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Abstract. Tutte defined a k–separation of a matroid M to be a
partition (A, B) of the ground set of M such that |A|, |B| ≥ k and
r(A) + r(B) − r(M) < k. If, for all m < n, the matroid M has no
m–separations, then M is n–connected. Earlier, Whitney showed that
(A, B) is a 1–separation of M if and only if A is a union of 2–connected
components of M . When M is 2–connected, Cunningham and Edmonds
gave a tree decomposition of M that displays all of its 2–separations.
When M is 3–connected, this paper describes a tree decomposition of
M that displays, up to a certain natural equivalence, all non-trivial 3–
separations of M .

1. Introduction

One of Tutte’s many important contributions to matroid theory was the
introduction of the general theory of separations and connectivity [10] de-
fined in the abstract. The structure of the 1–separations in a matroid is
elementary. They induce a partition of the ground set which in turn induces
a decomposition of the matroid into 2–connected components [11]. Cun-
ningham and Edmonds [1] considered the structure of 2–separations in a
matroid. They showed that a 2–connected matroid M can be decomposed
into a set of 3–connected matroids with the property that M can be built
from these 3–connected matroids via a canonical operation known as 2–sum.
Moreover, there is a labelled tree that gives a precise description of the way
that M is built from the 3–connected pieces.

Because of the above decompositions, for many purposes in matroid the-
ory, it is possible to restrict attention to 3–connected matroids. For example,
a matroid is representable over a field if and only if the 3–connected com-
ponents of its 2–sum decomposition are representable over that field. For
some time, it was felt that 3–connectivity sufficed to eliminate most degen-
eracies caused by low connectivity. Indeed, Kahn [7] conjectured that, for
each prime power q, there is an integer µ(q) such that every 3–connected
matroid has at most µ(q) inequivalent GF (q)–representations.
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Unfortunately, examples are given in [9] to show that Kahn’s Conjec-
ture is false for all fields with at least seven elements. While the existence
of such counterexamples is disappointing, it is encouraging that all known
counterexamples are of two very specific types, each of which has many mu-
tually interacting 3–separations. This encourages the belief that a version
of Kahn’s Conjecture could be recovered for matroids whose 3–separations
are controlled in some way. This motivates a study of the structure of the
3–separations in a matroid, and this paper is the outcome of that study.

Loosely speaking, the main theorem of this paper, Theorem 9.1, says that,
associated with a 3–connected matroid M having at least nine elements,
there is a labelled tree T with the property that, up to a certain equivalence,
all “non-sequential” 3–separations of M are displayed by T . There are three
important features of this theorem that require discussion at this stage.

The first is that, in contrast with the abovementioned result of Cun-
ningham and Edmonds for 2–separations in a matroid, we do not give a
decomposition of M into more highly connected parts. This is because, in
general, it is not possible to decompose a matroid across a 3–separation in a
reasonable way. To see this, consider the non-representable Vámos matroid
V8 (see Oxley [8, p. 511]). This matroid has a number of 3–separations, but
there is no reasonable way to see V8 as a “3–sum” of smaller more connected
parts. Having said this, we do believe that Theorem 9.1 can be used to ob-
tain a decomposition result for representable matroids that would be similar
in flavour to that of Cunningham and Edmonds’ 2–sum decomposition. The
components of such a decomposition would be sequentially 4–connected in
the sense of [4].

A 3–separation (A,B) of M is sequential if either A or B can be or-
dered (c1, c2, . . . , cn) such that, for all i ∈ {3, 4, . . . , n}, the partition
({c1, c2, . . . , ci}, E(M) − {c1, c2, . . . , ci}) is a 3–separation. A second fea-
ture of Theorem 9.1 is that we make no attempt to display sequential
3–separations. To see the necessity for this, consider the matroid P =
PG(r − 1, q) for some prime power q and positive integer r ≥ 3. If L is a
line of P , then (L,E(P ) − L) is a 3–separation of P . But the structure of
the lines of P is very complex, at least as complex as the structure of P
itself, and there is clearly no reasonable way of displaying all these lines in
a tree-like way.

The third feature of our main result is that we only display 3–separations
up to an equivalence. To illustrate the need for this, let P1 and P2 be two
distinct planes of PG(3, q) and let M = PG(3, q)|(P1∪P2). Let A = P1−P2,
B = P1 ∩ P2, and C = P2 − P1. Evidently B is a line of M . Moreover, it is
easily seen that, for every subset B′ of B, the partition (A∪B′, C∪(B−B′))
is a 3–separation of M . There are 2q+1 distinct such 3–separations and there
is clearly no reasonable way of displaying all of them. Furthermore, there is
a quite natural sense in which all these 3–separations are equivalent.
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Note that both sequential and equivalent 3-separations can appear more
complicated than the ones in the examples given above. But, from a struc-
tural point of view, the existence of sequential and equivalent 3-separations
is not problematic. They can be characterised using a straightforward ex-
tension of the closure operator, which is discussed in Section 3. Moreover,
the interacting 3-separations in the counterexamples to Kahn’s Conjecture
given in [9] are mutually inequivalent, non-sequential 3-separations.

We now discuss the structure of the paper in more detail. Two 3-
separations (A,B) and (C,D) cross if all intersections A∩C,A∩D,B∩C, and
B ∩ D are nonempty. Considering the structure of a collection of mutually
crossing 3-separations leads to the notion of a flower, defined in Section 4.
Essentially, a flower is a cyclically ordered partition of the ground set of a
matroid that “displays” a collection of 3–separations of M . Understanding
the structure of flowers turns out to be crucial, and the bulk of the paper is
devoted to this. In Section 4, it is shown that flowers in matroids are of five
specific types. Two flowers are equivalent if they display, up to equivalence
of 3-separations, the same collection of non-sequential 3-separations. Sec-
tions 5 and 6 develop an understanding of flower equivalence that enables
us to give, in Section 7, a precise characterisation of equivalent flowers of
different types. There is a natural partial order on flowers induced by the
non-sequential 3-separations that they display. Theorem 8.1, the main re-
sult of Section 8, shows that all non-sequential 3-separations of a matroid
interact with a maximal flower in a coherent way. At last, in Section 9, we
introduce the notion of a partial 3-tree, which is a tree associated with a
matroid M , some of whose vertices are labelled by members of a partition
of the ground set of M . A flower can be thought of as a special type of
3-tree and, just as with flowers, partial 3-trees display certain 3-separations
of M . Theorem 9.1 then shows that a maximal partial 3-tree displays, up
to equivalence of 3-separations, all non-sequential 3-separations of M .

Finally, we note that discussions with James Geelen over several years
were crucial to the evolution of many of the ideas that are fundamental in
this paper. Indeed, if it were not for these early discussions, it is likely that
this paper would never have come to fruition.

2. Preliminaries

Any unexplained matroid terminology used here will follow Oxley [8]. A
2-connected matroid is also commonly referred to as a connected matroid or
as a non-separable matroid. A partition of a set S is an ordered collection
(S1, S2, . . . , Sn) of subsets of S so that each element of S is in exactly one
of the subsets Si. Note that we are allowing the sets Si to be empty.

Connectivity. Tutte [10] considered matroid connectivity as part of a gen-
eral theory of separations. We recall aspects of that theory now. Let M be
a matroid on ground set E. The connectivity function λ of M is defined, for
all subsets A of E, by λ(A) = r(A) + r(E − A) − r(M). The set A or the
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partition (A,E − A) is k–separating if λ(A) < k. The partition (A,E − A)
is a k–separation if it is k–separating and |A|, |E − A| ≥ k. For n ≥ 2,
the matroid M is n–connected if it has no (n− j)–separations for all j with
1 ≤ j ≤ n − 1. A k–separating set A, or k–separating partition (A,E − A),
or k–separation (A,E − A) is exact if λ(A) = k − 1.

The connectivity functions of a matroid M and its dual M∗ are equal.
Moreover, the connectivity function of M is submodular, that is, λ(X) +
λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) for all X,Y ⊆ E. This means that if X and
Y are k–separating, and one of X ∩ Y or X ∪ Y is not (k − 1)–separating,
then the other must be k–separating. Specialising to 3–connected matroids,
we have the following:

Lemma 2.1. Let M be a 3–connected matroid, and let X and Y be 3–
separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3–separating.
(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3–separating.

We apply Lemma 2.1 many times in this paper and, rather than constantly
referring to the lemma by name, we call such applications uncrossings.

Segments, cosegments and fans. Let M be a 3–connected matroid. A
subset S of E(M) is a segment if each 3–element subset of S is a triangle.
Equivalently, given that M is 3–connected, S is a segment if r(S) ≤ 2. The
subset S is a cosegment if each 3–element subset of S is a triad. Equivalently,
S is a cosegment if S is a segment of M∗.

Let (s1, s2, . . . , sn) be an ordering of the elements of S. Then
(s1, s2, . . . , sn) is a fan if

(i) for all i ∈ {1, 2, . . . , n − 2}, the triple {si, si+1, si+2} is either a tri-
angle or a triad, and

(ii) if i ∈ {1, 2, . . . , n − 2} and {si, si+1, si+2} is a triangle, then
{si+1, si+2, si+3} is a triad, while if {si, si+1, si+2} is a triad, then
{si+1, si+2, si+3} is a triangle.

Note that a fan in M is also a fan in M∗. Note also that, according
to the above definitions, any set in M of size at most two is trivially both
a segment and a cosegment, while any ordered set of size at most two is
trivially a fan. This is somewhat non-standard, but allowing such structures
gains considerable economy in the statement and proofs of a number of the
theorems in this paper. The following result is straightforward.

Lemma 2.2. Let S be a set in a 3–connected matroid. If S has an ordering
(s1, s2, . . . , sn) such that, for all i ∈ {1, 2, . . . , n−2}, the triple {si, si+1, si+2}
is 3–separating, then either (s1, s2, . . . , sn) is a fan, or S is a segment or a
cosegment.

Local connectivity. For subsets X and Y in M , the local connectivity
between X and Y , denoted u(X,Y ), is defined by u(X,Y ) = r(X)+r(Y )−
r(X ∪ Y ). Evidently, u(Y,X) = u(X,Y ). Note that if (X,Y ) is a partition
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of E(M), then u(X,Y ) = λM (X). If M is a representable matroid and we
view it as a restriction of a projective geometry P , then the modularity of P
means that u(X,Y ) is the rank of the intersection of the closures, in P , of X
and Y . The next elementary lemma is just a restatement of Lemma 8.2.10
of [8].

Lemma 2.3. Let X1, X2, Y1, and Y2 be subsets of the ground set of a
matroid M . If X1 ⊇ Y1 and X2 ⊇ Y2, then u(X1,X2) ≥ u(Y1, Y2).

The next lemma summarises some useful basic properties of the local
connectivity function.

Lemma 2.4. Let A, B, C, and D be subsets of the ground set of a matroid
M . Then the following hold.

(i) u(A∪B,C∪D)+u(A,B)+u(C,D) = u(A∪C,B∪D)+u(A,C)+
u(B,D).

(ii) u(A ∪ B,C) + u(A,B) = u(A ∪ C,B) + u(A,C).
(iii) u(A ∪ B,C) + u(A,B) ≥ u(A,C) + u(B,C).
(iv) If {X,Y,Z} is a partition of the ground set of M , then

λ(X) + u(Y,Z) = λ(Z) + u(X,Y ).

Hence u(X,Y ) = u(Y,Z) if and only if λ(X) = λ(Z).
(v) When A and B are disjoint,

λM/A(B) = λM (B) − u(A,B).

Proof. By definition,

u(A ∪ B,C ∪ D)+ u (A,B) + u(C,D)

= r(A ∪ B) + r(C ∪ D) − r(A ∪ B ∪ C ∪ D)

+ r(A) + r(B) − r(A ∪ B) + r(C) + r(D) − r(C ∪ D)

= r(A) + r(B) + r(C) + r(D) − r(A ∪ B ∪ C ∪ D).

Thus, by symmetry, (i) holds. Part (ii) follows immediately from (i) by
putting D = ∅. By Lemma 2.3, u(A ∪ C,B) ≥ u(B,C). Part (iii) now
follows from (ii). The first part of (iv) follows from (ii) by observing that
λ(X) = u(X,Y ∪ Z), and λ(Z) = u(X ∪ Y,Z). The second part of (iv) is
an immediate consequence of the first part. Finally, (v) follows by writing
both sides in terms of rM . �

If follows from the definition of u that r(cl(X) ∩ cl(Y )) ≤ u(X,Y ). This
immediately implies the following:

Lemma 2.5. Let M be a 3–connected matroid with at least four elements,
let X and Y be subsets of E(M), and let Z = cl(X)∩cl(Y ). If u(X,Y ) = 2,
then Z is a segment; if u(X,Y ) = 1, then |Z| ≤ 1; and if u(X,Y ) = 0, then
Z = ∅.

The last lemma in this section gives a useful relation between uM (X,Y )
and uM∗(X,Y ). The straightforward proof is omitted.
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Lemma 2.6. Let X and Y be disjoint sets in a matroid M . Then

uM (X,Y ) + uM∗(X,Y ) = λ(X) + λ(Y ) − λ(X ∪ Y ).

In particular, if X,Y , and X ∪ Y are exactly 3–separating, then

uM (X,Y ) + uM∗(X,Y ) = 2.

3. Sequential and Equivalent 3–separations

Let A be a set in a matroid M . The coclosure cl∗(A) of A is the closure
of A in M∗. If cl∗(A) = A, then A is coclosed in M . If A is closed in
both M and M∗, then A is fully closed. The full closure of A, denoted
fcl(A), is the intersection of all fully closed sets containing A. Since the
intersection of fully closed sets is clearly fully closed, the full closure is a
well-defined closure operator. It is easily seen that one way of obtaining
the full closure of a set A is to take cl(A), and then cl∗(cl(A)) and so on
until neither the closure nor the coclosure operator adds new elements. It is
just as easily seen that the elements of fcl(A) can be ordered (a1, a2, . . . , an)
such that, for all i ∈ {1, 2, . . . , n}, either ai ∈ cl(A ∪ {a1, a2, . . . , ai−1}) or
ai ∈ cl∗(A∪{a1, a2, . . . , ai−1}). We remark that fcl(A) has also been denoted
by ccl(A) and called the complete closure of A [6].

We say that x ∈ cl(∗)(A) if either x ∈ cl(A) or x ∈ cl∗(A). Note that we do
not regard cl(∗) as an operator (if we did it would not be a closure operator);
rather it is just a convenient shorthand. The following easy lemma holds for
k–separating sets for arbitrary k, but, in this paper, our only interest is in
the case k = 3.

Lemma 3.1. Let (A,B) be exactly 3–separating in a matroid M .
(i) For e ∈ E(M), the partition (A ∪ {e}, B − {e}) is 3–separating if

and only if e ∈ cl(∗)(A).
(ii) For e ∈ B, the partition (A ∪ {e}, B − {e}) is exactly 3–separating

if and only if e is in exactly one of cl(A)∩ cl(B − {e}) and cl∗(A) ∩
cl∗(B − {e}).

(iii) The elements of fcl(A) − A can be ordered (a1, a2, . . . , an) so that
A ∪ {a1, a2, . . . , ai} is 3–separating for all i ∈ {1, 2, . . . , n}.

We can use the full closure operator to define an equivalence on 3–
separating sets as follows. Let M be a 3–connected matroid. Let A and B be
exactly 3–separating sets of M . Then A is equivalent to B if fcl(A) = fcl(B).
Let the partitions (A1, A2) and (B1, B2) be exactly 3–separating in M . Then
(A1, A2) is equivalent to (B1, B2) if, for some ordering (C1, C2) of {B1, B2},
we have A1 is equivalent to C1, and A2 is equivalent to C2.

Let X be an exactly 3–separating set of a 3–connected matroid M . Then
X is sequential if it has an ordering (x1, x2, . . . , xn) such that {x1, x2, . . . , xi}
is 3–separating for all i ∈ {1, 2, . . . , n}. Let (X,Y ) be exactly 3–separating
in M . Then (X,Y ) is sequential if either X or Y is a sequential 3–separating
set. Another easy argument proves the following.
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Lemma 3.2. Let X be an exactly 3–separating set of a 3–connected matroid
M . Then X is sequential if and only if fcl(E(M) − X) = E(M).

To test if (A1, A2) is equivalent to (B1, B2), we must show that the sets
{fcl(A1), fcl(A2)} and {fcl(B1), fcl(B2)} are equal. To see this, let P be the
set of points of a finite projective plane, and let L1 and L2 be distinct lines of
the plane. Then (L1, P −L1) is not equivalent to (L2, P −L2), even though
fcl(P − L1) = fcl(P − L2) = P . For non-sequential 3–separations, we can
simplify things somewhat.

Lemma 3.3. Let (A1, A2) be a non-sequential 3–separation of a 3–connected
matroid M and let (B1, B2) be a 3–separation of M . Then (A1, A2) is equiv-
alent to (B1, B2) if and only if fcl(A1) = fcl(B1) or fcl(A1) = fcl(B2).

Proof. In one direction the lemma is trivial. For the other direction, assume
that fcl(A1) = fcl(B1) = X. Then, by Lemma 3.1, X is 3–separating.
Set Y = E(M) − X. Since (A1, A2) is not sequential, Y is nonempty. If
|Y | ≤ 2, then X is not fully closed, so |Y | ≥ 3 and hence Y is exactly
3–separating. By Lemma 3.1, A2 ⊆ fcl(Y ) and B2 ⊆ fcl(Y ). Since the full
closure operator is a closure operator and Y is a subset of both A2 and B2,
we now have fcl(A2) = fcl(Y ) = fcl(B2), so that (A1, A2) is indeed equivalent
to (B1, B2). �

The next two lemmas note some further elementary properties of 3–
separating sets. Part (ii) of the first of these follows by Lemma 2.4(v).

Lemma 3.4. Let (X,Y ) be exactly 3–separating in a 3–connected matroid
M .

(i) If (X,Y ) is non-sequential, then |X|, |Y | ≥ 4.
(ii) For y ∈ Y , if y ∈ cl∗(X), then X is 2–separating in M\y; and if

y ∈ cl(X), then X is 2–separating in M/y.

Lemma 3.5. Let A and B be disjoint 3–separating sets in a 3–connected
matroid M . If fcl(A) does not contain B and |B| ≥ 3, then fcl(A) − B is
3–separating and fcl(fcl(A) − B) = fcl(A).

Proof. Evidently, fcl(A)−B is the intersection of the 3–separating sets fcl(A)
and E(M) −B. Thus, by uncrossing, if |B − fcl(A)| ≥ 2, then fcl(A)−B is
certainly 3–separating. Now suppose that |B− fcl(A)| = 1, say B− fcl(A) =
{b}. As fcl(A) 6⊇ B, it follows that |E(M)− fcl(A)| ≥ 4 so |E(M)− (fcl(A)∪
B)| ≥ 3. Hence, by uncrossing, fcl(A) ∩ B, which equals B − {b}, is 3–
separating. As |B| ≥ 3, it follows that b ∈ cl(∗)(B−{b}) so b ∈ fcl(B−{b}) ⊆
fcl(fcl(A)) = fcl(A); a contradiction. We conclude that fcl(A) − B is 3–
separating. The final assertion of the lemma follows from the fact that
A ⊆ fcl(A) − B ⊆ fcl(A). �
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4. Flowers

The complexity in characterising 3–separations in a matroid is caused
by the fact that they can cross, in other words, it is possible to have 3–
separations (A1, A2) and (B1, B2) such that each of the four sets of the
form Ai ∩ Bj is nonempty. However, if each of these sets has at least two
elements, it follows from Lemma 2.1 that each is 3–separating. We now have
an ordered partition into four 3–separating sets, (A1 ∩ B1, A1 ∩ B2, A2 ∩
B2, A2 ∩ B1) such that, in this cyclic order, the union of any consecutive
pair is 3–separating.

This is an example of a structure that turns out to be fundamental. Let n
be a positive integer and M be a 3–connected matroid. Then (P1, P2, . . . , Pn)
is a flower in M with petals P1, P2, . . . , Pn if (P1, P2, . . . , Pn) is a partition
of E(M), each Pi has at least two elements and is 3–separating, and each
Pi ∪ Pi+1 is 3–separating, where all subscripts are interpreted modulo n.
Observe that flowers have only been defined in 3–connected matroids. In
what follows, whenever we refer to a flower, it will be implicit that this
flower occurs in a 3–connected matroid.

The purpose of this section is to characterise flowers by describing which
unions of petals are 3–separating and by specifying the local connectivity
between petals. Let Φ be a flower (P1, P2, . . . , Pn). We say that Φ is an
anemone if

⋃
s∈S Ps is 3–separating for every subset S of {1, 2, . . . , n}; and

Φ is a daisy if, for all i and k in {1, 2, . . . , n}, the set Pi+1 ∪Pi+2 ∪ · · · ∪Pi+k

is 3–separating and no other union of petals is 3–separating. Thus a flower
is an anemone if all unions of petals are 3–separating, and it is a daisy if a
union of petals is 3–separating if and only if the petals are consecutive in
the cyclic order.

Note that, if n ≤ 3, the concept of daisy and anemone coincide, but if
n ≥ 4, then a flower cannot be both a daisy and an anemone. A trivial
flower has just the one petal, namely E(M). A flower with two petals is just
a 3–separating partition. Genuine structure emerges in flowers with at least
three petals. The 3–petal case presents certain difficulties as we shall see.

Amongst anemones, we distinguish three different types according to
the behaviour of the local connectivity function. For n ≥ 3, an anemone
(P1, P2, . . . , Pn) is called

(i) a paddle if u(Pi, Pj) = 2 for all distinct i, j ∈ {1, 2, . . . , n};
(ii) a copaddle if u(Pi, Pj) = 0 for all distinct i, j ∈ {1, 2, . . . , n}; and
(iii) spike-like if n ≥ 4, and u(Pi, Pj) = 1 for all distinct i, j ∈

{1, 2, . . . , n}.
Similarly, we distinguish two different types of daisies. Specifically, a

daisy (P1, P2, . . . , Pn) is called
(i) swirl-like if n ≥ 4 and u(Pi, Pj) = 1 for all consecutive i and j, while

u(Pi, Pj) = 0 for all non-consecutive i and j; and
(ii) Vámos-like if n = 4 and u(Pi, Pj) = 1 for all consecutive i and j,

while {u(P1, P3),u(P2, P4)} = {0, 1}.
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Finally, we say that a flower is unresolved if n = 3, and u(Pi, Pj) = 1
for all distinct i, j ∈ {1, 2, 3}. At this stage, we could define an unresolved
flower to be both spike-like and swirl-like. But we will see in Section 6 that,
due to the presence of additional structure, some unresolved flowers are best
viewed as spike-like and others as swirl-like.

The next theorem is the main result of this section.

Theorem 4.1. If Φ = (P1, P2, . . . , Pn) is a flower, then Φ is either an
anemone or a daisy. Moreover, if n ≥ 3, then Φ is either a paddle, a
copaddle, spike-like, swirl-like, Vámos-like, or is unresolved.

Before turning to the proof of Theorem 4.1, we illustrate the types of flow-
ers with some generic examples. We first note that there is a straightforward
connection between flowers in M and M∗, which follows from Lemma 2.6.

Proposition 4.2. If Φ = (P1, P2, . . . , Pn) is a flower, then it is also a flower
in M∗. Moreover, for n ≥ 3,

(i) if Φ is either spike-like, swirl-like, Vámos-like, or unresolved, then
Φ has the same type in M∗ as in M ; and

(ii) if Φ is a paddle in M , then Φ is a copaddle in M∗.

What follows is an informal description that may help the reader’s intu-
ition for different types of flowers. To visualise a flower geometrically, it is
useful to think of a collection of lines in projective space. These lines can
be thought of as lines of attachment of the 3–separating sets that form the
petals of the flower. We obtain a paddle by gluing the petals along a single
common line. Figure 1 represents a 5–petal paddle in which each petal is
a plane with sufficient structure to make the overall matroid 3–connected.
The resulting matroid, whose points have been suppressed in the figure, has
rank 7. In general, the rank of a paddle is

∑n
i=1 r(Pi)− 2(n− 1). We obtain

a copaddle by choosing a collection {L1, L2, . . . , Ln} of lines placed as freely
as possible in rank 2(n − 1). Thus, if any one of the lines is deleted, the
remaining lines are mutually skew. Each petal Pi is attached to the line Li

and the overall rank of M is
∑n

i=1 r(Pi)− 2. For all n ≥ 3, we obtain a pad-
dle in M(K3,n) by taking the petals to be the 3–element bonds in K3,n. In
this case, the common line of attachment for the petals contains no elements
of the matroid. Clearly, the same flower is a copaddle in M∗(K3,n).

For a spike-like flower, consider a set L = {L1, L2, . . . , Ln} of copunctual
lines placed as freely as possible in rank n. Again these lines are the lines
of attachment for the petals and the overall rank of M is

∑n
i=1 r(Pi) − n.

The terminology arises from the connection with a class of matroids called
spikes. If two points are chosen from each of the lines in L so that each
chosen point is on no other line in L, then the matroid induced by this set
of points is an example of a spike. Spikes turn out to be a fundamental class
of matroids (see, for example, [2, 3, 5, 9, 12]).

Consider a swirl-like flower. Choose an independent set {p1, p2, . . . , pn}
in a projective space and let Li be the line spanned by {pi, pi+1}. Since
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Figure 1. A representation of a rank–7 paddle.

subscripts are interpeted modulo n, the line Ln is spanned by {pn, p1}. Using
these lines as lines of attachment for the petals gives a swirl-like flower with
overall rank

∑n
i=1 r(Pi) − n. An example of such a flower has been given

in Figure 2. In that figure, four planes have been attached to lines of a
rank–4 matroid to produce a rank–8 matroid. The points p1, p2, p3, and
p4, which may or may not be in the matroid, have been indicated but the
other points of the matroid, all of which lie on one of the planes P1, P2, P3,
or P4, have been suppressed. If, in the general construction above, exactly
two points are chosen from each of the lines in {L1, L2, . . . , Ln} so that each
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Figure 2. A representation of a rank–8 swirl-like flower.
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chosen point is on exactly one such line, the matroid induced by this set of
points is an example of a swirl. As with spikes, swirls have turned out to be
important in recent work in matroid theory (see, for example, [5, 9]).

Finally, consider a Vámos-like flower. There is a group of non-
representable matroids with eight elements amongst which is the Vámos
matroid (see, for example, Oxley [8, p. 511]) that share a common fea-
ture: their ground sets can be partitioned into four lines L1, L2, L3, L4 such
that (L1, L2, L3, L4) is a Vámos-like flower as described above. More gen-
eral Vámos-like flowers can be formed by using these lines to glue on larger
3–separating sets. Intuitively, any matroid with a Vámos-like flower is not
representable over any field, and we shall prove this in Corollary 6.2.

We now turn to the proof of Theorem 4.1, which will follow from a se-
quence of lemmas. We show first that any consecutive union of petals in
any flower must be 3–separating.

Lemma 4.3. Let (P1, P2, . . . , Pn) be a flower. Then, for all i and k in
{1, 2, . . . , n}, the set Pi+1 ∪ Pi+2 ∪ · · · ∪ Pi+k is 3–separating.

Proof. We argue by induction on k. Since (P1, P2, . . . , Pn) is a flower, the
result holds for k ∈ {1, 2}. Now let k ≥ 3, and assume that the result
holds for k − 1. Then Pi+1 ∪ Pi+2 ∪ · · · ∪ Pi+k−1 and Pi+k−1 ∪ Pi+k are 3–
separating, and their intersection Pi+k−1 contains at least two elements so
we see by uncrossing that their union Pi+1∪Pi+2∪· · ·∪Pi+k is 3–separating
as required. �
Lemma 4.4. Let Φ = (P1, P2, . . . , Pn) be a flower. Then Φ is either an
anemone or a daisy.

Proof. The result is trivial if n ≤ 3. Assume n ≥ 4. By Lemma 4.3, all
consecutive sets of petals are 3–separating. If no other union of petals is
3–separating, then Φ is a daisy.

Assume that Φ is not a daisy. Then there is a non-consecutive set of petals
whose union P is 3–separating. Evidently, P contains a pair Pi and Pj of
non-consecutive petals with the property that i < j and no petal between
Pi and Pj is contained in P . There is at least one petal not contained in
P ∪Pi∪Pi+1∪· · ·∪Pj, otherwise P is the union of a consecutive set of petals.
Uncrossing P and Pi∪Pi+1∪· · ·∪Pj now shows that Pi∪Pj is 3–separating.
Thus Φ has a non-consecutive pair of petals that is 3–separating.

We now show that the union of every pair of petals is 3–separating. Con-
sider the non-consecutive pair Pi and Pj such that Pi ∪ Pj is 3–separating.
We begin by showing that Pi ∪ Pj−1 is 3–separating. Since Pi ∪ Pj and
Pj−1 ∪ Pj are both 3–separating and their intersection has at least two ele-
ments, uncrossing implies that Pi ∪Pj−1 ∪Pj is 3–separating. Furthermore,
by Lemma 4.3, Pi ∪ Pi+1 ∪ · · · ∪ Pj−1 is 3–separating. The set Pj+1 has
at least two elements and avoids the last two 3–separating sets and so, by
uncrossing again, Pi ∪ Pj−1 is 3–separating. By repeatedly applying this
argument, we deduce that the union of every pair of petals of Φ containing
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Pi is 3–separating. It follows that if n = 4, then the union of every pair of
petals of Φ is 3–separating. Hence we may assume that n ≥ 5.

By repeating the argument of the last paragraph with Pi replaced by
Pj, we get that the union of every pair of petals of Φ containing Pj is 3–
separating. Since n ≥ 5, there is at most one petal in {P1, P2, . . . , Pn} −
{Pi, Pj} that is adjacent to both Pi and Pj in the original ordering. If there
is such a petal, call it Pk. For all petals Pm with m 6= k, the argument of
the last paragraph implies that the union of every pair of petals containing
Pm is 3–separating. It follows that the union of every pair of petals of Φ is
3–separating. Therefore, any circular ordering of the petals is a flower and
it follows, from Lemma 4.3, that all unions of petals are 3–separating and
hence that Φ is an anemone. �

We show next that every anemone is a paddle, a copaddle, is spike-like, or
is unresolved. We begin with a preliminary lemma that holds for all flowers.

Lemma 4.5. Let (P1, P2, . . . , Pn) be a flower. Then u(Pi, Pi+1) =
u(Pj, Pj+1) for all i, j.

Proof. Choose k = max{u(Pi, Pi+1) : i ∈ {1, 2, . . . , n}}. We lose no general-
ity in assuming that u(P1, P2) = k and that n ≥ 3. It suffices to show that
u(P2, P3) = k. Now E − (P2 ∪ P3) is 3–separating, so

λ(E − (P2 ∪ P3)) = 2 = λ(P3).

Thus, by Lemma 2.4(iv) and Lemma 2.3,

k ≥ u(P3, P2) = u(P2, E − (P2 ∪ P3)) ≥ u(P2, P1) = k.

Hence u(P3, P2) = k, so u(P2, P3) = k. �
Lemma 4.6. Let n ≥ 3, and let Φ = (P1, P2, . . . , Pn) be an anemone in a
matroid M . Then Φ is a paddle, a copaddle, is spike-like, or is unresolved.

Proof. Since an anemone is a flower relative to any circular ordering of the
petals, it follows from Lemma 4.5 that there is a constant k such that
u(Pi, Pj) = k for all distinct i, j. Since M is 3–connected, k ∈ {0, 1, 2}.
If k = 2, then Φ is a paddle; if k = 1, then Φ is spike-like or, when n = 3, is
unresolved; and, if k = 0, then Φ is a copaddle. �

We now work towards showing that if a flower is a daisy, then it is swirl-
like or Vámos-like.

Lemma 4.7. Let n ≥ 4 and Φ = (P1, P2, . . . , Pn) be a flower of a matroid
M on E.

(i) If u(Pj , Pj+1) = 2 for some j ∈ {1, 2, . . . , n}, then Φ is a paddle.
(ii) If u(Pj , Pj+1) = 0 for some j ∈ {1, 2, . . . , n}, then Φ is a copaddle.
(iii) If Φ is a daisy, then u(Pi, Pi+1) = 1 for all i ∈ {1, 2, . . . , n}.

Proof. Suppose that u(Pj , Pj+1) = 2 for some j ∈ {1, 2, . . . , n}. Then, by
Lemma 4.5, u(Pi, Pi+1) = 2 for all i ∈ {1, 2, . . . , n}. Hence u(P1, P2) =
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2 = λM (P1). By Lemma 2.4(v), λM/P2
(P1) = λM (P1) − u(P1, P2), so

λM/P2
(P1) = 0. Similarly, λM/P2

(P3) = 0. Thus, by submodularity,
λM/P2

(P1 ∪ P3) = 0 so, by Lemma 2.4(v) again,

λM (P1 ∪ P3) = u(P1 ∪ P3, P2) ≤ λM (P2) = 2.

Hence P1 ∪ P3 is 3–separating so Φ is an anemone. Thus, by Lemma 4.6, Φ
is a paddle and (i) is proved.

Part (ii) follows from (i) by duality since, by Proposition 4.2,
(P1, P2, . . . , Pn) is a flower in M∗, and, by Lemma 2.6, uM∗(Pj , Pj+1) =
2 − uM (Pj , Pj+1). Finally, if Φ is a daisy, then it is neither a paddle nor a
copaddle, so (iii) follows from (i) and (ii) using Lemma 4.5. �
Lemma 4.8. Let n ≥ 5, and let (P1, P2, . . . , Pn) be a daisy of a matroid
with ground set E. If u(Ps, Pt) = 0 for some non-consecutive s and t, then
u(Pi, Pj) = 0 for all non-consecutive i and j.

Proof. Since Pi ∪ Pi+1 is 3–separating and contains at least two elements,

2 = u(Pi ∪ Pi+1, E − (Pi ∪ Pi+1))

for all i. Now taking A, B, and C equal to Pi+1, Pi, and E − (Pi ∪ Pi+1),
respectively, we get from Lemma 2.4(ii) that

2 = u(Pi, E − Pi) + u(Pi+1, E − (Pi ∪ Pi+1)) − u(Pi, Pi+1).

Since Pi is 3–separating, we deduce that

u(Pi+1, E − (Pi ∪ Pi+1)) = u(Pi, Pi+1) = 1.

Thus, for all j 6∈ {i, i + 1, i + 2}, by Lemma 2.3,

1 = u(Pi+1, E − (Pi ∪ Pi+1)) ≥ u(Pi+1, Pi+2 ∪ Pj) ≥ u(Pi+1, Pi+2) = 1.

Therefore u(Pi+1, Pi+2 ∪ Pj) = 1 for all j 6∈ {i, i + 1, i + 2}. By symmetry,
if j 6∈ {i + 3, i + 2, i + 1}, then u(Pi+2, Pi+1 ∪ Pj) = 1. By Lemma 2.4(ii),

u(Pi+1, Pi+2 ∪ Pj) + u(Pi+2, Pj) = u(Pi+1 ∪ Pj , Pi+2) + u(Pi+1, Pj).

Therefore

u(Pi+1, Pj) = u(Pi+2, Pj)(1)

for all j 6∈ {i, i + 1, i + 2, i + 3}.
Now we know that u(Ps, Pt) = 0 for some s and t that are non-consecutive.

By relabelling if necessary, we may assume that {s, t} = {1, k} and that k is
chosen so that, among all such pairs involving 1, we have k − 1 ≤ n + 1− k
and k−1 is minimized. If k > 3, then k ≤ n−2 so 1 6∈ {k−2, k−1, k, k+1}
and u(P1, Pk−1) = u(P1, Pk) by (1). This contradicts the choice of k. Thus
u(P1, P3) = 0. Therefore, by (1), u(P1, P4) = 0 since n > 4. By repeatedly
applying (1), we obtain that u(P1, Pg) = 0 for all g with 3 ≤ g ≤ n − 1,
that is, u(P1, Pg) = 0 for all g such that 1 and g are non-consecutive. Hence
if u(Pi, Pj) = 0 for some j, then u(Pi, Ph) = 0 for all h such that i and h
are non-consecutive. As u(Pg, P1) = 0 for all g such that 1 and g are non-
consecutive, we may apply the observation of the last sentence to deduce
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that u(Pi, Pj) = 0 for all non-consecutive i and j such that i 6∈ {2, n}. In
particular, u(Pc, P2) = u(Pd, Pn) for all c and d such that c and 2 are non-
consecutive and d and n are non-consecutive. It follows that u(Pi, Pj) = 0
for all non-consecutive i and j with i ∈ {2, n}, and the lemma holds. �

The next lemma is an immediate consequence of Lemma 4.3.

Lemma 4.9. If (P1, P2, . . . , Pn) is a flower and i ∈ {1, 2, . . . , n}, then
(P1, P2, . . . , Pi−1, Pi ∪ Pi+1 ∪ · · · ∪ Pn) is a flower.

Lemma 4.10. Let n ≥ 4 and let Φ = (P1, P2, . . . , Pn) be a daisy of a matroid
M . Then Φ is either swirl-like or Vámos-like.

Proof. Set P ′
4 = P4 ∪ P5 ∪ · · · ∪ Pn. By Lemma 4.9, (P1, P2, P3, P

′
4) is a

flower. As P1 ∪ P3 is not 3–separating in M , this flower is a daisy, so, by
Lemma 4.7, u(P1, P2) = u(P3, P

′
4) = 1. Assume that

u(P1, P3) + u(P2, P
′
4) ≥ 2.

Then

r(P1 ∪ P3) + r(P2 ∪ P ′
4) ≤ r(P1) + r(P2) + r(P3) + r(P ′

4) − 2

= r(P1 ∪ P2) + r(P3 ∪ P ′
4)

= r(M) + 2.

Thus P1∪P3 is 3–separating, contradicting the fact that Φ is a daisy. There-
fore

u(P1, P3) + u(P2, P
′
4) ≤ 1.

As u(P2, P4) ≤ u(P,P
′
4), at least one of u(P1, P3) and u(P2, P4) is 0 and

the other is at most 1. In the case that n = 4, it follows immediately that
Φ is either swirl-like or Vámos-like. In the case that n ≥ 5, it follows from
Lemma 4.8 that Φ is swirl-like. �
Proof of Theorem 4.1. By Lemma 4.4, Φ is either an anemone or a daisy.
Say n ≥ 3. Assume that Φ is an anemone. Then, by Lemma 4.6, Φ is either
a paddle, a copaddle, spike-like, or unresolved. Assume that Φ is not an
anemone. Then n ≥ 4 and Φ is a daisy, so it follows from Lemma 4.10 that
Φ is either swirl-like or Vámos-like. �

We will often seek to verify that a partition of the elements of a matroid
is a flower of a certain type. The following is an economical way to check
this.

Lemma 4.11. Let Φ = (P1, P2, . . . , Pn) be a partition of the ground set of
a 3–connected matroid M , where n ≥ 4 and |Pi| ≥ 2 for all i.

(i) If Pi ∪ Pi+1 is 3–separating for each i ∈ {1, 2, . . . , n − 1}, then Φ is
a flower.

(ii) Assume that Φ is a flower with n ≥ 5 and that i, j, and k are
elements of {1, 2, . . . , n} such that j and k are distinct and non-
consecutive.
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(a) If u(Pi, Pi+1) = 2, then Φ is a paddle.
(b) If u(Pi, Pi+1) = 1 and u(Pj, Pk) = 1, then Φ is spike-like.
(c) If u(Pi, Pi+1) = 1 and u(Pj, Pk) = 0, then Φ is a swirl-like.
(d) If u(Pi, Pi+1) = 0, then Φ is a copaddle.

Proof. Since P2∪P3 and P3∪P4 are 3–separating, we see by uncrossing that
P2 ∪ P3 ∪ P4 is 3–separating. By repeating this argument, we deduce that
P2 ∪ P3 ∪ · · · ∪ Pn−1 is 3–separating. Hence Pn ∪ P1 is 3–separating. Thus
the union of each consecutive pair of Pi’s is 3–separating. Another easy
uncrossing argument shows that each Pi is 3–separating. This establishes
(i). Part (ii) follows by combining Theorem 4.1 and Lemma 4.7. �

The next lemma gives one more useful fact about flowers.

Lemma 4.12. If (P1, P2, . . . , Pn) is a flower with n ≥ 4, then cl(Pi ∪ Pi+1)
and cl(Pi+1∪Pi+2) form a modular pair of flats whose intersection is spanned
by Pi+1.

Proof. Evidently, we may assume that i = 1. Since each of P1 ∪ P2, P2 ∪
P3, P1 ∪ P2 ∪ P3, and P2 is exactly 3–separating,

(2) λ(P1 ∪ P2) + λ(P2 ∪ P3) = λ(P1 ∪ P2 ∪ P3) + λ(P2).

By submodularity,

r(P1 ∪ P2) + r(P2 ∪ P3) ≥ r(P1 ∪ P2 ∪ P3) + r(P2)

and

r(E − (P1 ∪ P2)) + r(E − (P2 ∪ P3)) ≥ r(E − (P1 ∪ P2 ∪ P3)) + r(E − P2).

On summing the last two inequalities and comparing the result with ( 2), we
deduce that both inequalities must be equations, and the lemma follows. �

5. Equivalent Flowers

Let Φ be a flower of a matroid M recalling that, whenever we refer to
a flower, it is implicit that the underlying matroid is 3–connected. We say
that Φ displays a 3–separating set X or a 3–separation (X,Y ) if X is a union
of petals of Φ. Now let Φ1 and Φ2 be flowers of M . Then Φ1 � Φ2 if every
non-sequential 3–separation displayed by Φ1 is equivalent to one displayed
by Φ2. Evidently, � is a quasi order on the collection of flowers of M . We
will say that Φ1 and Φ2 are equivalent flowers if Φ1 � Φ2 and Φ2 � Φ1.
Thus equivalent flowers display, up to equivalence of 3–separations, exactly
the same non-sequential 3–separations.

The order of a flower Φ is the minimum number of petals in a flower
equivalent to Φ. Thus a flower has order 1 if it displays no non-sequential 3–
separations, so that it is equivalent to the flower with one petal consisting of
all elements of M . A flower has order 2 if it displays a single non-sequential
3–separation.

Let Φ = (P1, P2, . . . , Pn) be a flower. The flower Φ′ is obtained from Φ
by an elementary move if it is obtained in one of the following ways.
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(0) Φ′ is obtained by an arbitrary permutation of the petals of Φ in the
case that Φ is an anemone or is obtained from Φ by a cyclic shift
or a reversal of the order of the petals of Φ in the case that Φ is a
daisy.

(1) |P2| ≥ 3, there is an element a ∈ P2 such that a ∈ cl(∗)(P1), and
Φ′ = (P1 ∪ {a}, P2 − {a}, P3, . . . , Pn).

(2) |P2| = 2, there is an element a ∈ P2 such that a ∈ cl(∗)(P1), and
Φ′ = (P1 ∪ P2, P3, . . . , Pn).

(3) |P1| ≥ 4, and P1 has a 2-element subset {a, b} such that b ∈ cl(∗)(P2)
and a ∈ cl(∗)(P2 ∪ {b}), and Φ′ = (P1 − {a, b}, {a, b}, P2 , . . . , Pn).

Note that, given moves of Type 0, we lose no generality in defining the
other moves with reference only to petals P1, P2, P3. In what follows, when
we refer to the moves needed to effect a certain change, we shall usually
omit explicit reference to Type-0 moves. The main goal of this section is to
prove the following characterisation of equivalent flowers.

Theorem 5.1. Two flowers of order at least 3 are equivalent if and only if
one can be obtained from the other by a sequence of elementary moves.

Note that Theorem 5.1 does not hold for flowers of order less than 3.
For example, let M have a single non-sequential 3–separation (A,B), where
B = {b1, b2, b3, b4}. It is easily seen that such a matroid exists. Then Φ =
(A, {b1, b2}, {b3, b4}) is a flower equivalent to the 2–petal flower Φ′ = (A,B).
But Φ′ cannot be obtained from Φ by a sequence of elementary moves. A
similar example can be given for flowers of order 1.

Theorem 5.1 will follow from a sequence of lemmas in which we develop
further structural properties of flowers. An element e of M is loose in the
flower Φ if e ∈ fcl(Pi) − Pi for some petal Pi of Φ. An element that is not
loose is tight. The petal Pi is loose if all elements in Pi are loose. A tight
petal is one that is not loose, that is, one that contains at least one tight
element. A flower of order at least 3 is tight if all of its petals are tight. A
flower of order 2 or 1 is tight if it has two petals or one petal, respectively.
The next lemma is an immediate consequence of Lemma 3.1(i).

Lemma 5.2. Let (P1, {a, b}, P3, . . . , Pn) be a flower where a ∈ cl(∗)(P1).
Then b ∈ cl(∗)(P1 ∪ {a}), so that {a, b} ⊆ fcl(P1), and {a, b} is a loose petal
of Φ.

It follows that elementary moves of Types 1, 2, and 3 can be seen as ways
of moving loose elements from one petal to another or of adding or removing
loose petals.

Lemma 5.3. Let Φ = (P1, P2, . . . , Pn) be a flower of order at least 2 of a
matroid M , and suppose that Φ′ is obtained from Φ by an elementary move.
Then Φ and Φ′ are equivalent and an element is loose in Φ if and only if it
is loose in Φ′.



THE STRUCTURE OF THE 3–SEPARATIONS OF 3–CONNECTED MATROIDS 17

Proof. Evidently, n ≥ 2. It is clear that moves of Type 0 satisfy the lemma.
Consider moves of Type 1. Say that |P2| ≥ 3, that a ∈ P2, and that
a ∈ cl(∗)(P1). Let Φ′ = (P1 ∪ {a}, P2 − {a}, P3, . . . , Pn).

We first show that Φ′ is a flower. If n = 2, this is immediate and, if
n = 3, it is easy. Assume that n ≥ 4. Consider consecutive pairs of sets
in the partition Φ. The only unions of such pairs that are not unions of
consecutive pairs of petals of Φ are Pn ∪ (P1 ∪ {a}) and (P2 − {a}) ∪ P3.
By Lemma 4.11, we only have to check that the former set is 3–separating.
But this holds since a ∈ cl(∗)(Pn ∪ P1). Thus Φ′ is a flower. Moreover,
a ∈ cl(∗)(P2 − {a}).

We now show that Φ and Φ′ are equivalent. Let (S, T ) be a non-sequential
3–separation. Say that (S, T ) is displayed by Φ, where P1 ⊆ S. Now a ∈
cl(∗)(S), and (S ∪{a}, T −{a}) is a 3–separation that is equivalent to (S, T )
and is displayed by Φ′. A similar argument shows that if (S, T ) is displayed
by Φ′, then it is equivalent to a 3–separation that is displayed by Φ. Thus
Φ and Φ′ are equivalent.

We now consider the loose elements. Since a ∈ cl(∗)(P1), we see that
fcl(P1 ∪ {a}) = fcl(P1). Similarly, fcl(P2) = fcl(P2 − {a}). It follows easily
from these observations that the loose elements of Φ and Φ′ are the same.

Now consider Type-2 moves. Assume that P2 = {a, b}, where a ∈
cl(∗)(P1), and let Φ′ = (P1 ∪ {a, b}, P3, . . . , Pn). By Lemma 4.9, Φ′ is a
flower. We now show that Φ and Φ′ are equivalent. Let (S, T ) be a non-
sequential 3–separation of M . Since Φ is a refinement of Φ′, it is immediate
that if (S, T ) is displayed by Φ′, then it is displayed by Φ. Assume that (S, T )
is displayed by Φ, where P1 ⊆ S. By Lemma 5.2, {a, b} ⊆ fcl(P1). Hence
(S, T ) is equivalent to (S ∪ {a, b}, T − {a, b}) and the latter 3–separation is
displayed by Φ′. Thus Φ and Φ′ are equivalent.

Consider loose elements of Φ and Φ′. Since Φ′ is equivalent to Φ and
Φ has order at least two, n ≥ 3. We know that {a, b} ⊆ fcl(P1). From
this, it follows that Φ and Φ′ have the same loose elements as long as all
elements of fcl({a, b}) are loose in Φ′. Clearly, elements of fcl({a, b}) that
are not in P1 are loose in Φ′. But it is easily seen that {a, b} ⊆ fcl(P3), so
fcl(P3) ∩ P1 ⊇ fcl({a, b}) ∩ P1. Thus the elements of fcl({a, b}) are indeed
loose in Φ′ as required.

Consider a move of Type 3. Say that |P1| ≥ 4, that {a, b} ⊆ P1, that
b ∈ cl(∗)(P2), and that a ∈ cl(∗)(P2 ∪ {b}). Then P2 ∪ {a, b} is 3–separating.
Let Φ′ = (P1 − {a, b}, {a, b}, P2 , . . . , Pn). Uncrossing E − (P2 ∪ {a, b}) and
P1 shows that the intersection of these two sets, P1 −{a, b}, is 3–separating.
Then each set in the partition Φ′ is 3–separating. An analogous argument
shows that Pn ∪ (P1 −{a, b}) is 3–separating. It follows that each union of a
consecutive pair of sets in Φ′ is 3–separating. Hence Φ′ is a flower. We now
observe that Φ is obtained from Φ′ by a Type-2 move. Hence Φ and Φ′ are
equivalent and have the same sets of loose elements. �
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We will say that the flower Φ1 is move-equivalent to the flower Φ2 if Φ2

can be obtained from Φ1 by a sequence of elementary moves.

Lemma 5.4. Let M be a 3–connected matroid. Then move-equivalence is
an equivalence relation on the set of flowers of M of order at least 2.

Proof. The relation of move-equivalence is certainly reflexive and transitive.
Assume that Φ1 is a flower of M of order at least 2. If Φ2 is obtained from
Φ1 by a move of Type 2, then Φ2 is obtained from Φ1 by a move of Type 3,
provided Φ2 has at least 2 petals, which it does as Φ2 has order at least
2. Moreover, if Φ2 is obtained from Φ1 by a move of Type 1, then Φ1 is
obtained from Φ2 by a move of Type 0 followed by a move of Type 1. Thus
move-equivalence is also symmetric and is hence an equivalence relation. �

We now work towards showing that every flower of order at least 3 is
move-equivalent to a tight flower.

Lemma 5.5. Let Φ = (P1, P2, . . . , Pn) be a flower and suppose i ∈
{1, 2, . . . , n − 2}.

(i) If x ∈ cl(P1 ∪ P2 ∪ · · · ∪ Pi) − (P1 ∪ P2 ∪ · · · ∪ Pi) and x 6∈ Pn, then
x ∈ cl(Pi).

(ii) If x ∈ cl(P1∪P2∪· · ·∪Pi)− (P1∪P2∪· · ·∪Pi), then x ∈ cl(P1)−P1

or x ∈ cl(Pi) − Pi.

Proof. Assume the hypotheses of (i) hold. Then P1 ∪P2 ∪ · · · ∪Pi ∪{x} and
Pi ∪ Pi+1 ∪ · · · ∪ Pn−1 are 3–separating, and their union avoids Pn, so, by
uncrossing, their intersection, Pi ∪ {x}, is 3–separating. Thus x ∈ cl(∗)(Pi).
If x ∈ cl∗(Pi), then x ∈ cl∗(P1 ∪ P2 ∪ · · · ∪ Pi). By Lemma 3.1(ii), this
contradicts the fact that x ∈ cl(P1 ∪ P2 ∪ · · · ∪ Pi). Hence x ∈ cl(Pi). Part
(ii) follows from part (i) using symmetry. �

We omit the statement of the obvious dual of Lemma 5.5, which we shall
also use in what follows.

Lemma 5.6. Let Φ = (P1, P2, . . . , Pn) be a flower. Let a be an element of
cl(∗)(P1) ∩ Pi for some i > 1.

(i) If |Pi| ≥ 3, then (P1 ∪ {a}, P2, . . . , Pi−1, Pi − {a}, Pi+1, . . . , Pn) is
a flower Φ′ that is move-equivalent to Φ via a sequence of Type-1
moves. Moreover, fcl(P ′

j) = fcl(Pj) for every petal P ′
j of Φ′.

(ii) If Pi = {a, b}, then Φ is move-equivalent to

(P1 ∪ {a}, P2, . . . , Pi−1 ∪ {b}, Pi+1, . . . , Pn).

Proof. Consider (i). If i = 2 or i = n, the result follows from a single
Type-1 move. Otherwise, by Lemma 5.5(i) or its dual, a ∈ cl(∗)(Pi−1).
Assume that |Pi| ≥ 3. Then we can use a Type-1 move to obtain a flower
equivalent to Φ by taking a out of Pi and adding it to Pi−1. This process
can clearly be repeated, until a eventually arrives at P1 as required. This
establishes the first part of (i). For the second part, observe that, as both
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P1 and P1 ∪{a} are 3–separating, we have fcl(P1) = fcl(P1∪{a}). Similarly,
fcl(Pi − {a}) = fcl(Pi). The rest of (i) follows from these observations.
Consider (ii). By a single Type-2 move, we can add {a, b} to Pi−1 and
delete the petal Pi. But, now we can apply (i) to move a to the petal
P1. �

We call a move of the type described in Lemma 5.6(i) a Type-1a move
and a move of the type described in Lemma 5.6(ii) a Type-2a move.

Lemma 5.7. Let Φ = (P1, P2, . . . , Pn) be a flower of order at least 3. Then
Φ is move-equivalent to a tight flower.

Proof. Assume that Φ is not tight having Pn, say, as a loose petal. We
show that, using only Type-1a and Type-2a moves, we can transform Φ to a
move-equivalent flower with fewer petals. Neither of these moves increases
the number of petals, so if, at any stage, we have the opportunity to use a
Type-2a move, then we have reduced the number of petals. Assume that we
never have the opportunity to use such a move.

We now describe a sequence of flowers obtained by using only Type-
1a moves. By a sequence of such moves, we may add elements to P1 to
obtain the flower Φ1 = (P 1

1 , P 1
2 , . . . , P 1

n), where P 1
1 = fcl(P1) and P 1

i =
Pi − fcl(P1) for all i > 1. Also, by Lemma 5.6(i), fcl(P i

1) = fcl(Pi). Now
repeat this process with successive petals. After k iterations, we will have
a flower Φk with the following properties: Φk is equivalent to Φ; for each i,
fcl(P k

i ) = fcl(Pi), and P k
n = Pn − (fcl(P1) ∪ fcl(P 1

2 ) ∪ · · · ∪ fcl(P i−1
i )). Thus

P k
n = Pn−(fcl(P1)∪fcl(P2)∪· · ·∪fcl(Pi)). In particular, after n−1 iterations,

we have
Pn−1

n = Pn − (fcl(P1) ∪ fcl(P2) ∪ · · · ∪ fcl(Pn−1)).
But, as Pn is loose, the above set is empty so that Φn−1 is not a well-defined
flower. This contradiction shows that Φ is move-equivalent to a flower with
fewer petals. The result now follows easily. �
Lemma 5.8. Let Φ = (P1, P2, . . . , Pn) be a flower of order at least 3, and
let T be the set of tight elements of Φ.

(i) If Φ′ is move-equivalent to Φ, then there is a bijection α between the
tight petals of Φ and those of Φ′ such that P ∩ T = α(P ) ∩ T for
every tight petal P of Φ.

(ii) If P is a petal of Φ, then |P ∩ T | 6= 1.
(iii) If P is a tight petal of Φ, then fcl(P ∩ T ) = fcl(P ).

Proof. Part (i) is easily seen to hold if Φ′ is obtained from Φ by a single
elementary move. Thus it holds if Φ′ is obtained by a sequence of such
moves. Consider (ii). We prove that a tight petal contains at least two tight
elements. By (i) and Lemma 5.7, we lose no generality in assuming that
Φ is a tight flower. From this, it follows that if we perform a sequence of
moves of Type 1a or Type 2a, we will never have the opportunity to perform
a move of Type 2a, as this decreases the number of petals. To complete the
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proof of (ii), it suffices to show that |Pn ∩ T | ≥ 2. Perform the sequence of
moves on Φ as described in the proof of Lemma 5.7. In this case, Φn−1 is a
well-defined flower and it is tight. Moreover,

Pn−1
n = Pn − (fcl(P1) ∪ fcl(P2) ∪ · · · ∪ fcl(Pn−1)) = Pn ∩ T.

Since Φn−1 is a well-defined flower, |Pn−1
n | ≥ 2 so Pn meets T in at least

two elements. This establishes (ii).
Consider (iii). Reversing the moves used in (ii) gives a sequence of el-

ementary moves that transforms Φn−1 to Φ. If, for some i, an element is
added to P i

n in going from Φi to Φi−1, then that element is in cl(∗)(P i
n). It

follows that Pn ⊆ fcl(Pn ∩ T ). Hence fcl(Pn) ⊆ fcl(Pn ∩ T ). Thus (iii) holds
when P = Pn and, by symmetry, it holds in general. �

The proof of the next lemma uses Lemmas 5.5(ii), 5.6, and 5.8 within a
straightforward induction argument. We omit the details.

Lemma 5.9. Let Φ = (P1, P2, . . . , Pn) be a tight flower of order at least 3.
(i) If 1 ≤ j ≤ n − 2, then

fcl(P1 ∪ P2 ∪ · · ·Pj) − (P1 ∪ P2 ∪ · · · ∪ Pj) ⊆ (fcl(P1) − P1) ∪ (fcl(Pj) − Pj)

and every element of (fcl(P1) − P1) ∪ (fcl(Pj) − Pj) is loose.
(ii) If 2 ≤ j ≤ n − 1, then P1 ∪ P2 ∪ · · · ∪ Pj is a non-sequential 3–

separating set. If, in addition, j ≤ n − 2, then (P1 ∪ P2 ∪ · · · ∪
Pj , Pj+1 ∪ Pj+2 ∪ · · · ∪ Pn) is a non-sequential 3–separation.

At last, we can prove the main result of this section.

Proof of Theorem 5.1. By Lemma 5.3, two flowers are equivalent if one can
be obtained from the other by a sequence of elementary moves. To prove the
converse, let Φ = (P1, P2, . . . , Pn) and Ψ = (O1, O2, . . . , Om) be equivalent
flowers of order at least 3. By Lemma 5.7, we may assume that Φ and Ψ are
both tight flowers. We may also assume that Φ has at least as many petals
as Ψ. Let T be the set of tight elements of Φ.

Assume that Φ has at least four petals. Let s and t be tight elements
of Φ that are in different petals of Φ. Then there is a consecutive pair of
petals Pi and Pi+1 of Φ such that s ∈ Pi ∪Pi+1 and t ∈ E − (Pi ∪Pi+1). By
Lemma 5.9, t 6∈ fcl(Pi∪Pi+1) and s 6∈ fcl(E−(Pi∪Pi+1)). Thus, if (S, T ) is a
3–separation equivalent to (Pi∪Pi+1, E−(Pi∪Pi+1)) and s ∈ S, then t ∈ T .
But Ψ displays some 3–separation equivalent to (Pi ∪Pi+1, E − (Pi ∪Pi+1)).
This shows that s and t are in different petals of Ψ. It follows that Ψ has
n petals and there is a bijection α between the petals of Φ and those of Ψ
such that α(Pi) ∩ T = Pi ∩ T . Moreover, we may assume that the petals of
Ψ are labelled so that Pi∩T = Oi∩T . This is immediate if Ψ is an anemone
while, if Ψ is a daisy, it follows from the fact that a union of two petals is
3–separating if and only if the petals are consecutive, so consecutive petals
in Φ must map to consecutive petals in Ψ.
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Assume that Φ has three petals. Then, since Φ has at least as many petals
as Ψ and Ψ has order at least 3, Ψ also has three petals. Also Φ must have
at least two petals that are non-sequential regarded as 3–separating sets;
otherwise Φ displays at most one non-sequential 3–separation contradicting
the fact that it has order 3. Assume, without loss of generality, that P1 and
P2 are not sequential although P3 may be sequential. By using elementary
moves, we may also assume that fcl(P1) ∩ P3 = fcl(P2) ∩ P3 = ∅. This is
because (P1, P2, P3) is move-equivalent to (fcl(P1), P2 − fcl(P1), P3 − fcl(P1))
which, in turn, is move-equivalent to (fcl(P1), (P2 − fcl(P1))∪ (P3 ∩ fcl(P2 −
fcl(P1))), P3 − fcl(P1)− fcl(P2 − fcl(P1))). We may further assume that Ψ =
(O1, O2, O3), where fcl(Oi) = fcl(Pi) for i in {1, 2} and fcl(O1) ∩ O3 =
fcl(O2) ∩ O3 = ∅. Say that s is a tight element of Φ. Assume that s ∈ P1.
Since s is tight, s 6∈ fcl(P2). Assume that s 6∈ O1. Then, since fcl(O1) =
fcl(P1), we have s ∈ fcl(O1), so s ∈ O2. But fcl(O2) = fcl(P2) contradicting
the fact that s 6∈ fcl(P2). This proves that s ∈ O1. The same argument
shows that if s ∈ P2, then s ∈ O2. Assume that s ∈ P3. Then s 6∈ fcl(P1)
by assumption, so s 6∈ O1. Similarly, s 6∈ O2. Hence s ∈ O3. Therefore, in
this case too, we have Pi ∩ T = Oi ∩ T for all i. Moreover, it is easily seen
that every element of T is tight in Ψ. By reversing the roles of Φ and Ψ in
the argument above, we conclude that T is the set of tight elements of Ψ.

Now consider P1 and O1. By Lemma 5.8(iii), fcl(P1) = fcl(P1 ∩ T ),
and fcl(O1) = fcl(O1 ∩ T ). Hence fcl(P1) = fcl(O1). But we can
now use elementary moves to transform Φ and Ψ into equivalent flowers
Φ1 = (P 1

1 , P 1
2 , . . . , P 1

n) and Ψ1 = (O1
1 , O

1
2 , . . . , O

1
n), where O1

1 = P 1
1 and if

i ≥ 2, then O1
i ∩ T = P 1

i ∩ T . Arguing inductively, assume that we have
transformed Φ and Ψ into equivalent flowers Φk = (P k

1 , P k
2 , . . . , P k

n ) and
Ψk = (Ok

1 , Ok
2 , . . . , Ok

n) for some k ≤ n − 1, where Ok
i = P k

i for i ≤ k,
and Ok

i ∩ T = P k
i ∩ T otherwise. Then fcl(P k

k+1) = fcl(Ok
k+1), so that we

can use elementary moves to transform Φk and Ψk into equivalent flowers
Φk+1 and Ψk+1 such that if i ≤ k + 1, then P k+1

i = Ok+1
i and, otherwise,

P k+1
i ∩T = Ok+1

i ∩T . Finally, we have Φn = Ψn. Now Φ is move-equivalent
to Φn, and Ψ is move-equivalent to Ψn. Since move-equivalence is an equiv-
alence relation, this proves that Φ is move-equivalent to Ψ. �

Finally, we note some corollaries of results in this section. We omit the
routine proofs.

Corollary 5.10. If Φ is a flower, then the order of Φ is the number of petals
in any tight flower equivalent to Φ.

Corollary 5.11. If Φ and Φ′ are equivalent tight flowers of order at least
2, then Φ can be transformed to Φ′ by a sequence of moves of Type 0 and
Type 2a.

Corollary 5.12. If Φ = (P1, P2, . . . , Pn) is a tight flower, and P ′
1 is

a 3–separating set that contains and is equivalent to P1, then (P ′
1, P2 −
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P ′
1, . . . , Pn − P ′

1) is a tight flower equivalent to Φ. In particular, this holds
when P ′

1 ∈ {cl(P1), cl∗(P1), fcl(P1)}.

6. Flower Types and Equivalence

It would seem clear that equivalent flowers should have the same type.
But, for flowers of order less than 3, this is not the case. In this section,
we seek to show that flower equivalence preserves type for flowers of order
at least three. But, for this to be possible, we need to clarify the status
of unresolved flowers. Before doing that, we deal with the Vámos-like case,
which is quite special.

Theorem 6.1. Let Φ be a Vámos-like flower. Then Φ has no loose elements.
Hence any flower equivalent to Φ is equal to Φ up to a permutation of the
petals.

Proof. Assume that Φ = (P1, P2, P3, P4). Then, by the definition of a
Vámos-like flower, u(Pi, Pi+1) = 1 for all i. Moreover, we may assume
that u(P1, P3) = 0, while u(P2, P4) = 1. Note that (P1, P4, P3, P2) is an
equivalent Vámos-like flower. In what follows, we take advantage of this
symmetry. Assume that Φ has a loose element e. Then, by duality, we may
assume that e ∈ cl(Pi) − Pi for some petal Pi. Up to symmetry, there are
two cases. For the first, assume that e ∈ cl(P1) − P1. As u(P1, P3) = 0, it
follows from Lemma 2.5 that e 6∈ P3. Hence, by symmetry, we may assume
that e ∈ P2. Thus

(3) e ∈ cl(P1) and e ∈ cl(P2).

For the second case, we may assume that e ∈ cl(P2)−P2. If e ∈ P1, then (3)
holds, while, if e ∈ P3, then (3) holds up to symmetry. Say e ∈ P4. Then
e ∈ cl(P4 ∪ P1) and e ∈ cl(P1 ∪ P2). By Lemma 4.12, these two flats form a
modular pair whose intersection is spanned by P1. Hence e ∈ cl(P1). Thus,
in all cases, we may assume that (3) holds.

By (3), e ∈ cl(P1 ∪P4) and e ∈ cl(P2 ∪P4). While it does not follow from
Lemma 4.12 that cl(P1 ∪P4) and cl(P2∪P4) are a modular pair of flats, this
is still true. To see this, observe that

r(M) = r(P1 ∪ P2) + r(P3 ∪ P4) − 2

= r(P1) + r(P2) + r(P3) + r(P4) − 4.

Also, r(M) = r(P1 ∪ P2 ∪ P4) + r(P3) − 2. So

r(P1 ∪ P2 ∪ P4) = r(P1) + r(P2) + r(P4) − 2.

But
r(P1 ∪ P4) + r(P2 ∪ P4) = r(P1) + r(P2) + 2r(P4) − 2.

Hence r(P1 ∪P4) + r(P2 ∪P4) = r(P1 ∪P2 ∪P4) + r(P4), so cl(P1 ∪P4) and
cl(P2 ∪ P4) are a modular pair of flats whose intersection is spanned by P4.
Thus e ∈ cl(P4).
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We now know that e ∈ cl(P2 ∪P3), and e ∈ cl(P3 ∪P4), and we can apply
Lemma 4.12 to deduce that e ∈ cl(P3). We conclude that e ∈ cl(P1) and
e ∈ cl(P3), contradicting the fact that u(P1, P3) = 0. �

The last theorem enables us to verify that Vámos-like flowers do not occur
in representable matroids.

Corollary 6.2. If Φ is a Vámos-like flower in a matroid M , then M is not
representable over any field.

Proof. Let Φ = (P1, P2, P3, P4) and u(P1, P3) = 1. Assume that M is rep-
resentable over some field F . Then we can view M as a restriction of the
vector space V (r(M), F ). As u(P1, P3) = 1, the subspaces of V (r(M), F )
spanned by P1 and P3 meet in a rank-one subspace, V1. By the last the-
orem, Φ has no loose elements so no element of V1 is in M . Let M ′ be
the matroid that is obtained by extending M by a non-zero vector e from
V1. Then (P1 ∪ {e}, P2, P3, P4) is a Vámos-like flower in M ′ and e is loose,
contradicting the last theorem. �
Lemma 6.3. Let Φ = (P1, P2, P3) be an unresolved flower. Assume that Φ
has an element e ∈ cl(P1) ∩ cl(P2) ∩ cl(P3). Then e is loose and Φ has at
most one other loose element. Moreover, if Φ has a second loose element f ,
then f ∈ cl∗(P1) ∩ cl∗(P2) ∩ cl∗(P3).

Proof. By Lemma 2.5 and Proposition 4.2,

(4) | ∩3
i=1 cl(Pi)| ≤ 1 and | ∩3

i=1 cl∗(Pi)| ≤ 1.

6.3.1. If there is a loose element g different from e, then there is a loose
element f that is different from e and is in cl∗(Pi) − Pi for some i.

Subproof. Suppose that 6.3.1 fails. Then the presence of a second loose
element means that there is an element z different from e such that, to
within relabelling of the petals, P1, P1∪{e}, and P1∪{e, z} are 3–separating
where {e, z} ⊆ P2 ∪ P3.

Let {j, k} = {2, 3} and suppose that e ∈ Pj and |Pj | = 2. Let Pj −
{e} = {x}. Then Pk ∪ {x} is 3–separating, so x ∈ cl(∗)(Pk) − Pk. As
u(Pj, Pk) = 1, the unique element of cl(Pj) ∩ cl(Pk) is e, so x 6∈ cl(Pk).
Hence x ∈ cl∗(Pk)−Pk and 6.3.1 holds. Thus we may assume that the petal
containing e has at least three elements.

Without loss of generality, assume that z ∈ P2. From the last paragraph,
|P3 − {e}| ≥ 2. Moreover, it is easily seen that e ∈ cl(P3 − {e}). Thus
e ∈ cl((P3 ∪ P2) − {e, z}), so (P3 ∪ P2) − {z} and its complement, P1 ∪ {z},
are 3–separating. Hence z ∈ cl(∗)(P1). It follows, as in the last paragraph,
that z 6∈ cl(P1) so z ∈ cl∗(P1) − P1 �

We now show that, when there is a loose element f satisfying the con-
clusion of 6.3.1, f ∈ cl∗(P1) ∩ cl∗(P2) ∩ cl∗(P3). Without loss of generality,
f ∈ cl∗(P1) − P1 and f ∈ P2. We need to show that f ∈ cl∗(P3). Assume
this is not the case. Let M ′ = M/e, and, for i ∈ {1, 2, 3}, set P ′

i = Pi −{e}.
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As f 6∈ cl∗(P3), it follows that f is not a coloop of M |(P1 ∪ P2), so f is
not a coloop of M ′|(P ′

1 ∪ P ′
2). As f ∈ cl∗(P1), we see that f is a coloop

of M |(P2 ∪ P3) and hence of M |P2. But e ∈ cl(P3), so f is a coloop of
M |(P2 ∪ P3 ∪ {e}). Thus f is a coloop of M ′|(P ′

2 ∪ P ′
3) and hence f is

a coloop of M ′|P ′
2. But, since u(P1, P2) = 1 and e ∈ cl(P1) ∩ cl(P2), we

have uM ′(P ′
1, P

′
2) = 0. From this, it follows easily that f is a coloop of

M ′|(P ′
1 ∪ P ′

2). This contradiction implies that f ∈ cl∗(P3) and the lemma
follows by (4). �

Now let Φ = (P1, P2, P3) be an unresolved flower. If Φ has no loose
elements, then it can be viewed equally well as spike-like or swirl-like. We
shall call such a flower ambiguous. If Φ has an element e such that either
e ∈ cl(P1) ∩ cl(P2) ∩ cl(P3) or e ∈ cl∗(P1) ∩ cl∗(P2) ∩ cl∗(P3), then Φ is
spike-like. If Φ has at least one loose element and is not spike-like, then it
is swirl-like.

Lemma 6.4. Assume that Φ is an anemone with at least four petals.
(i) If a ∈ cl(Pk) − Pk for some petal Pk, then a ∈ cl(Pi) for each petal

Pi of Φ.
(ii) If a ∈ cl∗(Pk)−Pk for some petal Pk, then a ∈ cl∗(Pi) for each petal

Pi of Φ.

Proof. Without loss of generality, we may assume that a ∈ cl(P1) − P1 and
that a ∈ P3. The result will follow if we can show that a ∈ cl(P2). Now
a ∈ cl(P1), so a ∈ cl(P1 ∪ P2). Moreover, a 6∈ Pn as n ≥ 4. It follows
immediately from Lemma 5.5 that a ∈ cl(P2) as required. This establishes
(i). Part (ii) is the dual of (i). �
Theorem 6.5. Let Φ be a flower of order at least 3. Then every flower
equivalent to Φ has the same type as Φ.

Proof. Let Φ = (P1, P2, . . . , Pn) and assume that Φ′ is obtained from Φ by
performing a single elementary move. We show that Φ and Φ′ have the
same type. This is clearly the case after a Type-0 move. Say Φ′ is obtained
by a Type-1 move. By duality, we may assume that Φ′ = (P1 ∪ {e}, P2 −
{e}, P3, . . . , Pn), where e ∈ P2 ∩ cl(P1) and |P2| ≥ 3. Then u(P1, P3) =
u(P1 ∪ {e}, P3). If Φ has at least four petals, this shows that the local
connectivity between non-adjacent petals is the same in both flowers. Also,
u(P3, P4) is the local connectivity between adjacent petals in both flowers.
By Theorem 6.1, Φ is not a Vámos-like flower. Hence, by Lemma 4.11, Φ
and Φ′ have the same type.

Assume that Φ has three petals. As u(P1, P3) = u(P1∪{e}, P3), it follows
by Theorem 5.1 and Lemma 5.3 that Φ and Φ′ have the same type unless
one is spike-like and the other is swirl-like. In this case, since the inverse of
a Type-1 move is a Type-1 move, we may assume that Φ is spike-like. But it
is easily seen that e ∈ cl(P2 −{e}) so, by the last lemma, e is in the closure
of each petal of Φ′. Hence, by the definition of a spike-like 3–petal flower,
Φ′ is also spike-like.
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Since the inverse of a Type-2 move is a Type-3 move, it only remains
to consider Type-2 moves. Say that Φ = (P1, {e, f}, P3, . . . , Pn), and that
Φ′ = (P1 ∪ {e, f}, P3, . . . , Pn) where e ∈ cl(∗)(P1), and f ∈ cl(∗)(P1 ∪ {e}).
Since Φ has order at least 3, we have n ≥ 4. Again it follows easily from
Lemma 4.11 that Φ and Φ′ have the same type unless n = 4 and one of Φ
and Φ′ is spike-like and the other is swirl-like.

Consider the exceptional case and assume that Φ′ is spike-like. Then, by
Lemma 6.3, either e or f is in the closure of each petal. Thus we may assume
that e ∈ cl(P3). But then u({e, f}, P3) > 0, so Φ is not swirl-like and hence
must be spike-like. Assume that Φ is spike-like and assume, by taking the
dual if necessary, that e ∈ cl(P1). Then, by Lemma 6.4, e ∈ cl(P4) and
e ∈ cl(P3). It now follows from the definition of a spike-like 3–petal flower
that Φ′ is spike-like. �

The last theorem fails for flowers of order 2. For example, consider the
cycle matroid of the graph G in Figure 3. Let (A,B,X, Y,Z) be the partition
of E(G) indicated in the diagram. Then (A∪Y ∪Z,X,B) is a paddle while
(A,Z, Y,B ∪X) is a swirl-like flower. Both of these flowers are equivalent to
the tight flower (A,B ∪ X ∪ Y ∪Z). It is not difficult to see how to modify
this example to obtain numerous other examples of flowers of order 2 for
which the theorem fails.
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Figure 3. Theorem 6.5 fails for the cycle matroid of this
graph G.

7. More Flower Structure

In this section, we give a structural description of equivalent flowers. We
focus on tight flowers. The extension to general flowers is easy but somewhat
messy to describe and we omit it.
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Theorem 7.1. Let M be a 3–connected matroid and let Φ be a tight flower
of M of order n ≥ 3 that is a paddle, a copaddle, or is spike-like. Let T and
L denote the sets of tight and loose elements of Φ, respectively. For each
petal Pi of Φ, let Ti = Pi ∩ T .

(i) If Φ is a paddle, then L is a segment, and L ⊆ cl(Ti) for each
i ∈ {1, 2, . . . , n};

(ii) if Φ is a copaddle, then L is a cosegment, and L ⊆ cl∗(Ti) for each
i ∈ {1, 2, . . . , n}; and

(iii) if Φ is spike-like, then |L| ≤ 2. If L contains a single element,
then that element is either in the closure of Ti for each i, or is in
the coclosure of Ti for each i. If |L| = 2, then one member of L
is contained in the closure of each Ti, while the other member is
contained in the coclosure of each Ti.

Moreover, up to arbitrary permutations of the petals, the tight flowers equiv-
alent to Φ are precisely the partitions of E(M) of the form

(T1 ∪ L1, T2 ∪ L2, . . . , Tn ∪ Ln)

where (L1, L2, . . . , Ln) is a partition of L.

The next two lemmas build towards the proof of Theorem 7.1.

Lemma 7.2. Let Φ = (P1, P2, . . . , Pn) be a flower with n ≥ 3.
(i) If Φ is a paddle, then each petal of Φ is coclosed.
(ii) If Φ is a copaddle, then each petal of Φ is closed.

Proof. Consider (i). Let Φ be a paddle. We show that P1 is coclosed.
Assume not; say f ∈ cl∗(P1) − P1. Then, as (P1, P2 ∪ P3 ∪ · · · ∪ Pn) is a
3–separation, it follows from Lemma 3.4(ii) that u(P1, (P2 ∪P3 ∪ · · · ∪Pn)−
{f}) = 1. Since Φ has at least three petals, f 6∈ Pj for some j ∈ {2, . . . , n}.
Then

u(P1, Pj) ≤ u(P1, (P2 ∪ P3 ∪ · · · ∪ Pn) − {f}) = 1.
But, by the definition of a paddle, u(P1, Pj) = 2. Part (i) follows from this
contradiction; (ii) is the dual of (i). �
Lemma 7.3. Let Φ = (P1, P2, . . . , Pn) be a tight flower with at least 3 petals.

(i) If Φ is a paddle, then fcl(Pi) = cl(Pi) for each petal Pi of Φ.
(ii) If Φ is a copaddle, then fcl(Pi) = cl∗(Pi) for each petal Pi of Φ.

Proof. Say that Φ is a paddle. Consider P1. By Corollary 5.12, (cl(P1), P2−
cl(P1), . . . , Pn − cl(P1)) is a paddle equivalent to Φ. But cl(P1) is certainly
closed and, by Lemma 7.2, it is coclosed. Hence it is fully closed. This
proves (i). Again, (ii) is the dual of (i). �

Proof of Theorem 7.1. Let Φ be a tight flower of order at least 3 that is a
paddle, a copaddle, or is spike-like. Assume that Φ is a paddle and that
x is loose. We shall show first that x ∈ cl(Pi) for all i. By Lemma 7.3,
x ∈ cl(Pj) for some j and so, by Lemma 6.4, when Φ has at least four
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petals, x ∈ cl(Pi) for all i. Consider the case when Φ has three petals.
We may assume that x ∈ cl(P1) ∩ P2. Since u(Pk, Pk+1) = 2 for all k,
an elementary rank argument shows that cl(P1 ∪ P3) and cl(P2 ∪ P3) are a
modular pair of flats whose intersection is spanned by P3. Thus x ∈ cl(P3)
and so x ∈ cl(Pi) for all i. We conclude that, when Φ is a paddle, L ⊆ cl(Pi)
for all i. Since u(P1, P2) = 2, we have r(cl(P1) ∩ cl(P2)) ≤ 2. Hence
L is a segment. Moreover, since L ⊆ cl(P1) and cl(P1) ∩ Pn ⊆ L, we
deduce that Pn − cl(P1) = Tn. As (cl(P1), P2 − cl(P1), . . . , Pn − cl(P1)) is a
paddle equivalent to Φ having Tn as a petal, it follows that L ⊆ cl(Tn). By
symmetry, L ⊆ cl(Ti) for all i. This proves (i); part (ii) follows by duality.

Assume that Φ is spike-like. If Φ has three petals, then (iii) follows by
Lemma 6.3. Assume that Φ has at least four petals. By Lemma 6.4, every
element of ∪i(cl(Pi) − Pi) is in cl(P1) ∩ cl(P2). But, by the definition of a
spike-like flower, u(P1, P2) = 1 so, by Lemma 2.5, | ∪i (cl(Pi) − Pi)| ≤ 1.
Dually, | ∪i (cl∗(Pi) − Pi)| ≤ 1. Let L′ be the union of ∪i(cl(Pi) − Pi) and
∪i(cl∗(Pi) − Pi). Then |L′| ≤ 2 and L′ ⊆ L.

We now show that L′ = L. By Corollary 5.12 and Theorem 6.5, Φ′ =
(P1 ∪ L′, P2 − L′, . . . , Pn − L′) is a spike-like flower equivalent to Φ. Say
that P1 ∪L′ is not fully closed. Then, up to duality, there is an element x ∈
cl(P1∪L′)−(P1∪L′). Without loss of generality, x 6∈ P2. As Φ′ is an anemone
with at least four petals, it follows, from Lemma 6.4, that x ∈ cl(P2−L′), so
x ∈ cl(P2)−P2. This contradicts the fact that cl(P2)−P2 ⊆ L′. Thus P1∪L′
is fully closed. Hence fcl(P1)−P1 ⊆ fcl(P1 ∪L′)−P1 = (P1 ∪L′)−P1 ⊆ L′.
By symmetry, we deduce that L ⊆ L′ and so L′ = L. Part (iii) of the
theorem now follows routinely and the details are omitted.

To complete the proof, let Φ be a tight flower of order n ≥ 3 that is a
paddle, a copaddle, or is spike-like. From above, cl(P1) ∪ cl∗(P1) contains
L. Thus, by Corollary 5.12, (P1 ∪ L,P2 − L, . . . , Pn − L) is equivalent to
Φ. Moreover, for every i > 1 and every l ∈ L, we have l ∈ cl(∗)(Pi − L).
Hence we may arbitrarily distribute the members of L amongst the petals
of Φ. This shows that every flower of the form described in the statement of
the theorem must be equivalent to Φ. Moreover, as this structure is clearly
preserved under Type-2a moves, it follows, from Lemma 5.11, that every
tight flower equivalent to Φ is of this form. �

We now consider the swirl-like case. If F = (f1, f2, . . . , fn) is a fan, and
i, j ∈ {1, 2, . . . , n}, then we will say that {f1, f2, . . . , fi} is an initial section
of F , and that {fj, fj+1, . . . , fn} is a terminal section of F .

Theorem 7.4. In a matroid M , let Φ = (P1, P2, . . . , Pn) be a tight swirl-like
flower of order at least 3 with set T of tight elements and L of loose elements.
Let Ti = Pi ∩T for all i. Then there is a partition (F1, F2, . . . , Fn) of L into
fans, some of which may be empty, with the following property: a partition
(Q1, Q2, . . . , Qn) of E(M) is a tight swirl-like flower equivalent to Φ if and
only if Qi = F−

i−1∪Ti∪F+
i for all i ∈ {1, 2, . . . , n}, where F−

i−1 is a terminal
section of Fi−1, and F+

i is an initial section of Fi.
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The proof of this theorem will use the next three lemmas.

Lemma 7.5. Let Pi and Pj be petals of a tight swirl-like flower Φ of order
at least 3.

(i) |cl(Pi) ∩ cl(Pj)| ≤ 1, and, if Pi and Pj are not consecutive, then
cl(Pi) ∩ cl(Pj) = ∅.

(ii) |cl∗(Pi) ∩ cl∗(Pj)| ≤ 1, and, if Pi and Pj are not consecutive, then
cl∗(Pi) ∩ cl∗(Pj) = ∅.

(iii) If cl(Pi) ∩ Pj 6= ∅, then cl∗(Pi) ∩ Pj = ∅.
Proof. By the definition of a swirl-like flower, u(Pi, Pj) is 1 if Pi and Pj

are consecutive, and is 0 otherwise. Part (i) now follows from Lemma 2.5.
Part (ii) is the dual of (i). Consider (iii). Say that e ∈ cl(Pi) ∩ Pj . By
(i), we may assume that (i, j) = (1, 2). Assume that there is an element
f ∈ cl∗(P1)∩P2. Then f is a coloop of M\P1, so f is a coloop of M |P2. Now
it is easily seen that e ∈ cl(P2 −{e}) and that f is a coloop of M |(P2 −{e}).
Thus e ∈ cl(P2 − {e, f}). By a Type-3 move, transform Φ into the flower
(P1, {e, f}, P2 − {e, f}, P3, . . . , Pn}). By Theorem 6.5, this flower is swirl-
like. Hence u(P1, P2 − {e, f}) = 0. But e ∈ cl(P1) ∩ (P2 − {e, f}), so, by
Lemma 2.5, u(P1, P2−{e, f}) > 0. Part (iii) follows from this contradiction.

�

Lemma 7.6. In a matroid M , let Φ = (P1, P2, . . . , Pn) be a tight swirl-
like flower of order at least 3. Then fcl(P2) ⊆ P1 ∪ P2 ∪ P3 and there is a
unique ordering (a1, a2, . . . , al) of the elements of P3 ∩ fcl(P2) such that, for
all i ∈ {1, 2, . . . , l}, the set P2 ∪ {a1, a2, . . . , ai} is 3–separating.

Proof. Suppose x ∈ cl(∗)(P2) − P2. Then, by Lemma 2.5, x ∈ P1 or x ∈ P3.
We may assume the latter. Then (P1, P2 ∪ {x}, P3 − {x}, P4, . . . , Pn) is a
flower equivalent to Φ. It now follows by an obvious inductive argument
that fcl(P2) ⊆ P1 ∪ P2 ∪ P3. The elements of fcl(P2) − P2 can be ordered
(s1, s2, . . . , sm) such that, for all i ∈ {1, 2, . . . ,m}, the set P2∪{s1, s2, . . . , si}
is 3–separating. Now P2 ∪ P3 is 3–separating and Φ is tight so there are at
least two elements of M not contained in P2 ∪ P3 ∪ {s1, s2, . . . , si}. Thus,
by uncrossing, P2 ∪ (P3 ∩ {s1, s2, . . . , si}) is 3–separating. It follows that
there is an ordering (a1, a2, . . . , an) of the elements of P3 ∩ fcl(P2) such that
P2 ∪ {a1, a2, . . . , ai} is 3–separating for all i ∈ {1, 2, . . . , l}.

We now show that the above ordering is unique. Say that (b1, b2, . . . bn)
is another such ordering. Let k be the least integer such that bk+1 6= ak+1.
Then (P1, P2 ∪ {a1, a2, . . . , ak}, P3 − {a1, a2, . . . , ak}, P4, . . . , Pn) is a flower
equivalent to Φ. But both bk+1 and ak+1 are in cl(∗)(P2 ∪ {a1, a2, . . . , ak}),
contradicting Lemma 7.5. Thus the ordering is, indeed, unique. �

Lemma 7.7. Let Φ = (P1, P2, . . . , Pn) be a tight swirl-like flower of order
at least 3. Let (a1, a2, . . . , al) be the ordering of fcl(P2) ∩ P1 such that, for
all i ∈ {1, 2, . . . , l}, the set P2 ∪ {ai, ai+1, . . . , al} is 3–separating, and let
(al+1, al+2, . . . , am) be the ordering of fcl(P1) ∩ P2 such that, for all i ∈
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{l + 1, l + 2, . . . ,m}, the set P1 ∪ {al+1, al+2, . . . , ai} is 3–separating. Then
A = (a1, a2, . . . , am) is a fan of M .

Proof. Consider a triple {ai, ai+1, ai+2} of consecutive elements of A. It
is easily seen that (P2 − A) ∪ {ai, ai+1, ai+2, . . . , am} and (P1 − A) ∪
{a1, a2, . . . , ai, ai+1, ai+2} are both 3–separating. So, by uncrossing, their
intersection, {ai, ai+1, ai+2}, is 3–separating. Thus every consecutive triple
of elements of A is 3–separating.

If A is not a fan, then, by Lemma 2.2, |A| ≥ 4, and A is either a segment or
a cosegment. By duality, we may assume that A and hence {a1, a2, a3, a4} is
a segment. But ((P1−A)∪{a1, a2}, P2∪(A−{a1, a2}), P3, . . . , Pn) is a swirl-
like flower and both a3 and a4 are in cl((P1 − A) ∪ {a1, a2, }) contradicting
Lemma 7.5. �

Theorem 7.4 follows straightforwardly from the last three lemmas and we
omit the details.

The next corollary will be useful in the proof of the main result of the
paper, Theorem 9.1.

Corollary 7.8. Let Φ = (P1, P2, . . . , Pn) be a tight flower. If 2 ≤ i ≤ n− 2
and (X,Y ) is a 3–separation that is equivalent to (P1 ∪ P2 ∪ · · · ∪Pi, Pi+1 ∪
Pi+2 ∪ · · · ∪ Pn), then there is a tight flower equivalent to Φ that displays
(X,Y ).

Proof. We may assume that fcl(X) = fcl(P1 ∪ P2 ∪ · · · ∪ Pi) and fcl(Y ) =
fcl(Pi+1 ∪ Pi+2 ∪ · · · ∪ Pn). Then all tight elements of P1 ∪ P2 ∪ · · · ∪ Pi

and Pi+1 ∪ Pi+2 ∪ · · · ∪ Pn are in X and Y , respectively. We now argue
by induction on |X − (P1 ∪ P2 ∪ · · · ∪ Pi)| + |Y − (Pi+1 ∪ Pi+2 ∪ · · · ∪ Pn)|.
The result is immediate if this sum S is 0. Assume it holds if S < k and
let S = k. We may assume that x ∈ X − (P1 ∪ P2 ∪ · · · ∪ Pi). Then
x ∈ fcl(P1 ∪ P2 ∪ · · · ∪ Pi) − (P1 ∪ P2 ∪ · · · ∪ Pi). Thus, by Lemma 5.9, we
may assume that x ∈ fcl(Pi) − Pi.

If x ∈ cl(∗)(Pi), then Φ is equivalent to the tight flower Φ′ that is obtained
by adjoining x to Pi and removing it from its original petal. In this case,
the result follows by applying the induction assumption to Φ′.

We may now assume that x 6∈ cl(∗)(Pi). Then, by Theorem 7.1, Φ is not a
paddle, not a copaddle, and is not spike-like. Since Φ has at least four petals,
it follows that Φ is swirl-like. Then, by Lemma 7.6, x ∈ Pi+1 and there
are elements a1, a2, . . . , at of Pi+1 ∩ fcl(Pi) such that Pi ∪ {a1, a2, . . . , aj}
is 3–separating for all j ≤ t, and x = at. We may assume that none of
a1, a2, . . . , at−1 is in X otherwise we replace x by the first such element. By
uncrossing, both X ∩Pi and (X ∩Pi)∪{x} are exactly 3–separating. Hence
x ∈ cl(∗)(Pi); a contradiction. �

8. Maximal Flowers

A flower Φ is maximal if Φ is equivalent to Φ′ whenever Φ � Φ′. Let
(X,Y ) be a 3–separation of M . We say that (X,Y ) conforms to the flower



30 JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

Φ if either (X,Y ) is equivalent to a 3–separation that is displayed by Φ or
(X,Y ) is equivalent to a 3–separation (X ′, Y ′) with the property that either
X ′ or Y ′ is contained in a petal of Φ.

The goal of this section is to prove the following theorem which is a key
result for this paper.

Theorem 8.1. Let M be a matroid with at least 9 elements and let Φ be a
tight maximal flower in M . Then every non-sequential 3–separation of M
conforms with Φ.

The flower Φ is a refinement of the flower Φ′ if the underlying partition
of E(M) for Φ refines that of Φ′. Evidently, if Φ is a refinement of Φ′, then
Φ′ � Φ. A partition (X,Y ) of E(M) crosses the petal P if P ∩ X 6= ∅ and
P ∩ Y 6= ∅.
Lemma 8.2. Let Φ = (P1, P2, . . . , Pn) be a flower of a matroid M and let
(R,G) be a 3–separation of M such that:

(i) neither R nor G is contained in a petal of Φ; and
(ii) if (R,G) crosses a petal P , then |P ∩ R|, |P ∩ G| ≥ 2.

Then there is a flower that refines Φ and displays (R,G).

Proof. The lemma holds trivially if n = 1. If n = 2, then, by Lemma 4.11(i),
(P1 ∩ G,P1 ∩ R,P2 ∩ R,P2 ∩ G) is the desired flower. Say n ≥ 3. If (R,G)
does not cross any petal, then (R,G) is displayed by Φ. Thus assume that
(R,G) crosses a petal, say P1. Set P ′

3 = P3 ∪ P4 ∪ · · · ∪ Pn.

8.2.1. Up to switching G and R, both |P2 ∩ R| and |P ′
3 ∩ G| exceed 1.

Subproof. If (R,G) crosses P2, then, up to switching G and R, we have
|P ′

3 ∩ G| ≥ 2 and, by (ii), |P2 ∩ R| ≥ 2. We may now assume that (R,G)
does not cross P2. Then, up to switching G and R, we have P2 ⊆ R. But
then, by (i), P ′

3 must have at least one green element and, by (ii), it must
have at least two such elements, so again |P2 ∩ R|, |P ′

3 ∩ G| ≥ 2. �

Assume that labels are chosen so that |P2 ∩ R|, |P ′
3 ∩ G| ≥ 2. Then

8.2.2. Φ′ = (P1 ∩ G,P1 ∩ R,P2, . . . , Pn) is a flower.

Subproof. Evidently, Φ′ has at least four petals. So, by Lemma 4.11(i), it
suffices to show that the union of all but one consecutive pair of petals is
3–separating. We know that (P1 ∩G)∪ (P1 ∩R) = P1 is 3–separating. Thus
it suffices to show that (P1 ∩ R) ∪ P2 is 3–separating. Since |P ′

3 ∩ G| ≥ 2,
the set R ∪ (P1 ∪ P2) avoids at least two members of G, so, by uncrossing,
R∩ (P1∪P2) is 3–separating. But (R∩ (P1∪P2))∩P2, which equals P2 ∩R,
contains at least two members of R so, by uncrossing, (R ∩ (P1 ∪ P2)) ∪ P2,
which equals (P1 ∩ R) ∪ P2, is 3–separating, as required. �

It now follows from 8.2.2 and an induction on the number of petals crossed
by (R,G) that there is a flower that refines Φ and displays (R,G). �
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Proof of Theorem 8.1. Let Φ = (P1, P2, . . . , Pn). Assume that the theorem
fails, and that (X,Y ) is a non-sequential 3–separation that does not conform
with Φ. Let (R,G) be a 3–separation equivalent to (X,Y ) with the property
that it crosses a minimum number of petals. Since (R,G) is non-sequential,
|R|, |G| ≥ 4.

8.1.1. If |R ∩ Pi| = 1, then |G ∩ Pi| = 1.

Subproof. Say R∩Pi = {e} and |G∩Pi| ≥ 2. Then, by uncrossing, G∪Pi is
3–separating. But G∪Pi = G∪ {e}, so (R−{e}, G ∪ {e}) is a 3–separation
that is equivalent to (R,G). But (R−{e}, G∪{e}) crosses fewer petals that
(R,G), contradicting the choice of (R,G). �

8.1.2. There is no petal Pi with |R ∩ Pi| = 1.

Subproof. Assume that |R∩P1| = 1, say R∩P1 = {e}. By 8.1.1, |G∩P1| = 1.
Certainly Φ has at least two petals. If Φ has two petals, then Φ displays no
non-sequential 3–separation, so Φ is equivalent to the trivial flower and is
therefore not tight. We may now assume that Φ has at least three petals.
We shall define a partition (P+, P−) of E(M) − P1 into 3–separating sets
P+ and P− such that

(5) P+ ∪P1 is 3–separating; |P−| ≥ 3; and |R∩P+| ≥ 2 or |G∩P+| ≥ 2.

Assume first that Φ has exactly three petals. If |P2| = 2, then Φ displays
at most one non-sequential 3–separation, contradicting the fact that Φ is
tight. Thus |P2|, |P3| ≥ 3. In this case, set P+ = P2 and P− = P3. Clearly,
(5) holds. Next, assume that Φ has four petals. Then, since |E(M)| > 8, one
of the petals of Φ has at least 3 elements. This means that we can assume
that, amongst 2–element crossed petals, P1 is chosen so that |P2 ∩ R| ≥ 2
or |P2 ∩ G| ≥ 2. In this case, set P+ = P2 and P− = P3 ∪ P4. Again
(5) holds. Finally, if Φ has at least five petals, set P+ = P2 ∪ P3, and
P− = P4 ∪ P5 ∪ · · · ∪ Pn. Then (5) holds in this case too and so holds in
general.

Next we assert that we may assume, by possibly interchanging R and G,
that

(6) |P+ ∩ R| ≥ 2 and |P− ∩ G| ≥ 2.

By (3), |P+ ∩ R| ≥ 2 or |P+ ∩ G| ≥ 2. If both of the last two inequalities
hold, then (6) follows from the fact that both R and G meet P+ ∪ P− in
at least 3 elements. If exactly one of the last two inequalities holds, say
|P+ ∩ R| ≥ 2, then |P+ ∩ G| ≤ 1 so |P− ∩ G| ≥ 2 and again (6) holds.

As (P+∪P1)∪R avoids P−∩G, it follows by uncrossing that (P+∪P1)∩R,
which equals (P+ ∩R)∪{e}, is 3–separating. Another uncrossing argument
shows that P+∩R is 3–separating and, as this set has at least two elements,
we see that e ∈ cl(∗)(P+ ∩ R) and hence e ∈ cl(∗)(P+). But P+ is a union
of at most n− 2 consecutive petals so, by Lemma 5.9, e is loose in Φ. Thus
P1 contains at most one tight element. But Φ is tight and has at least three
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petals, so Φ has order at least 3. Hence, by Lemma 5.8, P1 contains at least
two tight elements. The sublemma follows from this contradiction. �

From 8.1.2, we see that (R,G) satisfies the hypotheses of Lemma 8.2.
Thus, by that lemma, there is a flower that refines Φ and displays (R,G)
contradicting the fact that Φ is maximal. �

The requirement that M has at least 9 elements is essential in the
last theorem. For example, let R8 be the 8–element rank–4 that is rep-
resented geometrically by a cube in 3–space (see Figure 4). Let Φ =
({1, 2}, {3, 4}, {5, 6}, {7, 8}). Then Φ is a tight maximal flower. However,
the non-sequential 3–separation ({1, 3, 5, 7}, {2, 4, 6, 8}) does not conform
with Φ. Evidently, we can relax certain circuit-hyperplanes in R8 to obtain
other 8–element matroids for which the theorem fails.
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Figure 4. Theorem 8.1 fails for this matroid, R8.

9. Partial 3–Trees

Let π be a partition of a finite set E. Let T be a tree such that every
member of π labels a vertex of T ; some vertices may be unlabelled and
no vertex is multiply labelled. We say that T is a π–labelled tree; labelled
vertices are called bag vertices and members of π are called bags.

Let T ′ be a subtree of T . The union of those bags that label vertices of T ′
is the subset of E displayed by T ′. Let e be an edge of T . The partition of
E displayed by e is the partition displayed by the components of T\e. Let
v be a vertex that is not a bag vertex. Then the partition of E displayed by
v is the partition displayed by the components of T − v. The edges incident
with v are in natural one-to-one correspondence with the components of
T − v, and hence with the members of the partition displayed by v. In what
follows, if a cyclic ordering (e1, e2, . . . , en) is imposed on the edges incident
with v, this cyclic ordering is taken to represent the corresponding cyclic
ordering on the members of the partition displayed by v.

Let M be a 3–connected matroid with ground set E. An almost partial
3–tree T for M is a π–labelled tree, where π is a partition of E such that
the following conditions hold:
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(i) For each edge e of T , the partition (X,Y ) of E displayed by e is
3–separating, and, if e is incident with two bag vertices, then (X,Y )
is a non-sequential 3–separation.

(ii) Every non-bag vertex v is labelled either D or A. Moreover, if v is
labelled D, then there is a cyclic ordering on the edges incident with
v.

(iii) If a vertex v is labelled A, then the partition of E displayed by v is
a tight maximal anemone of order at least 3.

(iv) If a vertex v is labelled D, then the partition of E displayed by v,
with the cyclic order induced by the cyclic ordering on the edges
incident with v, is a tight maximal daisy of order at least 3.

By conditions (iii) and (iv), a vertex v labelled D or A corresponds to a
flower of M . The 3–separations displayed by this flower are the 3–separations
displayed by v. A vertex of a partial 3–tree is referred to as a daisy vertex
or an anemone vertex if it is labelled D or A, respectively. A vertex labelled
either D or A is a flower vertex. A 3–separation is displayed by an almost
partial 3–tree T if it is displayed by some edge or some flower vertex of T .

A 3–separation (R,G) of M conforms with an almost partial 3–tree T if
either (R,G) is equivalent to a 3–separation that is displayed by a flower
vertex or an edge of T , or (R,G) is equivalent to a 3–separation (R′, G′)
with the property that either R′ or G′ is contained in a bag of T .

An almost partial 3–tree for M is a partial 3–tree if
(v) every non-sequential 3–separation of M conforms with T .

We now define a quasi-order on the set of partial 3–trees for M . Let T1

and T2 be two partial 3-trees for M . Then T1 � T2 if all of the non-sequential
3–separations displayed by T1 are displayed by T2. If T1 � T2 and T2 � T1,
then T1 is equivalent to T2. A partial 3–tree is maximal if it is maximal with
respect to this quasi order.

The following is the main theorem of the paper.

Theorem 9.1. Let M be a 3–connected matroid with |E(M)| ≥ 9, and let T
be a maximal partial 3–tree for M . Then every non-sequential 3–separation
of M is equivalent to a 3–separation displayed by T .

Let Φ = (P1, P2, . . . , Pn) be a flower. We associate with Φ a π-labelled
tree T . If n = 1, then T consists of a single bag vertex labelled by P1. If
n = 2, then T consists of two adjacent bag vertices labelled by P1 and P2.
Assume that n ≥ 3. Then the vertex set of T is {v, v1, v2, . . . , vn}, where v
is incident with each vi and each vi is labelled by the bag Pi. Finally, label
v by A or D according to whether Φ is an anemone or daisy, respectively.
In the case that n = 3, we are free to label v either A or D. We will often
identify Φ with its associated π-labelled tree. Under this identification, we
get the following immediate consequence of Theorem 8.1.

Corollary 9.2. Tight maximal flowers of 3–connected matroids are partial
3–trees.
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The next result will be useful in the proof of Theorem 9.1.

Lemma 9.3. If (X,E−X) is a non-sequential 3–separation of a 3–connected
matroid M , then there is a tight maximal flower that displays a 3–separation
equivalent to (X,E − X).

Proof. Clearly, (X,E − X) is a tight flower Φ0 that displays (X,E − X).
If Φ0 is not maximal, then there is a maximal flower Φ1 � Φ0. Since Φ1

must display some non-sequential 3–separation that is not equivalent to one
displayed by Φ0, we must have that Φ1 has order at least three. Thus, by
Lemma 5.7, Φ1 is equivalent to a tight maximal flower Φ2. As Φ2 � Φ0,
there is a 3–separation equivalent to (X,E−X) that is displayed by Φ2. �

The next lemma contains the core of the proof of Theorem 9.1.

Lemma 9.4. Let M be a 3–connected matroid with |E(M)| ≥ 9 and let T be
a partial 3–tree for M having at least one edge. If M has a non-sequential 3–
separation (W,E − W ) that is not equivalent to any 3–separation displayed
by T , then there is a partial 3–tree T ′ such that T ′ � T and T ′ displays
some non-sequential 3–separation that is not equivalent to any 3–separation
displayed by T .

Proof. By the definition of a partial 3–tree, (W,E − W ) conforms with T
and so is equivalent to a 3–separation (X,E − X), where X is contained
in a bag B of T . Evidently, B is non-sequential. Let u be the vertex of T
labelled by B. We distinguish two cases:

(I) u is a leaf of T ; and
(II) u is not a leaf of T .
Consider Case I. In that case, (B,E − B) is non-sequential. This follows

from the definition of a partial 3–tree when u is adjacent to a bag vertex,
and follows from Lemma 5.9 when u is adjacent to a flower vertex.

If B is not fully closed, then we can move the elements of fcl(B) − B
one by one out of their current bags and into the bag B. Each step of this
process produces a new partial 3–tree equivalent to T and, at the conclusion
of the process, we obtain a partial 3–tree in which u is labelled by fcl(B).
It follows that we may assume that B is fully closed.

Now X is a 3–separating set that is contained in but is not equivalent to
B. Let Y be such a set whose full closure is maximal among such sets. By
Lemma 9.3, there is a tight maximal flower Φ that displays a 3–separation
(Z,E − Z) equivalent to (Y,E − Y ). Since B is fully closed, Z ⊆ B.

9.4.1. There is a tight maximal flower equivalent to Φ that has a petal
containing E − B.

Subproof. By Theorem 8.1, (E − B,B) conforms with Φ. Thus either
(i) E − B is equivalent to a 3–separating set Q′ contained in a petal Q

of Φ; or
(ii) E − B is equivalent to a union of petals of Φ.
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Consider (i). By Lemma 3.5, fcl(Q)−Z is equivalent to Q. Also fcl(Q)−
Z ⊇ E − B. So, by Corollary 5.12, there is a flower equivalent to Φ that
displays Z such that E − B is contained in a petal.

Now consider (ii). Let Φ = (Q1, Q2, . . . , Qn). Then we may assume that
E −B is equivalent to Q1 ∪Q2 ∪ · · · ∪Qk for some k ≥ 2. As Z is displayed
by Φ and Z is not equivalent to B, we must have n−k ≥ 2. By Corollary 7.8
and Lemma 5.8(i), there is a tight flower Φ′ = (Q′

1, Q
′
2, . . . , Q

′
n) equivalent

to Φ where (Q′
1∪Q′

2∪· · ·∪Q′
k, Q

′
k+1∪Q′

k+2∪· · · ∪Q′
n) = (E−B,B). As Φ′

is tight, fcl(Q′
1 ∪ Q′

n) contains neither Q′
k+1 nor Q′

k and so contains neither
B nor E − B. Similarly, fcl(E − (Q′

1 ∪ Q′
n)) contains neither B nor E − B.

Thus every 3–separation equivalent to (Q′
1∪Q′

n, E−(Q′
1∪Q′

n)) crosses both
B and E − B. Therefore (Q′

1 ∪ Q′
n, E − (Q′

1 ∪ Q′
n)) does not conform with

T contradicting the fact that T is a partial 3–tree. �

By 9.4.1, we may assume that Φ = (P1, P2, . . . , Pn) where E−B ⊆ Pn and
Z is some union of consecutive petals from {P1, P2, . . . , Pn−1}. If n = 2, then
Z = P1 and we modify T to produce T ′ by adding a new vertex z adjacent to
u, relabelling u by B−Z, and labelling z by Z. If n ≥ 3, we construct T ′ from
T as follows: first adjoin a new flower vertex v adjacent to u labelling v either
A or D depending upon whether Φ is an anemone or a daisy, respectively;
then adjoin bag vertices v1, v2, . . . , vn−1 adjacent to v labelling these by
P1, P2, . . . , Pn−1; finally, relabel the vertex u by B − (P1 ∪ · · · ∪ Pn−1). To
verify that T ′ is a partial 3–tree, it suffices to consider the non-sequential
3–separations with R ⊆ B. By Theorem 8.1, such a 3–separation conforms
with Φ and hence with T ′ unless (R,G) is equivalent to (R′, G′) where R′
or G′ is contained in Pn. Consider the exceptional case. If R′ ⊆ Pn, then
R′ ⊆ E − (P1 ∪ P2 ∪ · · · ∪ Pn−1). But fcl(R′) = fcl(R) ⊆ B, so R′ ⊆ B.
Hence R′ ⊆ B − (P1 ∪P2 ∪ · · · ∪Pn−1). As the last set labels a bag of T ′, it
follows, in this case, that (R,G) conforms with T ′. We may now assume that
G′ ⊆ Pn. Then R′ ⊇ P1 ∪ P2 ∪ · · · ∪ Pn−1. Moreover, we may assume that
B % fcl(R′) % fcl(P1 ∪ P2 ∪ · · · ∪ Pn−1) otherwise (R,G) is equivalent to a
3–separation displayed by T ′. But fcl(Y ) = fcl(Z) ⊆ fcl(P1∪P2∪· · ·∪Pn−1).
Thus R′ contradicts the choice of Y and we conclude that T ′ is a partial
3–tree. Clearly, T ′ � T . Moreover, (P1, E − P1) is a non-sequential 3–
separation for which there is no equivalent 3–separation displayed by T .
Hence the lemma holds in Case I.

Consider Case II. Choose a 3–separating set Z of M that is maximal with
the property that X ⊆ Z ⊆ B. Let T ′ be the tree that is obtained from T
by adjoining a new leaf v adjacent to u such that v is a bag vertex labelled
by Z, and u is relabelled by B − Z. It is easily verified that T ′ satisfies
the first four properties of a partial 3–tree. Assume that it does not satisfy
(v). Then there is a non-sequential 3–separation (Y,E − Y ) that does not
conform with T ′. Since T is a partial 3–tree and T ′ only differs from T by
adding v and changing the bag B, we may assume, by possibly replacing
(Y,E − Y ) by an equivalent 3–separation, that Y ⊆ B and that both Y ∩Z
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and Y ∩ (B −Z) are nonempty. Assume that |Y ∩Z| = 1, say Y ∩Z = {z}.
Since Z ⊇ X and (X,E − X) is non-sequential, we have |Z − {z}| ≥ 2.
But Z − {z} = E − (Y ∪ (E − Z)), and so, by uncrossing, Y ∩ (E − Z),
which equals Y − {z}, is 3–separating. Thus Y is equivalent to Y − {z}.
But, as Y − {z} ⊆ B − Z, we see that (Y − {z}, E − (Y − {z})) conforms
with T ′. Hence (Y,E −Y ) conforms with T ′; a contradiction. Thus we may
assume that |Y ∩ Z| ≥ 2. Therefore, by uncrossing, Y ∪ Z is 3–separating,
contradicting the maximality of Z. Hence T ′ is indeed a partial 3–tree.

Clearly, T � T ′ and (Z,E − Z) is a non-sequential 3–separation. Thus
the lemma holds or Z is equivalent to a 3–separating set displayed by T .
Since X is not equivalent to such a 3–separating set, the sets X and Z are
not equivalent. Now we may assume that (X,E − X) is not equivalent to
any 3–separation displayed by T ′ otherwise the lemma holds. Since X is
contained in the bag Z of T ′ and this bag is a leaf bag, it follows from Case
I that there is a partial 3–tree T ′′ � T ′ such that T ′′ displays some non-
sequential 3–separation that is not equivalent to any 3–separation displayed
by T ′ and hence is not equivalent to any 3–separation displayed by T . �

Proof of Theorem 9.1. Let E be the ground set of M . If M has no non-
sequential 3–separations, then T consists of a single bag vertex labelled by
E, and T satisfies the theorem. If M has a non-sequential 3–separation
(R,G), then, by Lemma 9.3, there is a tight maximal flower displaying
a 3–separation equivalent to (R,G) and so, by Corollary 9.2, there is a
partial 3–tree T displaying a 3–separation equivalent to (R,G). Thus we may
assume that T has at least one edge. Then the theorem holds, otherwise,
by Lemma 9.4, we obtain the contradiction that T is not maximal. �
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