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SIGNAL RESTORATION AFTER TRANSMISSION THROUGH AN ADVECTIVE
AND DIFFUSIVE MEDIUM

PAUL R. SHORTEN AND DAVID J. N. WALL

ABSTRACT. Inverse problem, regularisation, singular perturbation, wave splitting, wave propa-
gators, square root operator, inverse mass transport This paper considers an inverse problem as-
sociated with mass transport in a pipe. It illustrates how wave splitting techniques can be utilised
for an inverse problem associated with one-dimensional mass transport processes. This is done
by using a generalisation of Fick’s law which introduces a relaxation parameter into the problem,
so converting the parabolic partial differential equation by a singular perturbation into a hyper-
bolic one. This generalised law by ensuring finite mass flux propagation speeds, enables a stable
equation to be utilised to reconstruct the interior boundary condition; so providing a regularised
solution to the inverse problem. Theoretical results for the solution of the inverse problem are also
developed.

1. INTRODUCTION

The perifusion apparatus is an experimental in vitro tool used by endocrinologists to model
information transfer in endocrine systems (McIntosh & McIntosh, 1983; McIntosh, McIntosh, &
Kean, 1984; Evans et al., 1985). The major drawback of the perifusion system derives from the
dispersion, diffusion and mixing of the hormone within the apparatus which distort the original
released hormone concentration profile. Recently mathematical techniques have been applied to
improving this situation (Shorten & Wall, 2001).

This paper presents another approach to the inverse problem of concentration signal restora-
tion after signal transmission through an advective and diffusive medium, with applications to
perifusion.

The problem considered here has direct application to a related problem involving the esti-
mation of secretion of adrenocorticotropic hormone (ACTH) from the pituitary gland. In this
problem, assays of the blood flow are taken downstream from the pituitary in a horse, which is
secreting ACTH, and it is then required to estimate the concentration of ACTH at the pituitary,
(Alexander, Irvine, Liversey, & Donald, 1988). This in vivo experimental technique poses sim-
ilar problems to the perifusion apparatus mentioned previously, but the flow situation is more
complicated.

When a mass concentration of a material is transported within a fluid of a different material, the
estimation of the final temporal profile, downstream of the injection point, from the knowledge
of the initial injection temporal profile, is a relatively straight-forward problem; it is required
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to solve a well-posed parabolic partial differential equation. This is termed a direct problem.
However, when a mass concentration of a material flowing and diffusing within an advecting
fluid is measured downstream of the injection point, the estimation of the initial injection profile
is a difficult problem. This is termed an inverse problem; in particular an inverse source problem.
This problem is difficult because it is ill-posed and besides the difficulty of problem formulation,
it must also be made well-posed.

It is assumed throughout this paper that the advective medium also allows diffusion. If this is
not the case the problem is considerably simpler, and can be solved by the techniques illustrated
in (Wall & Lundstedt, 1998; Connolly & Wall, 1997). In many other applications it is required to
estimate an input signal given a signal that has been modified by transmission through a distorting
system (Connolly & Wall, 1997; Lundstedt & He, 1994, 1997; Weber, 1981; Eldén, 1988; Murio
& Roth, 1988; Wall, 1997).

We now discuss a source reconstruction problem, for the advection equation, in a well known
transport situation. If a pollutant, with concentration c(x, t), is emitted upstream, at a station
x = 0, in a medium flowing with speed v, and the pollutant concentration is measured down
stream, the methods given in this paper can be utilised to estimate the magnitude and temporal
distribution of the emission, expressed by c(0, t). The model is simplistic, and the problem is
considered one-dimensional; in this case the model equation, one is first lead to would be

∂tc+v∂xc−κ2∂ 2
x c = 0,

where κ2 is the fluid diffusivity. As explained above, as this partial differential equation is
parabolic, the problem of estimation of c(0, t), from a down-stream measurement of c(`, t), where
` > 0, is ill-posed. In this paper, this problem is converted to a well-posed one by studying a
related hyperbolic equation.

Weber (Weber, 1981) has converted a parabolic equation into a hyperbolic one in order to
produce a well-posed inverse problem, and this idea has been further developed by a number of
authors (Eldén, 1988; Murio & Roth, 1988; Wall, 1997; Murio, 1993). Similarly, in this paper,
which considers the solution of inverse problems associated with parabolic direct problems, the
wave speed of an associated hyperbolic problem is to be considered as a regularisation parameter.

Wave splitting and invariant imbedding techniques have been very successful in their applica-
tion to many inverse problems for hyperbolic equations. They have also been successful when
applied to elliptic problems (Powell, 1995), but they have not been effective for parabolic equa-
tions. Indeed it has been shown by (Vogel, 1992) that layer stripping techniques are not suitable
for parabolic equations.

The paper (Wall & Olsson, 1997) which is henceforth denoted as (I), is the outcome of research
towards the application of wave splitting and invariant imbedding techniques to phenomena that
are generally considered parabolic in nature. We concentrate, in the sequel, our ideas towards the
evaluation of mass transport processes in fluids, through wave splitting techniques when a gen-
eralised form of Fick’s law is utilised. This generalised law provides physical motivation for the
extension of the direct parabolic problem to a hyperbolic one. The wave splitting method enables
us to extend the integral equation method of (Murio & Roth, 1988), as has been done for purely
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diffusive processes in (Wall, 1997), to advective problems in which the material parameters are
functions of the spatial variable.

In viscous flow problems, involving a solute concentration in a pipe, the variation of the ve-
locity over the cross-section of the pipe is an important factor in the dispersion of the solute; it
is called shear dispersion. The dispersion of a pulse of concentration flowing down the pipe is in
general due to the combined action of shear dispersion, parallel to the axis of the pipe, and molec-
ular diffusion, predominantly in the radial direction. When the molecular diffusion coefficient
within the flow is very small, then shear dispersion is the dominant dispersive effect; this regime
is examined in (Shorten & Wall, 1998) for an inverse problem similar to the one considered in
this paper. Taylor (Taylor, 1953) has developed a theory which in a certain parameter regime
enables the combined effects of shear dispersion and radial molecular diffusion to be replaced by
an equivalent one-dimensional advection-diffusion equation. A considerable literature has built
up about this direct problem (for recent application of modern theory to this direct problem see
(Watt & Roberts, 1995)). The Taylor theory therefore enables an apparent diffusion coefficient
to be used to model both the shear and cross-diffusion dispersion effects as a one-dimensional
advection-diffusion problem. The theory presented here is therefore again applicable with the
molecular diffusion parameter replaced by an appropriate effective value.

When v tends to zero, the reconstruction problem reverts to the one for a pure diffusion prob-
lem, as considered in (I). For non-zero v and small κ , the problem may be solved without regular-
isation by techniques similar to those (Wall & Lundstedt, 1998)1. However, for moderate values
of κ , techniques which restore the continuity of the solution on the data like those discussed in
this paper, must be utilised.

Wave splitting techniques, as used in other problems, proceed by finding an analytic repre-
sentation of the square root of an operator. This operator is often a differential operator, and the
square root is a pseudo-differential operator. In this paper, because of the complex phenomena
under consideration, a new feature is that the pseudo-differential operator is related to the fac-
torisation of a quadratic operator equation (see (Karlsson & Rikte, 1998) for another interesting
operator factorisation).

In §2 the prerequisite equations are developed for one-dimensional mass transport, through
hyperbolisation. The homogeneous parameter model and its reduction to various problems is
discussed in §3. It is proven in this section, that the hyperbolic case is well conditioned and pro-
vides a regularised solution to the parabolic problem. The parabolic problem can be considered
as the limiting case of the hyperbolic problem by a singular perturbation. Then in §4, the wave
splitting concept is used to transform these equations into two coupled one-way wave equations,
with only the second-order differential form covered. In §5, the equations for the wave propa-
gators are derived, and these are specialised to the forward and transmission Green propagators
in §55.1 and §55.2, respectively. How these propagators are used in the signal reconstruction
problem is discussed in §6.

1Similar techniques can be applied to problems with non-zero κ and large v.
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As many multivariate derivative operators are involved in this paper, it is convenient to use a
number of commonly used derivative notations for clarity of exposition; these are represented
by:

∂t f (x, t,s) ≡ Dt f (x, t,s) ≡ D2 f (x, t,s).

2. PRELIMINARIES

It has been shown that when heat waves are important, the equation connecting the heat flux
to the temperature must at least have an extra thermal inertia term added, when compared to
Fourier’s conduction law. The Cattaneo equation (Cattaneo, 1948) for heat flow in a heat con-
ducting solid has such a term2. This leads to the idea of generalising the Fickean law connecting
mass flux J, directed in the x-coordinate direction, to the mass concentration per unit volume,
and this can be written as

(2.1) τ
∂J
∂ t

+ J = −κ2 ∂c
∂x

,

where τ is a relaxation time, and κ2 is the mass diffusivity of the media. For convenience it is
expedient for us to define diffusivity, κ2, as the square of the usual terminology. The relaxation
time depends on the mechanism of mass transport, and represents the time lag needed to establish
steady-state mass transfer in an element of volume when a concentration gradient is suddenly
applied to that element.

When Fick’s law is utilised as the constitutive equation connecting mass flux and the gradi-
ent of mass concentration, the resultant equation governing the dynamics of the mass flow is a
parabolic equation, and consequently has the non-physical property that information propagates
at an infinite speed; this results in the zero propagation time paradox. When such an equation
is used in applications such as those modelling spatio-temporal population density distributions
it can lead to erroneous densities. It also means that the partial differential equation describing
the phenomenon is unilateral with respect to time flow. However parabolic equations do prop-
agate some properties at a finite velocity (Day, 1997a, 1997b; Herrera & Falcón, 1995). The
theory considered in this paper is linear, and can therefore only be considered as appropriate for
a small perturbation theory, or alternatively as a linearization of a more general nonlinear theory
(Barletta & Zanchini, 1997).

The other equation necessary to link concentration density to the transport mass flux, the veloc-
ity field of the embedding medium v,3 and the internal rate of production of mass concentration,
r, is the conservation of mass equation

∂c
∂ t

+
∂ (J + cv)

∂x
= r.

2See (I) and the references quoted therein.
3The velocity field of the embedding medium advects the mass concentration.
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These two linear equations can be written as the system

(2.2)
[

1 0
v 1

]
∂x

[
c
J

]
=

[
0 −κ−2(τ∂t +1)

−∂t −∂x(v) 0

][
c
J

]
+

[
0
r

]
,

where in what follows, unless stated to the contrary, all coefficients in the partial differential
equation will be assumed to be independent of the dependent variables, but functions of the
spatial variable x. The coefficients will further be assumed to be time independent; such an
assumption holds for many materials (see for example (Wall & Lundstedt, 1998; Åberg, Kris-
tensson, & Wall, 1996), for problems for which this is not the case). Throughout this paper it is
assumed that the material parameters κ2, v, and τ are continuously differentiable in the region
of interest. All parameters are assumed to be positive. The parameters which are essential to
the discussion in this paper are the diffusivity κ 2, the relaxation time τ , and the mass flux wave
slowness ν , with ν2 = κ−2τ .

As the leading matrix of the system (2) is non-singular, these equations can be rewritten as the
system

(2.3) ∂x

[
c
J

]
=

[
0 −κ−2(τ∂t +1)

−∂t −∂x(v) vκ−2(τ∂t +1)

][
c
J

]
+

[
0
r

]
,

and this modified system is what is considered in the sequel. This system can also be written as
a second order partial differential equation, but only when τ is a constant (c.f. (I) where v ≡ 0).

(2.4) ν2∂ 2
t c+κ−2∂tc−∂ 2

x c+κ−2v∂xc−2∂x(ln(κ))∂xc

+κ−2∂x(v)c+ν2∂x(v)∂tc+ν2v∂t∂xc = κ−2(τ∂tr + r).

It is considered in the remainder of the paper that τ will not be x-dependent if the second-order
equation (2.3) is under consideration; this is because this equation is only valid in this case. For
the system (2.2), it is not necessary to make this assumption. However when the hyperbolic
equations are considered as a singular perturbation of the parabolic equations, τ is generally
thought of as constant.

3. HOMOGENEOUS MATERIAL PARAMETERS

Hyperbolic layer stripping procedures are well-conditioned problems. This is because a point
in space-time, for one of the coupled one-way wave equations has only one line of dependency.
Therefore there is a simple travel time map enabling layer stripping type algorithms to proceed.
This is not true for parabolic problems. These problems have solutions of non-compact support
even when the initial condition has compact support. This is a manifestation of the infinite speed
of propagation synonymous with these equations.

We start by examining the solution properties for the inverse problem associated with parabolic
and hyperbolic versions of the problem when the medium parameters are constant.
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3.1. Parabolic Advection equation with constant coefficients. Consider the equation (2.3)
with ν ≡ 0, r ≡ 0 on the semi-infinite x-axis and with all material parameters homogeneous

κ−2v∂xc+κ−2∂tc = ∂ 2
x c, 0 < x < ∞, t > 0,(3.1)

with prescribed initial–boundary values

(3.2)
c(0, t) = h(t), t > 0,

c(x,0) = 0, 0 < x < ∞.

}

Equation (3.1) is parabolic and therefore requires two boundary conditions for well-posedness;
boundedness of the solution as x → ∞ is also imposed as well as the boundary value at x = 0.

The inverse problem we pose is one of measuring the concentration at a station x = `, i.e.,

(3.3) c(`, t) = f (t),

and from this it is required to estimate the boundary function h(t) = c(0, t). The direct map is
described through (3.1).

It can be shown that the solution to this initial–boundary value problem is

(3.4) c(x, t) =
∫ t

0
k(x,s)h(t − s)ds,

where the kernel k(x, t) is

(3.5) k(x, t) =
x

2κ
√

πt3/2 exp
(−(x−vt)2

4κ2t

)
.

Since (3.5) defines a delta family (Stakgold, 1979), (p. 110), it follows that limx→0 k(x, t) = δ (t),
where δ is the Dirac delta distribution, and k(x, t) is the kernel in (3.5). When κ → ∞, which
corresponds to perfect mixing where the fluids are instantaneously mixed, limκ→∞ k(x, t) = δ (t),
and the solution to (3.4) is

(3.6) lim
κ→∞

c(x, t) = h(t).

When κ → 0, the flow corresponds to perfect displacement and diffusion disappears. It follows
that limκ→0 k(x, t) = δ (x−vt), and the solution to equation (3.4) then reduces to

(3.7) lim
κ→0

c(x, t) = h(t −v−1x)H(t −v−1x).

This is intuitively correct, as in the limit κ → 0, the equation (3.1) becomes the advective equa-
tion. The final limit to consider is when v→∞, where the advective effects dominate the diffusive
effects. In this case limv→∞ k(x, t) = δ (t), and the solution to (3.4) is given by

(3.8) lim
v→∞

c(x, t) = h(t).

For non-zero κ the kernel provides a non-localised propagation mechanism in contra-distinction
to the case when κ = 0, where the equation (3.1) is hyperbolic. In this limit case the initial con-
dition will propagate along the characteristics t = v−1x. In order to perform layer stripping it is
necessary that the physical phenomenon which is used to probe the medium propagates at finite
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speed and has a wave-like behaviour. The solution for (3.1) has such behaviour when κ is very
small. If κ is moderately large, it is not possible to solve the problem by layer stripping, see (I)
and (Vogel, 1992). One feature of the solution to (3.1), is that a wave will propagate at a velocity
near v, but only in the direction of increasing x. This means the equation (3.1) can be considered
as a one-way wave equation; as such no reflection experiments are possible. Transmission mea-
surements are the only possible method of solving the inverse problem; see (Wall & Lundstedt,
1998) for further information on inverse problems for a one-way wave equation.

The regularisation of the inverse problem of source concentration reconstruction by mollifica-
tion has been examined in (Shorten, 2000; Shorten & Wall, 2001). We now consider regularisa-
tion of the problem by hyperbolisation of the parabolic problem.

3.2. Hyperbolic Advection Equation. The use of a hyperbolic problem to regularise parabolic
problems seems a sensible physical extension, given the development of §2. We show here that
the equivalent hyperbolic inverse problem to that discussed in §3.23.1 is well conditioned.

When the material parameters are homogeneous equation (2.3) becomes

ν2∂ 2
t c+ν2v∂t∂xc+κ−2v∂xc+κ−2∂tc = ∂ 2

x c, 0 < x < ∞, t > 0,(3.9)

with prescribed initial–boundary values

(3.10)
c(0, t) = h(t) t > 0,

c(x,0) = 0, 0 < x < ∞.

}

Equation (3.9) is hyperbolic and therefore requires two boundary conditions for well-posedness;
boundedness of the solution as x → ∞ is also imposed as well as the boundary value at x = 0. It
is seen that as ν → 0, (3.1) can be considered a singular perturbation of (3.9).

To examine the well-posedness of the problem we extend the function c(x, t), and the partial
differential equation (3.9), by zero for t < 0, and consider its Fourier transform. The Fourier
transform of the dependent variable is pivotal in our argument; it is

ĉ(x,ξ ) = ĥ(ξ )exp
(

κ−2v
2

x
)

exp
(

iξ
ν2v

2
x−
√

β |ξ |
2κ2 I(ξ ,a)x

)
,(3.11)

with

a =
1
β

(
v2

4ξ κ2 −ξ ν2κ2β̃
)

, β = 1+
ν2v2

2
, β̃ = 1+

ν2v2

4
,(3.12)

and where

(3.13) I(ξ ,a) =
(√

1+a2 +σa
)1/2

+ iσ
(√

1+a2 −σa
)1/2

,

with σ = sign(ξ )4. When use is made of the boundary condition (3.10) it can be seen that for
the inverse signal reconstruction problem, the operator mapping f → h in the Fourier transform

4Both references (Murio, 1993) and (Murio & Roth, 1988) have typographical errors in the definition of a func-
tion similar to our I function.
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domain can be written as

(3.14) ĥ(ξ ) = f̂ (ξ )exp
(
−κ−2v

2
`

)
exp
(
−iξ

ν2v
2

`+

√
β |ξ |
2κ2 I(ξ ,a)`

)
.

It should be noted, forgetting any ill-posedness, that the function h, denoted here by hH recon-
structed from (3.14), will not be equal to the solution reconstructed from (3.1), denoted here by
hP, as the later is associated with the parabolic problem, while the former is associated with the
hyperbolic problem. This is just a statement that the inverse mapping operators for these two
problems are not identical, although as ν → 0, ‖hH −hP‖ → 0 with a rate of convergence given
by the following consistency estimate.

Lemma 3.1. If hP ∈ H1 and M = max(‖hP‖,‖hP′‖), then ‖hH −hP‖ = MO(ν2).

Proof. Using (3.14), and (3.11) when ν = 0, it follows that

(3.15) ‖hP −hH‖2 = ‖(1−χ)ĥP(ξ )‖2.

where

(3.16) χ = exp

(
−iξ ν2v`

2
+

√
|ξ |
2κ2

(√
β I(ξ ,a)− I

(
ξ ,

v2

4ξ κ2

))
`

)
,

with 0 ≤ |χ| ≤ 1, and limν→0 |χ| = 1. Since hP ∈ H1, then ξ ĥP(ξ ) ∈ L2, and it follows that
∃N > 0 such that

‖hP −hH‖2 =

√
4
∫ N

0
|1−χ|2|ĥP|2 dξ(3.17)

≤ 2M
√

N max
ξ∈[0,N]

|1−χ|(3.18)

≤ 2M
√

N, ∀ν(3.19)

This bounds the error for large ν . For small ν , a series expansion of (3.18) about ν = 0 yields

(3.20) ‖hP −hH‖2 = MO(ν2), ∀ν .

A weaker form of this lemma when v = 0 appears in (Murio & Roth, 1988; Murio, 1993; Roth,
1989). �

The important behaviour of (3.14) is as |ξ | → ∞ and we observe that

(3.21) max
|ξ |∈[0,∞]

∣∣∣∣

√
β |ξ |
2κ2 Re(I(ξ ,a))`

∣∣∣∣≤ max
{

v`

2κ2 ,
β`

2κ2νβ̃
1
2

}
= k.

It is now seen that the effect of hyperbolicity is to bound the growth of the exponential function
for large values of |ξ |, with

(3.22)
∣∣∣∣exp

(√
β |ξ |
2κ2 Re(I(ξ ,a))`

)∣∣∣∣< ek.
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It therefore follows that
‖ĥH − ĥH

m‖2
2 ≤ ek‖ f̂m − f̂‖2

2,

where hm corresponds to u(0, t) when f is replaced by fm. The following stability result then can
be obtained from Parseval’s theorem.

Lemma 3.2. If f , fm ∈ L2 then

(3.23) ‖hH −hH
m‖2

2 ≤ ek‖ fm − f‖2
2

We see the hyperbolic problem ensures that the inverse mapping operator has a Lipschitz con-
tinuity result, when the data fm ∈C, and ν > 0 is fixed. Furthermore, considering the hyperbolic
problem (3.9) as a regularisation of (3.1), as ‖ fm − f‖ → 0, ν can also be reduced. Then well-
posedness of the inverse problem follows from the two lemmata.

Theorem 3.3. The inverse problem is stable with respect to perturbations in the data f . If the
exact boundary function hP ∈ C1 with max(|hP|, |hP′|) < M then the solution hP to the inverse
problem satisfies

(3.24) ‖hP −hH
m‖2

2 ≤ ek‖ f − fm‖2
2 +O(ν2)

The well-posedness of the problem is also apparent from the solution to (3.9) which is
(3.25)

c(x, t) = exp
(

vx
2κ2

(
1− β

2β̃

))
exp


 −βx

2κ
√

τ
√

β̃ γ+


h
(

t − xν
γ+

)
+
∫ t

xν
γ+

k(x,s)h(t − s)ds


,

where the kernel is

(3.26) k(x,s) = exp


 −β s

2τ
√

β̃







xν
√

β̃αI1

(
α
√(

s− xν
γ+

)2
+2xν

√
β̃
(

s− xν
γ+

))

√(
s− xν

γ+

)2
+2xν

√
β̃
(

s− xν
γ+

)




,

with boundary condition h(t) ≡ 0, t < 0, where In denotes the modified Bessel function of order
n, and

(3.27) α =
1

2τβ̃

√
β 2 − β̃v2ν2, and γ+ =

√
β̃ +

√
β̃ −1.

Therefore the inverse problem with homogeneous material parameters can be formulated as a
Volterra integral equation of the second kind, and the inversion of this equation provides the
solution to the signal restoration problem. The theory of second kind Volterra operators implies
that the problem is well-posed (Linz, 1985).

The first part of the solution on the right-hand-side of (3.25) represents the hyperbolic wave
that travels into the medium undistorted but with attenuation. From this part of the solution it
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can be seen, that the distance into the medium, in which the leading edge of the wave traveling
twice this distance is attenuated by e−1, the so-called e-fold distance (Weston, 1988), is

(3.28) xe = κ
√

τβ−1
√

β̃ γ+.

The maximum e-fold distance occurs when νv =
√

2(
√

2−1), and κ
√

τ ≤ xe < 1.21κ
√

τ . The
second part of the solution, represented by the convolution integral, directly represents the dissi-
pative or diffusive nature of the problem. Further discussion on the interpretation of this equation
can be found in (I).

If the term ν2v∂t∂xc is omitted from (3.9), then the hyperbolic partial differential equation

(3.29) ν2∂ 2
t c+κ−2v∂xc+κ−2∂tc = ∂ 2

x c, 0 < x < ∞, t > 0,

can still be considered a valid singular perturbation of the parabolic problem (3.1). The solution
for the concentration field c within a semi-infinite region with zero initial condition can be found
by Laplace transform techniques to be

(3.30) c(x, t) = exp
(

vx
2κ2

)[
exp
( −x

2κ
√

τ

)
h(t −νx)+

∫ t

νx
k(x,s)h(t − s)ds

]
,

where the kernel of the integral is

k(x, t) = exp
(
− t

2τ

)
ανxI1

(
α
√

t2 −ν2x2
)

√
t2 −ν2x2

,

with boundary condition h(t) ≡ 0, t < 0, and

α =
1

2τ

√
1−v2ν2.

Note that when v = 0, the solutions in (3.25) and (3.30) are identical to the solution found in
(I). Again the first part of the solution on the right-hand-side of (3.30) represents the hyperbolic
wave that travels into the medium undistorted but with attenuation, and the second part of the
solution is associated with the problem dispersion. In this case the e-fold distance is xe = κ

√
τ .

For the inverse problem under consideration the measurement is c(`, t), so that equation (3.30)
can be written as

(3.31) c(`, t) = exp
(

v`

2κ2

)[
exp
( −`

2κ
√

τ

)
h(t −ν`)+

∫ t

ν`
k(`,s)h(t − s)ds

]
,

and again the inverse problem with homogeneous material parameters can be formulated as a
Volterra integral equation of the second kind, with the inversion of this equation providing the
well-posed solution to the signal restoration problem. This integral equation approach has been
examined in (Murio & Roth, 1988) for the parabolic heat equation.
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4. WAVE SPLITTING AND SYSTEM DYNAMICS

We now return to obtaining numerically useful techniques based on wave splitting ideas to
find algorithms for the inverse problem when the material parameters are spatially varying.

The equations (2.2) and (2.3), with r ≡ 0, can now both be written in the system form

(4.1) ∂xu = Cu+Bu,

where for the conversion of the second order partial differential equations u =
[
c ∂xc

]T , with
component matrices

C =

[
0 1

(ν2∂ 2
t +κ−2∂t) ν2v∂t

]
,(4.2)

B =

[
0 0

∂x(v)(κ−2 +ν2∂t) κ−2v−2∂x(ln(κ))

]
.

In the system case, given by (2.2), u =
[
c J

]T and the component matrices are

(4.3) C =

[
0 −κ−2(τ∂t +1)

−∂t vκ−2τ∂t

]
, B =

[
0 0

−∂x(v) vκ−2

]
.

It should be noted that the preliminary partitions5, of the matrices C and B, used in the previous
equations are not unique and other partitions may be profitable. The particular choice we have
made includes the advection velocity and this seems to be essential in order to provide the meth-
ods developed in the next sections. In the next section we diagonalise the operator matrix C; the
B matrix contains only terms irrelevant to this. A consistent partition has been chosen for C in
equations (4.2) and (4.3) to ensure that they are similar, namely they have the same eigenvalue
operator-valued matrices (see (4.22)).

We note that the C matrix has an extra advection derivative term, the term ν 2v∂t for (4.2), and
the term vκ−2τ∂t for (4.3), when compared to the wave splitting for one dimensional hyperbolic
diffusion wave equations of (I). We have included this term in C because any physically realistic
media involving mass transport must involve advection. To not include this term in the C matrix
will result in non-physical split fields, which will mean that we will be unable to measure or
reconstruct the appropriate field to solve the inverse problem specified in §3 3.1. One central
feature of this inverse problem investigation is that we assume that either the reconstruction or
measurements (or both) are carried out in an advective diffusive medium — not an ideal non-
diffusive medium. An alternative splitting to the one discussed here is mentioned in A.

We shall make use of diagonalising transformations to convert the equations (4.1) into the
appropriate split form. The pseudo-differential operators found in this section are most easily
found by using Laplace transformation techniques on the C matrices given in equations (4.2),
(4.3), and then finding the algebraic eigen-systems. The pseudo-differential operators are then
found by inverse Laplace transformation. Examples of this technique are found in (I).

5We use the term preliminary, as a splitting based on this partition will be used later to diagonalise the operator
matrix C.
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We illustrate the splitting for the second order equation formulation only; the splitting opera-
tors for the system representation are similar.

4.1. Second Order equation. Using Laplace transform techniques, it is found that the appro-
priate diagonalising transformation for the C matrix (4.2), is given by

(4.4) u = Pvvv±.

The vvv± have the properties of right and left moving waves and this is discussed further latter in
this section. Note that it is assumed that

(4.5) c(x,0) = ∂tc(x, t)|t=0 = 0.

The operator-valued matrix in the equation (4.4) is defined by

P =




I I

κ−1K−1
− κ−1K−1

+


 ,

where I is the identity operator. The inverse operator K
−1
± is the operator representation of the

temporal pseudo-differential operator defined through

K
−1
± =

(
γ
√

τ∂t ±
√

∂t
(
χ∂t +1

))
,(4.6)

where the ratio of the advection velocity to the hyperbolic wavespeed is

γ =
vν
2

=
vκ−1√τ

2
,

and
χ = τ(1+ γ2).

With the definition

γ± =
(
γ ±
√

1+ γ2
)
,

the operator K
−1
± has the representation

(4.7) K
−1
± f =

(
γ±

√
τ∂t ±

1
2
√χ

(I−L)

)
f (t),

where L is the convolution operator

(4.8)
(
L f
)
(t) =

∫ t

0
L(x, t − t ′) f (t ′)dt ′,

with kernel

(4.9) L(x, t) = exp
(−t

2χ

)
I1(t/2χ)

t
.
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In this equation In denotes the modified Bessel function of order n. The operator K±, which is
central in the operator-valued matrix P−1, is the pseudo-differential operator defined through

(4.10) K± = 1/
[
γ
√

τ∂t ±
√

∂t
(
χ∂t +1

)]
,

and this operator can be represented by the convolution operator
(
K± f

)
(t) =

∫ t

0
K̃±(x, t − t ′) f (t ′)dt ′.

A closed form representation for the kernel K̃± can be obtained, although the kernel involves a
convolution term. In this paper it suffices to find a convergent series representation for K̃±, which
for γ < 1 is

(4.11) K̃±(x, t) = ±Kτ(x, t)−
γ√
τ

e−t/τ ± γ2

2
√

τ

(
F
(

3
2
,1,− t

τ

)
− γ2

4
F
(

5
2
,1,− t

τ

)

+
γ4

8
F
(

7
2
,1,− t

τ

)
+O

(
γ6)
)

,

where the kernel Kτ is the same kernel found for the corresponding operator for thermal processes
in (I), namely

(4.12) Kτ(x, t) =
1√
τ

e−t/2τ I0(t/2τ).

The convolution operator corresponding to this kernel is

(4.13)
(
Kτ f

)
(t) =

∫ t

0
Kτ(x, t − t ′) f (t ′)dt ′.

The term F(n,d,z), appearing in (4.11), is the generalised hypergeometric function. This func-
tion is also known as the KummerM function (Abramowitz & Stegun, 1964), (p. 504), and is
represented by the absolutely convergent series

F(n,d,z) =
∞

∑
k=0

Γ (n+ k)Γ (d)zk

Γ (n)Γ (d + k)k!
,

where Γ is the gamma function.
The inverse of the operator-valued matrix P is then found to be

(4.14) P−1 =
1
2




I+ γ√
1+γ2

(
M+ I

)
−κKχ

I− γ√
1+γ2

(
M+ I

)
κKχ


 ,

with the operator M having the representation

(4.15) M f =
∫ t

0
M(x, t − t ′) f (t ′)dt ′,
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with kernel M given by

M(x, t) =
e−t/2χ

2χ

(
I1(t/2χ)− I0(t/2χ)

)
.

The operator Kχ is defined by the same representation as Kτ , namely (4.13), but the variable τ
in the kernel of this operator, given by equation (4.12), is replaced by χ . It is to be noted that
∂tKχ =

√χM.

4.2. Operator Properties. We proceed formally, and list some of the algebraic properties of the
operators developed in the last section. These relationships may be proved via direct manipula-
tion of the operator representations, or through the Laplace transform. As the operators K

−1
± are

roots of a quadratic characteristic equation they satisfy certain composition, commutation, and
trace properties. These are:

K
−1
− K

−1
+ = K

−1
+ K

−1
− = Lt ≡−∂t(τ∂t +1)(4.16)

K
−1
± = LtK∓ = K∓Lt = ∂tK∓(τ∂t +1)(4.17)

K
−1
± K± = K±K

−1
± = I

K
−1
+ +K

−1
− = 2γ

√
τ∂t(4.18)

K
−1
+ −K

−1
− = 2

√
∂t(χ∂t +1)

Relations (4.16) and (A) define the operators K
−1
± , and if the right-hand-side of (A) is zero these

relations provide the definition of the square root of −Lt (c.f. §3 of (I)). The relationship (4.17)
is often called the commutation relation, it appears in many wave splitting problems, albeit with
operators different to those considered here. These equations are background to many of the
results of this paper.

The operators K± are smoothing, compact on the Hilbert space L2, and as such the inverse
operators K

−1
± are unbounded and ill-posed on L2, even though existence of the operators has

been proven by construction. We only consider the mapping properties of the operators when
v 6= 0, as the case for v ≡ 0 has been covered in (I).

Theorem 4.1. For τ 6= 0, the operators are injective and into on the appropriate Sobolev spaces

K± : Hs 7→ Hs+1,

K
−1
± : Hs 7→ Hs−1,

where the Sobolev space of order m is denoted by Hm.

Proof. To prove the operators are injective it is only necessary to look at the image of the zero
function because the operators are linear; it follows trivially from their explicit form they are
injective. The mapping properties of the operators follows directly from their Laplace transforms
and the symbol mapping theorem (Taylor, 1981), (p. 49 et seq.). �
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In the limiting case of pure diffusion v → 0, γ → 0 and χ → τ , so it follows that the operators
reduce to those of (I):

K
−1
± →±K

−1
τ , K± →±Kτ .

Of major concern also, is the limiting forms of the operators K± as τ → 0; when τ = 0, the model
equations are parabolic. Define

H f =
∫ t

0
H(t − s) f (s)ds,

with kernel H(t) = 1/
√

πt, then H f is related to the half derivative of f , that is H f = ∂ −1/2
t f .

The half derivative has the obvious composition properties (Oldham & Spanier, 1974)

∂ 1/2
t f = ∂tH f = ∂t∂

−1/2
t f .

It is then possible to show

lim
τ→0

K± = ±H,

and when representation (4.7) is used for K
−1
±

lim
τ→0

K
−1
± = ±∂tH.

Finally the limit as the equation becomes non-diffusive can be achieved by considering the
limit as κ−1 → 0 while keeping ν fixed, or equivalently allowing τ → ∞, again while keeping ν
fixed. It can be shown that

(4.19) lim
τ→∞

κK± =
1

νγ±
∂−1

t , lim
τ→∞

κ−1
K

−1
± = νγ±∂t ,

which is the corresponding splitting for the hyperbolic partial differential equation

(4.20) ν2∂ 2
t c+ν2v2∂t∂xc = ∂ 2

x c.

In the limit as v → 0, γ → 0, and γ± →±1, with (4.19) reducing to the standard splitting for the
wave equation. Observe that γ− < 0 for γ > 06, and as γ → ∞, γ− → 0 and γ+ → 2γ . Figure 1
shows how the wave phase velocity varies with the advection velocity. The relationship between
the phase velocity γ+, and the advection velocity is only approximately linear for vν

2 > 1. This
nonlinear behaviour is expected, as the velocity of the propagation of the mass wave through the
advecting medium is not associated with a Galilean transformation.

6Note also that γ+γ− = −1.
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FIGURE 1. The variation of the wavespeed parameters, γ+ (– – –) and γ− (—)
with γ .

4.3. System Dynamics. The transformation (4.4) can now be utilised to diagonalise C, and to
convert equation (4.1) into two coupled one-way wave equations

(4.21) ∂xvvv± = Λvvv± +Dvvv±,

with the new basis vvv± =
[
v+ v−

]T , where {v+,v−} have the properties of right and left moving
mass concentration waves; this is discussed further latter in this section. The matrix Λ is the
diagonal operator matrix

(4.22) Λ =

[
κ−1K−1

− 0
0 κ−1K−1

+

]
,

and the dynamics matrix D is

(4.23) D = −P−1(∂xP)+P−1BP.

It is important to note that the diagonal matrix Λ given by (4.22) will be the same for system
(2.2) and the second order equation (2.3), so that the principal part of the dynamics equation will
be the same for both these equations. In the sequel we only quote results for the second order
equation as analysed in §4 4.1. Results for the system equations in (4.3) are of a similar nature,
but have different functional forms from those listed in Table 1 and Table 2, and will not be listed
here.

In terms of the material parameters the first part of the system dynamics is

(4.24) P−1(∂xP) =

[
−1 −1
1 1

]
j(x)√
1+ γ2

(
M+ I

)
+

[
1 −1
−1 1

]
d(x)(I+ e(x)J),

with J represented by the convolution operator

(4.25)
(
J f
)
(t) =

∫ t

0
J(t − t ′) f (t ′)dt ′,
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Coefficient Second order equations (2.3)

d(x) 1
4∂x ln[ν2(1+ γ2)]

e(x) − 1
τ(1+γ2)

+ ∂x[κ−2]
∂x[ν2(1+γ2)]

f (x) γ
2

(
κ−2v−2∂x(lnκ))

)
+
(
∂xv
)
κ−1√τ

g(x) 1
2(κ−2v−2∂x lnκ)

h(x) 1
2κ ∂xv

j(x) 1
2ν ∂x(νγ)

TABLE 1. Identification of parameters d – j for hyperbolic mass transport in the
second order equation case.

with kernel J(t) = exp(−t/χ). The spatial functions in equation (4.24) are shown in Table 1, and
the remaining part of the dynamics, after transformation, is

(4.26) P−1BP =

[
−1 −1
1 1

](
h(x)Kχ +

f (x)√
1+ γ2

(
M+ I

))
+

[
1 −1
−1 1

]
g(x)I,

with the coefficients d, e, f , g, h, and j given in Table 1.
For explicitness we express the system (4.21) in terms of the dynamics matrix as

(4.27) ∂xvvv±(x, t) = Λvvv±(x, t)+

[
α β
γ̃ δ

]
vvv±(x, t)+

∫ t

0

[
A(x, t − t ′) B(x, t − t ′)
C(x, t − t ′) D(x, t − t ′)

]
vvv±(x, t ′)dt ′,

(c.f. (Åberg, Kristensson, & Wall, 1995) for a similar case where the dynamics include opera-
tors7). The first part of the dynamics represented by the terms {α,β , γ̃,δ} are listed in Table 2,
and these terms are purely multiplicative functions. The part of the dynamics corresponding to
integral operators has been split into the convolutional term; the kernels of these operators are
also listed in Table 2. The convolutional operators corresponding to the kernels {A,B,C,D} will
be denoted by {A,B,C,D}, respectively. It is to be observed that it is necessary to split the dy-
namics into functions and operators in order to derive the Green operator equations of the next
section.

7We note that the equations for the reflection kernel, and the Green operators derived in (I) are derived under the
assumption that the lateral loss term, there denoted by χ , was χ ≡ 0, and the relaxation time τ 6= τ(x); this was not
specified in the cited paper.
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Coefficient Terms of material parameters

α(x) − 1√
1+γ2

( f (x)− j(x))+(g(x)−d(x))

β (x) − 1√
1+γ2

( f (x)− j(x))− (g(x)−d(x))

γ̃(x) 1√
1+γ2

( f (x)− j(x))− (g(x)−d(x))

δ (x) 1√
1+γ2

( f (x)− j(x))+(g(x)−d(x))

Kernel Terms of material parameters

A(x, t) − 1√
1+γ2

(( f (x)− j(x))M(x, t)−h(x)K(x, t)−d(x)e(x)J(x, t)

B(x, t) − 1√
1+γ2

(( f (x)− j(x))M(x, t)−h(x)K(x, t)+d(x)e(x)J(x, t)

C(x, t) 1√
1+γ2

(( f (x)− j(x))M(x, t)+h(x)K(x, t)+d(x)e(x)J(x, t)

D(x, t) 1√
1+γ2

(( f (x)− j(x))M(x, t)+h(x)K(x, t)−d(x)e(x)J(x, t)

TABLE 2. Identification of dynamics coefficients and kernels for hyperbolic mass
transport for the second order equation (2.2).

If D ≡ 0 then the right-hand-side of equation (4.27) is just Λ , and the system is decoupled
into two one-way wave equations, corresponding to right and left moving mass waves which
are respectively denoted by v+ and v−. We now discuss the interpretation of the v± from these
decoupled equations. For concreteness we just consider v+, and it follows that the right going
wave must satisfy

(4.28)
(
∂x −κ−1

K
−1
−
)
v+ = 0.

In the special case of the non-diffusive limit τ → ∞, with ν fixed, the equation (4.28), with use
of (4.19), becomes (

∂x −νγ−∂t
)
v+ = 0,

which is satisfied by solutions of the form v+(t + xνγ−). Now observe that γ± = ±1, for γ = 0,
and that γ− < 0 for γ > 0. It then follows that this solution is the well known right going wave
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having Galilean translational invariance. In this case the right moving wave front travels with
speed γ+/ν and the left moving wave front travels at speed γ−/ν 8. When considering the more
general operator found in (4.28), we cannot expect the solution of this equation to exhibit such
solution symmetry because the wave will be attenuated as it moves to the right. However we still
call solutions that satisfy (4.28) the right moving waves.

When the material properties are such that D 6= 0 we cannot make this physical interpretation
for vvv±, however we shall still call such solutions left and right moving waves for convenience. It
should be apparent the mathematics still makes sense in that vvv± satisfy (4.21).

We can now examine under what conditions the dynamics matrix provides an exact splitting.
If the velocity field, v, is independent of x, and the limit κ−1 → 0 while κ−1√τ → ν remains
fixed is examined, it is found that the splitting is exact and D = 0. This means that the two
one-way wave equations are decoupled and can be integrated exactly. Another possibility is that
x moves into a region in which the parameters are homogeneous with v ≡ 0 and D = 0 again.
Similar interpretations can be made for left-going waves.

5. WAVE PROPAGATORS

For simplicity, in the rest of the paper we consider the domain of the problem to be the quarter
plane Ω = {(x, t) ∈ R2|0 ≤ x ≤ ∞,0 ≤ t ≤ ∞}. The mass transport processes within the medium
in the half space 0 ≤ x ≤ ∞ are described by equations (4.1). Within the semi-infinite region
the material parameters κ,τ,v ∈ C1(IR), and with little loss of generality we assume the initial
condition vvv±(x,0) = 0, x ∈ [0,∞).

Karlsson (Karlsson, 1996) has derived wave propagators for a dispersive electromagnetic prob-
lem. We derive the equations for the wave propagators for the advection problem under consid-
eration in this paper. The wave propagators are linear operators that map a mass concentration,
v+(x, t), at one spatial position x > 0, to another position x′ > 0. The propagators are operators
defined by

v+(x′, t +ζ (x,x′)) = IP+(x′,x)v+(x, t),(5.1)

v−(x′, t +ζ (x,x′)) = IP−(x′,x)v+(x, t),(5.2)

where ζ is the wave front propagation time of a mass wave moving from the point x to x′;
expressions for this function are given in (5.15). There is no restriction on the relative magnitudes
of x and x′ in the definition of the wave propagators. When x′ > x the propagators map the field
v+ forward in the positive x-direction, along with the advection, and when x′ < x the propagation
is backwards, against the advection and in the negative x-direction.

The propagators satisfy the properties of a group (see (Karlsson, 1996)), and the groups inverse
operator is defined through, for example

(5.3) IP+(x′,x)IP+(x,x′) = I

8See Footnote 6 on page 15.
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or

(5.4)
(
IP+(x′,x)

)−1
= IP+(x,x′).

The properties of linearity, causality and time-translational invariance imply the representation
for the propagators is of the form

IP+(x′,x)v+(x, t) = a(x,x′)v+(x, t)+
(
P+(x′,x; ·)∗ v+(x, ·)

)
(t),(5.5)

IP−(x′,x)v+(x, t) =
(
P−(x′,x; ·)∗ v+(x, ·)

)
(t),(5.6)

where P± is a kernel function, and the ∗ operator denotes the temporal convolution

(
P±(x′,x; ·)∗ v+(x, ·)

)
(t) =

∫ t

0
P±(x′,x;s)v+(x, t − s)ds.

The factor a modifies the wave front, and provides attenuation when x′ > x, and amplification
when x′ < x, and its functional form is given in equation (A.6).

Causality requires that vvv±(x, t) ≡ 0 for t ≤ ζ (0,x). In equation (5.5) the positive moving
field at some point x′ > 0 has been written in two parts. The first part is due to the direct
forward/backward propagation of the incident field, v+(x, t), with attenuation/amplification and
time retardation/advancement, depending on whether x′ > x or x′ < x respectively, and the second
part is due to scattering effects in the region — this is provided by P+∗v+. The other propagation
operator in (5.2) provides the mapping between the incident right going wave v+(x, t), and a left
going wave at x′ > 0.

From (5.5) and (5.4) it is seen that the kernel P+(x,x′; t) for the inverse propagator in (5.4), is
related to the propagator kernel P+(x′,x; t) through the equation

a(x,x′)P+(x,x′; t)+a(x′,x)P+(x′,x; t)+
(
P+(x′,x; ·)∗P+(x,x′; ·)

)
(t) = 0.

This equation is a Volterra integral equation of the second kind, so that for appropriately smooth
functions the existence of the inverse kernel, given the other kernel, is assured.

Now we shall derive the functional equations that the propagator kernels satisfy. The initial
step in the derivation is to differentiate the representations of the propagators with respect to
either x or x′. Differentiation with respect to x′, the station where the wave is propagating to,
leads to a form of the operators that will be required in the sequel. Differentiation with respect
to x, the point where the wave has propagated from, leads to an equation suitable for invariant
imbedding — these will not be discussed further here (see (Karlsson, 1996) for information on
this case).

Differentiation of equation (5.5), with respect to x′, yields

(5.7)
(
D1 +(∂x′ζ (x,x′))D2

)
v+(x′, t +ζ (x,x′)) = (∂x′a(x,x′))v+(x, t)

+
(
∂x′P

+(x′,x; ·)∗ v+(x, ·)
)
(t).
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Then use of the dynamics, (4.27), to rewrite terms on the left-hand-side of (5.7), and on inter-
changing the left-hand-side with the right-hand-side, leads to

(5.8) (∂x′a(x,x′))v+(x, t)

+
(
∂x′P

+(x′,x; ·)∗ v+(x, ·)
)
(t) =

(
α +κ−1

K
−1
− +A

)
v+(x′, t +ζ (x,x′)

)

+
(
β +B

)
v−(x′, t +ζ (x,x′))+(∂x′ζ (x,x′))∂tv+(x′, t +ζ (x,x′)),

where the operators A and B are defined by the convolution operators in (4.27). Furthermore, the
use of (4.7) allows the right-hand-side of (5.8) to be written as

(5.9)
(
α + γ−κ−1√τ∂t −

1
2κ√χ

(I−L)+A
)
v+(x′, t +ζ (x,x′))

+
(
β +B

)
v−(x′, t +ζ (x,x′))+(∂x′ζ (x,x′))∂tv+(x′, t +ζ (x,x′)),

To proceed requires the following lemma.

Lemma 5.1. If ai ∈ C, and v ∈ C1 and

(5.10) a1(x)v(t)+
∫ t

0
a2(x, t − s)v(s)ds+a3(x)∂tv(t)+

∫ t

0
a4(x, t − s)∂tv(s)ds = 0,

for all t > 0,x,v, then ai = 0. That is, terms proportional to ∂tv+(x, t), v+(x, t), and terms
involving convolutions of v+(x, t) and ∂tv+(x, t) are independent.

Proof. If we consider v to be constant, then ∂tv = 0 and

(5.11) a1(x)+
∫ t

0
a2(x,s)ds = 0, ∀t > 0,x.

In particular, when t = 0 it follows that a1 = 0 and therefore

(5.12)
∫ t

0
a2(x,s)ds = 0, ∀t > 0,x,

and the continuity of a2 then implies that a2 = 0. A similar argument with v = t implies that
a3 = a4 = 0. �

Therefore using (5.5) and (5.6) and lemma 5.1 three equations can be obtained from (5.9), and
similar considerations of (5.6) yields two further equations. The first two equations are

∂x′P
+ =

1
2κ√χ

(
aL+L∗P+−P+

)
+αP+ +βP− +aA+A∗P+ +B∗P−,(5.13)

∂x′P
−−2ν

√
1+ γ2∂tP− =

1
2κ√χ

(
P−−L∗P−)+δP− + γ̃P+

+aC +D∗P− +C ∗P+,

(5.14)

where the functional dependence of the dynamics {α,β , γ̃,δ}, on x′, and P±(x′,x; t), a(x,x′) on
x′,x, t has been implicitly assumed for notational convenience.
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The third equation determines the propagation time between two points x and x′, which is

ζ (x,x′) = −
∫ x′

x
ν(s)γ−(s)ds =

∫ x′

x

ν(s)
γ+(s)

ds,

=
∫ x′

x
ν(s)(

√
1+ γ2 − γ)ds.(5.15)

This should be compared to the propagation time found in the case with no advection, namely
just the integrated slowness (Wall & Olsson, 1997). As 0 ≥ γ− ≥−1 when γ > 0, it follows that
the phase velocity of the wave front is greater than 1/ν , as would be expected due to the additive
effect of the advective velocity of the embedding medium. The function ζ (x,x′) does not have
an inverse, and it is convenient to define this travel time function in terms of the function

ζ (x) = −
∫ x

0
ν(s)γ−(s)ds = ζ (0,x),(5.16)

with ζ (x,x′) = ζ (x′)− ζ (x). The function ζ (x) can be shown to posses an inverse through the
inverse function theorem and the fact that ν/γ+ > 0.

The fourth equation determines the wave front attenuation/amplification factor, which has the
representation

(5.17) a(x,x′) = exp
(
−
∫ x′

x

([
2κ(s)

√
χ(s)

]−1 −α(s)
)

ds
)

,

and it is to be noted that when x′ > x, 0 < a ≤ 1, and when x′ < x, a ≥ 1.
The fifth equation specifies the initial conditions for P−, which is

(5.18) P−(x′,x;0)+
γ̃a

2ν
√

1+ γ2
= 0.

5.1. Forward Green Operators. The forward Green operators provide the mapping of the left-
hand boundary condition, at the boundary of the propagation medium, to an interior point x′

by

v+(x′, t +ζ (0,x′)) = G
+
f (x′)v+(0, t), v−(x′, t +ζ (0,x′)) = G

−
f (x′)v+(0, t).

The forward Green operators are linear convolution operators and are related to the propagator
operators by

G
+
f (x′) = IP+(x′,0), G−(x) = IP−(x′,0),

with kernels given by

G+
f (x′, t) = P+(x′,0; t), G−

f (x′, t) = P−(x′,0; t).



Reconstruction in advective and diffusive media 23

The kernels G±
f (x′, t) satisfy equations (5.13) and (A.5), but with x = 0. The boundary and initial

conditions appropriate for the forward Green kernels are

G+
f (0, t) = 0,(5.19)

G+
f (x′,0) =

a(0,x′)
2

∫ x′

0

(
2A(s,0)+

L(s,0)

κ√χ
− γ̃β

ν
√

1+ γ2

)
ds,(5.20)

where equation (5.20) has been obtained by integrating (5.13) along the x-axis from x = 0 to x′,
for t = 0. If the semi-infinite half-space is such that all material parameters are homogeneous for
x > ` then G−

f satisfies the extra boundary value

(5.21) G−
f (`, t) = 0.

5.2. Transmission Green operators. The transmission Green operators provide the mapping of
the transmitted field at the station x = ` in the propagation medium, to an interior point 0≤ x′ < `.
These operators were first introduced by He (He, 1993), where they were named compact Green
operators, because for the non-dispersive problem he analyzed their associated kernel functions
had compact support. We prefer to name them transmission Green functions to distinguish them
from the forward Green functions previously described.

These operators Gt
±, are the backward operators IP±(x′, `), with x′ < `, and hence the trans-

mission Green kernels are the kernels P±(x′, `; t) and they satisfy (5.13) and (A.5), but with x = `.
The boundary and initial conditions appropriate for the forward Green kernels are

Gt
+(`, t) = 0,(5.22)

Gt
+(x′,0) =

a(`,x′)
2

∫ x′

`

(
2A(s,0)+

L(s,0)

κ√χ
− γ̃β

ν
√

1+ γ2

)
ds,(5.23)

Gt
−(0, t) = 0,

Therefore the solutions of the first order system of partial differential equations (5.13) and
(A.5) are continuous along the characteristic curves associated with the system, but may be
discontinuous across these curves. From (5.13), it is seen that the characteristic traces are t =
constant for Gt

+, and as Gt
+(0, t) is continuous for all t > 0, it follows that Gt

+ is continuous in
the region {0 < x < `, 0 < t < ∞}. However examination of (5.18) shows that any discontinuity
in ν , γ̃ , or γ will be propagated along the characteristic of (A.5). Because we have assumed that
the material parameters are continuously differentiable, it follows that G−

t (x,0) is continuous,
except possibly at x = `, with a discontinuity of magnitude

(5.24) [G−
t ](`,0) =

γ̃(`)a(0, `)

2ν(`)

√
1+ γ(`)2

,

in the direction of increasing t. This jump in Gt
− will propagate along the characteristic curve

for Gt
−.
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6. SIGNAL RECONSTRUCTION

In order to reconstruct the mass concentration signal at x = 0, it is necessary to relate the
physical variables, the concentration c and the parabolic mass flux κ 2∂xc, to the split variables
vvv±. It is seen from (4.4) and (4.14), that the right-going wave is given by

(6.1) v+(`, t) =
1
2

(
c+

γ√
1+ γ2

(
M+ I

)
c−κKχ∂xc

)
(`, t)

For the experimental apparatus we discussed in §1 the blood flow is into assaying tubes. This
means that the advection flux is zero, and the diffusion coefficient is many orders of magnitude
smaller than in the flow tube; this implies ∂xc(`, t) = 0 = γ; hence v+(`, t) = c(`, t)/2.

For other flow problems if we are measuring the concentration at the pipe exit, then because
there is purely advective flow out the end of the pipe, it follows that ∂xc(`, t) = 0 (Smith, 1988),
and (6.1) reduces to

(6.2) v+(`, t) =
1
2

(
c+

γ√
1+ γ2

(
M+ I

)
c

)
(`, t).

In general the derivative ∂xc(`, t) can be estimated in a stable manner using (3.25) and the
method of mollification. Therefore v+ can be readily identified from the measured concentration
c(`, t).

The propagator equations (5.5) and (5.6) form the basis of the signal reconstruction problem,
which for the transmission Green kernels are

v−(0, t −ζ (`)) = Gt
− ◦ v+(`, t),(6.3)

v+(0, t −ζ (`)) = v+(`, t)/a(0, `)+Gt
+ ◦ v+(`, t).(6.4)

From (4.4) it follows that c = v+ + v−, and therefore the reconstruction of the signal at x = 0,
c(0, t −ζ (`)), can be computed. This reconstruction is well-posed, as the solution of (5.13) and
(A.5) for {G+

t ,G−
t } is a well-posed problem. Because we can consider τ as a regularisation pa-

rameter, then provided τ > 0, it follows that we have regularised the ill-posed parabolic problem.
Effectively we have approximated the ill-posed Volterra integral equation of the first kind, which
is obtained from the parabolic problem, by a well-posed Volterra integral equation of the second
kind, which is associated with the hyperbolic problem.

7. DISCUSSION

A discretisation similar to that in (I) will yield solutions to the propagator equations and the
signal reconstruction scheme presented in §6. The use of such schemes will be presented in a later
paper. The propagators derived in this paper can also be used to solve the problem of reconstruct-
ing spatially varying medium parameters such as κ(x), v(x), and τ(x), in an advective-diffusive
medium. Such problems have been considered in (I). An alternative solution approach to the
signal reconstruction problem considered in this paper is to use the space marching mollification
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scheme presented in (Shorten & Wall, 2001). Spatially varying medium coefficients can also be
incorporated into such schemes.
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APPENDIX A. DIFFERENT SPLITTING

The splitting in §4 is not unique and different splittings may be more suitable than others.
What is essential is to ensure that the split fields are identifiable with the measured quantity. As
discussed at the end of §4 we state a splitting is exact when the system dynamics D = 0 under
appropriate conditions. The splitting used earlier in this paper is exact if the advection velocity
is zero, or the advection is homogenous, and the diffusion term is set to zero. A splitting that
is exact for a homogeneous diffusive and advective medium has to include the term κ−2v in
the C22 element of the operator matrix C in (4.2); we illustrate this alternative splitting in this
appendix. The equations for this splitting are similar in form to those found earlier so we just list
the differences here.

Thus the preliminary splitting would use component matrices

C =

[
0 1

(ν2∂ 2
t +κ−2∂t) ν2v∂t +κ−2v

]
, B =

[
0 0

∂x(v)(κ−2 +ν2∂t) −2∂x(ln(κ))

]
,

in (4.2). In the system case, given by (4.3) the corresponding component matrices are

C =

[
0 −κ−2(τ∂t +1)

−∂t vκ−2τ∂t +vκ−2

]
, B =

[
0 0

−∂x(v) 0

]
.

The temporal pseudo-differential operator K
−1
± , as given in (4.6) for the previous splitting, now

is defined through

K
−1
± =

(
1
2

κ−1vI+
√

τγ∂t ±
√

∂t(τβ̃∂t +β )+
1
4

κ−2v2

)
,

see (3.12) for the definition of β , and β̃ . The operator K
−1
± has the non-local representation

(A.1) K
−1
± f =

(
1
2

κ−1


v± β

ν
√

β̃


I+

√
τγ±∂t ±

1

2
√

τβ̃
L

)
f (t),

here the kernel of (4.8) is now

(A.2) L(x, t) =
1
t

exp

(
−β t

2τβ̃

)
I1

(
−t

2τβ̃

)
.
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Then the operator K± is the pseudo-differential operator defined through

K± =

(
1
2

κ−1v+
√

τγ∂t ±
√

∂t(τβ̃∂t +β )+
1
4

κ−2v2

)−1

,

which does not have a simple closed form representation; compare this with (4.10).
The inverse of the operator-valued matrix P is as (4.14) but with the kernel of equation (4.15),

M, given by

M(x, t) =
1

2τβ̃
exp

(
−β t

2τβ̃

)[
I0

(
t

2τβ̃

)
− I1

(
−t

2τβ̃

)]
.

The operator Kχ is as defined in (4.13) with the kernel Kχ

Kχ(x, t) =
1√
τβ̃

exp

(
−β t

2τβ̃

)
I0

(
t

2τβ̃

)
.

The algebraic properties of the operators are the similar to those shown in § 4.2 except the last
two properties now read as

K
−1
+ +K

−1
− = 2γ

√
τ∂t +κ−1vI

K
−1
+ −K

−1
− = 2

√
∂t(τβ̃∂t +β )+

1
4

κ−2v2.

In the limiting case of pure diffusion v → 0, γ → 0, β → 1 and β̃ → 1, so it follows that the
operators K±, K

−1
± reduce to those of (I). Considering the limiting forms of the operators K

−1
±

as τ → 0; when τ = 0, the model equations are parabolic; it is then possible to show that

lim
τ→0

K
−1
± =

1
2

κ−1vI±∂tN,

where N is the convolution operator with the form of (4.13), but replacing the kernel Kτ with the
kernel

N(x, t) =
1√
πt

exp
(
−κ−2v2

4

)
+

1
2

κ−1v erf
(

1
2

κ−1v
√

t
)

.

Turning now to the system dynamics of § 4.3, in terms of the material parameters the first part
of the system dynamics is

(A.3) P−1(∂xP) =

[
−1 −1
1 1

]
j(x)

(
1
τ

Kχ +∂tKχ

)
+

[
1 −1
−1 1

](
b(x)∂ 2

t J+d(x)∂tJ+ e(x)J
)
,

with J represented by the convolution operator (4.25) but with kernel

J(t) =
κ2

2
exp

(
−β t

2τβ̃

)
sinh

(
t

2τβ̃

)
.



Reconstruction in advective and diffusive media 27

Coefficient Expression

b(x) ∂x(ν2β̃ )

d(x) ∂x(κ−2β )

e(x) 1
2κ−2v∂x(κ−2v)

f (x) − γ√
β̃

∂x(lnκ)

g(x) −∂x(lnκ)

h(x) 1
2κ ∂xv

j(x) κ
2 ∂x(νγ)

TABLE 3. Identification of parameters b – j for hyperbolic mass transport in the
second order equation case.

In (A.3) ∂tKχ denotes the operator

(
∂tKχ f

)
(t) =

∫ t

0
∂tKχ(x, t − t ′) f (t ′)dt ′ +Kχ(0) f (t) = K

′
χ +Kχ(0)I,

and ∂tJ denotes the operator

(
∂tJ f

)
(t) =

∫ t

0
∂tJ(x, t − t ′) f (t ′)dt ′ + J(0) f (t) = (J′ + J(0)I) f = J

′ f .

Now since J(0) = 0, it follows ∂ 2
t J denotes the operator

(
∂ 2

t J f
)
(t) =

∫ t

0
∂ 2

t J(x, t − t ′) f (t ′)dt ′ +∂tJ(0)I+ J(0)∂t f (t) = (J′′ +∂tJ(0)I) f .

The spatial coefficients b, d, e, and j in the system dynamics of equation (A.3) are given in
Table 3. See also the new parameter values as listed in the second part of Table 4 for the system
dynamics as given in (4.27).
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Coefficient Terms of material parameters

α(x) + j(x)Kχ(0)−b(x)∂tJ(0)−
(

f (x)+ τh(x)Kχ(0)
)
+g(x)

β (x) + j(x)Kχ(0)+b(x)∂tJ(0)−
(

f (x)+ τh(x)Kχ(0)
)
−g(x)

γ(x) − j(x)Kχ(0)+b(x)∂tJ(0)+
(

f (x)+ τh(x)Kχ(0)
)
−g(x)

δ (x) − j(x)Kχ(0)−b(x)∂tJ(0)+
(

f (x)+ τh(x)Kχ(0)
)
+g(x)

Kernel Terms of material parameters

A(x, t) + j(x)
(1

τ Kχ +∂tKχ
)
−
(
b(x)∂ 2

t J +d(x)∂tJ + e(x)J
)
−
(
h(x)Kχ + f (x)M + τh(x)∂tKχ

)

B(x, t) + j(x)
(1

τ Kχ +∂tKχ
)
+
(
b(x)∂ 2

t J +d(x)∂tJ + e(x)J
)
−
(
h(x)Kχ + f (x)M + τh(x)∂tKχ

)

C(x, t) − j(x)
(1

τ Kχ +∂tKχ
)
+
(
b(x)∂ 2

t J +d(x)∂tJ + e(x)J
)
+
(
h(x)Kχ + f (x)M + τh(x)∂tKχ

)

D(x, t) − j(x)
(1

τ Kχ +∂tKχ
)
−
(
b(x)∂ 2

t J +d(x)∂tJ + e(x)J
)
+
(
h(x)Kχ + f (x)M + τh(x)∂tKχ

)

TABLE 4. Identification of coefficients and kernels for hyperbolic mass transport
within the system dynamics (4.27).

We now examine the different functional forms for the the wave propagators with the new
splitting. Equation (5.8) becomes

(∂x′a(x,x′))v+(x, t)+
(
∂x′P

+(x′,x; ·)∗ v+(x, ·)
)
(t) =

(
α +κ−1

K
−1
− +A

)
v+(x′, t +ζ (x,x′)

)

+
(
β +B

)
v−(x′, t +ζ (x,x′))+(∂x′ζ (x,x′))∂tv+(x′, t +ζ (x,x′)).

Furthermore, the use of (A.1) allows the right-hand-side of this equation to be written as

(A.4)


α +κ−1

(
1
2

κ−1


v− β

ν
√

β̃


I+

√
τγ−∂t −

1

2
√

τβ̃
L

)
+A


v+(x′, t +ζ (x,x′))

+
(
β +B

)
v−(x′, t +ζ (x,x′))+(∂x′ζ (x,x′))∂tv+(x′, t +ζ (x,x′)).
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Therefore, using (5.5) and (5.6) and Lemma 5.1 three equations can be obtained from (A.4), and
similar considerations of (5.6) yields two further equations. The first two equations are

∂x′P
+ = κ−1


1

2
κ−1


v− β

ν
√

β̃


P+− 1

2
√

τβ̃

(
L∗P+ +aL

)

+αP+ +βP−

+aA+A∗P+ +B∗P−,

∂x′P
−−2ν

√
1+ γ2∂tP− = κ−1


κ−1

2


v+

β

ν
√

β̃


P− +

1

2
√

τβ̃
L∗P−


+δP− + γP+

(A.5)

+aC +D∗P− +C ∗P+.

The third and fifth equations are as in § 5 but the fourth equation which determines the wave
front attenuation/amplification factor, has the representation

(A.6) a(x,x′) = exp



∫ x′

x


α +

1
2κ2(s)


v(s)− β (s)

ν(s)
√

β̃ (s)




 ds


 ,

and in a homogeneous medium it is to be noted that when x′ > x, 0 < a ≤ 1, and when x′ < x,
a ≥ 1.

If the diffusive and advective medium material parameters are homogeneous, then it follows
from Table 3 that the splitting is exact and D = 0. This means that the two one-way wave
equations are decoupled and can be integrated exactly.

In this appendix we have shown that the associated operators for this splitting are very similar,
but more complicated, to the splitting operators obtained earlier in this paper which is exact
for the case when the media is non diffusive but the advective medium material parameters are
homogeneous. We note that the entry length obtained when the parameters are homogeneous in
(3.28), appears directly in the propagator equations for this alternate splitting.
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