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Abstract. The growth of human cancers is characterised by long and variable cell cycle times that are controlled by
stochastic events prior to DNA replication and cell division. Treatment with radiotherapy or chemotherapy induces a
complex chain of events involving reversible cell cycle arrest and cell death. In this paper we have developed a math-
ematical model that has the potential to describe the growth of human tumour cells and their responses to therapy. We
have used the model to predict the response of cells to mitotic arrest, and have compared the results to experimen-
tal data using a human melanoma cell line exposed to the anticancer drug paclitaxel. Cells were analysed for DNA
content at multiple time points by flow cytometry. An excellent correspondence was obtained between predicted and
experimental data. We discuss possible extensions to the model to describe the behaviour of cell populations in vivo.

1. Introduction

The mammalian cell division cycle forms one of the cornerstones of our current un-
derstanding of tumour growth in humans and is dominated by four phases, G1-phase,
S-phase, G2-phase and M-phase, with DNA replication occurring in S-phase and mito-
sis and cell division occurring in M-phase. The transitions from G1-phase to S-phase,
and from G2-phase to M-phase, are controlled by all-or-nothing transitions involving a
positive feedback system of cyclin-dependent kinases, cyclins and phosphatases ([16]).
These transitions are the likely cause of the highly variable length of the cell cycle, most
of which is accounted for by variability in G1-phase duration ([22]). Early studies on
cell cycle dynamics in cultured cells suggested the existence of a ‘transition probability’
regulating the commitment of G1-phase cells to S-phase in order to account for this vari-
ability ([28]). In human cancers, the median cycle time also differs for individual cancer
patients. The range of median cell cycle times varies from two days to several weeks
with a median of approximately 6 days ([37]). Since the durations of S-phase, G2-phase
and M-phase are relatively short, most of the cancer cells in a patient’s tumour are in
G1-phase. Human cancer is characterised by a high rate of tumour cell turnover, such that
the rate of cell death is up to 95% of the rate of cell division ([36]). Cell death may occur
by two main processes, programmed death (apoptosis), which is likely to be the most
common cause of cell turnover within a tumour, and necrosis, which is generally caused
by localised failure of the tumour’s blood supply.

Many mathematical models describing the behaviour of cell populations have been
developed over the last half century, including models differentiated by size ([5,27]).
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Variations of these models have been subject to rigorous mathematical analysis, espe-
cially in terms of the existence and stability of the steady size distribution that they may
exhibit under certain conditions (see [8,9,15,31,12,25]). Cell size models have been re-
viewed by [2]. Other studies on cell cycle control have used an age structured approach
([26,32,23,19]) or modelled molecular events ([6]).

In this paper we have explored an alternative approach to the analysis of human cell
cycle dynamics. We have used DNA content as a measure of the generic term ‘cell size’
in the model because the transitions from G1-phase to S-phase and from M-phase to cell
division are accompanied by changes in DNA content, which can be measured in a tu-
mour population by flow cytometry. We have also included terms that have the potential
to describe cell loss from a population. Since DNA content is measured in individual cells
as they traverse a laser beam and inhomogeneity of illumination leads to a Poisson dis-
tribution of values, we have included a term to reflect the methodological aspects of flow
cytometry. The mathematical model therefore provides a visual output that can be com-
pared directly with experimental findings. As an initial step in the mathematical analysis
of cell cycle perturbation, we have examined the effect of inhibition of cell division on
the cell cycle distribution of a human melanoma cell line (NZM6). We have exposed this
line to the drug paclitaxel, a clinically important anticancer drug that prevents cell divi-
sion by arresting cells in mitosis ([24]), and have compared experimental data obtained
using flow cytometry to the predicted values of the model.

2. Mathematical Model

For the mathematical model we chose four compartments representing the sub-populations
of cells, G1, S, G2, and M, distinguished by their position within the cell cycle (Figure
1). The transition from G2-phase to M-phase cannot easily be measured by flow cytom-
etry, but we consider that it is an important part of the model. The dependent variables,
G1(x, t), S(x, t), G2(x, t) and M(x, t), can each be thought of as the number density of cells
with relative DNA content x at time t. Directly after cell division, a newly divided daugh-
ter cell with relative DNA content scaled to x = 1, will double its DNA content during
S-phase, so that at mitosis this model of the cell has relative DNA content approximately
x = 2.

The movement between the four compartments is represented by the schematic dia-
gram in Figure 1 which expresses the accumulation in each compartment and the move-
ment between them. Our model equations are:

∂G1

∂ t
(x, t) = 22bM(2x, t)− (k1 + µG1)G1(x, t), (1)

∂S
∂ t

(x, t) = D
∂ 2S
∂x2 −µSS(x, t)−g

∂S
∂x

(x, t)+ k1G1(x, t)− I(x, t;TS), (2)

∂G2

∂ t
(x, t) = I(x, t;TS)− (k2 + µG2)G2(x, t), (3)

∂M
∂ t

(x, t) = k2G2(x, t)−bM(x, t)−µMM(x, t), (4)

where the domain of definition is: 0 < x < ∞, and t > 0. The time variable, t, is measured
in hours while x, relative DNA content, is dimensionless. All parameters in the model
may be functions of either t or x or both.
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Fig. 1. Cell cycle control

In equation (1), describing G1-phase, the first term on the right-hand-side is the source
term provided by the influx of newly divided daughter cells from M-phase. A cell in M-
phase divides into two identical daughter cells at a rate of b divisions per unit time. The
22 part of this term arises from the fact that, at division, all cells with DNA content in
the interval [2x,2x + 24x] are doubled in number and mapped to an interval with half
the DNA content, namely [x,x +4x]. Thorough derivations of similar non-local terms
can be found in both [9] and [31]. The second term in equation (1) describes the loss
of cells from G1-phase due to either death (the µG1G1(x, t) term) or transition to the S-
phase (k1G1(x, t)). Therefore k1 provides the stochastic transition from the G1-phase to
S-phase and represents the probability per unit time per unit cell that the cell will enter
the S-phase.

In equation (2), describing S-phase, g is the average rate at which the relative DNA
content of a cell increases with time. For a homogeneous tumour cell population, cells in
G1-phase and G2 and M-phase, will each have constant DNA contents. However, in flow
cytometry the cells are not all illuminated evenly as they pass through the flow cytometer
and this causes an apparent variation of DNA content. The dispersion term, D ∂ 2S

∂x2 , can be
used to account for this variability. The inclusion of this parameter in the model allows us
to compare model output DNA profiles directly with those obtained experimentally. Cells
die in S-phase, equation (2), at a per capita rate of µS per unit time. The term I(x, t;TS),
given by equation (10) and discussed in section 2.1, represents the sub-population of
cells which entered S-phase TS hours previously and are ready to exit from S-phase to
G2-phase.

The loss term, I(x, t;TS), becomes the corresponding source term in the equation (3)
representing G2-phase. The second term in equation (3) accounts for the loss due to either
exit to M-phase or cell death. Thus µG2 is the per capita death rate of cells in G2-phase
while k2 is the transition rate of cells from G2-phase to M-phase.

Finally in equation (4), we have cells dividing at a rate of b divisions per unit time.
Cells die at the per capita rate of µM per unit time and k2G2(x, t) is the source term from
G2-phase. A summary of the model parameter descriptions and units is given in Table 1.
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As it stands the model is incomplete as no side (initial or boundary) conditions have
been specified for the equations (1)–(4); we rectify this now. In accordance with experi-
mental evidence, we choose the following side data for these equations:

G1(x,0) =
a0√
2πθ 2

0

exp(−(x−1)2

2θ 2
0

), S(x,0) = 0, 0 < x < ∞,

G2(x,0) = 0, M(x,0) = 0, 0 < x < ∞,

D
∂S
∂x

(0, t)−gS(0, t) = 0, t > 0.

The equation D∂S
∂x (0, t)− gS(0, t) = 0 is a zero flux boundary condition. We choose the

DNA content of cells in G1-phase at time t = 0 to be a Gaussian distribution with relative
mean DNA content at x = 1 and variance θ 2

0 . We choose θ0 to be sufficiently small so
that the extension of G1(x,0) into the infeasible region x < 0 is of no significance and
we consider x > 0 only. The variance, θ0, here reflects not only inter-cell heterogeneity
of DNA content but also the observed DNA distribution (Poisson) seen in G1-phase flow
cytometry profiles which is a consequence of experimental error and the fact that cells
are not illuminated evenly during flow cytometry. The total number of cells at time zero
is ∫ ∞

0
G1(x,0)dx =

a0

2

[
1+ er f

( 1√
2θ0

)]
.
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Fig. 2. The evolution of a distribution of cells, k1G(x, t), that enter S-phase from the G1-phase at time τ = 0 hours.
The incremental time step is 1 hour. The cell distribution labelled τ = TS = 10 hours is about to be injected into the
G2-phase. The parameters are D = 0.01, g = 0.1, k1 = 0.1, µS = 0, and G1(x, t) = G1(x,0) = a0√

2πθ 2
0

exp(− (x−1)2

2θ 2
0

)

where a0 = 100,θ0 = 0.1. For parameter descriptions and units see Table 1.



A Mathematical Model for Analysis of the Cell Cycle in Human Tumours 5

2.1. Examination of the cell transition from the S-phase

During S-phase (see equation (2)), the relative DNA content of a cell increases at an
average rate g per unit time. The cells are modelled to leave the S-phase for the G2-phase
after a fixed time TS hours. We now obtain an expression for this loss term, I(x, t;τ = TS),
of cells from S-phase to G2-phase.

We denote the group of cells, entering S-phase at time t as I(x, t;τ = 0) = I0(x, t). The
model assumes that this group of cells simply enter S-phase, double their DNA content
(or die) and then exit to the next phase (G2) without any interaction with cells that enter
S-phase at different times. While in S-phase the DNA profile of the original cell cluster
evolves dynamically as depicted in Figure 2. Thus, for a particular time t, the transition
of the group of cells into S-phase occurs as an initial condition and the dynamics of any
one particular cell group, while in S-phase, are governed by the homogeneous initial-
boundary value problem:

∂ I
∂τ

(x, t;τ)+g
∂ I
∂x

−D
∂ 2I
∂x2 + µSI = 0, 0 < x < ∞, t > τ > 0, (5)

with side conditions

I(x, t;τ = 0) = I0(x, t), 0 < x < ∞, t ≥ 0, D
∂ I
∂x

(0, t)−gI(0, t) = 0, t ≥ τ ≥ 0.

(6)

Equation (5) is simply equation (2) with the source term, k1G1(x, t), and the loss term,
I(x, t;TS), omitted.

By Laplace transformation techniques (([20], pp. 173), ([10], pp. 207 et. seq.)), and
the observation that the solution to the partial differential equation is translation invariant
in the time variable, the solution to this associated equation is

I(x, t;τ) =





∫ ∞

0
I0(y, t)γ(τ,x,y)dy, τ,x,y > 0,

I0(x, t), τ = 0,
(7)

where

γ(τ,x,y) =
e−µSτ

2
√

πDτ

(
e−((x−gτ)−y)2/4Dτ − (1+ν(τ,x,y))e−((x+gτ)+y)2/4Dτ

)
, τ,x,y > 0

(8)

with

ν(τ,x,y) =
(x+ y)

gτ
(1+O

(
τ−1)).

Here γ is the Green’s function for the partial differential operator in equation (5). It is seen
that the formula for γ is valid for large time and this result follows from the Tauberian
theorem for the Laplace transformation.

We now define
Ĩ(x, t;τ) =

∫ ∞

0
I0(y, t)γ̃(τ,x,y)dy,

where

γ̃ =
e−µSτ

2
√

πDτ
e−((x−gτ)−y)2/4Dτ ,
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it then follows that I = Ĩ − I2 where

I2(x, t;τ) =
∫ ∞

0
I0(y, t)γ̃(τ,x,y)(1+ν(τ,x,y))e−x(y+gτ)/2Dτ dy. (9)

The kernel γ̃ is the fundamental solution for the partial differential equation (5) when
x ∈ (−∞,∞); i.e. when the second term in the parenthesis of equation (8) is not present.
This second term is the image term and it ensures that the no-flux boundary condition is
satisfied. For numerical evaluation of the I integral in our problem it is only necessary to
use Ĩ as we show in the Appendix; this simplifies the analytical solution of equation (5)
and is an acceptable approximation if the dispersion is small and I0(x, t) is zero for small
x.

At time t, the k1G(x, t −TS) cells which entered S-phase TS hours previously, are due
to exit S-phase and enter G2-phase. The loss term I(x, t;TS) in equation (2) provides for
this, and is obtained from equation (7) with the substitutions I0(x, t) = k1G(x, t −TS) and
τ = TS, giving

I(x, t,TS) =





∫ ∞

0
k1G1(y, t −TS)γ(TS,x,y)dy, t ≥ TS,

0 t < TS.
(10)

We observe that the transition term from the G1-phase acts as a source term for the
S-phase and note that both time variables, t and τ , evolve at the same rate. Hence, by
using Duhamel’s principle ([17], pp. 70), we find that the number of cells in S-phase, and
the solution of equation (2), is

S(x, t) = k1G(x, t)+
∫ t1

0+

∫ ∞

0
k1G1(y, t − τ)γ(τ,x,y)dydτ, t1 =

{
TS, t ≥ TS,

t, t < TS.
(11)

The distribution of cells in S-phase at a particular time t can be interpreted as an infinite
sum of DNA profiles as depicted in Figure 2.

2.2. No dispersion in S-phase:

By setting D = 0 in equation (2), we obtain the case of no dispersion. Our side condi-
tions remain unchanged except the boundary condition on x = 0, S(0, t), becomes the
homogeneous Dirichlet condition. We again denote the transition of a group of cells from
G1-phase into S-phase as an initial condition, I(x, t;τ = 0) = I0(x, t), where I(x, t;τ) sat-
isfies the equation

∂ I
∂τ

(x, t;τ)+g
∂ I
∂x

+ µSI = 0, 0 < x < ∞, t > τ > 0, (12)

with side conditions

I(x, t;τ = 0) = I0(x, t), 0 < x < ∞, t ≥ 0. (13)

This gives

I(x, t;τ) =

{
I0(x−gτ, t − τ)e−µSτ , x > gτ, t > τ ≥ 0
0, x ≤ gτ, t > τ ≥ 0.

(14)
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The term I(x, t;TS) in equation (2), for the case of no dispersion (D = 0), is then given by
setting I0(x, t) = k1G1(x, t −TS) and τ = TS in equation (14):

I(x, t;TS) =





e−µSTSk1G1(x−gTS, t −TS), x > gTs, t ≥ TS,

0, ∀ x > 0, t < TS,

0, x ≤ gTs, ∀ t > 0.

(15)

Similarly the solution of equation (2) when D = 0 is

S(x, t) =
∫ t1

0
k1G1(x−gτ, t − τ)e−µSτdτ, x > gτ, t1 =

{
TS, t ≥ TS,

t, t < TS.
(16)

2.3. Steady DNA Distributions (SDD’s) and model parameter values

In single functional equations and functional systems ([25]), it has been found that the
dependent variables, in our case G1(x, t), S(x, t), G2(x, t) and M(x, t), either grow or decay
exponentially with time but their distribution in the x-variable is in steady state ([11–14,
35]). These are the type of distributions that we term steady DNA distributions (SDD’s).
The term asynchronous cell growth is also applied in the literature to describe SDD’s
([1],[25],[23]). It has been shown ([25]) that this steady state in the x-variable is both
uniquely determined by model parameters and is independent of the initial distribution at
time t = 0.

SDD’s are found experimentally via DNA profiles or histograms from flow cytometry
and we simulate this type of temporal experimental data using our model (equations
(1)-(4)). In an experiment we typically have a cell line with a steady DNA distribution.
This cell line is then perturbed by either radiation or the addition of anticancer drugs. To
model the resultant cell kinetics of the experiment we estimate a set of parameters for
the model and then find the corresponding steady DNA distribution. The perturbed cell
line is then modelled by altering model parameters. The main considerations are: How do
we estimate the model parameters and which parameters should be altered to mimic the
perturbed cell line kinetics. For the remainder of this subsection we discuss previously
published results from a number of authors that help us gain preliminary estimates of
model parameters for a cell population with a steady DNA distribution.

When a cell population has a steady DNA profile, the underlying system of equations
are ordinary differential equations ([8]). Using this and the age structured modelling ap-
proach ([29,33,34]), it is possible to obtain estimates of model parameters of a cell pop-
ulation which has a steady DNA distribution. Equations (17) - (20) below give Steel’s
formulas ([29,33]), for the average time spent in each phase as a function of the percent-
age of cells in each phase and the doubling time of the cell line.

Tc = Td, (17)

TS = Tc

log
(

%S+%G2M
100 +1

)

log2
−TG2M, (18)

TG2M = Tc

log
(

%G2M
100 +1

)

log2
, (19)

TG1 = Tc −TG2M −TS. (20)
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Here TG1 ,TS and TG2M are the average times spent in G1,S, and G2M phase respectively.
Tc is the cell cycle time and Td is the doubling time of the cell population. %G1,%S and
%G2M are the percentage of cells in G1-phase, S-phase and G2M-phase respectively. For
a population of cells with a steady DNA distribution, the values of these percentages are
unchanging in time.

We use the theory described by [30] which says that, for an SDD, the average time in
each phase is related to the model parameters by the following equations:

TG1 =
1

k1 ++µG1

, (21)

TS =
1

g+ µS
, (22)

TG2 =
1

k2 + µG2

, (23)

TM =
1

b+ µM
. (24)

The rate of convergence, R, to the SDD has been estimated by [7] as:

R =
2π2

m

(
CVm

m

)2

, (25)

where m is the mean duration of the cell cycle and CVm is the variation of the mean
duration of the cell cycle. If we use m = Tc = TG1 +TS +TG2 +TM, we observe that if any
of the denominators in equations (21)-(24) are close to zero, the length of time in that
particular phase will tend towards infinity and the rate of convergence to the SDD will
tend towards zero.

3. Results

3.1. Flow cytometric studies

A human melanoma line (NZM6) was grown to a logarithmic phase of cell growth (ex-
ponential growth) using conditions that have been described previously ([18]). A mitotic
inhibitor (paclitaxel) was then added at a concentration (200 nM) sufficient to inhibit cell
division, and samples were removed for cell analysis at various times later. Flow cytome-
try was carried out by standard methods as described previously ([21]). A DNA standard
(chicken red blood cells) was added to some of the samples to calibrate the cytometer.

3.2. Model Results for NZM6

We used the model to mimic the cell kinetics of the human melanoma cell line NZM6
when the anticancer drug paclitaxel was added to this cell population at time t = 0. Prior
to the addition of this drug, the cell line has a steady DNA distribution. We show that
it is appropriate to use constant model parameter values to depict the dynamics of cell
numbers as a function of DNA content and time. Since this cell line has minimal ability
in steady state to undergo apoptosis, we denote the death rate parameters, µG1 ,µS,µG2,

and µM, as zero.
For NZM6, the percentage of cells in each phase for cells with a steady DNA dis-

tribution was estimated by flow cytometric analysis as %G1 = 63.66, %S = 25.8 and
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Fig. 3. Percentage of cells in each phase as a function of time. Model and Data for human cell line NZM6. Division
stopped at t = 0 hours. The DNA profiles at time t = 0 and t = 72 hours are given in Figures 4 and 5 respectively. Model
parameters that were fitted were: k1 = 0.0476, g = 0.1129, k2 = 0.3193 and b = 0.9296. The fixed parameters were
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Fig. 4. Model (a) and experimental (b) steady DNA distribution (SDD) for human cell line NZM6 at time t = 0.
Parameter values given in Figure 3. The shaded peaks in the left hand side of (b) indicate the internal standard for the
flow cytometry.

%G2M = 10.54. The doubling time for this cell line is approximately Td = 29 hours.



10 Britta Basse et al.

0 0.5 1 1.5 2 2.5
x (Relative DNA Content)

C
e
ll 

C
o
u
n
t

NZM6 Final Distribution

(a)

Channels (FL2-A)
0 50 100 150 200 250

N
u

m
b

e
r

0
6

0
1

2
0

1
8

0
2

4
0

(b)

Fig. 5. Model (a) and experimental (b) DNA distribution (SDD) for human cell line NZM6 at time t = 72 hours. The
steady DNA distribution (SDD) was reached (see Figure 4) then division stopped (b = 0) at time t = 0 hours. It can be
seen that cells have accumulated in the G2M-phase region. Parameter values given in Figure 3. The shaded peaks in
the left hand side of (b) indicate the internal standard for the flow cytometry.

Thus, substituting values of TG1 ,TS, TG2M, and Tc from equations (17)-(20) into equations
(21)-(24), and using the estimate of TM = 0.5 hours ([3]), we gain parameter estimates
for the NZM6 cell line of; k1 = 0.0624,g = 0.1139, k2 = 0.8462 and b = 2. The SDD
associated with this parameter set was obtained by using the numerical method of finite
differences to evaluate the model equations (1), (3) and (4). Simpsons’s rule was used to
estimate the integral in equation (11) for S-phase cells, with the substitution γ̃ for γ .

To determine the existence of an SDD in the model, we measured the percentage of
cells in G1-phase at each time step and compared this to the percentage of cells in G1-
phase 5 hours previously. When the squared difference between these two values was
less than 0.1%, we concluded that a SDD had been reached. To mimic the addition of
paclitaxel and the simultaneous inhibition of cell division we set the division rate b to
zero at time t = 0 hours and ran the model for 72 hours. We calculated the percentage of
cells in each phase as a function of time and compared this to the experimental data. We
minimised the sum of squared errors in order to obtain model outputs as close as possible
to the data. The sum of squared errors function is given by:

S S NZM6 =
J

∑
j=1

I

∑
i=1

(
Pi(t j)−Yi(t j)

)2
, (26)

where Pi(t j) is the percentage of cells in phase number i at time t j as predicted by the
model and Yi(t j) is the corresponding data point. There are I = 3 phases found experi-
mentally (being G1, S and G2M-phase ) and J data points.

In this classic discrete inverse problem we wish to find a parameter estimation that
minimises the sum of squared errors ([4]). The minimisation algorithm was supplied by
the MATLAB function fmincon. This function uses a sequential programming method to
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perform the optimisation procedure. The parameters we chose to fit were k1, g, k2 and b.
All other model parameters were fixed at the values specified in Figure 3. We imposed
the constraints k1 ∈ (0,1], g ∈ (0.05,2], k2 ∈ (0,1] and b ∈ (0,∞]. These constraints en-
sure positivity of the parameter values, reflect the fact that k1 and k2 are probabilities and
assume that the time spent in S-phase is approximately between 30 minutes and 20 hours.
Figures 3, 4 and 5 indicate that the model describes accurate cell kinetics for melanoma
cell line NZM6. It can be seen in Figure 3 that after the addition of paclitaxel, the per-
centage of cells in G1-phase decline while those in G2M-phase correspondingly increase.
The percentage of cells in S phase decline after an initial time delay. We did not include
the SDD data in our parameter fitting procedure but we see from comparisons with SDD
data obtained experimentally (Figures 4 and 5) that our model gives similar DNA distri-
butions. We found that the values k1 = 0.0476, g = 0.1129, k2 = 0.3193 and b = 0.9296
produce the least square error (117.85) between model and data as given by equation
(26). The optimisation procedure was greatly assisted by first optimising with D = 0 and
then taking the result when D 6= 0. Such an optimisation procedure cannot be guaranteed
of finding a global minimum of our objective function, equation (26). A sensitivity anal-
ysis of the value of this objective function to changes in parameter values indicates that
our parameter estimation is unique in the feasible region of parameter space. It is also
evident (Figure 6) that the objective function is not sensitive to changes in the division
rate parameter close to the optimal value of b = 0.9296.

4. Discussion

The model that we have developed represents an approach to the human tumour cell cycle
that we consider has the potential to complement and extend previous models. We have
modelled different phases of the cell cycle ([30,25,28]) and have validated the model
using flow cytometry ([26,19,6,33]). We have also used results from an age modelling
approach ([29,33]) to gain initial estimates of model parameters for a cell line with a
steady DNA distribution. Our methodology differs from other models in that our mea-
sure of cell size ([5,27,8,9,31]) is cellular DNA content, we have included transition
probabilities between phases and we have a dispersion term to allow for experimental
variability in measurement of the DNA content so that we can directly compare model
outputs with DNA profiles.

The transition probability terms linking G1- to S-phase and G2- to M-phase reflect the
known variability in the length of the cell cycle. In contrast to this variability, the length
of S-phase, which is accompanied by the progressive replication of DNA, is approxi-
mately constant and is of the order of 12 hours in human cancer cells. However, its length
does vary among different human cancers ([37]) and it might therefore be expected to
vary within a population. A dispersion term has therefore been provided to reflect this
behaviour. The passage through M-phase, although it is considerably shorter than that
for S-phase, similarly takes a finite time. An analogous term to that used for S-phase can
be incorporated into the model to reflect this behaviour. This has been omitted from the
current model because it plays only a very small role in modelling the behaviour of the
NZM6 cell line.

We have shown that setting b, the division rate parameter for the NZM6 cell line,
to zero was sufficient to model experimental results when paclitaxel was added to the
cell population with steady DNA distribution. The success of the model in predicting
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Fig. 6. The objective function (sum of squared errors), equation 26, as a function of the division rate, b, and k2, the
transition from G2 to M-phase. The minimum occurs at b = 0.9296 and k2 = 0.3193 but the objective function value
is not sensitive to larger values of b if k2 = 0.3193 is fixed. This can be seen in the plot as a valley that also bends in
the k2 direction with b = 0.5. Other model parameter values are given in Figure 3.

the behaviour of these cells at different times after exposure to paclitaxel emphasises the
value of the existing incorporated terms used to model the cycle phase transitions, and
provides the background for extension to other human tumour cell lines. The nature of
the terms in this model that link G1- to S-phase and G2- to M-phase will facilitate our
understanding of the cell cycle, where all-or-nothing transitions are provided by positive
feedback controls on the respective cdk2 and cdk1 enzyme complexes [18].

4.1. Extension of the model to incorporate cell death, senescence and cycle arrest

Most human tumour cell lines growing in vitro under normal culture conditions have a
low spontaneous death rate. However, exposure to agents such as radiation or chemother-
apy can induce cell death, which generally occurs by apoptosis. Paclitaxel, used here to
cause arrest of cell division, is thought to exert its anticancer effects by the induction of
apoptosis subsequent to mitotic arrest ([24]). Apoptosis is accompanied by the progres-
sive loss of cellular DNA, resulting in perturbation of the DNA flow cytometry profile.
Our model can easily be extended to incorporate dying cells whose DNA content reduces
progressively with time. This will facilitate the analysis of drug-treated populations where
a proportion of cells is undergoing cell death and will also allow the description of the
growth of human tumours in vivo. The model will include sub-population R(x, t) for this
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removal phase, given by:

∂R
∂ t

(x, t) = DR
∂ 2R
∂x2 (x, t)+

∂ (gRR)

∂x
(x, t)

+(µG1G1 + µSS + µG2G2 + µMM), 0 < x < ∞, t > 0, (27)

with side conditions

R(x,0) = 0, 0 < x < ∞, DRR(0, t)−gR(0, t) = 0, t ≥ 0. (28)

Equation (27) is virtually identical to equation (2), except cell DNA content is decreasing
at an average rate gR per unit time and the dispersion coefficient here is DR. The source
term in this equation is the sum of the loss (due to cell death) terms in equations (1)-(4).

Cell cultures treated with anticancer drugs or radiation may be induced to enter a
senescent state during G1 phase. Again, the model can be modified to account for such
behaviour by including a sub-population, G0 that will accumulate with time and can be
written as

∂G0

∂ t
(x, t) = −µG0G0(x, t)+ kG0G1(x, t), 0 < x < ∞, t > 0, (29)

with side conditions

G0(x,0) = 0, 0 < x < ∞, (30)

where the term kG0G1 accounts for the transition rate into this senescent phase from
the G1-phase and µG0 is the death rate in this phase. The term µG0G0 would join the
source terms in the removal phase (equation (27)). The G1-phase equation is accordingly
modified to

∂G1

∂ t
(x, t) = 22bM(2x, t)− (k1 + µG1 + kG0)G1(x, t), (31)

with the other equations unmodified as per equations (2), (3) and (4).
A further response of cancer cells exposed to radiation or anticancer drugs is the in-

duction of transient, reversible cell cycle arrest. Cycle arrest occurs most commonly by
a change in rates of transition from G1-phase to S-phase, and from G2-phase and M-
phase. These changes can be readily modelled by incorporating transient decreases in the
corresponding equations for cell cycle transition.

The analysis of DNA profiles of cells obtained directly from human tumours are com-
plex because of the presence of both tumour and normal cells. Moreover, two or more
tumour cell populations with differing DNA content may be present, giving rise to multi-
ple superimposed steady DNA distributions. Human cancer is also characterised by a high
death rate ([36]) and by transitions of cells into a terminal non-growing or senescent state.
Our model has the potential to model superimposed populations and to include terms for
apoptosis, senescence and transient cell cycle arrest. These can be used to predict the
effects of radiation and anticancer drugs, which are used for the treatment of human can-
cer. The profiles generated can be compared to experimental data from short-term culture
of patients tumour material obtained at surgery. The ultimate aim of our approach is to
provide insights as to why some patients fail to respond to treatment and to help in the
development of strategies to overcome the resistance of their cancers to therapy.
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A. Appendix

The part of the integral in (7) corresponding to the image of γ̃ in the boundary, namely
I2, when I0(x, t) = 0, x ≤ `, where ` is a positive real number, can be written as

I2(x, t;τ) =
∫ ∞

`
I0(y, t)γ̃(τ,x,y)(1+ν(τ,x,y))e−x(y+gτ)/2Dτ dy.

In this integral, when use is made of the positivity of both I0 and the exponential function,
together with the mean value theorem for integrals, it is seen that

I2 = (1+ν(τ,x,ξ ))e−x(ξ+gτ)/2Dτ
∫ ∞

`
I0(y, t)γ̃(τ,x,y)dy,

≤ (1+ν(τ,x,ξ ))e−x(ξ+gτ)/2Dτ Ĩ,

where ξ ∈ (`,∞). It follows from this with ` ≈ 1, x ≈ 1, τ ≤ 20 and D as given in Table 1
that

I2 ≤ 2e−x(`+gτ)/2Dτ Ĩ.

Hence it follows for the parameter values used for this paper, I2 can be neglected with
respect to Ĩ and the use of the approximate Green’s function, γ̃ , as is used in the numerical
calculations has been justified.
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Table 1. Model parameters and variables

Parameter Description Dimensions Value

x relative DNA content [1]
t time hours
TS time in S-phase hours 1

g
G1(x, t) number density of cells in G1-phase
S(x, t) number density of cells in S-phase
G2(x, t) number density of cells in G2-phase
M(x, t) number density of cells in M-phase

D dispersion coefficient [x]2

[t] 0.0001

g average growth rate of DNA in S-phase [x]
[t]

k1 transition probability of cells from G1 to S-phase 1
[t]

k2 transition probability of cells from G2 to M-phase 1
[t]

b division rate 1
[t]

θ0 variance of starting distribution 0.05
a0 height of starting distribution 100
µG1 death rate in G1-phase 1

[t]
µS death rate in S-phase 1

[t]
µG2 death rate in G2-phase 1

[t]
µM death rate in M-phase 1

[t]




