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Abstract

Structural Vector Autoregressions allow dependence among contemporaneous vari-

ables. If such models have a recursive structure, the causal relation among the vari-

ables can be represented by directed acyclic graphs. The identification of these rela-

tionships for stationary series may be enabled by the examination of the conditional

independence graph constructed from sample partial autocorrelations of the observed

series. In this paper we extend this approach to the case when the series follow an

I(1) vector autoregression. We show that, even though the theoretical partial auto-

correlations are undefined for integrated processes, exactly the same data procedures

and sampling properties may be applied. The theoretical reasoning is supported by

the empirical results of simulation, and applications from banking series and term

interest rates are used to illustrate the procedure.

JEL Classification: C10, C32.
KEY WORDS: Causality, Directed graphs, Conditional independence, Multivariate time
series, Structural vector autoregression.

∗The authors wish to thank Clive Granger and Daniel Peña for their useful comments.
†Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK.
‡Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800 Christchurch,

New Zealand.

2



1 Introduction

1.1 Structural vector autoregressions.

In the recent literature on causal analysis there have been many developments based on
graphical modeling (e.g., Pearl, 2000 and Spirtes et al., 2000) where causal relations among
random variables are described by directed acyclic graphs (Glymour and Spirtes, 1988,
pp 179–181). This approach has also been extended to time series analysis both in the
frequency (Dahlhaus, 2000) and the time domain (e.g., Swanson and Granger, 1997 and
Lauritzen and Richardson, 2002).

In particular in the latter context Reale and Tunnicliffe Wilson (2001, 2002) considered
the pth order vector autoregressive model VAR(p) of a stationary m-dimensional time series
xt = (xt,1, xt,2, . . . , xt,m)′ in its structural form:

Φ0xt = d + Φ1xt−1 + Φ2xt−2 + · · ·+ Φpxt−p + at (1)

where d allows for a non zero mean of xt and at is a multivariate white noise with variance
matrix D.

One requirement of this model is that D is diagonal. A further condition, on Φ0,
is that it represent a recursive (causal) dependence of each component of xt on other
contemporaneous components. This is equivalent to the existence of a re-ordering of the
elements of xt such that Φ0 is upper triangular with unit diagonal. Thus xt,i depends upon
all the remaining contemporaneous variables xt,i+1,. . .xt,m. It is convenient for us to take
this as our standard ordering, although the order of causation, xt,m → xt,m−1 → · · · → xt,1

is the reverse of the natural ordering, We call xt,1 the first and xt,m the last variable.
The model may be transformed to its canonical form:

xt = c + Φ∗
1xt−1 + Φ∗

2xt−2 + · · ·+ Φ∗
pxt−p + et, (2)

which does not allow dependence among contemporaneous variables, by dividing through
by Φ0, in which form xt is expressed as a linear combination of xt−1, xt−2, . . . , xt−p with
an error term et = Φ−1

0 at. This is the linear innovation, having variance matrix Σ related
to D by

Σ−1 = Φ′
0D

−1Φ0. (3)

The model (1) is not unique, in that the transformation to the canonical form, which
is unique, may be reversed by the choice of any matrix Φ0 which satisfies (3). Each
possible ordering of the series gives a different form of (causal) structural model. In Reale
and Tunnicliffe-Wilson (2001) we present a methodology that is based on the assumed
existence of a model representation (1) that is sparse, i.e. has a relatively small number of
coefficients. We will call this the true structural model. The method seeks to explore and
identify the ordering that corresponds to such a sparse representation. It may reveal more
than one such form. The concept of a true model may be idealized, and the method may be
viewed as seeking an approximation to the ideal, but it is a useful concept for developing
the properties of the procedure. If the number of series is small, each of the different
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possible causal orderings of contemporaneous dependence could be explored directly, but
for a larger number of series, this would be impractical. Our method then offers a practical
way forward.

1.2 Causal representation.

The model (1) may be represented by a directed acyclic graph (DAG) in which the compo-
nents of xt, xt−1, . . . , xt−p form the nodes, and causal dependence is indicated by arrows
linking nodes. The nature of the model is that all arrows end in nodes representing the
contemporaneous variables on the left hand side of (1). Some arrows will start from the
past, and some from other contemporaneous variables. As an illustration, we reproduce a
structural model presented by Reale and Tunnicliffe-Wilson (2001).

The data were 8 years of monthly values of three variables of the Italian monetary sys-
tem: the re-purchase agreement interest rate, xt,1; the average interest rate on government
bonds, xt,2 and the average interest rate on bank loans, xt,3. The DAG representing the
structural VAR(2) model, chosen by our procedure, for these series, is shown in Figure
1. The numbers attached to the links are the coefficients in the linear predictor for the
corresponding contemporaneous variable.
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t -1,1

t -1,3 t -2,3
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0.730

0.168

0.185

0.054

Figure 1: The DAG representation of the structural VAR(2) identified for the Italian monetary
variables.

These coefficients are estimated by single equation ordinary least squares (OLS) regres-
sion. This is fully efficient under the working assumption, confirmed by a normality test,
that the vector series is Gaussian. Our methods are also applicable, and the properties of
the estimates given by the regression are reliable, under wider conditions, such as et being
I.I.D., presented for example in Anderson (1971).
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1.3 An identification procedure.

The exploratory methods, described in Reale and Tunnicliffe Wilson, 2001, are as follows.
The first step is to identify the overall order p of a VAR model for the series. The second
and central step is to construct a sample conditional independence graph (CIG) for the
variables xt, xt−1, . . . , xt−p which form the nodes of the graph. Being based upon statistical
correlations, the only causality which can be attached to this is that indicated by the
arrow of time. The third step is to determine which DAG representations of structural
VAR models are consistent with this CIG. Typically, there will only be a small number
of such possibilities, if the CIG is sparse, i.e. contains a relatively small number of links.
In particular, the graph may admit only a small number of possible interpretations of the
direction of dependence between contemporaneous variables. The final step is to fit the
corresponding structural VAR models by regression and select one using a criterion such
as AIC (Akaike, 1973).

These exploratory procedures rely upon the assumption of stationarity of the vector
time series that is being modeled, because they are expressed in terms of sample values
of partial autocorrelations of the series. The partial autocorrelations of a time series, and
the autocorrelations from which these are derived, are only defined for a second order
stationary process. But we wish to apply the same procedures to time series that appear
to be I(1) processes with an arbitrary degree of cointegration.

For example Figure 2 shows three US dollar term interest rates over a period of 600
days, that are similar to random walks with the appearance of cointegration.

In Tunnicliffe Wilson, Reale, and Morton, (2001), our methods for structural autore-
gressive modeling are extended to the construction of a structural ARMA(1,1) model for
seven US dollar term interest, including those illustrated in Figure 2. In doing this it was
assumed that the term rates were I(0). This is a reasonable assumption for very long
records of the series, because they can be assumed to be bounded. One would however,
find it hard to reject the hypothesis that series such as these followed an I(1) model, even
for the relatively long records illustrated. We will describe such series as near-I(1).

Distributional properties of estimates which may in theory be valid asymptotically for
any stationary process, may in practice be far from the asymptotic properties for quite
long samples of near-I(1) processes. An example arises from the univariate AR(1) process.
The standard t value for the autoregressive coefficient φ has an asymptotic “standard”
Normal(0, 1) distribution under wide assumptions. However, if φ is close to 1, in quite
large samples the distribution can be closer to that of the “non-standard” Dickey Fuller
distribution that arises in the I(1) case for φ = 1 (Abadir, 1995).

1.4 Extension to I(1) processes.

The main point of this paper is to show that the statistical procedures that we presented
in Reale and Tunnicliffe Wilson, 2001, can be applied, without change, to vector I(1)
processes. The results that we shall present, re-assure us that we can base our exploratory
inference for I(1) and near-I(1) processes, on standard normal distributions, and that
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Figure 2: Six-month (solid line), two year (broken line) and ten year (dotted line) dollar term
rate series.

we need not be concerned to use non-standard distributions at the stage of identifying
conditional independence graphs for the series.

In the next section we shall review the second and third stage of our procedure; how
we form and use the sample partial autocorrelation coefficients of the series to construct
(tentative) conditional independence graphs, and how we use these to identify possible
structural VAR models for stationary processes.

In section 3 we consider how the definition of conditional independence graphs and
sample partial correlation coefficients can be usefully extended to I(1) processes, and how
they are to be interpreted when theoretical autocorrelations and partial autocorrelations
are not defined. We also extend to the I(1) case, the moralization rule that allows us
to determine which DAG representations, of structural VAR models, are consistent with
the CIG. In section 4 we present a theorem which shows that the statistical methods for
constructing a CIG for the series in the stationary case, may also be applied in the case of
I(1) vector autoregressions. Our final section will present a simulation of a cointegrated
I(1) vector AR(1) process with 7 components, that illustrates the validity of this result.
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2 Use of the conditional independence graph for model

selection in the stationary case.

2.1 Construction of the conditional independence graph.

The statistical methods are based on a data matrix X which in the general case consists of
m(P +1) vectors of length n = N−P , composed of elements xt−u,i, t = P +1−u, . . .N−u,
for each series i = 1, 2, . . . , m, and each lag u = 0, 1, . . . , P , for some chosen maximum
lag P . Our first stage is that of overall order selection. For each order p we fit, by OLS,
the saturated structural VAR regressions of the m contemporaneous (lag 0) vectors on all
the vectors up to lag p. Using the sums of squares Si from these regressions we form the
AIC as n

∑
log Si + 2k, where k = pm2 + m(m − 1)/2 is the total number of regression

coefficients estimated in the regressions. For the saturated model the causal order of the
contemporaneous variables does not affect the result. Each one is included only as a
regression variable for a subsequent variable in the chosen ordering. We then select the
order p which minimizes the AIC. In this way we selected the order p = 2 for the Italian
monetary series, which is in agreement with that found in a previous analysis by Bagliano
and Favero (1998).

Our second stage is to construct the sample CIG for the chosen model order p. This
CIG consists of the same nodes as those shown in Figure 1, representing the variables up
to lag 2. In general a CIG is an undirected graph, defined by the absence of a link between
two nodes if they are independent conditional upon all the remaining variables. Otherwise
the nodes are linked. In a Gaussian context this conditional independence is indicated by
a zero partial autocorrelation:

ρ (xt−u,i, xt−v,j |{xt−w,k}) = 0, (4)

where the set of conditioning variables on the right is the whole set up to lag p, excluding
the variables on the left. As shown by Whittaker (1990), the set of all such partial correla-
tions required to construct the CIG is conveniently calculated from the inverse W , of the
covariance matrix V of the whole set of variables, as

ρ (xt−u,i, xt−v,j |{xt−w,k}) = −Whl/
√

(WhhWll) (5)

where h and l respectively index the lagged variables xt−u,i and xt−v,j in the matrices V
and W . In the wider linear least squares context, defining linear partial autocorrelations
as the same function of linear unconditional correlations as in the Gaussian context, (4)
still usefully indicates lack of linear predictability of one variable by the other given the
inclusion of all remaining variables.

2.2 Sample partial autocorrelations.

To obtain estimates ρ̂ of the partial autocorrelations, we use in place of V the sample
covariance matrix V̂ formed from the data matrix X, but including only lags up to p.
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We then need a statistical test to decide which links are absent in the CIG. We are only
concerned with links between contemporaneous variables and between contemporaneous
and lagged variables, because these are the only ones that appear in the structural model
DAG. The test we use is to retain a link when the sample partial autocorrelation ρ̂ satisfies:

|ρ̂| > z/
√

(z2 + ν)), (6)

where z is an appropriate critical value of the standard normal distribution and ν = is a
residual degrees of freedom in the regression of any one column of the data matrix X on
all the other columns.

This derives from two results. The first is the algebraic relationship relating a sample
partial correlation ρ̂ between any two regression vectors of the data matrix X, to the t
value of one such vector in the regression of the other vector on that, and all the other

vectors of X. This is given by ρ̂ = t/
√

(t2 + ν) (see Greene, 1993,p 180).
The second result is the asymptotic normal distribution of the t value for time series

regression coefficients, given for example by Anderson (1971, p211). Of course we should
properly apply multiple testing procedures when applying the test simultaneously to all
sample partial autocorrelations, but that is not a practical option. Our attitude is similar
to that advocated by Box and Jenkins (1976) for the identification, for example, of autore-
gressive models using time series partial autocorrelations. We use these values to suggest
possible models; after fitting these we apply more formal tests and diagnostic checks to
converge on an acceptable model.

2.3 Selection of a structural VAR model.

To return to our example, the critical value for significance at the 5% level is 0.207. Figure
3 shows the appropriate subgraph of the CIG of the lagged variables constructed using this
threshold, with the addition of two links, xt,3−xt−1,1 and xt,3−xt−2,2 shown by broken lines.
These are included because their partial autocorrelations are very close to the threshold.
Our third stage is to determine which DAG representations are consistent with the CIG
in (3), or are nearly so, allowing for statistical uncertainty. For this purpose we use, in an
inverse manner, the moralization rule of Lauritzen and Spiegelhalter (1988), by which we
can form the CIG that would arise from any hypothesized DAG interpretation. This rule,
is to insert an undirected link between any two nodes a and b for which there is a node c
with directed links both a → c and b → c. In this case c is known as a common child of
a and b, and the insertion of a new, moral, link as marrying a and b, which are known as
the parents of c. After doing this for the whole graph the directions are removed from the
original links. The original links therefore remain, and the only new links are the moral
links.

Of course we attach the arrow of time to links from the past to the present, so the
challenge is to clarify the directions of the recursive ordering of contemporaneous variables.
As we describe in Reale and Tunnicliffe Wilson, (2001), inspection of Figure 3 lead us swiftly
to the specification of a good structural model for these series, as represented in Figure 1.
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Figure 3: The CIG estimated for the Italian monetary series.

Moralization of this graph gives a very close approximation to Figure 3. On the evidence
of the AIC, the model in Figure 1 represents the structure as well as the full VAR(2) model
with fewer than half the parameters, and with improved predictive ability.

3 The graphical representations of I(1) processes.

3.1 Definitions of the partial DAG and CIG.

We now assume that our series follows a vector I(1) process with an arbitrary degree of
cointegration, that is represented by some true structural VAR(p) model of the form (1).
As in the stationary case we can transform this to the canonical VAR(p) form (2), and it
is to this representation that we would apply the usual conditions for cointegration, as set
out, for example, by Reinsel, (1993), p 164.

For this process we now wish to define partial graphs on the nodes that are the com-
ponents of xt, xt−1, . . . , xt−p, i.e. we are concerned only with the presence or absence of
links between elements of xt and from elements of xt to elements of lagged terms, xt−h.
For the purpose of identifying a structural VAR representation of the process, we are not
here concerned with links between lagged terms.

The representation of (1) by a partial DAG, proceeds exactly as for the stationary case,
because the process is fully determined by the specified structural VAR model. However,
we have difficulty in defining the CIG when the process is I(1), because there is no fixed
distribution that we can assume for the variables that constitute the nodes. The VAR
model specifies only the conditional distribution of xt given xt−1, . . . , xt−p. We might
proceed, for any given time t, by assuming that xt−1, . . . , xt−p have a well defined joint
Gaussian distribution, though this would be unknown, and changing with time. We can
avoid this assumption by basing all our procedures on the conditional distribution specified
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by the model. For the assumed cointegrated model, expressed in the canonical form (2),
we therefore define the links of the required partial CIG as follows.

Definition 1. The partial CIG for a structural VAR model.

A link is absent between xt,i and xt−h,j , where 0 ≤ h ≤ p, if and only if the coefficient
of xt−h,j is zero, in the regression of xt,i upon all the elements of xt, xt−1, . . . , xt−p (other
than xt,i itself).

Remark We are considering here not the regression that might be estimated from the
data (which comes later), but the regression that may be determined from any given
structural or canonical cointegrated VAR(p) model that might be considered to represent
the process. This regression may be determined from the canonical form by (i) choosing
any re-ordering of the elements of xt in which xt,i comes first, (ii) determining the matrix
Φ0 that corresponds to this re-ordering and satisfies (3), and (iii) forming the corresponding
structural model (1) by premultiplying (2) by Φ0. The required coefficient is then Φh,i,j

in (2). Note that this structural representation would not in general be the true sparse
form that our procedure is designed to identify. This definition extends to I(1) processes,
the definition for a stationary VAR in terms of the partial autocorrelation, that the link is
absent if and only if

ρ (xt,i, xt−h,j|{xt−`,k}) = 0, (7)

where the conditioning set of variables on the right, includes all the elements of xt, xt−1,. . . ,
xt−p, excluding the pair on the left. Both definitions imply that xt−h,j has no extra (linear)
predictive capability for xt,i, in addition to that of the conditioning variables.

3.2 The moralization rule.

The derivation of this rule in the general context of graphical models assumes that the joint
distribution of the variables is well specified. Again, because the model (1) only specifies
a limited set of conditional distributions, we cannot invoke it directly, but will prove that
it still applies in this specific context, in conjunction with our extended the definition 1 of
the partial CIG.

Theorem 1

Given the DAG corresponding to some assumed true cointegrated structural VAR(1),
then the CIG determined for this model, using the definition 1 of the CIG given above, is
exactly that formed by applying the moralization rule to the DAG.

Remark The moralization rule is a general one in the sense that it is possible in exceptional
cases, through coincidence of numerical cancellation, that a link defined by the rule may in
fact be absent. Such an example may be contrived by starting with an appropriate CIG.
In the following proof we discount such cases. This is manifest as an assumption that a
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term in a matrix product will be non-zero if, in the calculation of that term, one of the
contributing products is known to be non-zero.

Proof.
We start with a DAG representation of the structural model 1, for which we assume,

without loss of generality, a contemporaneous causal structure that follows our standard
ordering with Φ0 being upper triangular as shown in (8). In DAG terminology this means
that any contemporaneous variable xt,j may only be a child of, i.e. dependent upon, either
another contemporaneous variable xt,i for which i > j, or any lagged variable xt−h,j . We
derive the moralization rule by determining the children of xi,t, when the contemporaneous
causal structure is reordered, so that xi,t becomes the first variable, that is regressed upon
all remaining contemporaneous variables and all lagged variables. To do this we derive
from (1) an alternative structural VAR representation with coefficients Φ̃0, Φ̃1,. . . , Φ̃p.
In this representation the contemporaneous autoregressive matrix Φ̃0, also shown in (8),
corresponds to a reversal of the ordering of xt,1, xt,2, . . . , xt,i. The top left partitions in
(8) corresponds to these variables, with T being upper triangular and L lower triangular.
The partitions A and B may be of saturated or sparse structure. All diagonal elements
are unity.

Φ0 =




. . . T
...

0
. . .

... V

0 0 0
. . .

0 0 0 0
. . .




; Φ̃0 =




. . . 0
...

L
. . .

... W

0 0 0
. . .

0 0 0 0
. . .




. (8)

Our result requires the following Lemma which we prove in the appendix.

Lemma 1. For all lags h = 0, 1, . . . p,

Φ̃h i j =
D̃i i

Di i

Φh i j +
i−1∑
s=1

Φ0 s i
D̃i i

Ds s

Φh s j (9)

where D̃ is the diagonal matrix of the white noise process in the alternative model.
From this lemma we conclude that Φ̃h i j 6= 0, i.e. there is a link from xt−h,j to xt,i, if

and only if either or both of the following hold:

• Φh i j 6= 0, i.e. xt,i was a child of xt−h,j in the original model,

• there exists an s such that Φ0 s i 6= 0 and Φh s j 6= 0, i.e. xt,i and xt−h,j have a
common child xt,s in the original model. This completes our proof.

4 The use of partial autocorrelations for I(1) processes.

Because the theoretical partial autocorrelations are not directly defined for the integrated
process, we were lead to define the CIG for these processes in terms of regression coefficients.
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Corresponding to this definition, in the sample context we now consider the standard OLS
regression of the vector corresponding to xt,i in X, upon all other vectors of X, and the
usual t value formed for the coefficient of the vector corresponding to xt−h,j . We include
a link between xt,i and xt−h,j in the CIG only if this t value is statistically significant, i.e.
if |t| > c for some suitable critical value c under the null hypothesis that the regression
coefficient is zero. The theorem that follows proves that asymptotically, for a cointegrated
VAR(p) process, this critical value is that of a standard normal variable, because we are
able to apply the inference procedures for OLS.

To implement this test we shall, however, use the algebraically equivalent inequality
for the sample autocorrelation coefficient expressed in (6). We shall continue to call these
sample autocorrelations, even though the theoretical partial autocorrelations are not de-
fined. They are formed from the sample covariance matrix V̂ in exactly the same way as
for the stationary case. The whole procedure for constructing the CIG is then identical to
that presented for the stationary process.

Theorem 2. Let xt follow a cointegrated structural VAR(p) process of the form given
by (1), and X be the data matrix formed of lagged series values as described in section
2. Perform the standard OLS regression of the vector corresponding to xt,1 in X, upon all
other vectors of X and form the usual t value for the estimate of the coefficient Φh,1,j of
the vector corresponding to xt−h,j. Then under the hypothesis that Φh,1,j = 0, t has an
asymptotic standard normal distribution.

Remark.For convenience of derivation and without loss of generality we take the response
vector corresponding to xt,1. Our development is based on results presented by Ahn and
Reinsel (1990) that are set out also in Reinsel (1993), pp 165-8. We follow this with
modifications (and some notational changes) to incorporate the structural form of model.

Proof.

(i) Write the model (1) in error correction form using the differenced series wt = xt−xt−1,
as

wt = Cxt−1 + ϕ0 wt +
p−1∑
j=1

ϕj wt−j + at, (10)

so that the original parameters may be expressed in terms of the new ones as

Φ0 = I − ϕ0

Φ1 = ϕ1 + I − ϕ0 + C
Φk = ϕk − ϕk−1 k = 2, . . . , p − 1,
Φp = −ϕp−1.

(11)

We require ϕ0 to be zero on and below the diagonal, but C and ϕ1, . . . , ϕp−1 are not
restricted, except by cointegrating conditions to be specified. We shall also use the
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expression for

C = −(Φ0 −
p∑

k=1

Φk). (12)

(ii) The model may be transformed to the canonical form (2) in which the cointegrating
condition may be expressed by two statements, Firstly that

det

(
I −

p∑
k=1

Φ∗
kB

k

)
= 0 (13)

has d < m roots equal to unity with all other r = m− d roots outside the unit circle.
Secondly that there exist matrices P and Q = P−1 such that

p∑
k=1

Φ∗
k = P

(
Id 0
0 Λr

)
Q, (14)

where Λr is of Jordan canonical form with diagonal elements less than one in absolute
value. We can then express

xt = P zt =
(

P1 P2

)( z1,t

z2,t

)
= P1z1,t + P2z2,t, (15)

where z1,t is a d dimensional purely integrated process and z2,t is an r dimensional
stationary series, defined by

zt =

(
z1,t

z2,t

)
= Q xt =

(
Q1

Q2

)
xt. (16)

Using (15) we can express the error correction form (10) as

wt = C1 z1,t−1 + C2 z2,t−1 + ϕ0 wt +
p−1∑
j=1

ϕj wt−j + at, (17)

where C1 = C P1 and C2 = C P2. Conversely, C = C1 Q1 + C2 Q2.

With the second equation in (11) replaced by

Φ1 = ϕ1 + I − ϕ0 + C1 Q1 + C2 Q2 (18)

we now have a 1:1 linear transformation of parameters from C1, C2, ϕ0, . . . , ϕp−1, to
Φ0, . . . , Φp. Although the transformation coefficients Q1 and Q2 in (18) are model
dependent, we know sufficient to establish our result.

(iii) The true value of C1 is zero. From (14)

(I −∑p
k=1 Φ∗

k)
(

P1 P2

)
=

(
P1 P2

)( 0 0
0 Ir − Λr

)

=
(

0 P2(Ir − Λr)
)

,

(19)
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so that

(I −
p∑

k=1

Φ∗
k)P1 = 0. (20)

Then from (12)
C P1 = −(Φ0 −∑p

k=1 Φk)P1

= −Φ0 (I −∑p
k=1 Φ∗

k)P1

= 0.
(21)

(iv) By the arguments presented in Reinsel (1993) we can establish the properties of the
estimated coefficients in (17), based on the fact that the regressors z2,t are purely
I(1) and the remainder are stationary. Because the true value of C1 is zero, we have

Ĉ1 = O(N−1) (22)

and (
Ĉ2 − C2, ϕ̂0 − ϕ0, . . . , ϕ̂p−1 − ϕp−1

)
= O(N

1
2 ). (23)

Furthermore, the joint distribution of the estimated coefficients in (23) is asymptot-
ically the same as for a purely stationary model, i.e. it is valid to use for these the
inference procedures of OLS.

(v) Now consider the estimates of the original coefficients Φj listed in (11). Apart from
Φ1 we see that the estimates are linear transformations of those in (23), so we may
also apply to these the inference procedures of OLS. For Φ̂1 we refer to (18). The
magnitude of Ĉ1 is O(N−1), so provided that the particular element of Φ̂1 in which
we are interested also contains components from ϕ̂0, ϕ̂1 or Ĉ2, these, having standard
error of magnitude O(N− 1

2 ) will dominate the distribution of the estimate for large
N , when OLS based inference may again be used.

The only case when the first two of these components are not present arises when
p = 1, so that ϕ1 is not present, and when the parameter of interest is Φ1,1,1, because
there is no component Φ0,1,1 in the structural model. We complete the proof by

showing that even in this final case, Φ̂1,1,1 will always contain a component from Ĉ2,
under our null hypothesis, that becomes Φ1,1,1 = 0.

The component of Φ̂1,1,1 contributed by Ĉ2 is, from (18), ĉ2 q2, where ĉ2 is the first

row of Ĉ2 and q2 is the first column of Q2. We need only show that q2 6= 0 to verify
that ĉ2 q2 will contribute a component of magnitude O(N− 1

2 ) to Φ̂1,1,1. Now from
(14), and using that p = 1, we find

(I − Φ∗
1)column 1 = P2(Ir − Λr)q2 (24)

Thus q2 = 0 implies that

(Φ∗
1)column 1 =




1
0
...
0


 . (25)
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But because Φ1 = Φ0Φ
∗
1, and Φ0 has unit diagonals, this implies that Φ1,1,1 = 0, so

contradicting the null hypothesis in this final case, and demonstrating that in fact q2

cannot be a zero column. This completes our proof.

We conclude this section by noting that the stationary regressors in (17) are either differ-
ences of xt or stationary components of xt, none of which we would expect to be near-I(1).
We would therefore expect that acceptable normality of the OLS t statistics would be
achieved for moderate series length N

5 An illustrative simulation example.

To illustrate the previous result we simulated a cointegrated sparse structural VAR(1)
model of seven series:

Φ0xt = Φ1xt−1 + at (26)

with standard deviations of the components of at being, in order, 0.0457, 0.0646, 0.0782,
0.0197, 0.0336, 0.0178, and 0.0164.

xt,1 x xt,3 xt,6 xt,7

xt-1,7xt-1,6xt-1,5xt-1,4xt-1,3xt-1,2xt-1,1

txt,2 xt,4 xt,5

-0.742

-0.749 0.9660.991

-0.108

0.748 0.531 0.551 0.425 0.933 0.817

0.1010.8000.119

-0.519

-.789
0.784 0.959

-0.131

-0.868
-0.327

1.0 1.0

-0.431
0.987

Figure 4: The DAG representation of the simulated structural VAR(7) model.

This model is represented by the DAG in Figure 4, where the numbers associated with
the arrows are the coefficients of the non-zero autoregressive coefficients. We derived this
model from the AR part of the stationary structural VARMA(1,1) that we fitted to the
seven term rate series in Tunnicliffe Wilson, Reale, and Morton, (2001). It is capable of
producing simulated series that are very similar to those in Figure 2.

However, we have slightly adjusted, to the value of unity, the coefficients that relate
xt,3 and xt,5 to their respective lagged values xt−1,3 and xt−1,5. Each series xt,i is therefore
individually I(1), but the vector series has 5 cointegrating vectors, i.e. there are 2 I(1)
components and 5 stationary components of xt.

The CIG derived by moralization of Figure 4 is shown in Figure 5. We selected ten pairs
of variables that are not linked in Figure 5 and computed the sample partial autocorrelation
coefficient between these pairs for 10,000 replications of simulated series of length 600. The
numbers of values exceeding the 5% critical threshold defined by (6) is shown in table 1.
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xt,1 x xt,3 xt,6 xt,7

xt-1,7xt-1,6xt-1,5xt-1,4xt-1,3xt-1,2xt-1,1

txt,2 xt,4 xt,5

Figure 5: The CIG derived from the DAG representation of the simulated structural VAR(7)
model.

These lie generally within the expected range of variability about the value of 500 that is
expected asymptotically, and provides substantial support for the theory developed in the
previous section.

Variable 1 xt,2 xt,3 xt,4 xt,2 xt,3 xt,4 xt,4 xt,4 xt,5 xt,6

Variable 2 xt,4 xt,6 xt,6 xt−1,4 xt−1,6 xt−1,1 xt−1,2 xt−1,6 xt−1,2 xt−1,3

Numbers 440 556 510 497 550 502 464 529 485 548

Table 1: The numbers of selected sample partial autocorrelations that exceed critical
thresholds in 10,000 simulations.

Appendix

Proof of Lemma 1. We may write, for h = 0, 1, . . . p,

Φ̃h =




R
... 0

· · · · · · · · ·
0

... I


Φh (27)

where R = L T−1, because, for h = 0, this transforms Φ0 to the form of Φ̃0 shown in (8),
and that form is unique. Let P be the upper left i × i partition of Σ−1, where Σ is the
variance matrix of the linear innovation in the canonical model (2). From (3),

T ′ET = L′ẼL = P, (28)

where E and Ẽ are the inverses of the corresponding upper left partitions of D−1 and D̃−1.
Note that, because L′ is upper triangular, with unit diagonals, the last, ith, row of P is

P row i = (L′)row i ẼL = Ẽi,iL row i. (29)
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Now consider the last row of R:

R row i = L row i T
−1 = Ẽ−1

i,i P row i T
−1 = Ẽ−1

i,i

(
PT−1

)
row i

= Ẽ−1
i,i (T ′E) rowi , (30)

which has elements Φ0 s i
D̃i i

Ds s
, the last, for s = i, reducing to D̃i i

Di i
. The result of the Lemma

comes from using this last expression in row i of (27).
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