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1 Introduction

In recent years radial basis function collocation has become a useful alternative to finite

difference and finite element methods for solving elliptic partial differential equations. RBF

collocation methods have been shown numerically (see for example [17]) and theoretically

(see [14, 13]) to be very accurate even for a small number of collocation points. In appli-

cation finite difference methods often have a low approximation order and consequently

can require a large grid and considerable computation to obtain a sufficiently accurate

solution. RBF collocation has been applied to linear elliptic PDEs in R2 and R3 [18], to

time dependent problems [15, 16], and to non-linear problems [10].

In this paper we present new numerical results for RBF collocation. These results

show that collocation with a basic function from the Matern class can be more accurate

than collocation with the multiquadric basic function. Also, we present and implement an

algorithm which solves linear and non-linear collocation equations with the multiquadric

when N is large and c < 2/
√
N .

Section 2 briefly outlines RBF collocation and discusses difficulties with the method.

These include poor conditioning and full matrices when using globally supported basic

functions, and lower accuracy when using compactly supported basic functions. In Section
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3 we give numerical results using a family of basic functions known as the Matern family.

These numerical results show that this family is an effective alternative to the multiquadric

basic function in many situations. Finally, in the last sections, we present a method which

can be used to solve large collocation problems with the multiquadric basic function and

c < 2/
√
N . Numerical experiments on linear PDEs show convergence to the solution for

small enough values of c. It is hoped that in the future the algorithm will be able to be

applied to larger values of c. This new algorithm combines the use of approximate cardinal

functions and domain decomposition to iteratively find the solution of the collocation

problem. Using approximate cardinal functions as a change of basis has been shown to be

effective in the interpolation setting [2]. Previously solving a collocation system required

O(N3) operations (for globally supported Φ) and was not possible for large N . The method

presented here solves the collocation system in O(N logN) operations if c < 2/
√
N and

the PDE is suitable.

2 RBF collocation

This paper considers solving a suitable elliptic PDE of the form

Lu = f in Ω ⊂ Rd, (1)

u = g in ∂Ω,

by radial basis function collocation. In (1) f, g : Rd → R are known and ∂Ω is the

boundary of the region Ω. L is a differential operator and may be linear or non-linear. If

L is non-linear a multilevel Newton iteration is required and a linearized system is solved

at each level.

The unknown solution, u, to the PDE is approximated by a radial basis function, uφ,

of the form

uφ(·) = p(·) +
N∑

j=1

λjΦ(· − xj). (2)
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Here λ = [λ1, . . . , λN ]
T are coefficients to be found, p ∈ πd

k, and Φ is a basic function, such

as the multiquadric. If L is time dependent then we let λ be a function of time and solve

for λ(t) at a finite number of discrete time steps. For more discussion on this case see [17].

For the moment assume L is time independent. Now for uφ to satisfy the PDE (1) then

Luφ(x) = f(x), x ∈ Ω,
uφ(x) = g(x), x ∈ ∂Ω. (3)

Clearly this cannot generally be achieved for every point in Ω. By choosing N distinct

collocation points XI = {x1, . . . , xNI
} ⊂ Ω and XB = {xNI+1, . . . , xN} ⊂ ∂Ω and ensuring

(3) holds at these points we expect uφ will be a good approximation to u. For the choice

of uφ in (2) the collocation equations are

Lp(xi) +
N∑

j=1

λjLΦ(xi − xj) = fi, i = 1, . . . , NI ,

p(xi) +
N∑

j=1

λjΦ(xi − xj) = gi, i = NI + 1, . . . , N,

along with the side conditions

N∑
j=1

λjq(xj) = 0, for all q ∈ πd
k.

This leads to the equivalent matrix form


WL PL

WB PB

P T O





 λ

a


 =




f

g

0


 , (4)

where

(WL)ij = LΦ(xi − xj), xi ∈ XI , xj ∈ X,

(WB)i−NI ,j = Φ(xi − xj), xi ∈ XB, xj ∈ X,

(PL)ij = Lpj(xi), xi ∈ XI ,

(PB)i−NI ,j = pj(xi), xi ∈ XB,

(5)
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and {p1, . . . , pdim(πd
k)} forms a basis for πd

k. The vector a consists of coefficients with respect

to this basis. Solving this collocation system for the coefficients [λT aT ]T , when N is large,

is the emphasis of later sections of this paper. The strategy there is to precondition the

collocation matrix

A =




WL PL

WB PB

P T O


 , (6)

so that the preconditioned system is solved quickly using an iterative method. The collo-

cation matrix, A, in (6) has not been proven to be non-singular but in [20] it was shown

that finding a numerically singular matrix was very rare. The positioning of the centres

has an effect on the accuracy of RBF collocation. However, to keep the discussion simpler,

we only consider gridded centres.

Equation (2) is the form of the RBF approximation that was initially presented by

Kansa [17]. This form is often called unsymmetric collocation due to the matrix in (6)

being unsymmetric. An alternative approach [8], referred to as symmetric collocation,

takes the form

uφ(·) = p(·) +
NI∑
j=1

λjL̃Φ(· − xj) +
N∑

j=NI+1

λjΦ(· − xj), (7)

where L̃ is the operator L now applied to the second argument, xj. Note that the absolute

values of L̃Φ(y − x) and LΦ(y − x) are equal for any x and y. For the choice of uφ in (7)

the collocation equations lead to the interpolation system




WLL̃ WL PL

W T
L̃

WB PB

P T
L P T

B O





 λ

a


 =




f

g

0


 . (8)
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The matrices in (8) are,

(WLL̃)ij = LL̃Φ(xi − xj), xi, xj ∈ XI ,

(WL)i,j−NI
= LΦ(xi − xj), xi ∈ XI , xj ∈ XB,

(WL̃)i,j−NI
= L̃Φ(xi − xj), xi ∈ XI , xj ∈ XB,

(WB)i−NI ,j−NI
= Φ(xi − xj), xi, xj ∈ XB,

(9)

and PL and PB are the same as in (4). The main advantage of this formulation is that

it is provably non-singular (see [8, 22]). However the RBF in (7) is not as widely used as

Kansa’s original due to an extra application of L requiring that Φ be more differentiable.

For nonlinear collocation using (7) also increases the complexity of the method. Some

numerical results comparing the two approaches can be found in [8].

Both collocation systems are generally very badly conditioned which can restrict the use

of RBF collocation to systems with only a few thousand centres. Theoretical results show

that multiquadric interpolation becomes more accurate as the multiquadric parameter c

increases [19]. A lot of numerical evidence agrees with this in the collocation setting.

However, as c gets larger the graph of the basic function becomes flatter and this leads to

bad conditioning. Thus as the accuracy of the approximation increases then often so does

the ill-conditioning. Various techniques have been used with mixed success to combat this

problem (see for example [18]).

The problems associated with using globally supported basic functions have led to the

use of compactly supported basic functions such as the Wendland functions [21]. If the

support is small then matrix-vector multiplies can be calculated in O(N) operations. The
problem with compactly supported basic functions is that good approximations to the

solution are only obtained when the support is large. For accurate results the sparcity of

the matrix is lost. A multilevel approach with smoothing can improve the accuracy of the

RBF approximation [7] but multiquadric basic functions are usually more accurate.
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3 Collocation with Matern basic functions

Traditionally multiquadric or compactly supported basic functions are the preferred choice

for RBF collocation. Numerical evidence has shown good results with these choices of

basic functions for various types of problems. Other alternatives that are common in the

RBF interpolation setting can be restricted in their use for collocation. For example, the

Laplacian of the thin-plate spline is

∆Φ(x) = 4 log(‖x‖) + 4,

which has a discontinuity at zero. The Laplacian of the exponential basic function also

has a discontinuity at zero. This makes the use of the thin-plate spline and exponential

limited in RBF collocation.

Due to the conditioning problems associated with the multiquadric we consider the use

of alternative basic functions for RBF collocation. This section presents numerical results

for some simple PDEs using the Matern family as basic functions. The Matern family is

given by

φν(r) =
21−ν

Γ(ν)
(cr)νKν(cr), (10)

where Kν is a modified Bessel function of order ν > 0 (note that ν is also a smoothness

parameter) and c > 0. If n is a nonnegative integer then (10) simplifies to

φn+1/2(r) =
exp(−cr)(cr)n

(2n− 1)!!
n∑

k=0

(n+ k)!

k!(n− k)!(2cr)k
.

Some examples for various values of ν are:

ν = 1/2, φ(r) = exp(−cr),

ν = 1, φ(r) = crK1(cr),

ν = 3/2, φ(r) = (1 + cr) exp(−cr),

ν = 5/2, φ(r) = (1 + cr + c2r2/3) exp(−cr).

(11)

Although we only consider unsymmetric collocation here the motivation behind the use

of the Matern class comes from the results of Franke and Schaback [14, 13] in the symmetric
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collocation setting. They show that for a PDE of order m the L∞ approximation order

for RBF collocation with a Matern basic function will be ν − m. Note that this result

is for solutions u in the “native space” of Φ. A complete review of the work of Franke

and Schaback is beyond the scope of this thesis but the reader is referred to their papers

[14, 13].

Tables 1 and 2 contain condition numbers of the collocation matrix (6) and relative

error results for the PDE

∆u = 32 cos(4x1 + 4x2), (x1, x2) ∈ Ω,
u = cos(4x1 + 4x2), (x1, x2) ∈ ∂Ω,

where Ω is the unit square. The relative error is ‖s − u‖2/‖u‖2 where s is the values

of the RBF and u the values of the true solution evaluated on a uniform grid of size

(2
√
N − 1) × (2

√
N − 1). The basic functions we compare are the multiquadric and the

Matern, ν = 9/2, function.

It is clear from the tables that as the basic function becomes flatter the condition

number increases for a fixed set size. In the case of the multiquadric this corresponds to c

increasing, whereas for the Matern function this corresponds to a decrease in c.

Table 1 shows results for centres on a uniform grid in [0, 1]2. The smallest relative

error for the Matern function is about 9 times smaller then the smallest relative error for

the multiquadric. However, both these experiments have condition numbers greater than

1020. If we look at experiments with condition numbers that are about 1016 or less then

the difference between the basic functions is even more dramatic. The best results are

then approximately 1.7 × 10−5 and 4 × 10−7 for the multiquadric and Matern functions

respectively. The error for the Matern function is about 40 times smaller than the error

for the multiquadric!

The same experiments were repeated on a grid of shifted Chebychev nodes in [0, 1]2.

The results are in Table 2. The errors for these trials were as low as 1.13×10−8 for Matern

collocation on 4225 centres. Overall, for this PDE, RBF collocation with the Matern basic

function was more accurate than RBF collocation with the multiquadric especially for
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large N . Also collocation on the Chebychev grid was more accurate than collocation on

the uniform grid.

Number Multiquadric Matern, ν = 9/2

of centres c relative condition c relative condition

N error number error number

15/9 7.552(-5) 6.555(17) 0.5 1.056(-3) 1.694(16)

13/9 1.217(-4) 1.038(17) 1.0 1.079(-3) 3.069(13)

9× 9 11/9 2.582(-4) 2.037(15) 1.5 1.108(-3) 9.406(11)

9/9 5.684(-4) 2.877(13) 2.0 1.163(-3) 9.117(10)

7/9 1.250(-3) 2.447(11) 2.5 1.251(-3) 1.601(10)

15/17 2.095(-6) 1.492(19) 0.5 6.860(-4) 6.704(18)

13/17 5.656(-6) 3.610(19) 1.0 4.488(-5) 1.603(17)

17× 17 11/17 1.854(-5) 5.778(18) 1.5 4.703(-5) 3.023(15)

9/17 6.131(-5) 2.378(16) 2.0 5.175(-5) 3.109(14)

7/17 2.152(-4) 4.151(13) 2.5 5.796(-5) 5.518(13)

15/33 1.895(-6) 2.594(20) 2.0 1.628(-6) 1.338(19)

13/33 9.995(-7) 4.394(20) 2.5 1.952(-6) 1.484(17)

33× 33 11/33 3.345(-6) 9.664(20) 3.0 2.266(-6) 3.162(16)

9/33 1.397(-5) 2.063(18) 3.5 2.684(-6) 9.402(15)

7/33 5.648(-5) 1.397(15) 4.0 3.232(-6) 3.188(15)

15/65 1.536(-6) 1.862(21) 3.0 2.139(-7) 3.682(20)

13/65 1.099(-6) 3.087(21) 4.0 1.112(-7) 1.472(20)

65× 65 11/65 1.423(-6) 8.629(20) 5.0 1.419(-7) 3.792(18)

9/65 4.170(-6) 7.398(20) 6.0 2.290(-7) 8.410(17)

7/65 1.697(-5) 2.086(16) 7.0 3.724(-7) 5.944(16)

Table 1: Radial basis function collocation of the Poisson equation with solution cos(4x1 +

4x2). Uniform grid.
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Number Multiquadric Matern, ν = 9/2

of centres c relative condition c relative condition

N error number error number

15/9 3.026(-5) 4.737(17) 0.5 3.966(-4) 1.775(16)

13/9 4.962(-5) 2.614(16) 1.0 4.164(-4) 3.464(13)

9× 9 11/9 1.038(-4) 6.360(14) 1.5 4.342(-4) 1.085(12)

9/9 2.307(-4) 1.102(13) 2.0 4.634(-4) 1.059(11)

7/9 5.189(-4) 1.305(11) 2.5 5.066(-4) 1.864(10)

15/17 4.469(-5) 1.454(19) 1.0 4.136(-6) 4.806(18)

13/17 4.756(-7) 7.760(18) 2.0 2.498(-6) 4.190(15)

17× 17 11/17 7.822(-7) 5.132(18) 3.0 3.370(-6) 1.732(14)

9/17 2.924(-6) 9.153(16) 4.0 4.865(-6) 1.725(13)

7/17 1.344(-5) 5.349(14) 5.0 7.407(-6) 2.721(12)

11/33 6.382(-6) 9.656(19) 4.0 1.222(-7) 1.957(20)

9/33 2.256(-5) 6.774(19) 5.0 1.554(-8) 2.005(18)

33× 33 7/33 1.082(-6) 3.598(19) 6.0 2.389(-8) 1.843(17)

5/33 4.329(-6) 6.523(17) 7.0 3.878(-8) 3.591(16)

3/33 1.549(-5) 7.397(13) 8.0 6.210(-8) 1.226(16)

5/65 9.659(-7) 1.204(22) 15 1.213(-8) 6.011(20)

4/65 7.014(-7) 4.365(20) 20 1.127(-8) 3.828(18)

65× 65 3/65 2.533(-6) 1.893(20) 25 4.414(-8) 5.882(17)

2/65 1.105(-4) 4.786(16) 30 2.111(-7) 1.131(17)

1/65 4.847(-3) 3.162(12) 35 9.722(-7) 3.879(16)

Table 2: Radial basis function collocation of the Poisson equation with solution cos(4x1 +

4x2). Chebychev grid.
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4 Solving the collocation system for large N

For globally supported basic functions directly solving the collocation system (4) requires

O(N3) operations and O(N2) storage without using any customised method. This sec-

tion presents a new algorithm for solving this system in O(N logN) operations and O(N)
storage with the multiquadric basic function. The algorithm uses a change of basis pre-

conditioner in conjunction with domain decomposition and a fast matrix-vector multiply.

The greatest computational cost at each iteration is at least one matrix-vector multiply.

Fast matrix-vector product algorithms allow this to be achieved in O(N logN) operations

using a suitable fast evaluation code. These fast evaluation codes exist for a variety of

functions [1, 3, 5].

4.1 Domain decomposition

This subsection considers a domain decomposition algorithm for centres separated into

two domains. Without loss of generality refer to XI = {x1, . . . , xNI
} as good points and

XB = {xNI+1, . . . , xN} as bad points. Also assume that NI >> |XB| =: NB. Then if an

interpolant, s, is of the form

s(·) =
N∑

j=1

λjΨ(· − xj),

where the coefficients λj are to be found then the interpolation matrix is Bij = Ψ(xi −xj).

This can be split into the form

B =


BII BIB

BBI BBB


 . (12)

In (12) Bjk, j, k ∈ {I, B} has size Nj × Nk and is the matrix from evaluating the Ψs

centred at Xk, at points in Xj. Now applying a simple domain decomposition algorithm to

this system we can iteratively obtain a solution. This method is given by Algorithm 4.1.

The notation rB, rI refers to the residuals restricted to centres XB and XI respectively.
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Algorithm 4.1 domain− decomposition(X, f,NI)

SETUP

1. Create a set, XI , of good points and a set, XB of bad points

2. Form Ψ elements for each point x in X

3. r ← f and s ← 0

ITERATIVE SOLUTION

1. while ‖r‖ > ε

2. Solve for the coefficients µ of a bad point approximation via direct or

approximate solutions of BBBµ = rB

3. sbad ← ∑
j:xj∈XB

µjΨj

4. Evaluate rI = rI − sbad(XI)

5. Solve for the coefficients µ of a good point approximation via approx-

imate solution of BIIµ = rI

6. sgood ← ∑
j:xj∈XI

µjΨj

7. Update the RBF s = s+ sbad + sgood

8. Update the residual r = f − s(X)

9. end while

At the beginning of each iteration coefficients µ are found so that

∑
j:xj∈XB

µjΨj(xi) = ri, xi ∈ XB.
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Because NB is small compared to NI this is relatively efficient to solve. The residuals

are then updated and a similar system on the good points is solved. Although NI is

large we can solve the system on the good points efficiently by GMRES if the eigenvalues

of BII are sufficiently clustered. Each GMRES iteration will require the computational

cost of a matrix-vector multiply. In our experience an exact solution at step 5 is not

required. Instead reducing the residual by a few orders of magnitude will suffice. If BII

is an approximation to the identity then most off diagonal elements will be near zero.

An approximation to BII can easily be found by retaining only a small number, say σ,

of the largest magnitude entries per column. A matrix-vector product will then only

require O(σN) operations instead of the O(N logN) required using a fast matrix-vector

code. Numerical evidence shows that this approximation increases the number of outer

iterations by less then four times but significantly decreases the total number ofO(N logN)

matrix-vector products (which is the main computational cost of the algorithm).

The final step is to update the residual which can be achieved in O(N logN) operations.

Note that all matrix-vector multiplies will be O(N logN) only if a suitable fast evaluation

algorithm exists for the basic functions Φ and LΦ. For example, if L is the Laplacian and

Φ the multiquadric then

LΦ(·) = ‖ · ‖2 + 2c2

(‖ · ‖2 + c2)3/2
=

1

(‖ · ‖2 + c2)1/2
+

c2

(‖ · ‖2 + c2)3/2
,

which is a combination of two members of the multiquadric family. Fast evaluators are

available for functions of this type [3].

Algorithm 4.1 should be modified to include a coarse grid correction at each iteration.

We usually take the number of points in the coarse grid to be about NB.

4.2 Approximate cardinal functions

In the previous section it was assumed that the matrix BII had clustered eigenvalues. In

this section we achieve this by forming Ψ elements as approximate cardinal functions. We

also explain why this approach doesn’t work for large values of the multiquadric parameter

c. Using approximate cardinal functions as a change of basis has been shown to be effective
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in the interpolation setting [2, 4]. The main difference in the collocation case is that there

are different operators on the interior and on the boundary. If our aim was for B to be a

good approximation to the identity, as in the interpolation case, then the Ψj’s would be of

the form,

Ψj(xi) ≈ 0, xi ∈ XB,

LΨj(xi) ≈ 0, xi ∈ XI ,

along with one of the constraints,

LΨj(xj) = 1, if xj ∈ XI ,

Ψj(xj) = 1, if xj ∈ XB.

In our experience forming approximate cardinal functions to satisfy these conditions is

difficult. Instead we form approximate cardinal functions which ensure BII is a good

approximation to the identity and use the domain decomposition approach given in Algo-

rithm 4.1. The bad points are the boundary points and the good points are the interior

points. For a uniform distribution of points in R2 the number of boundary points, NB, is

proportional to N1/2 so direct solution of a linear system on these points requires O(N3/2)

operations. Calculating the LU factorisation to BBB as part of the setup means this cost

is only incurred once. Subsequent use of this LU decomposition to solve a system requires

O(N2
B) = O(N) operations.
Each Ψ element is of the form

Ψj(·) = pj(·) +
∑
i∈Sj

λjiΦ(· − xi),

where the set Sj is often a set of indices of the nearest β points to xj. For interior points

we construct Ψ elements so that

LΨj(xj) = 1,

LΨj(x) = O(‖x− xj‖−3) as ‖x− xj‖ → ∞.
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Approximate cardinal functions of this type are referred to as decay element approximate

cardinal functions and are found by a constrained least squares problem as mentioned in

[2].

The set Xj is defined to be the centres in X such that xi ∈ Xj if and only if i ∈ Sj.

For boundary points use a pure local approach of the form

Ψj(xj) = 1

Ψj(xi) = 0, xi ∈ Xj ∩XB,

LΨj(xi) = 0, xi ∈ Xj ∩XI .

The pure local approximate cardinal functions are found by solving a collocation system

on |Sj| nodes for each j.

In our experience we have noticed that creating approximate cardinal functions is only

effective for c < 2/
√
N (if the centres are a uniform grid in [0, 1]2). In Figure 1 approxi-

mate cardinal functions formed using a decaying strategy for two different values of c are

compared. Clearly the Ψ element formed with the larger value of c is not a very good

approximation to a cardinal function. The required rate of decay is not achieved until

further away from the centre of the Ψ element. An explanation for this is the regions of

validity of the far field expansions. Consider finding a Ψ centred at xj and based on centres

with maximum distance H from xj. The Ψ element will decay in the region of validity of

the far field expansion of the cluster. This expansion is given in [3] and is valid outside the

circle ‖x − xj‖ =
√
H2 + c2. If c is large then the radius of this circle increases and the

region of validity is further from xj (see Figure 2 ) and thus the decay of Ψ occurs further

away.
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(a) A Ψ function formed with c = 2/33.
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(b) A Ψ function formed with c = 4/33.

Figure 1: Ψ elements based on fifty local centres for two different values of c. Notice that

the Ψ function decays quicker with the smaller value of c.
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 2 H 2

Figure 2: Far field expansion regions of validity for centres inside the circle ‖ · ‖ ≤ H and

multiquadric parameters c1, c2 with c2 > c1. The region of validity corresponding to c2 is

outside the dotted circle and for c1 is outside the dashed circle.
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5 Numerical results

In this section we present numerical results for RBF collocation of linear PDEs of the

form (1). These results show good convergence of the algorithm when the multiquadric

parameter c is suitably small and constant. All numerical experiments are in the domain

[0, 1]2 with the collocation nodes forming an n× n grid. The iterations are stopped once

the relative 2-norm residual is less than 10−8.

To initially try this method we consider solving Poissons equation in R2 with the

solutions

f1(x1, x2) = exp (2x1 + 2x2) , (13)

f2(x1, x2) = exp
(−1000((x1 − 1/2)6 + (x2 − 1/2)6)

)
. (14)

RBF collocation solutions for these two PDEs can be found in Figure 3. The results from
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(a) Exact solution is f1.
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(b) Exact solution is f2.

Figure 3: RBF collocation on a 33× 33 grid of centres in [0, 1]2 with c = 2/33.

applying Algorithm 4.1 to f1 and f2 are in Tables 3 and 4 respectively. The algorithm was

applied using both exact matrix-vector products and approximate matrix-vector products

at step 5. We will refer to these different implementations as Algorithm 4.1(a) and Al-
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gorithm 4.1(b) respectively. For both implementations exact matrix-vector products are

always used at step 7. The “matrix-vector” column in the tables give the total number

of exact matrix-vectors calculated to find the solution. For Algorithm 4.1(b) the total

number of exact matrix-vector products is equal to the number of outer iterations. The

“2-norm residual” column is the relative 2-norm residual ‖Aλ − f̄‖2/‖f̄‖2 where f̄ is the

right hand side vector [fT gT ]T in (4). The tables show that the algorithm converges

for both small and large values of N . As expected, Algorithm 4.1(b) requires more outer

iterations to converge but the total number of exact matrix-vector products is reduced.

This is a sizeable computational saving for large N .

Overall the number of outer iterations remained fairly stationary for Algorithm 4.1(a).

When approximate matrix-vectors were used the number of outer iterations increased

slightly but not dramatically as N increased. Thus it would be feasible to solve even

larger systems using this algorithm.

From these experiments we can conclude that the algorithm will at least work on some

simple PDEs when c is small. Usually c is required to be large for higher accuracy but

in the case of f2 we noticed that c = 2/
√
N was nearly optimal for small data sets and

using a Matlab \ operator to solve the systems. Carlson and Foley [6] suggest that a small
shape parameter will be more accurate if the function values vary rapidly. The algorithm

presented here may therefore be more applicable for solutions of this type.

A suitably modified algorithm has shown promising results for the nonlinear PDE given

in [11, 10].
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