|, for all 1 ≤ j ≤ N with j 
= i}.
Recall that the locus of points equidistant from two fixed points is the perpendicular
bisector of the segment connecting the points. It follows that each Voronoi region is
polygonal. Associated with a panel Vi are its edges. These are a finite number of distinct
closed line segments of non-zero length. They are the boundaries between different Voronoi
panels, or between a Voronoi panel and WC . The collection of all edges of all the Voronoi
panels will be denoted by E .
Definition 2.1. Two polygonal regions of R2 will be said to be strongly contiguous if they
have a common boundary of non-zero length.

Definition 2.2. Two Voronoi regions Vi and Vj will be said to be C-related if there is a
sequence

{Vi, V�1 , V�2 , . . . , V�m , Vj}, 1 ≤ i, j, �1, . . . , �m ≤ N − 3,
in which all adjacent pairs are strongly contiguous.

Loosely speaking Vi and Vj are C-related if they are connected by a chain of strongly
contiguous pairs. C-related is an equivalence relation on the set {Vi}N−3

i=1 of Voronoi re-
gions of non-special points. Therefore it breaks this set into a finite number of nonempty
equivalence classes {Gl : 1 ≤ l ≤ k}. Figure 4 illustrates the different equivalence classes of
strongly contiguous sets of Voronoi panels arising from different choices of the three special
points.

Lemma 2.3. Let G� be any of the equivalence classes above. Then there is at least one
Voronoi region Vi in G� which is strongly contiguous to either WC or one of {VN−2, VN−1, VN}.
Proof. Consider

T =
⋃

i:Vi∈G�

Vi

This union is a closed bounded connected polygonal set whose boundary can be written
as the union of some of the line segments from E . Recall in particular that all these line
segments have non-zero length. Pick one line segment < a, b > from the boundary of T .
Since it forms part of the boundary of T on one side of it lies a Voronoi region Vi from G�.
On the other side lies either WC or another Voronoi region Vj. In the first case the Lemma
is proven. Consider the second case. If 1 ≤ j ≤ N − 3 then Vi is strongly contiguous to
Vj. Consequently, Vj ∈ G�. This contradicts < a, b > being on the boundary of T . Hence,
N − 2 ≤ j ≤ N and the Lemma follows.
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(a) A configuration of special points (∗)
leading to two strongly contiguous sets
of Voronoi panels.
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(b) A configuration of special points
(∗) leading to three strongly contigu-
ous sets of Voronoi panels.

Figure 4: Configurations of points where E (see equation (9)) is reducible. In each figure
centres in the same strongly contiguous regions share the same symbol, and ∗’s denote
special points.

We now detail the construction of the N × (N − 3) matrix Q using boundary over
distance weights. Note that because most elements of Q are zero sparse storage of Q
requires only O(N) memory. A non-special point from {xi : 1 ≤ i ≤ N − 3} which is
strongly contiguous to WC will be called a Voronoi external point. Define VE(X) as the
set of indices of all Voronoi external points. All other points are referred to as Voronoi
internal points. The corresponding indices are VI(X) = {1, . . . , N − 3} − VE(X). See
Figure 5 for examples of Voronoi internal and external points.

We first consider forming a column of Q for an index, j, such that j ∈ VI(X). In this
case the panel Vj shares non-trivial edges only with other Voronoi panels and not with
WC . The column is formed using boundary over distance weights, found from the Voronoi
diagram. For j ∈ VI(X) the boundary over distance weight rij is

rij =
b(xi, xj)

|xi − xj| , for all Vi strongly contiguous to Vj, (6)

where b(xi, xj) is the length of the boundary between Vi and Vj. For other values of i 
= j,
rij is set to zero. In order that column j of Q is orthogonal to constants the diagonal
element rjj is specified as

rjj = −
∑
i�=j

rij.

Finally, the jth column of R is scaled by dividing by the area of Vj to obtain the jth column
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(b) The neighbours (o) of an internal
centre (�) and neighbours (+) of an ex-
ternal centre (∗). Artificial points cor-
responding to the external centre ∗ are
denoted by �.

Figure 5: Voronoi panelling of a set of twenty data points in the region W = [.1, .9]2.

of Q. Note that the column is by construction diagonally dominant, but not strictly so.
If j ∈ VE(X) then Vj is strongly contiguous to the complement of W , WC . The

boundary segment corresponds to a Voronoi edge between xj and an artificial point, the
reflection of xj in the boundary (see Figure 5(b)). The reflected point, x̂j, can be written
as a linear combination of the special points, i.e.,

x̂j = λNxN + λN−1xN−1 + λN−2xN−2, (7)

where λN + λN−1 + λN−2 = 1. If Vj has k edges with WC then k reflected points
{x̂1
j , . . . , x̂

k
j} are required. Associated with each reflected point, x̂aj , are the coefficients

{λaN , λaN−1, λ
a
N−2}. The boundary over distance weights for x̂aj are partitioned amongst the

special points to obtain for all j ∈ VE(X) and i 
= j

rij =




b(xi,xj)

|xi−xj | , Vi strongly contiguous to Vj,∑k
l=1 λ

l
i

b(x̂l
j ,xj)

|x̂l
j−xj | , i ∈ {N,N − 1, N − 2}. (8)

Of course, Vj could be strongly contiguous with a Voronoi panel associated with a

special point. If this is the case rij =
b(xi,xj)

|xi−xj | +
∑k
l=1 λ

l
i

b(x̂l
j ,xj)

|x̂l
j−xj | . Again, for other values of

i 
= j, rij is set to zero and column j of Q is column j of R scaled by dividing by the area
of Vj.
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Partition Q as

Q =

[
E
F

]
, (9)

where E is (N−3)×(N−3). Thus E results from interactions between non-special points,
and F those between special and non-special points. Note in the construction above that for
1 ≤ i, j ≤ N −3, eij is non-zero if and only if Vi is strongly contiguous to Vj. Furthermore,
note that E is necessarily column diagonally dominant, with strict dominance in column
j whenever Vj is strongly contiguous to the Voronoi region of a special point, or to W

C .
Relabelling if necessary we can assume the indices of the Voronoi regions in each of

the equivalence classes Gi form a contiguous subset of {1, . . . , N − 3}. Similarly, we can
also assume that the indices corresponding to any Gi precede those corresponding to Gi+1.
Furthermore, by construction if i 
= j none of the regions in Gi is strongly contiguous with
a region in Gj. Thus, corresponding entries in the matrix E constructed using boundary
over distance weights and artificial points are zero. That is E is block diagonal with the
square matrix Eii on the main diagonal corresponding to the equivalence class of Voronoi
regions Gi. More precisely, Q will have form

Q =




E11 O · · · O
O E22 · · · O
...

...
. . .

...
O O · · · Ekk
F1 F2 · · · Fk


 . (10)

3 Properties of the matrix Q

In this section we establish the fundamental properties of the matrix Q of (10). Namely
that it is of full rank and that its columns are orthogonal to those of P .

Definition 3.1. For m ≥ 2, an m×m matrix K is irreducible if there does not exist an
m×m permutation matrix P such that

PKP T =

[
M11 M12

0 M22

]
,

where M11 is r × r, M22 is (m− r)× (m− r), and 1 ≤ r < m.

The following result is well known, see for example Varga [14].

Theorem 3.2. Suppose the square matrix K is irreducible and row (column) diagonally
dominant with strict row (column) diagonal dominance in at least one row (column). Then
K is invertible.
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The proof of the following result relies on the concept of directed graphs from graph
theory. The directed graph, G(K), of a matrix K, is a graph such that there is a directed
arc between vertices yi and yj of the graph if and only if the entry kij of the matrix is
non-zero.

Definition 3.3. A directed graph is strongly connected if for any pair of points yi and yj
there exists a directed path −−→yiyl1 ,

−−→yl1yl2 , . . . ,
−−−→ylk−1

yj, connecting yi to yj.

Lemma 3.4. (Theorem 1.6 of Varga [14]) A square complex matrix K is irreducible if and
only if its directed graph G(K) is strongly connected.

Lemma 3.5. Let X be a finite set of distinct points unisolvent for π2
1. Let Eii be one of

the square blocks from the diagonal of Q constructed in the previous section. Then Eii is
invertible.

Proof. ¿From the constructionEii is column diagonally dominant. Furthermore, by Lemma 2.3
the diagonal dominance is strict for at least one column of Eii. ¿From the definition of the
equivalence relation C-related there is a chain of strongly contiguous pairs of Voronoi re-
gions, connecting any two Voronoi regions in Gi. This implies the corresponding entries in
Eii are non-zero and hence from Lemma 3.4 Eii is irreducible. It follows from Theorem 3.2
that Eii is invertible.

Theorem 3.6. The matrix Q described in Section 2 is orthogonal to P .

Proof. It suffices to show that the matrixR (which isQ before column scaling) is orthogonal
to P . The proof of this theorem for interior nodes is taken from Christ et.al. [6, Theorem
1]. Let j ∈ VI(X). If we let v be a constant vector then from the divergence theorem

0 =

∫
Vj

∇ · v dt =

∫
v · n dS,

where n is a normal vector and S is the boundary of Vj.
Each boundary segment of Vj is associated with a contiguous Voronoi panel. Let Sj be

the set of indices of such contiguous panels. For i ∈ Sj the length of the boundary between
Vj and Vi is given by b(xj, xi). From the properties of a Voronoi diagram an outward
normal to this boundary is

xi−xj

|xi−xj | . Integrating over each of these boundaries separately
gives

0 =

∫
v · n dS = v ·

∑
i∈Sj

b(xi, xj)

|xi − xj|(xi − xj). (11)

Because v is any constant vector we obtain

∑
i∈Si

b(xi, xj)

|xi − xj|(xi − xj) = 0, (12)
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and the result follows from rjj = −∑
i∈Sj

rij. Note the interesting alternative interpretation

of (12) as an expression for xj as a convex combination of its neighbours.
For j ∈ VE(X) we have at least one boundary segment of Vj which corresponds to

a boundary between Vj and WC . In the case of only one boundary segment between Vj
and WC we introduce the corresponding artificial point x̂j = λnxn+λn−1xn−1+λn−2xn−2.
Then

v ·
∑
i�=j

rij(xj − xi)

= v ·

∑
i∈Sj

rij(xj − xi) + rn,j(xj − xn) + rn−1,j(xj − xn−1) + rn−2,j(xj − xn−2)


 ,

= v ·

∑
i∈Sj

rij(xj − xi) +
b(x̂j, xj)

|x̂j − xj|(xj − x̂j)


 ,

=

∫
v · n dS = 0, (13)

where the last line follows from (11) and because
xj−x̂j

|x̂j−xj | is a normal vector to the boundary

between Vj and WC . The result again follows from rjj = −∑
i�=j rij. If Vj has more then

one boundary with WC then the proof can be easily extended by using more artificial
points in (13).

Theorem 3.7. Let X be a set of distinct points unisolvent for π2
1. Let Q be formed by the

construction in Section 2 and Aij = Φ(xi − xj) where Φ is strictly conditionally positive
definite of order 2. Then B = QTAQ is positive definite.

Proof. ¿From Lemma 3.5 each of the matrices Eii occurring in the block partitioning of Q
given in Equation (10) is invertible. Hence Q has full rank. Also from Theorem 3.6 the
columns of Q are orthogonal to the columns of P . Let µ be any non-zero vector in RN−3,
and define λ = Qµ. Then λ 
= 0, P Tλ = P TQµ = 0, and µTBµ = µTQTAQµ = λTAλ.
Hence, by the definition of strictly conditionally positive definite, µTBµ > 0 whenever
µ 
= 0 and B is symmetric positive definite.

4 Scaleability

In this section we show that for certain functions Φ the new interpolation matrix B =
QTAQ is a homogeneous function of scale. Thus its condition number, and the relative
spread of its eigenvalues, are scale independent. If the interpolation matrix is not a homo-
geneous function of scale then the condition number can change dramatically over different
scales. This is important for fitting methods such as those described in [2] and [1], where
solutions to systems on many different scales are required.
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Lemma 4.1. Given X = {x1, . . . , xN} unisolvent with respect to πdk−1. Let {r1, . . . , rN}
and {s1, . . . , sN} satisfy

∑N
j=1 rjq(xj) = 0, and

∑N
j=1 sjq(xj) = 0, for all q ∈ πdk−1. Define

T : C(Rd ×Rd)→ R by

Tg =
N∑
i,j=1

risjg(xi, xj), (14)

for g ∈ C(Rd × Rd). Then T annihilates all functions g of the form g(x, y) = p(x − y)
with p ∈ πd2k−1.

Proof. Following [1, Lemma 2.1] we let p(x) = pα(x) = xα, where x ∈ Rd and α ∈ Zd+ with
|α| < 2k. From the binomial theorem we have

g(x, y) = p(x− y) =
∑

0≤β≤α
aβx

α−βyβ =
∑

0≤β≤α
aβpα−β(x)pβ(y), x, y ∈ Rd,

Define gαβ = pα−β(x)pβ(y), then

Tpα =
∑

0≤β≤α
aβTgαβ.

Now, from (14)

Tgαβ =
N∑
i,j=1

risjgαβ(xi, xj),

=
∑
i,j

risjpα−β(xi)pβ(xj),

=

(∑
i

ripα−β(xi)

) (∑
j

sjpβ(xj)

)
.

(15)

¿From the hypothesis, and because either |β| ≤ k − 1 or |α − β| ≤ k − 1, one of the
bracketed expressions is zero. Hence Tg is zero.

Theorem 4.2. Let the symmetric function Φ ∈ C(Rd × Rd) be such that Φ(hx, hy) =
hγΦ(x, y) + ph(x − y) for all h > 0 and x, y ∈ Rd, where γ ∈ R and ph ∈ πd2k−1. Let
X = {x1, . . . , xN} be a unisolvent set of points with respect to πdk−1 and let {r1, . . . , rN}
and {s1, . . . , sN} be as in Lemma 4.1. Define the functional ThΦ by

ThΦ =
N∑
i,j=1

risjΦ(hxi, hxj),

and write T for T1. Then for h > 0, ThΦ = hγTΦ.
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Proof. ¿From the definition we have

ThΦ =
∑
i,j

risjΦ(hxi, hxj),

=
∑
i,j

risj {hγΦ(xi, xj) + ph(xi − xj)} ,

= hγTΦ + Tv,

(16)

where v(x, y) = ph(x−y) for some ph ∈ πd2k−1 and T is as in Lemma 4.1. From that lemma
Tv = 0 and the Theorem follows.

In the following Theorem matrices with a subscript h are defined in the same way as
the matrix without the subscript except with the point set hX instead of X.

Theorem 4.3. Let X = {x1, . . . , xN} be unisolvent with respect to πdk−1, and P be defined
by Pij = pj(xi), where p1, . . . , pl is a basis for πdk−1. Let Qh be any N × (N − dim(πdk−1))
matrix which depends homogeneously on the scale parameter h such that Qh = hνQ, and
P TQ = 0.

Then if Φ(hx, hy) = hγΦ(x, y) + ph(x − y), h > 0 for some ph ∈ πd2k−1, Bh is a
homogeneous function of h. Specifically

Bh = h2ν+γB.

Proof. Let rj be the jth column of Q. Then from Theorem 4.2 and the condition on Φ we
have,

rTj Ahri = hγrTj Ari,

and so

QTAhQ = hγQTAQ = hγB. (17)

¿From the conditions on Q and (17)

Bh = QThAhQh,

= h2νQTAhQ,

= h2ν+γB.

Remark 4.4. If Φ is the basic function Φ(·) = (−1)k| · |2(k−1) log | · | then from the proof
of Corollary 2.3 in [1] we have,

Φ(hx, hy) = h2(k−1)Φ(x, y) + ph(x− y), (18)

where ph ∈ πd2(k−1). So the thin-plate spline basic function satisfies the condition on Φ in
Theorem 4.3.
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Corollary 4.5. Let Φ be strictly conditionally positive definite of order 2 and such that
Φ(hx, hy) = hγΦ(x, y) + ph(x− y), h > 0 with ph ∈ π2

3. Then the interpolation matrix, Bh,
produced by the algorithm in Section 2 is a homogeneous function of scale.

Proof. ¿From Theorem 4.3 it is sufficient to show that Qh = hνQ, for some ν. The Voronoi
diagram scales homogeneously hence b(hxi, hxj) = hb(xi, xj). Also, the area of the panel
associated with hxi is h

2 times that of the panel associated with xi. Therefore, we have
for Qij 
= 0, j ∈ VI(X), i 
= j,

(Qh)ij =
b(hxi, hxj)

|h(xi − xj)|h2A(Vi)
= h−2Qij.

Noticing that {λn, λn−1, λn−2} in (7) are unchanged by scale gives (Qh)ij = h−2Qij, j ∈
VE(X).

Theorem 4.6. Let Φ be strictly conditionally positive definite of order 2 and such that
Φ(hx, hy) = hγΦ(x, y) + ph(x− y), h > 0 with ph ∈ π2

3. Then the interpolation matrix, S,
produced by scaling the matrix B so that S = DBD, where D is diagonal and Dii = 1/

√
Bii,

is constant over all scales.

Proof. ¿From Corollary 4.5, Bh = hθB, for some θ. So dhii = (bhii)
− 1

2 = h− θ
2dii and Sh =

DhBhDh = h−θDBhD = h−θhθDBD = S.

5 Decay

The dramatic improvement in conditioning between the unpreconditioned matrix and the
preconditioned matrix is due to the localisation of the preconditioner. Specifically, in this
section we show that these local preconditioners have the property that |Bij| ≈ ‖xi−xj‖−κ
as ‖xi− xj‖ grows, where κ is three for the multiquadric and two for the thin-plate spline.
This decay means the interpolation matrix is “almost” diagonally dominant and thus better
conditioned. In this section | · | applied to a multiindex means its 1-norm.
Definition 5.1. Given the points X = {x1, . . . , xN+1} ⊂ R2. The set UX ⊂ RN+1 con-
sists of all β ∈ RN+1\{0} that satisfy

N+1∑
i=1

βiq(xi) = 0, for all q ∈ π2
1. (19)

In this section we denote the set Sj to be all the indices i such that Vi is strongly
contiguous with Vj. Note that j /∈ Sj.
Lemma 5.2. Let xj be an internal node of a Voronoi diagram. The area of a Voronoi
polygon, Vj, about xj, is given by

1

4

∑
i∈Sj

‖xj − xi‖b(xj, xi),

where b(xj, xi) is the length of the Voronoi boundary orthogonal to xj − xi.
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Proof. A Voronoi polygon of xj can be divided into triangles by line segments between xj
and the vertices of the polygon. The area of each of these triangles can easily be shown to
be ‖xj − xi‖b(xj, xi)/4. Summing these areas gives the result.

Lemma 5.3. Let xj be an internal node and Vj the corresponding Voronoi panel. Then if

βi =
b(xj ,xi)

‖xj−xi‖ , i ∈ Sj,
∣∣∣∣∣∣
∑
i∈Sj

βi(xj − xi)
α

∣∣∣∣∣∣ ≤ 4Area(V ), for |α| = 2. (20)

Proof. Noticing that |(xj − xi)
α| ≤ ‖xj − xi‖2 for |α| = 2 we have

∣∣∣∣∣∣
∑
i∈Sj

βi(xj − xi)
α

∣∣∣∣∣∣ ≤
∑
i∈Sj

βi|(xj − xi)
α|,

≤
∑
i∈Sj

βi‖xj − xi‖2,

=
∑
i∈Sj

b(xj, xi)

‖xj − xi‖‖xj − xi‖2,

= 4Area(V ),

by Lemma 5.2.

Lemma 5.4. Let f(·) := | · |−k, k > 0 so that f : R2\{0} → R. Then if Dα, α ∈ N 2, is
the differential operator

∂α1+α2

∂ξα1∂ηα2
,

where x = (ξ, η) we have

Dαf(·) = Pα(·)
| · |k+2|α| , (21)

where Pα is a homogeneous polynomial of degree |α|.

Proof. Let |α| = 1, then

Dαf(x) = Dα(|x|−k),
=

−kxα

|x|k+2
,
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as required. Now assume that (21) holds for |α| = n. If |γ| = 1 we obtain

Dα+γf(x) = Dγ

(
Pα(x)

|x|k+2n

)
,

=
Dγ(Pα(x))|x|k+2n −Dγ(|x|k+2n)Pα(x)

|x|2(k+2n)
,

=
P̂α−1(x)|x|2 − (k + 2n)Pα(x)xγ

|x|k+2(n+1)
. (22)

In (22) P̂α−1 = Dγ(Pα(x)) is a homogeneous polynomial of degree n−1. The result follows
from setting Pα+γ(x) = P̂α−1(x)|x|2 − (k + 2n)Pα(x)xγ.
Lemma 5.5. Let X = {x1, . . . , xN+1}, xi = (ξi, ηi) ∈ R2\{0}, be N + 1 distinct points
contained in the circle | · −x| ≤ H < |x| where x = xN+1. If β ∈ UX , and n, α > 0 then,∣∣∣∣∣

N+1∑
i=1

βi
xαi
|xi|n

∣∣∣∣∣ ≤ H2DE

|x|n−|α|+2
+O(|x|−(n−|α|+3)),

where E =
∑N
i=1 |βi| and D depends on α and n. Furthermore, if βi =

b(xi,x)
‖xi−x‖ , i = 1, . . . , N

then

E =
4Area(V)

H2
,

where V is the Voronoi region about the point x.

Proof. Let hi = (∆ξi,∆ηi) = x− xi. Now we obtain via the binomial expansion

(x− hi)
α =

α1∑
k=0

α2∑
j=0

(
α1

k

)(
α2

j

)
ξkηj(−∆ξk)α1−k(−∆ηk)α2−j,

=

|α|∑
l=0

min{l,α1}∑
k=max{0,l−α2}

(
α1

k

)(
α2

l − k

)
(−1)|α|−lξkηl−k∆ξα1−k

k ∆ηα2+k−l
k ,

=

|α|∑
l=0

Pl(x, hi, α), (23)

where Pl(x, hi, α) is a polynomial of degree l in x and |α| − l in hi.
By a Taylor’s expansion in h about x and using Lemma 5.4, or alternatively using that

(1 − 2xy + y2)−n is the generating function for a family of Gegenbauer polynomials [13,
4.7.23], we have

|xi|−n = |x− hi|−n = |x|−n
∞∑
m=0

Qm(x, hi, n)

|x|2m , |hi| < |x|, (24)
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where in (24) Qm(x, h, n) is a polynomial of degree m in x and h.

Now using (19) and combining (23) and (24)

N+1∑
i=1

βi
xαi
|xi|n =

N∑
i=1

βi

(
(x− hi)

α

|xi|n − xα

|x|n
)
,

=
1

|x|n
N∑
i=1

βi


 |α|∑
l=0

Pl(x, hi, α)
∞∑
m=0

Qm(x, hi, n)

|x|2m


 − 1

|x|n
N∑
i=1

βix
α. (25)

In the series on the left all terms that arise are of order −n + |α| − γ in x, γ ≥ 0. Those
of order −n + |α| − γ correspond to values of l and m such that m − l = γ − |α|. The
restrictions on m and l are as in (25). The lemma will be proved by showing that the terms
corresponding to γ = 0, 1 vanish.

Firstly consider γ = 0; then m = 0 and l = |α| and the corresponding terms in (25) of
order −n+ |α| are

1

|x|n+1

N∑
i=1

βi

(
P|α|(x, hi, α)Q0(x, hi, n)− xα

)
= 0,

because P|α|(x, h, α) = xα and Q0(x, h, n) = 1. For γ = 1; (l,m) = (|α|, 1) and (|α| − 1, 0).
Expanding the functions P and Q for these values of (l,m) gives the terms

− 1

|x|n+1

N∑
i=1

βi

((
α1

α1 − 1
)
ξα1−1ηα2∆ξi +

(
α2

α2 − 1
)
ξα1ηα2−1∆ηi

)
= 0, (26)

from (19). This leaves us with the most positive power of |x| being −(n − |α| + 2) as
required. These terms correspond to values of (l,m) = (|α|− 2, 0); (|α|− 1, 1); and (|α|, 2).
The terms in (25) of exact order |x|−(n−|α|+2) are

1

|x|4
(
|x|4Q0P|α|−2 + |x|2Q1P|α|−1 +Q2P|α|−2

)
=

xα

|x|4
(
ξ2(∆ξ2

i c1 +∆η
2
i c4) + η2(∆ξ2

i c5 +∆η
2
i c2)

+ ξη∆ξi∆ηic3 + ξ−1η3∆ξi∆ηic6 + ξ3η−1∆ξi∆ηic7

+ ξ−2η4∆ξ2
i c8 + ξ4η−2∆η2

i c9

)
, (27)
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where

c1 = −nα1 +
1

2
α1(α1 − 1),

c2 = −nα2 +
1

2
α2(α2 − 1),

c3 = n(1− |α|) + 2α1α2,

c4 = −n(
1

2
+ α2) + α2(α2 − 1),

c5 = −n(
1

2
+ α1) + α1(α1 − 1),

c6 = α1(α2 − n),

c7 = α2(α1 − n),

c8 =
1

2
α1(α1 − 1),

c9 =
1

2
α2(α2 − 1).

By taking absolute values and noticing that |xα| ≤ |x||α| we obtain from (27)

1

|x|4
(
|x|4Q0P|α|−2 + |x|2Q1P|α|−1 +Q2P|α|−2

)

≤ |x||α|+2

|x|4
(
∆ξ2

i d1 + |∆ξi∆ηi|d2 +∆η
2
i d3

)
,

=
1

|x|−|α|+2

(
∆ξ2

i d1 + |∆ξi∆ηi|d2 +∆η
2
i d3

)
, (28)

where d1 = |c1|+ |c5|+ |c8|, d2 = |c3|+ |c6|+ |c7|, and d3 = |c2|+ |c4|+ |c9|. Now substituting
(28) into equation (25) we obtain∣∣∣∣∣

N+1∑
i=1

βi
xαi
|xi|n

∣∣∣∣∣ ≤ 1

|x|n−|α|+2

N∑
i=1

|βi|
(
∆ξ2

i d1 + |∆ξi∆ηi|d2 +∆η
2
i d3

)
+

∣∣O(|x|−(n−|α|+3))
∣∣ ,

≤ H2DE

|x|n−|α|+2
+

∣∣O(|x|−(n−|α|+3))
∣∣ , (29)

where E =
∑N
i=1 |βi| and D = d1 + d2 + d3. If we take βi to be boundary over distance

weights then using Lemma 5.3 gives the bound∣∣∣∣∣
N+1∑
i=1

βi
xαi
|xi|n

∣∣∣∣∣ ≤ 4Area(V )D

|x|n−|α|+2
+

∣∣O(|x|−(n−|α|+3))
∣∣ .

The following two theorems show that for local preconditioners the entries of the pre-
conditioned matrix, (B)kl =

∑N
i,j=1 rjkrilΦ(xi − xj) will decay as |xk − xl| gets large.
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Theorem 5.6. Let Φ be the multiquadric and let X = {x1, . . . , xN+1}, xi = (ξi, ηi) ∈ R2,
be N + 1 distinct points contained in the circle | · −x| ≤ H1 < |x| where x = xN+1. Also
let Y = {y1, . . . , yN+1}, yi = (si, ti) ∈ R2, be N + 1 distinct points contained in the circle
| · | < H2 with yN+1 = 0. Then if β ∈ UX , γ ∈ UY and |x| > H1 +

√
H2

2 + c2,∣∣∣∣∣
N+1∑
i=1

N+1∑
j=1

γiβjΦ(xj − yi)

∣∣∣∣∣ ≤ 20H2
1H

2
2E1E2

|x|3 +
∣∣O(|x|−4)

∣∣ ,
where E1 =

∑N
i=1 |βi| and E2 =

∑N
i=1 |γi|. Furthermore, if β and γ are boundary over

distance weights∣∣∣∣∣
N+1∑
i=1

N+1∑
j=1

γiβjΦ(xj − yi)

∣∣∣∣∣ ≤ 640Area(V1)Area(V2)

|x|3 +
∣∣O(|x|−4)

∣∣ ,
where V1 is the Voronoi region around xN+1 and V2 is the Voronoi region around yN+1.

Proof. If |x| is big enough we can approximate Φ by a far field expansion. For the mul-
tiquadric this was given by [3]. The far field expansion about zero for the multiquadrics
Φ(· − yi) are valid for | · | >

√
H2

2 + c2. Since by hypothesis |x| > H1 +
√
H2

2 + c2 then

minx∈X,y∈Y |x−y| >
√
H2

2 + c2. Now due to the sets X and Y being far enough apart, and

 P 2

*
* *

*

*

*

*

*

*

*

 0

 |x|

 x
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 H + c 2

 2  2

 H 2

 H 1

 P 1

Figure 6: Two clusters of points (*) where the far field expansion is valid for any source
point in P1 and evaluation point in P2.
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because γ and β annihilate linears we obtain far field expansions of Φ(· − yi) about zero

N+1∑
i,j=1

γiβjΦ(xj − yi) =
N+1∑
i,j=1

γiβj

(
|xj| − siξj + tiηj

|xj|

+
1

2

(t2i + τ 2)ξ2
j + (s

2
i + τ 2)η2

j − 2sitiξjηj
|xj|3 +O(|x|−2)

)
,

=
N+1∑
i,j=1

γiβj

(
1

2

t2i ξ
2
j + s2

i η
2
j − 2sitiξjηj
|xj|3 +O(|x|−2)

)
. (30)

Taking absolute values and using Lemma 5.5 gives∣∣∣∣∣
N+1∑
i,j=1

γiβjΦ(xj − yi)

∣∣∣∣∣ ≤ 20

2

H2
1E1

|x|3
N+1∑
i=1

|γi|
(
t2i + s2

i + 2|siti|
)
+

∣∣O(|x|−4)
∣∣ ,

≤ 20H2
1H

2
2E1E2

|x|3 +
∣∣O(|x|−4)

∣∣ . (31)

If β and γ are boundary over distance coefficients then∣∣∣∣∣
N+1∑
i,j=1

γiβjΦ(xj − yi)

∣∣∣∣∣ ≤ 40
Area(V1)

|x|3
N+1∑
i=1

|γi|
(
t2i + s2

i + 2|siti|
)
+

∣∣O(|x|−4)
∣∣ ,

≤ 640
Area(V1)Area(V2)

|x|3 +
∣∣O(|x|−4)

∣∣ . (32)

Theorem 5.7. Let Φ be the thin-plate spline and let X = {x1, . . . , xN+1}, xi = (ξi, ηi) ∈
R2, be N + 1 distinct points contained in the circle | · −x| ≤ H1 < |x| where x = xN+1.
Also let Y = {y1, . . . , yN+1}, yi = (si, ti) ∈ R2, be N + 1 distinct points contained in the
circle | · | < H2 with yN+1 = 0. Then if β ∈ UX , γ ∈ UY and |x| > H1 +H2,∣∣∣∣∣

N+1∑
i=1

N+1∑
j=1

γiβjΦ(xj − yi)

∣∣∣∣∣ ≤ 44H2
1H

2
2E1E2

|x|2 +
∣∣O(|x|−3)

∣∣ ,
where E1 =

∑N
i=1 |βi| and E2 =

∑N
i=1 |γi|. Furthermore, if β and γ are boundary over

distance weights∣∣∣∣∣
N+1∑
i=1

N+1∑
j=1

γiβjΦ(xj − yi)

∣∣∣∣∣ ≤ 464Area(V1)Area(V2)

|x|2 +
∣∣O(|x|−3)

∣∣ ,
where V1 is the Voronoi region around xN+1 and V2 is the Voronoi region around yN+1.
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Proof. With a similar approach to the proof of Theorem 5.6 we use the far field expansion
of the thin-plate spline which is given in [4]. For x = (ξ, η) > H1 + H2 all the far field
approximations will be valid. A single expansion of a thin-plate spline basic function
centred at (s, t) is

[
(ξ − s)2 + (η − t)2

]
log

([
(ξ − s)2 + (η − t)2

] 1
2

)
=
1

2
(ξ2 + η2) log (ξ2 + η2)− (sξ + tη) log (ξ2 + η2)− sξ − tη

+
1

2
(s2 + t2) log(ξ2 + η2) +

1

2

(3s2 + t2)ξ2 + (s2 + 3t2)η2 + 4stξη

ξ2 + η2
+O(|x|−1).

(33)

Using this expansion and summing over the centres X and Y as in (30), the linear terms
are annihilated giving

N+1∑
i,j=1

γiβjΦ(xj − yi) =
1

2

N+1∑
i,j=1

γiβj

(
(s2
i + t2i ) log(ξ

2
j + η2

j )

+
(3s2

i + t2i )ξ
2
j + (s

2
i + 3t

2
i )η

2
j + 4sitiξjηj

|xj|2 +O(|xj|−1)

)
. (34)

A Taylor expansion of log(ξ2
j + η2

j ) about x = (ξ, η) is

log(ξ2
j + η2

j ) = log(ξ
2 + η2)− 2ξ∆ξj + η∆ηj

|x|2

+
ξ2(∆η2

j −∆ξ2
j ) + η2(∆ξ2

j −∆η2
j )− 4ξη∆ξj∆ηj

|x|4 +O(|x|−3). (35)

Substituting this Taylor expansion into (34) and noticing that the first two terms in the
Taylor expansion will be annihilated leads to the final summation

N+1∑
i,j=1

γiβjΦ(xj − yi)

=
1

2

N+1∑
i,j=1

γiβj

(
(s2
i + t2i )

ξ2(∆η2
j −∆ξ2

j ) + η2(∆ξ2
j −∆η2

j )− 4ξη∆ξj∆ηj
|x|4

+
(3s2

i + t2i )ξ
2
j + (s

2
i + 3t

2
i )η

2
j + 4sitiξjηj

|xj|2 +O(|xj|−1)

)
.

Taking absolute values and using Lemma 5.5 gives the result.

The plots in Figure 7 show the distance ‖xi−xj‖ vs |Bij| for a column j of B. The plotted
values are only for indices i such that xi is an internal centre. The total size of the data
set is 400 centres of which 350 are internal. The decay rates mentioned in this section can
easily be seen in the plots.
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(a) Multiquadric basic function.

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(b) Thin-plate spline basic function.

Figure 7: Plots illustrating the results given in Theorems 5.6 and 5.7. The x-axis is ‖xi−xj‖
and the y-axis is |Bij|.

6 Numerical results

In this section we present numerical results for the following basic functions.

thin-plate spline φ(r) = r2 log(r), (36)

linear φ(r) = −r, (37)

multiquadric φ(r) = −
√
r2 + c2, (38)

inverse multiquadric φ(r) =
1√

r2 + c2
. (39)

Of these functions the thin-plate spline and linear functions satisfy the condition on Φ in
Theorem 4.2 and will result in scale independent preconditioned matrices. In the following
tables the matrix AΦ is defined in (4), B in (5), S in Theorem 4.6 and the homogeneous
matrix, C, is presented in [1]. In Table 1 we show condition numbers of matrices for
the various preconditioning techniques over seven different scales. It is clear that the
algorithm in Section 2 gives a matrix which dramatically improves the conditioning of
the interpolation problem. In one case by a factor of 1014! Tables 2–5 contain condition
numbers of the matrices resulting from applying the preconditioning techniques of this
paper for the basic functions (36)–(39). For N < 3200, the entries in the tables are the
maximum over one hundred random point sets of size N . For N = 3200, the tables contain
the maximum over twenty random point sets of size 3200. In all cases the preconditioning
results in a smaller condition number. However the most impressive results are for the thin-
plate spline, the linear, and the multiquadric basic functions. For these basic functions the
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maximum observed condition number of the scaled preconditioner, S, grows very slowly
with N . Certainly there is no numerical evidence of power growth with N .

Scale parameter Conventional Homogeneous Preconditioned Scaled
α matrix Aφ matrix C matrix B matrix S

0.001 1.531(11) 1.534(5) 4.905(1) 2.405(1)
0.01 1.544(9) 1.534(5) 4.905(1) 2.405(1)
0.1 1.597(7) 1.534(5) 4.905(1) 2.405(1)
1 3.107(5) 1.534(5) 4.905(1) 2.405(1)
10 1.915(6) 1.534(5) 4.905(1) 2.405(1)
100 1.271(11) 1.534(5) 4.905(1) 2.405(1)
1000 4.006(15) 1.534(5) 4.905(1) 2.405(1)

Table 1: Condition numbers for one hundred points in [0, α]2 and the thin-plate spline.
The point set for scale α is , Xα = αX1.

Number of Conventional Homogeneous Preconditioned Scaled
data points matrix Aφ matrix C matrix B matrix S

100 1.852(7) 1.285(7) 3.865(2) 4.877(1)
200 6.555(7) 3.068(7) 1.617(3) 6.028(1)
400 5.675(8) 3.397(8) 1.945(3) 8.946(1)
800 1.960(10) 1.348(10) 2.034(3) 9.775(1)
1600 1.092(10) 8.413(9) 8.099(3) 1.258(2)
3200 4.997(10) 3.783(10) 1.261(4) 1.569(2)

Table 2: Maximum condition numbers encountered over a sample of 100 random point sets
of size N in [0, 1]2 with the thin-plate spline.

Number of Conventional Preconditioned Scaled
data points matrix Aφ matrix B matrix S

100 2.139(8) 1.129(2) 4.017(1)
200 2.014(8) 1.532(2) 4.224(1)
400 2.045(10) 5.932(2) 7.669(1)
800 6.641(10) 4.559(2) 5.826(1)
1600 1.554(10) 7.025(2) 5.601(1)
3200 2.477(11) 9.362(2) 6.280(1)

Table 3: Maximum condition numbers encountered over a sample of 100 random point sets
of size N in [0, 1]2 with the the multiquadric function with c = 1/

√
N .
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Number of Conventional Preconditioned Scaled
data points matrix Aφ matrix B matrix S

100 9.732(4) 1.916(4) 6.468(1)
200 3.131(5) 6.099(4) 1.101(2)
400 1.178(6) 2.326(5) 2.364(2)
800 1.254(7) 2.826(5) 7.493(2)
1600 1.280(7) 4.227(5) 5.171(2)
3200 3.886(7) 2.815(6) 4.972(2)

Table 4: Maximum condition numbers encountered over a sample of 100 random point sets
of size N in [0, 1]2 with the linear function.

Number of Conventional Preconditioned Scaled
data points matrix Aφ matrix B matrix S

100 1.166(6) 1.180(3) 7.671(1)
200 9.370(5) 4.225(3) 1.725(2)
400 2.510(7) 9.017(3) 5.159(2)
800 5.853(7) 2.295(4) 1.338(3)
1600 8.174(6) 7.071(4) 3.633(3)
3200 5.311(7) 1.559(5) 9.997(3)

Table 5: Maximum condition numbers encountered over a sample of 100 random point sets
of size N in [0, 1]2 with the inverse multiquadric.

In an attempt to rule out the possibility that our numerical results were flukes due to
the small number of 100 experiments we also conducted 50,000 trials with random data
sets of size 100. The results of these trials are shown in Figure 1. The maximum condition
number, over all trials with the thin-plate spline, for the matrix Aφ was 1.2465(9), for
matrix C, 1.5750(9) and for matrix S, 1.8066(2). These maximum condition numbers and
the results displayed in Figure 1 show that in our experiments the matrix S is always
well conditioned. This held even for geometries of centres for which the matrix Aφ is very
badly conditioned. These experiments lead one to suspect that the condition number of
the matrix S may well be bounded independently of the geometry of the mesh. That is it
may be bounded by a slowly growing function of N . To test further the behaviour of S
for “bad” configurations of points a similar experiment was run with one thousand trials
of one hundred points almost on a circle (for an example see Figure 8). The maximum
condition numbers of the A matrix, C matrix and S matrix were 1.2885(9), 7.2692(8) and
6.6005(2) respectively over 1000 trials. Even though the Voronoi regions are long and thin
the matrix is still well conditioned!
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(a) One hundred centres almost on a
cicle.
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(b) One hundred random data points
in the square.

Figure 8: Examples of two configurations of points in the domain [0 1]2.

7 Preconditioning in R3

Common basic functions for RBF interpolation in R3 include the triharmonic Φ(·) = | · |3,
the biharmonic Φ(·) = | · | and the multiquadric. The results of Narcowich and Ward
show that for large data sets in R3 we would expect badly conditioned RBF interpolation
matrices. Consequently there is a requirement for a preconditioner in three dimensions
which reduces the condition number of the interpolation system. In this section we modify
the algorithm of Section 2 in order to make it apply for this higher dimensional setting.
It is not difficult to show that the theory in two dimensions can easily be transferred into
three or more dimensions. For example in three dimensions, the coefficient matrix R, in
Section 2 can be shown to be of rank N − 4 and the invertibility of the preconditioned
matrix follows.

One common form of surface fitting in R3 is the reconstruction of a closed surface,
for example, a scanned object [5]. This can involve finding a zero surface and the centres
are usually not uniformly distributed. More traditional interpolation is also required in
three dimensions, for example, in meteorology or mining. The preconditioner of Section
2 can be modified and applied to both these cases. In the surface reconstruction case
the Voronoi regions are often long and thin which may make it difficult for numerical
techniques to accurately find the Voronoi vertices. This may lead to the columns of R not
being completely orthogonal to the matrix Q.

One difference in three dimensions is that the boundary between two Voronoi regions
is a face instead of a line. The corresponding boundary over distance weight is then given
by the area of this face over the distance between the two centres. To write the virtual
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points uniquely as a homogeneous linear combination of special points we use four centres
spread throughout the domain. The virtual points are then of the form

x̂j = λN−3xN−3 + λN−2xN−2 + λN−1xN−1 + λNxN ,

with λN−3 + λN−2 + λN−1 + λN = 1. Implementing this algorithm in three dimensions is
more complicated as centres with Voronoi regions adjacent to edges or corners can have
up to three faces on the boundary (if the domain W is a cube) and therefore three virtual
points. As before coefficients from each virtual point are added together. The complexity
for finding the Voronoi regions in R3 is O(N4/3) operations so is slightly more expensive
then the O(N logN) operations in R2. Voronoi regions also have more neighbours in three
dimensions and so slightly more work and storage is required to find the entries of R.

For uniformly distributed data in two dimensions the number of boundary points is
O(N1/2) whereas in three dimensions this increases to O(N2/3). Consequently, more entries
of B are sums of local centres and special points. The decay rates given in Theorems 5.6
and 5.7 for the two dimensional case are therefore valid for fewer entries in B. More
simply put the preconditioner becomes less local which leads to the preconditioned matrix
becoming less diagonally dominant and the eigenvalues less clustered. This is reflected
in the condition numbers which are slightly higher than for the two dimensional case.
However, as can be seen in Tables 6 - 8, they are still a great improvement over the usual
formulation, AΦ. For the multiquadric we see an improvement of almost six orders of
magnitude between the condition number of AΦ and the condition number of S for 3200
centres. When the triharmonic basic function or the biharmonic basic function are used
the improvement is still significant.

Number of Conventional Preconditioned Scaled
data points matrix Aφ matrix B matrix S

100 9.9305(5) 9.8098(3) 1.6065(2)
200 9.1370(5) 1.3060(4) 2.5132(2)
400 1.1619(7) 3.5857(4) 4.0519(2)
800 4.3729(7) 5.3033(4) 7.4332(2)
1600 8.8497(7) 3.1376(5) 4.8450(2)
3200 5.5625(8) 1.6367(5) 8.7156(2)

Table 6: Condition numbers for various sized point sets in [0, 1]3 for the multiquadric
function, c = 1/N1/3.

8 Roundoff error and fast computation of the action

of the preconditioned matrix

In previous sections it has been shown that the preconditioned system B is much better
conditioned than A. However, when N is large we cannot store B and therefore the matrix-
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Number of Conventional Preconditioned Scaled
data points matrix Aφ matrix B matrix S

100 6.5877(5) 1.4062(4) 7.0990(2)
200 1.1382(6) 3.6882(4) 2.1499(3)
400 1.3393(7) 1.0986(5) 6.9424(3)
800 6.5861(7) 2.2407(5) 1.3153(4)
1600 2.4541(8) 1.3645(6) 3.0752(4)
3200 1.4898(9) 1.8674(6) 1.3097(5)

Table 7: Condition numbers for various sized point sets in [0, 1]3 for the triharmonic
function, Φ(·) = | · |3.

Number of Conventional Preconditioned Scaled
data points matrix Aφ matrix B matrix S

100 2.9886(3) 1.4888(2) 1.4788(1)
200 6.4223(3) 1.7203(2) 2.7998(1)
400 2.0965(4) 2.0112(2) 3.4539(1)
800 4.9875(4) 3.1780(2) 4.2342(1)
1600 1.6073(5) 4.9316(2) 6.1167(1)
3200 4.4444(5) 8.4780(2) 5.8858(1)

Table 8: Condition numbers for various sized point sets in [0, 1]3 for the biharmonic
function, Φ(·) = | · |.

vector products that occur during an iterative fit are computed with a fast method and
not by multiplying by B. In this section we address the question of whether this indirect
approach somehow negates all the advantages of the preconditioning. The answer is that
it need not, especially if one builds a fast evaluator for the preconditioned functions {Ψj}.

Since each ψ function is based on φ’s corresponding to a local cluster of centres to-
gether with φ’s associated with special points it is possible to develop hierarchical and
fast multipole methods for fast approximate evaluation of (AR)y rather than Ay. That
is it is possible to construct fast evaluators which work with the ψ’s rather than the φ’s.
The approximate computation of By during an iterative fit would then be performed as
a two stage process, t ≈ (AR)y and x = RT t. The question which naturally arises is will
computing x = By in this two stage manner give reliable estimates of x. A partial answer
is given by the error analysis and tables below. These show that computing By in this
two stage manner can be expected to be much less susceptible to roundoff than computing
via the three stage process corresponding to a fast evaluator for φ, v = Ry, w ≈ Av and
x = RTw.

Let B := RTAR and x the exact product x = By. The finite precision counterpart is



28 boundary over distance preconditioner

x̂ := fl(By) which from Higham [9, page 76] has error

‖x̂− x‖
‖x‖ ≤ αN‖B‖‖B−1‖, (40)

where αN is

αN =
Nε

1−Nε
,

with ε being the unit roundoff ( ≈ 1× 10−16 for an IEEE double) and ‖ · ‖ is either the 1,
∞ or Frobenius norm.

Each column of R has a relatively small number, β say, of non-zero entries so the
product C = AR can be found accurately. From Higham [9, page 76], this matrix-matrix
product will have error

‖C − Ĉ‖ ≤ αβ‖A‖‖R‖,
where Ĉ = fl(AR) is the finite precision product of AR. For large N , αN � αβ so for now
we ignore the small error in finding C.

To find the product By by a two stage process without storing B requires the matrix-
vector products,

t = Cy, x = RT t.

or in finite precision form,

x̂ = fl(RTfl(Cy)).

We are interested in the error of computing x̂. Let

t̂ = fl(Cy),

= (C +∆C)y, |∆C| ≤ αN |C|,
= t+∆Cy.

Then x̂ is

x̂ = fl(RT t̂),

= (R +∆R)T t̂, |∆R| ≤ αβ|R|,
= x+∆RT t+RT∆Cy +O(ε2).

Paige [11] gives the relationship

‖∆R‖ ≤ ‖|∆R|‖ ≤ αβ‖|R|‖ = αβγR‖R‖,

where γR = 1 if ‖ · ‖ is one of the 1, ∞ or Frobenius norms and γR ≤ √
n for the 2-norm.

A similar relationship exists between ∆C and C and between ∆A and A.
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In the following discussion ‖ · ‖ is either the 2-norm or the Frobenius norm. The error
in finding x is,

‖x̂− x‖ ≤ ‖∆RT t‖+ ‖RT∆Cy‖+O(ε2),
≈ ‖∆RTCy‖+ ‖RT∆Cy‖,
≤ ‖∆RT‖‖C‖‖y‖+ ‖RT‖‖∆C‖‖y‖,
≤ αβγR‖R‖‖C‖‖y‖+ αNγC‖R‖‖C‖‖y‖,
= (αβγR + αNγC)‖R‖‖C‖‖y‖.

Now y = B−1x implies ‖y‖ ≤ ‖B−1‖‖x‖ which leads to the relative error
‖x̂− x‖
‖x‖ � αNγC‖B−1‖‖R‖‖AR‖ = αNb2(X,Φ), (41)

where b2(X,Φ) := γC‖B−1‖‖R‖‖AR‖. For the three stage process of finding x̂ a similar
analysis gives the bound

‖x̂− x‖
‖x‖ � αNγA‖B−1‖‖R‖2‖A‖ = αNb3(X,Φ), (42)

with b3(X,Φ) := γA‖B−1‖‖R‖2‖A‖. Note that the bounds given in this section are from
a basic analysis and as such can be improved upon. However, they are acceptable here as
they show that the two stage process, x = RT (Cy), will be sufficiently accurate for most
purposes. Using the notation above, equation (40) for the 2-norm is

‖x̂− x‖
‖x‖ ≤ αNγB‖B−1‖2‖B‖2 = αNb1(X,Φ), (43)

where b1(X,Φ) := γB‖B−1‖2‖B‖2.
Tables 9-11 calculate the bounds (41) - (43) for various basic functions and centres,

X, in [0, 1]2. Numbers in the tables are with respect to the 2-norm. These results show
that the bound on the two stage process is a lot smaller than the bound on the three
stage process. As expected though direct multiplication with a stored B gives the smallest
bound. Of course such direct multiplication is impractical for large N .
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