
Approximating the Distribution for Sums

of Products of Normal Variables

Robert Ware1 and Frank Lad2

Abstract

We consider how to calculate the probability that the sum of the product
of variables assessed with a Normal distribution is negative. The analysis is
motivated by a specific problem in electrical engineering. To resolve the prob-
lem, two distinct steps are required. First, we consider ways in which we can
assess the distribution for the product of two Normally distributed variables.
Three different methods are compared: a numerical methods approximation,
which involves implementing a numerical integration procedure on MATLAB,
a Monte Carlo construction and an approximation to the analytic result using
the Normal distribution. The second step considers how to assess the dis-
tribution for the sum of the products of two Normally distributed variables
by applying the Convolution Formula. Finally, the two steps are combined
to compute the distribution for the sum of products of Normally distributed
variables, and thus to calculate the probability that this sum of products
is negative. The problem is also approached directly, using a Monte Carlo
approximation.

Key Words: Product of Normal variables; Numerical integration;

Differential continuous phase frequency shift keying; Convolutions;

Moment generating function.

1 Introduction

The work discussed in this Report originated from a problem posed by Griffin (2000)

who was interested in calculating the probability that the sum of the product of vari-

ables assessed with a Normal distribution was negative. Previous work involving the

distribution of the product of two Normally distributed variables has been under-

taken by Craig (1936), who was the first to determine the algebraic form of the

moment-generating function of the product. Aroian et al. (1978) proved that, under

certain conditions, the product of two Normally distributed variables approaches

the standardised Pearson type III distribution. Cornwell et al. (1978) described the

numerical evaluation of the product. Conradie and Gupta (1987) presented basic
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distributional results of the quadratic forms of p-variate complex Normal distribu-

tions. Their results were developed in terms of characteristic functions. However,

these results were found to be too theoretical to be easily transferred to a problem

as applied as the one under investigation.

While the work of Craig (1936) is relatively old, it is not at all well-known

among statisticians. Indeed we did not even learn of it until we had rediscovered it

ourselves in developing this Thesis. At that time we also learned of the researches

of Aroian et al. (1978) and Cornwell et al. (1978). Nonetheless, recent advances in

computing power and graphics have allowed us to make several useful advances on

the consulting problem that had been posed.

To calculate the probability that the sum of products of variables assessed as

having a Normal distribution is negative, two distinct steps are required. The first

step considers ways in which we can assess the distribution for the product of two

Normally distributed variables. The second step involves identifying the distribution

when summing a number of these products together.

In Section 2, the process of differential continuous phase frequency shift keying is

briefly introduced as it was studied by Griffin (2000). The relevance of the distribu-

tion of sums of products of Normally distributed variables is recognised. In Section 3

we assess the distribution for Y = X1X2, the product of two independent Normally

distributed variables. We compare three different methods: a numerical methods

approximation, which involves implementing a numerical integration procedure on

MATLAB, a Monte Carlo construction and an approximation to the analytic result

using the Normal distribution. The numerical integration procedure involves the

joint distribution of Y and X2. We discover that f(y, x2) has a simple singularity

at (0, 0), and discuss the resulting consequences for the numerical integration. The

numerical integration is implemented via MATLAB and Maple subroutines, elim-

inating the need for evaluation via statistical tables. New graphics are presented

to aid understanding of the shape of the distribution Y . We undertake a specific

analysis of the skewness of the product of two Normally distributed variables when

the multiplicands are correlated. Section 4 considers how to assess the distribution

for the sum of the products of two Normally distributed variables by applying the

Convolution Formula. This technique is demonstrated using the products previously
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obtained via numerical integration. A computational procedure for approximating

the required distribution using convolutions is developed. In Section 5 the meth-

ods of Sections 3 and 4 are combined to compute the distribution for the sum of

products of Normally distributed variables, and thus to calculate the probability

that this sum of products is negative. We also approach this problem directly, using

a Monte Carlo approximation. Finally, in Section 6 a summary of the Report is

presented.

2 Introduction to Differential Continuous Phase

Frequency Shift Keying

Differential continuous phase frequency shift keying is a procedure for transmitting

and decoding a signal that has been intentionally disturbed by noise. Interest centres

on how accurately the receiver can decode the original signal.

In a typical encoding problem the original signal, called s(t), is differentially

encoded and then transmitted. During transmission over a channel, Gaussian noise,

w(t), is added to the signal so that the received signal, y(t), is a combination of the

transmitted signal and noise, i.e. y(t) = s(t)+w(t). The ratio of s(t) to the standard

deviation of w(t) is called the “signal to noise ratio”. The estimate of the original

signal is called the hypothesised signal, and is denoted ŝ(t). The receiver uses a

decoder to minimise the squared Euclidean distance between the transmitted signal

and the hypothesised signal. The performance of the receiver can be characterised

by the probability of error between s(t) and ŝ(t). As is common in problems of

electrical engineering, the problem is expressed via complex valued functions and

the practical solution is determined by the real component of the complex solution.

In the problem posed by Griffin (2000), interest centres on the probability that the

real component of the error metric between the transmitted and hypothesised signals

is less than 0, that is, P [Re(Me(s, ŝ)) < 0].

The transmitted signal consists of a finite number of received signals, say N of
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where ξ is a positive integer. In the case of the problem posed, the error metric is

achieved as the real component of a complex expression and is representable as

Me(s, ŝ) = 2
Nξ
∑

t=1

(yR,tyR,t−ξbR,t + yR,tyI,t−ξbI,t − yI,tyR,t−ξbI,t + yI,tyI,t−ξbR,t) . (2)

The coefficients bR,t and bI,t are real constants, predetermined along with the means

of yR,t and yI,t by the signal that is sent. Furthermore the added noise is constructed

so that
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The relative size of the different values of µ and σ2
w

are determined by the signal to

noise ratio. For problems of this type it is usual practise to set all values of µ equal

to 1, and then set σ2
w

to achieve the required signal to noise ratio for the problem

under investigation. N is usually given the value 2 or 3, ξ is set to be some value of

2k, where k ≥ 0, and bR,t and bI,t are both set to 1.

Our interest centres on finding the probability that the real component of the

error metric is negative. In Sections 3 and 4 our focus will be on the shape of the

distribution of the error metric. Thus, we shall disregard the coefficient “2” from

Equation 2.

Essentially, the problem posed by P [Re (Me(s, ŝ)) < 0] requires that we be able

to compute probabilities for the sum of products of Normal variables. We now turn

to a study of this problem in a general context.
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3 The Simplest Problem of the Product of Two

Normal Variables

The form of the simplest problem we consider is a bivariate Normal distribution

with independent variables:
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The joint density of X1 and X2 is

f(x1, x2) =
1

2πσ1σ2

e
− 1

2

(

x1−µ1
σ1

)2

− 1
2

(

x2−µ2
σ2

)2

for all x1, x2 ∈ R (3)

Our interest centres on the distribution of the product X1X2. To simplify notation,

for the remainder of this Report we let Y = X1X2.

3.1 A Numerical Methods Approximation

The conditional distribution of Y | (X2 = x2), and the distribution of X2, are:

Y | X2 = x2 ∼ N(x2µ1, x
2
2σ

2
1),

X2 ∼ N(µ2, σ
2
2).

Thus we can find the joint density of X2 and Y :

f(y, x2) = f(y | x2)f(x2)

=
1√

2π|x2|σ1

e
− 1

2x2
2

σ2
1

(y−x2µ1)2 1√
2πσ2

e
− 1

2σ2
2

(x2−µ2)2

=
1

2π|x2|σ1σ2

e
− 1

2σ2
1

(

y
x2

−µ1

)2

− 1

2σ2
2

(x2−µ2)2

. (4)

To find the marginal density f(y), we need to integrate f(y | x2)f(x2) with

respect to x2. In other words we solve

f (y) =

∞
∫

−∞

f(y | x2)f(x2)dx2

=

∞
∫

−∞

f(y, x2)dx2. (5)

This integration can be undertaken using the numerical integration procedure on the

mathematical computer package MATLAB called “quad8”, which works by using
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an adaptive recursive Newton Cotes 8 panel rule. A numeric value of
∫

f(y, x2)dx2

is obtained for an array of points in the domain of Y . These points are all extremely

close to one another and essentially cover all realistic possibilities for y. We con-

sider the density as essentially uniform on these tight intervals. These integrated

values are then summed and normalised. The same numerical integration can be

performed on the computer package Maple. The calling sequence “evalf(Int)” in-

vokes a Clenshaw-Curtis quadrature method. As in MATLAB, a numeric value of
∫

f(y, x2)dx2 is obtained for an array of points in the domain of Y . We shall compare

the results of these two integration procedures.

3.1.1 Case 1: µ1 = 1, µ2 = 0.5, σ2 = 1, cov(X1, X2) = 0.

Consider the case






X1

X2





 ∼ N
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The joint density of X1 and X2 is called a circular Normal density, and by Equation 3

f(x1, x2) =
1

2π
e−

1
2(x2

1−2x1+x2
2−x2+ 5

4). (6)

We can view f(x1, x2) in three dimensions, Figure 1, as well as by continuous con-

tours in two dimensions, Figure 2. Figure 1 shows that f(x1, x2) is a bivariate

Normal surface with a maximum at (1, 0.5). In Figure 2 the contours of constant

probability density for f(x1, x2) are drawn at 0.005, 0.055, 0.105 and 0.155. The

isoproduct lines are shown for x1x2 = ±1,±2,±3,±4,±5.

The joint density f (y, x2) can be easily calculated. By Equation 4 we have

f(y, x2) =
1

2π |x2|
e
− 1

2

(

y2

x2
2

− 2y
x2

+x2
2−x2+

5
4

)

. (7)

A study of f(y, x2) shows us that:

1. The domain for (X2, Y ) is R2 − {(0, y) | y 6= 0}, because y = x1x2 and if

x2 = 0, y must be 0.

2. When x2 and y are both large, f(y, x2) ≈ 0.

3. At pairs (y, x2) 6= (0, 0) the density will be what it is — varying real values.
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Figure 1: Joint density of X1 ∼ N(1, 1) and X2 ∼ N(0.5, 1) displayed in

three dimensions.
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Figure 2: Constant density contours for the joint density f(x1, x2) dis-

played in two dimensions, along with the isoproduct lines for X1X2.
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Figure 3: The joint density f (y, x2) displayed in three dimensions for

Case 1. For clarity the density is only displayed for f(y, x2) < 3000.

4. The joint density has a simple singularity at (y, x2) = (0, 0). The direction

from which the domain point (y, x2) = (c, 0) is approached does not affect the

fact that limx2→0 f (y, x2) does not exist. To see this, let y = kx2 for some real

k. Then Equation 7 becomes

f(y, x2) =
1

2π |x2|
e−

1
2(k2−2k+x2

2−x2+
5
4). (8)

In this form it is easy to see that f(y, x2) → ∞ as x2 → 0 for every real k.

Moreover, it is evident directly from Equation 8 that for any fixed value of

y 6= 0, limx2→0 f (y, x2) = 0. (Remember that points (y, x2) = (y, 0) for y 6= 0

are missing from the domain of (Y,X2).)

Let us now examine the density f(y, x2) as produced by Maple in Figure 3 and

MATLAB in Figure 4. Figure 3 displays a standard three dimensional picture of

the function, while Figure 4 shows the isodensity contours. The larger contours

correspond to low density values, the smaller contours correspond to high density

values.
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Figure 4: Contours for the joint density f (y, x2) displayed in two dimen-

sions for Case 1. In (a) contours are plotted at f(y, x2) = 1, 2, 3, 4, 5. In (b)

contours are plotted at f(y, x2) = 10, 20, 30, 40, 50.

A consequence of f(y, x2) being undefined when x2 = 0 and y 6= 0 is that to

integrate f(y, x2) numerically we need to separate the integral into two domains for

X2 : x2 ∈ (−∞, 0) and x2 ∈ (0,∞). Once the positive and negative halves have

been integrated individually, they are added together and normalised to give the

marginal density f(y). In MATLAB it took 10 minutes to complete this numerical

integration using interval widths of 0.01. Figure 5 demonstrates that the marginal

density is neither Normal or symmetric. Notice there is a slight fluctuation in f(y)

at y ≈ −2.3. Similar, and far more marked, fluctuations occur in Case 2, and are

discussed in the next subsection.

The density has an asymptote at y = 0, but of course we cannot display it

graphically with the computer. There is a limit to how finely we can break up the

domain of X2 numerically. But because of our analysis of the f(y, x2) function we

know that if we could do the numerical integration more finely, the area of the inner

region around y = 0 would continue to increase. This is due to the simple singularity
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Figure 5: The marginal density f(y) obtained via numerical integration

for Case 1. The function was integrated between −13 and 21, with interval

widths of 0.01.

of f(y, x2) at (y, x2) = (0, 0).

3.1.2 Case 2: µ1 = 5, µ2 = 2, σ2 = 1, cov(X1, X2 = 0).

The density studied in the previous subsection was complicated by the extreme

behaviour of f(y, x2) around the origin and the asymptote in f(y) at y = 0. We

shall now re-illustrate the method used in the previous subsection using values of µ

that give a ‘nicer’ joint density f(y, x2).

We shall consider the case
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From Equations 3 and 4 we calculate the joint densities f (x1, x2) and f (y, x2) to

be

f(x1, x2) =
1

2π
e−

1
2(x2

1−10x1+x2
2−4x2+29) (9)
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Figure 6: The joint density f (y, x2) displayed in three dimensions for

Case 2.

and

f(y, x2) =
1

2π |x2|
e
− 1

2

(

y2

x2
2

− 10y
x2

+x2
2−4x2+29

)

. (10)

Of course Equation 9 shows the density f(x1, x2) is a bivariate Normal surface which

has a maximum at (5, 2). The contours of f(x1, x2) are circles.

The joint density f(y, x2) is displayed in three dimensions in Figure 6. We can

see that, as in Case 1, there is a singularity at the origin. The analysis of the

function we studied in Case 1 did not depend on the values of µ1 and µ2 at this

point. Figure 7 displays f(y, x2) in two dimensions. Contour lines are drawn at

f(y) = 0.01, 0.03, 0.05, 0.07, 0.09. The larger isodensity contours correspond to the

lower density values and vice versa. Notice there are no contours lines displayed

when y > 0 and x2 < 0, or when y < 0 and x2 > 0. The largest value of f(y, x2) in

either of these quadrants is 7.9 × 10−6.

To find the marginal density f (y) we implement the same numerical integration

procedure on MATLAB that was described in the previous subsection. We split

f (y, x2) into negative and positive domains for X2 and integrate the function over
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Figure 7: Contours for the joint density f (y, x2) displayed in two dimen-

sions for Case 2. Contours are plotted at 0.01, 0.03, 0.05, 0.07, 0.09.

each domain separately. By combining the two domains and normalising, we can

find a numerical approximation of f(y). Figure 8 shows that although f(y) is non-

symmetric and non-Normal, it is far less so than in the previous problem. It took

200 minutes to complete the numerical integration with interval widths of 0.001.

When the numerical integration procedure was implemented on MATLAB results

showed fluctuations near y = 0, y ≈ 4, y ≈ 8, y ≈ 12, and y ≈ 17. The fluctuations

around y = 0 are shown in Figure 9, where f(y) is evaluated at intervals of 10−5.

Intuition, as well as our own analysis, suggests that these fluctuations are produced

due to the computational limitations of MATLAB and the discrete nature of the

variable, rather than because they accurately represent the density f(y). To test

this speculation the same numerical integration was implemented on Maple. The

Maple output for Case 2 is shown in Figure 10. The fluctuations did not occur in the

Maple output. For practical purposes the fluctuations produced in the MATLAB

output are irrelevant because the numerical results are so satisfactory. Moreover, as

we shall soon see, they are quite accurate when compared to the crudeness of Monte
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Figure 8: The marginal density f(y) obtained via numerical integration

for Case 2. The function was integrated between −15 and 43, with interval

widths of 0.001. Notice the fluctuations that occur at irregular intervals

along f(y).
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Figure 9: A close up view of f(y) around y = 0 for Case 2. Notice the

fluctuations near y = 0. The function was numerically integrated with

interval widths of 10−5.

13



0

0.02

0.04

0.06

0.08

–10 0 10 20 30 40 50

y

f(y)

Figure 10: Numerically integrated density f(y) produced using Maple for

Case 2. Notice there is no irregular behaviour along f(y).

Carlo methods.

3.1.3 An Open Question

While I have resolved the computation of the density for the product of two Normal

variables in a way that can be applied to any bivariate Normal, there is an open

question that I have not had time to resolve. At what (µ1, µ2) configurations does

the density for Y peak at y = 0 and at what configurations is it away from 0? Is it

always unimodal?

Rather than confront that question here, let us turn to a Monte Carlo resolution

of the same specific problems we have already resolved.

3.2 A Monte Carlo Construction

A Monte Carlo method can be used to simulate f(y). Generate two vectors, X1 and

X2, each of length N , that consist of random variables drawn from X1 ∼ N(µ1, σ
2
1)

and X2 ∼ N(µ2, σ
2
2). A new vector, Y, can be obtained by multiplying X1 and X2
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Figure 11: The marginal density, f(y), approximated using a Monte Carlo

simulation for Case 1. The number of elements drawn to form X1 and X2

was 1, 000, 000. The bins have width 0.01

element-wise. The constituent elements of Y approximate a random sample from

f(y). To approximate the probability density function f(y), sort the elements of Y

into small, evenly spaced intervals and then normalise.

3.2.1 Case 1: µ1 = 1, µ2 = 0.5, σ2 = 1, cov(X1, X2) = 0.

Two vectors of length 1, 000, 000 were obtained. The first contained elements drawn

from X1 ∼ N(1, 1) and the second contained elements from X2 ∼ N(0.5, 1). The

vectors were element-wise multiplied to form Y, a vector of length 1, 000, 000. The

elements of Y constituted a random sample from f(y). The elements were sorted

into intervals of width 0.01. The resulting histogram is shown in Figure 11. The

time taken to generate the histogram in MATLAB was approximately 5 seconds.

It can be seen that Figure 5 and Figure 11 are approximately the same shape and

cover the same domain, but that the Monte Carlo approximation is cruder than the

numerical integration.
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Figure 12: The marginal density, f(y), and marginal cumulative density,

F (y), obtained by Monte Carlo simulation for Case 2. 1, 000, 000 ((a), (c))

and 100, 000, 000 (b) elements were sorted into bins of width 0.01.

3.2.2 Case 2: µ1 = 5, µ2 = 2, σ2 = 1, cov(X1, X2) = 0.

Two random vectors were generated and multiplied in a similar fashion to the previ-

ous subsection. The length of each vector was 1,000,000. The random samples were

drawn from X1 ∼ N(5, 1) and X2 ∼ N(2, 1). After element-wise multiplication the

elements of Y were sorted into intervals of width 0.01. A histogram representing

f(y) is shown in Figure 12(a). The largest negative non-zero value of Y was at

y = −16.65, while the largest positive non-zero value was at y = 47.74.

Although the numerical integration and Monte Carlo method produce densities

of similar shapes, it is clear the approximation displayed in Figure 12(a) is far cruder
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than that displayed in Figure 8.

The immediate difference between the two marginal densities obtained by a

Monte Carlo method is that f(y) has far higher variation in Case 2 than it does

in Case 1. The number of simulated random variables and the widths of the bins

that the values are sorted into remain the same from case to case, but in Case 2

the non-zero domain of Y is much larger. Consequently, in Case 2 there will be a

smaller number of observations per interval width, and thus the variation between

contiguous bins will be larger. A smoother Monte Carlo approximation can be

obtained by increasing the number of elements drawn from X1 and X2 and/or in-

creasing the bin width. To approximate f(y) by a histogram containing 100, 000, 000

observations took approximately 26 hours in MATLAB. The speed of the program

was retarded by the size of the swap space on the computer system in the Depart-

ment of Mathematics and Statistics, University of Canterbury, Christchurch. The

resulting histogram is shown in Figure 12(b). Notice that the histogram comprising

100,000,000 observations is considerably smoother, but it still contains a surprising

amount of fuzzy resolution compared to either Figure 8 or Figure 10, and these use

bins that are ten times smaller!

Figure 12(c) shows the cumulative density function, F (y), corresponding to the

marginal density with 1, 000, 000 elements. The cumulative density functions corre-

sponding to f(y) with 1, 000, 000 and 100, 000, 000 elements are more similar than

their probability density functions are, as the fluctuations are ‘evened out’, e.g.

compare the relative smoothness of Figure 12(a) and Figure 12(c).

3.3 An Approximation to the Analytic Result using the

Normal Distribution

A third way to approximate f(y) is by calculating the first two moments of Y , and

then finding a distribution whose parameters match the moments of Y . We shall

derive the moment-generating function for Y , and show that Y can be approximated

by a Normal curve under certain conditions.
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3.3.1 The Product of Two Correlated Normally Distributed Variables

Craig (1936) was the first to study the form of the distribution of the product of

two Normally distributed variables. He investigated the product Z = X1X2

σ1σ2
, param-

eterising his results in terms of ratios δ1 = µ1/σ1, δ2 = µ2/σ2 and ρ, the correlation

coefficient, and determining the algebraic form of the moment-generating function.

Aroian (1947) showed that Z is asymptotically Normal if either δ1 or δ2 or both

approach infinity. Aroian et al. (1978) distinguished six different cases for Z de-

pending on what is known about the parameters δ1, δ2 and ρ. The cases are:

(1) δ1 = 0, δ2, ρ; (2) δ1 = δ2, ρ; (3) δ1 = δ2 = 0, ρ; (4) δ1 = δ2 = δ, ρ = 1; (5) ρ = 0,

and (6) δ1 6= δ2, ρ = 1.

Aroian et al. (1978) also proved that if δ1 = δ2 = δ, then as δ → ∞, the stan-

dardised distribution of Z approaches the standardised Pearson type III distribution

f(z) = c
(

1 +
α3z

2

)(−4/α2
3)−1

exp
(

−2z

α3

)

, z ≥ − 2

α3

, (11)

where α3 is the measure of skewness and

c =

(

4

α2
3

)(4/α2
3)− 1

2
[

Γ

(

4

α2
3

)]−1

exp

(

− 4

α2
3

)

.

That is, if W = (Z − µZ)/σZ , then as µ/σ increases to infinity, F (w) approaches

the standard Pearson type III distribution with mean zero and standard deviation

one. Cornwell et al. (1978) describe the numerical evaluation of Z.

3.3.2 The Moment-Generating Function of the Product of Two Corre-

lated

Normally Distributed Variables

Assume X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2) and that X1 and X2 have correlation ρ.

Define X1 = X0 + Z1 and X2 = X0 + Z2, where
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Z1

Z2















∼ N





























0

µ1

µ2















,















ρσ1σ2 0 0

0 σ2
1 − ρσ1σ2 0

0 0 σ2
2 − ρσ1σ2





























.

We have decomposed X1 and X2 into independent summands, one of which is shared

between them.
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To find the moment-generating function of Y = X1X2 = (X0 +Z1)(X0 +Z2), we

know that

MY (t) =

∞
∫

−∞

etyf(y)dy

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

et(x0+z1)(x0+z2)f(x0, z1, z2)dx0dz1dz2

=
1√

2πρσ1σ2

1
√

2π (σ2
1 − ρσ1σ2)

1
√

2π (σ2
2 − ρσ1σ2)

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

e
t(x0+z1)(x0+z2)− 1

2

(x0−0)2

ρσ1σ2
− 1

2

(z1−µ1)2

σ2
1
−ρσ1σ2

− 1
2

(z2−µ2)2

σ2
2
−ρσ1σ2 dx0dz1dz2

=
(

√

(1 − ρσ1σ2t)
2 − σ2

1σ
2
2t

2

)−1

e

µ1µ2t+1
2(µ2

1σ2
2+µ2

2σ2
1−2ρµ1µ2σ1σ2)t2

(1−ρσ1σ2t)2−σ2
1

σ2
2

t2 . (12)

See Appendix A for complete exposition.

An MGF of this form was found by Craig (1936), who calculated MZ(t), where

Z = X1X2

σ1σ2
, to be

MZ(t) =
(

√

[1 − (1 + ρ)t] [1 + (1 − ρ)t]
)−1

e
2δ1δ2t+(δ21+δ22−2ρδ1δ2)t2

2[1−(1+ρ)t][1+(1−ρ)t] , (13)

Note that this result is written only in terms of the ratios δ1 and δ2, which are

proportional to the reciprocals of the coefficient of variation, and ρ, the correlation

coefficient.

To confirm the equivalence of Equations 12 and 13, observe that

MZ(t) = MX1X2
σ1σ2

(t)

= MY

(

t

σ1σ2

)

. (14)

By replacing every “t” in Equation 12 with “ t
σ1σ2

” it is soon seen that the two MGFs

are identical.

3.3.3 Moments of the Product of Two Correlated Normally Distributed

Variables

The moment-generating function can be used to find moments about the origin of Y .

By differentiating MY (t) and evaluating at t = 0 we can find as many moments as
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required. These moments can be used to calculate the mean, variance and skewness

of the product of two correlated Normal variables. Using Maple we find that:

E(Y ) = µ1µ2 + ρσ1σ2, (15)

V (Y ) = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2ρµ1µ2σ1σ2 + ρ2σ2

1σ
2
2, (16)

α3(Y ) =
6σ1σ2 (µ1µ2σ1σ2 (ρ2 + 1) + ρ (µ2

1σ
2
2 + µ2

2σ
2
1)) + 2ρσ3

1σ
3
2 (3 + ρ2)

(µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 (1 + ρ2) + 2ρµ1µ2σ1σ2)

3/2
. (17)

Craig (1936) found equivalent moments, again using his (δ1, δ2, ρ) parameterisation.

3.3.4 Special Cases

We shall investigate three special cases for the product of two correlated Normal

variables. First, we shall examine what happens when ρ = 0. In this case the Normal

variables are independent. Second, we shall consider µ1 = µ2 = 0, σ1 = σ2 = 1 and

ρ = 1. Here we are considering the square of a standard Normal distribution.

Conventional theory tells us that we can expect to obtain the MGF and moments

of a Chi-Square distribution. Finally, we examine what happens as the ratio of µ/σ

changes over different values of ρ. This is achieved by setting µ1 and µ2 to µ and

holding σ1 and σ2 constant at 1. ρ varies between −1 and 1. Note that our three

cases are equivalent to, in order, cases 5, 3 and 2 from Aroian et al. (1978).

Case I: ρ = 0

When ρ = 0, X1 and X2 are independent. The moment-generating function of Y

can be written as

MY (t) =
(

√

1 − σ2
1σ

2
2t

2

)−1

e

µ1µ2t+1
2(µ2

1σ2
2+µ2

2σ2
1)t2

1−σ2
1

σ2
2

t2 . (18)

The mean, variance and skewness are:

E(Y ) = µ1µ2, (19)

V (Y ) = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2, (20)

α3(Y ) =
6µ1µ2σ

2
1σ

2
2

(µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2)

3/2
. (21)

The moments of Y can be found more quickly by observing that

E(Y r) = E(Xr
1)E(Xr

2), and the moments of the Normal distribution are well-known.

The values of E(Y ), V (Y ) and α3(Y ) obtained using this method are the same as

20



the values produced using the moment-generating function; see Appendix B for

details. The distribution of the product of two independent Normal variables cor-

responds to Cases 1 and 2 as discussed in the previous subsections, where we had

cov(X1, X2) = 0, and as such we shall consider this problem in greater depth in

Section 3.3.5.

Case II: µ1 = µ2 = 0, σ1 = σ2 = 1, ρ = 1

When two perfectly correlated standard Normal variables are multiplied together,

the moment-generating function, mean, variance and skewness of their product, Y ,

can be written as:

MY (t) = (1 − 2t)−
1
2 , (22)

E(Y ) = 1, (23)

V (Y ) = 2, (24)

α3(Y ) = 2
√

2. (25)

It is well known that if U1, U2, . . . , Uν are independent standard Normal variables,

then
∑ν

i=1 U2
i has a Chi-square distribution with ν degrees of freedom. Thus it is

no surprise that the MGF and moments are identical to those from a Chi-Square

distribution with one degree of freedom.

Note that when ρ = −1, we obtain

MY (t) = (1 + 2t)−
1
2 , (26)

the MGF of a “negative Chi-square” distribution with one degree of freedom.

Case III: µ1 = µ2 = µ, σ1 = σ2 = 1

In this case the moment-generating function of Y can be written as

MY (t) =
(

√

(1 − ρt)2 − t2
)−1

e
µ2t(1+t−ρt)

(1−ρt)2−t2 . (27)

The expected value of Y is

E(Y ) = µ2 + ρ. (28)

Observe that for any distinct value of ρ, E(Y ) increases at an increasing rate as

ratio µ/σ increases absolutely. However, for any specific value of µ/σ, E(Y ) increases

linearly on ρ ∈ [−1, 1]. Both Case I and Case II occur as special cases in Figure 13.
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Figure 13: Expected value of Y for Case III.

When ρ = 0 we observe that the expected value of Y is µ2, which is the value given

in Equation 19 with µ1 = µ2 = µ. Remember that for Case III we have set σ2 = 1,

so when µ = 0 and ρ = 1 we have the Chi-square case. From Figure 13 we can see

that this gives an expected value of 1. Note that if the graph were to include values

of µ that are less than zero, the graph would be symmetric about µ = 0. Note that

for Case III we could write any “µ” or “µ/σ” term as “δ”, but for the sake of clarity

we shall retain “µ” for the remainder of this subsection.

The variance of Y is

V (Y ) = 2µ2 (1 + ρ) + ρ2 + 1. (29)

Figure 14 shows how V (Y ) changes as µ/σ varies over different values of ρ. As

ratio µ/σ increases the variance will get larger increasingly quickly, except for when

ρ = −1, when this is the case the variance is always 2. If µ/σ is held constant, the

variance increases as ρ increases; the larger µ/σ is specified to be, the faster V (Y )

increases. As with the expected value, if the graph was plotted over negative values

of µ, it would be symmetric about µ = 0.
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Figure 14: Variance of Y for Case III.

The skewness of Y is

α3(Y ) =
6µ2 (ρ + 1)2 + 2ρ (3 + ρ2)

(2µ2 (ρ + 1) + ρ2 + 1)3/2
. (30)

Figure 15 shows how the skewness changes as µ/σ varies over different values of ρ.

Observe that when ρ = 0, α3(Y ) = 0 when µ/σ = 0, but as the ratio increases

the skewness rises rapidly, until it is at its maximum when µ/σ = 1, as the ratio

continues to increase α3(Y ) gradually decreases to 0. When µ = 0 and ρ = 1 the

skewness is 2
√

2, and when µ = 0 and ρ = −1 the skewness is −2
√

2. In general,

α3 → 0 as µ/σ → ∞. This is because in Equation 30 we have a µ2 term over a µ3

term. The closer | ρ | is to one the slower the approach of α3(Y ) to 0. The sole

exception to this limit is when ρ = −1, whenever this is the case the skewness is a

constant −2
√

2. As with E(Y ) and V (Y ), if α3(Y ) had been plotted over negative

values of µ it would be symmetric about µ = 0.

3.3.5 The Product Of Two Independent Normally Distributed Variables

After investigating the distribution of the product of two correlated Normally dis-

tributed variables we now turn our attention back to Case I, where the variables are
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Figure 15: Skewness of Y for Case III.

independent. Remember that in both Case 1 and Case 2 of Sections 3.1 and 3.2 we

had cov(X1, X2) = 0.

We know that the MGF of W ∼ N(µ, σ2) is

MW (t) = eµt+ 1
2
σ2t2 , (31)

giving E(W ) = µ and V (W ) = σ2. A study of Equation 18 shows that as δ1 → ∞
and δ2 → ∞, the coefficient of the exponential term will have a decreasing influence

on MY (t). In fact, as δ1 and δ2 increase,

MY (t) → eµ1µ2t+ 1
2(µ2

1σ2
2+µ2

2σ2
1)t2 . (32)

We recognise that as δ1 and δ2 both increase without bound, MY (t) converges to a

Normal moment-generating function of Y with mean µ1µ2 and variance µ2
1σ

2
2 + µ2

2σ
2
1.

In Equation 18 it was shown that the analytic result of the product of two Normal

distributions is not a Normal distribution, however Equation 32 shows that the limit

of MY (t) is Normally distributed. In other words, the product of X1 ∼ N(µ1, σ
2
1)

and X2 ∼ N(µ2, σ
2
2) tends towards a N(µ1µ2, µ

2
1σ

2
2 + µ2

2σ
2
1) distribution as δ1 and δ2

increase.

This knowledge allows us to investigate a third approximation method in our
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quest to assess the distribution for the product of two independent Normal vari-

ables. When δ1 and δ2 are large, the distribution of the product of two independent

Normal variables will be approximately Normal. Since the Normal distribution is

fully specified by its first two moments, we can calculate the mean and the variance

of Y and approximate f(y) by forming a Normal density with these parameters.

As we have already seen, the mean and variance for Case I are:

E(Y ) = µ1µ2,

V (Y ) = σ2
1σ

2
2 + µ2

1σ
2
2 + µ2

2σ
2
1

= σ2
1σ

2
2

(

1 + δ2
1 + δ2

2

)

. (33)

The expression for V (Y ) obtained in Equation 33 differs from the variance of Y

deduced from Equation 32. In Equation 33 an analytic result was calculated, while

in Equation 32 we took the limit of MY (t) as δ1 → ∞ and δ2 → ∞. It is clear that

under these conditions the σ2
1σ

2
2 term becomes negligible. In the two Cases we shall

consider in this Section we assume that X1 and X2 have equal variance, that is,

σ2 = σ2
1 = σ2

2, so

V (Y ) = σ2
(

σ2 + µ2
1 + µ2

2

)

= σ4
(

1 + δ2
1 + δ2

2

)

. (34)

We can approximate the distribution of the product of two independent Normally

distributed variables with a N(µ1µ2, σ
4 (1 + δ2

1 + δ2
2)) distribution. The approxima-

tion will improve as δ1 and δ2 become large, since the limit of the distribution is

N(µ1µ2, σ
4 (δ2

1 + δ2
2)).

Before moving on we shall briefly consider what happens to MY (t) as δ1 and δ2

decrease to 0. Now the moment-generating function of Y is certainly not Normal.

A study of MY (t) shows us that as δ1 → 0 and δ2 → 0,

MY (t) →
(

1 − σ2
1σ

2
2t

2
)−1/2

. (35)

A quick study of MY (t) shows that all its odd moments are equal to zero. Conse-

quently Y is symmetric about the origin. Also V (Y ) → σ2
1σ

2
2 and the kurtosis of

the limit of Y is 9.
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3.3.6 The Skewness of the Analytic Result for Independent Variables

One way to predict the adequacy of the Normal approximation is by considering the

skewness of Y from the analytic result. We know the skewness of Case I is

α3(Y ) =
6µ1µ2σ

2
1σ

2
2

(σ2
1σ

2
2 + µ2

1σ
2
2 + µ2

2σ
2
1)

3/2

=
6δ1δ2

(σ1σ2)
−3 (σ2

1σ
2
2 + µ2

1σ
2
2 + µ2

2σ
2
1)

3/2
. (36)

The skewness of Y depends on the ratios δ1 and δ2. Clearly α3(Y ) → 0 as δ1 → ∞
and δ2 → ∞. The adequacy of the approximating Normal curve is related to the

size of α3(Y ) for large δ1, δ2 values. As the skewness decreases the approximation

improves. Note that α3(Y ) will always be skewed in the direction of the mean of

Y , µ1µ2. The skewness will be largest when dα3(Y )
dδ1

= dα3(Y )
dδ2

= 0. Differentiating

α3(Y ) with respect to δ1 and δ2, setting the two derivatives to zero and solving

simultaneously we find that α3(Y ) has extreme points at (δ1, δ2) = (±1,±1). By

differentiating again we find that the maximum value of α3(Y ) occurs at (−1,−1)

and (1, 1). The maximum value of α3(Y ) is 1.15 (2dp). The minimum value of

α3(Y ), which is −1.15 (2dp), occurs at (−1, 1) and (1,−1). Thus the skewness of

Y is largest when µ1 = σ1 and µ2 = σ2. When X1 and X2 have equal variance the

skewness will be largest when µ1 = µ2 = σ.

The advantage of this method of approximation compared to the methods studied

in Section 3.1 and Section 3.2 is that it is far quicker. Calculating the two numbers

that represent µ and σ using straightforward formulae is simpler and faster than

either numerically integrating a function over narrow interval widths, or running a

Monte Carlo simulation a large number of times.

3.3.7 Case 1: µ1 = 1, µ2 = 0.5, σ2 = 1, cov(X1, X2) = 0.

In this Case δ1 = 1, δ2 = 0.5 and α3(Y ) = 0.8̇. The small size of δ1 and δ2

result in f(y) being significantly skewed. This suggests that it is not appropriate to

approximate f(y) with a Normal density for Case 1. This suspicion is reinforced by

a study of Sections 3.1.1 and 3.2.1, where it is demonstrated that the density of Y is

clearly not Normal. In fact, since α3(Y ) = 0.8̇ and µ1 = σ1, this is one of the least

suitable (δ1, δ2) configurations for us to approximate with a Normal distribution.
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The parameters of our Normal approximation to the analytic result are:

µ = µ1µ2

= 0.5 (37)

and σ2 = σ2
(

µ2
1 + µ2

2 + σ2
)

= 2.25. (38)

To approximate f(y) we could use a N(0.5, 2.25) density but in this case that ap-

proximation would clearly be inappropriate.

3.3.8 Case 2: µ1 = 5, µ2 = 2, σ2 = 1, cov(X1, X2) = 0.

In Case 2 we have δ1 = 5, δ2 = 2 and α3(Y ) = 0.37 (2dp). The skewness here is

less than the skewness in Case 1 so, although the approximation to f(y) is non-

Normal, it is far closer to being Normal than in Case 1. The parameters of the

approximating Normal distribution are µ = 10 and σ2 = 30. To approximate f(y)

we use a N(10, 30) density. This is shown by the green line in Figure 16.

3.3.9 An Open Question

In this Subsection it has been shown that the limiting distribution of the product of

two independent Normal distributions is also a Normal distribution. However the

question remains: When is the ratio of mean to variance large enough for f(y) to be

adequately approximated by a Normal density? Is it the individual ratios µ1/σ and

µ2/σ that determine the adequacy of the Normal approximation to f(y), or is the

combined ratio µ1µ2/σ
2 more important? Is there a critical value of α3(Y ) below

which a Normal approximation is justified when ratios µ1/σ and µ2/σ are large?

Rather than confront those questions here, we shall put the Normal approxima-

tion aside until Section 5.

3.4 Comparison of Approximation Methods

The distribution of the product of two independent Normal densities has been ap-

proximated using three different methods. In Section 3.1, Section 3.2 and Section 3.3
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we approximated the density of Y by numerical integration, by a Monte Carlo con-

struction and via a Normal distribution. These three approximation methods were

studied for the Cases where (µ1, µ2) was equal to (1, 0.5), Case 1, and (5, 2), Case

2. For each Case we set σ2 = 1.

In Case 1 the approximations of f(y) produced by numerical integration and

Monte Carlo simulation are of the same shape and cover similar domains — compare

Figure 5 and Figure 11. Remember that the numerical integration has interval

widths of 0.01 and for the Monte Carlo simulation N = 1, 000, 000. The major

difference between the two methods is that the Monte Carlo approximation is far

cruder than the approximation attained through numerical integration. The Normal

approximation, a N(0.5, 2.25) curve, is clearly a different shape to the other two f(y)

approximations. The shape difference of the Normal approximation is not surprising

considering the high value of α3(Y ).

In Case 2 the similarity of the approximations obtained via numerical integra-

tion, blue, and Monte Carlo simulation, red, can be seen in Figure 16. The nu-

merical integration has interval widths of 0.001 and for the Monte Carlo simulation

N = 100, 000, 000. Notice how much more accurate the numerical integration is.

The Normal approximation, green, is much closer to the other two approximations

than it was in Case 1. We expect that as µ1 and µ2 increase relative to σ2 the ap-

proximations of f(y) obtained via numerical integration and Monte Carlo methods

will become increasingly similar to a N(µ1µ2, σ
2(µ2

X1
+ µ2

X2
+ σ2)) density.

Table 1 shows that in both Cases the mean and variance calculated from f(y)

are very similar. This is true for Case 1 even though the shape of the Normal

approximation is very different to the shape of the other two approximations. In both

Cases the skewness of the numerical integration and Monte Carlo approximations is

very close to the exact known skewness of the product distribution. The skewness

of the Normal approximation will always be zero, suggesting that in both of these

two Cases it is a comparatively poor method of approximation.

In Case 1 there is more difference between the three different mean and variance

estimates than there is in Case 2. If the numerical integration takes place using

interval widths of 0.001 rather than 0.01, the approximate values of E(Y ) and V (Y )

are 0.5000 and 2.2499 respectively. If the Monte Carlo simulation takes place with
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Figure 16: A comparison of the three different approximations of f(y)

for Case 2. The Monte Carlo (red) and numerical integration (blue)

approximations have interval widths of 0.001. The Normal approximation

to the analytic result is green.

a larger value of N , say with 100, 000, 000 simulations rather than 1, 000, 000, then

E(Y ) = 0.4999 and V (Y ) = 2.2500.
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Case Method of Approximation Mean Variance Skewness

Case 1 Numerical Integration 0.5004 2.2522 0.8894

Monte Carlo 0.4978 2.2418 0.8941

Normal 0.5 2.25 0

Exact Moment Values 0.5 2.25 0.8889

Case 2 Numerical Integration 10.0000 29.9943 0.3649

Monte Carlo 9.9992 29.9952 0.3653

Normal 10 30 0

Exact Moment Values 10 30 0.3651

Table 1: A comparison of the mean and variance of the three approxi-

mate distributions. The exact known values of the first three moments

of the product distribution are included for comparison. The Normal

approximation uses the exact known values of the first two moments of

the product distribution. Values are recorded to 4dp.

4 Sums of Products of Two Normal Variables

To calculate the error metric, Me(s, ŝ), we need to investigate the density for a sum

of several products of Normal variables. In Section 3 we found how to obtain the

density for the product of two Normal variables. In this section we shall consider

how to find the density for the sum of several products. One way is to use the theory

of convolutions.

4.1 Convolutions of Numerical Integration

The theory of convolutions is one method that can be used to find the distribution

of a sum of random variables. If we have two random variables, Y1 and Y2, whose

joint density is given by f(y1, y2), we can write the joint density of Z = Y1 + Y2 and

Y2 as

f(z, y2) = f(y1, y2)

∣

∣

∣

∣

∣

dy1

dz

∣

∣

∣

∣

∣

. (39)

Since
∣

∣

∣

∣

∣

dy1

dz

∣

∣

∣

∣

∣

= 1, (40)
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Equation 39 becomes

f(z, y2) = f(z − y2, y2). (41)

Summing over y2 gives

f(z) =
∑

y2

f(z − y2, y2). (42)

Formula 42 is called the Convolution Formula. In the case of independent variables,

as we study here, Equation 42 reduces to

f(z) =
∑

y2

f(z − y2)f(y2). (43)

In practical terms, the Convolution Formula involves obtaining vectors which

contain a grid of possible values of Y1 and Y2 along with the density valuations

at each respective point. Computationally the procedure for implementing this

convolution process is as follows,

1. Select a value of Z.

2. Find pairs of (y1, y2) that sum to z.

3. Evaluate f(y1) and f(y2) over the vectors y1 and y2 that support the sum.

4. Flip the vector f(y2), so the orders of y1 and yF
2 are appropriate to generate

the sum in each component.

5. Find the component product of f(y1) and the flipped f(y2).

6. Sum the product vector.

Once this process is repeated for all possible values of Z, the vector containing f(z)

values is normalised. The resulting mass function is an approximation of the density.

4.1.1 Case 1: µ1 = 1, µ2 = 0.5, σ2 = 1, cov(X1, X2) = 0.

In Section 3.1.1 we used numerical integration to obtain an approximation of the

marginal density f(y), where X1 ∼ N(1, 1), X2 ∼ N(0.5, 1) and cov(X1, X2) = 0.

The resultant density was shown in Figure 5. The problem we address here is how to

determine the density for the sum of N independent generations of such a variable

Y . This is achieved sequentially by first convoluting f(y) with itself, and then
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Figure 17: A sequence of convolutions based on the numerical integration

obtained in Section 3.1. The panels represent fZi
(z) for i = 1, . . . , 5.

convoluting f(y) with the achieved density for the convoluted sum. The density

f(y) can be convoluted either with itself or with another density any number of

times. To display quickly how the distribution of the sum converges to a Normal we

shall convolute the sum densities with themselves a few times.

We shall convolute Yi ∼ fYi
(y) with itself. The densities fZj

(z) = f[

∑2j−1

i=1
Yi

](z),

j = 1, . . . , 5, obtained through a series of convolutions are demonstrated in Fig-

ure 17. The top panel displays the unadulterated fZ1(z) = fY (y) density for com-

parison. Note the density featured in the top panel is the density displayed in

Figure 5. The second panel displays fZ2(z). The density still retains a maxi-

mum at 0, but the curve is noticeably less ‘peaked’. The third panel demonstrates

fZ3(z) = f∑4

i=1
Yi

(y). The density now has a mode greater than 0, and although it

is still slightly skewed, it looks much more like a Normal density. The fourth and
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Figure 18: A sequence of convolutions based on the numerical integration

obtained in Section 3.1. The panels represent fZi
(z) for i = 1, . . . , 5.

fifth panels show fZ4(z) = f∑8

i=1
Yi

(y) and fZ5(z) = f∑16

i=1
Yi

(y). We can see that as

the number of summed variables increases, fZ(z) approaches normality, even though

the original fY (y) is far from a Normal density. Of course such is expected from the

Central Limit Theorem. However the convolution procedure allows us to compute

exact distribution values for non-Normal distributions of sums of fewer variables.

The only non-Normal parts of fZ5(z) are the extreme tails, in the top and bottom

2%.

4.1.2 Case 2: µ1 = 5, µ2 = 2, σ2 = 1, cov(X1, X2) = 0.

In Section 3.1.1 we used a numerical integration procedure to attain an approx-

imation of the marginal density f(y), where X1 ∼ N(5, 1), X2 ∼ N(2, 1) and

cov(X1, X2) = 0. The density is displayed in Figure 8. Figure 18 displays a se-
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ries of convolutions fZj
(z), j = 1, . . . , 5. Note that fZ1(z) = f(y). The density in

the top panel is the approximation of the marginal density which was attained in

Section 3.1.2. As with Case 1, which was described in the previous Subsection, f(y)

is convoluted with itself 1, 2, 4, 8 and 16 times. Once again, although f(y) is clearly

non-Normal, fZj
(z) quickly approaches normality as j increases.

5 Calculation of the Error Metric

The problem that instigated this research involves finding the probability that the

real component of the error metric between transmitted and hypothesised signals is

negative. See Section 2 for full details. The form of the error metric that we shall

concern ourselves with for the remainder of this Report is

Me(s, ŝ) =
Nξ
∑

t=1

(yR,tyR,t−ξbR,t + yR,tyI,t−ξbI,t − yI,tyR,t−ξbI,t + yI,tyI,t−ξbR,t) . (44)

Calculation of Me(s, ŝ) involves computing the density for the sum of four or more

products of variables, each assessed as having a Normal distribution.

We investigate three procedures to approximate the error metric. One way to

obtain Me(s, ŝ) is by computing the densities of products of independent Normally

distributed variables via numerical integration and then using the Convolution For-

mula to identify the density of the sum of a series of these products, that is, by com-

bining the processes introduced in Sections 3.1 and 4. Another way to approximate

Me(s, ŝ) is to implement a Monte Carlo simulation. A third way to approximate the

distribution of the error metric is with a Normal distribution whose parameters are

set to the mean and variance of Me(s, ŝ). This approximation is only appropriate

when α3(Y ) is small.

5.1 Properties of the Error Metric

5.1.1 Correlation of Products of Normal Variables

In Section 4 we studied the distribution of sums of products of independent Normal

variables, where each product is uncorrelated with any other product. However, a

study of Equation 44 shows us that when calculating the distribution of the error
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metric, some of the products of Normal variables will be correlated. In fact, if we

assess
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then the covariance of Y0Y1 and Y1Y2 is

cov(Y0Y1, Y1Y2) = E[(Y0Y1 − µ0µ1)(Y1Y2 − µ1µ2)]

= E(Y0Y
2
1 Y2) − µ0µ1E(Y1Y2) − µ1µ2E(Y0Y1) + µ0µ

2
1µ2

=

∞
∫

−∞

y0f(y0)dy0

∞
∫

−∞

y2
1f(y1)dy1

∞
∫

−∞

y2f(y2)dy2

−µ0µ1

∞
∫

−∞

y1f(y1)dy1

∞
∫

−∞

y2f(y2)dy2

−µ1µ2

∞
∫

−∞

y0f(y0)dy0

∞
∫

−∞

y1f(y1)dy1 + µ0µ
2
1µ2

= µ0

(

µ2
1 + σ2

1

)

µ2 + µ0µ
2
1µ2 − µ0µ

2
1µ2 − µ0µ

2
1µ2

= σ2
1µ0µ2, (45)

which is non-zero when both µ0 6= 0 and µ2 6= 0.

5.1.2 Mean and Variance of the Error Metric

Standard distribution theory tells us that for random variables X0 and X1,

E(X0 + X1) = E(X0) + E(X1) and V (X0 + X1) = V (X0) + V (X1) + 2cov(X0, X1).

Since, from Section 3.3, E(YtYt+1) = µtµt+1 and V (YtYt+1) = σ2
1σ

2
2 + µ2

1σ
2
2 + µ2

2σ
2
1,

we have

E (Me(s, ŝ)) = E





Nξ
∑

t=1

(yR,tyR,t−ξbR,t + yR,tyI,t−ξbI,t − yI,tyR,t−ξbI,t + yI,tyI,t−ξbR,t)





=
Nξ
∑

i=1

(bR,tE(YR,tYR,t−ξ) + bI,tE(YR,tYI,t−ξ) − bI,tE(YR,t−ξYI,t)

+bR,tE(YI,tYI,t−ξ))

=
Nξ
∑

t=1

(µR,tµR,t−ξbR,t + µR,tµI,t−ξbI,t − µI,tµR,t−ξbI,t + µI,tµI,t−ξbR,t)(46)

and

V (Me(s, ŝ)) = V





Nξ
∑

t=1

(yR,tyR,t−ξbR,t + yR,tyI,t−ξbI,t − yI,tyR,t−ξbI,t + yI,tyI,t−ξbR,t)
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=
Nξ
∑

t=1

(

b2
R,tV (YR,tYR,t−ξ) + b2

I,tV (YR,tYI,t−ξ)

+b2
I,tV (YI,tYR,t−ξ) + b2

R,tV (YI,tYI,t−ξ)

+2bR,tbI,t (cov(YR,tYR,t−ξ, YI,t−ξYR,t) + cov(YR,tYI,t−ξ, YI,t−ξYI,t)

−cov(YR,tYR,t−ξ, YR,t−ξYI,t) − cov(YI,tYR,t−ξ, YI,t−ξYI,t))

+2bR,tbR,t+ξ(cov(YR,tYR,t−ξ, YR,t+ξYR,t) + cov(YI,tYI,t−ξ, YI,t+ξYI,t))

+2bR,tbI,t+ξ(cov(YI,tYI,t−ξ, YI,tYR,t+ξ) − cov(YR,tYR,t−ξ, YR,tYI,t+ξ))

+2bI,tbR,t+ξ(cov(YR,tYI,t−ξ, YR,tYR,t+ξ) − cov(YR,t−ξYI,t, YI,tYI,t+ξ))

+ 2bI,tbI,t+ξ(−cov(YI,t−ξYR,t, YR,tYI,t+ξ) − cov(YR,t−ξYI,t, YI,tYR,t+ξ))
)

=
Nξ
∑

t=1

(

b2
R,t

(

σ2
R,t−ξσ

2
R,t + µ2

R,t−ξσ
2
R,t + µ2

R,tσ
2
R,t−ξ + σ2

I,t−ξσ
2
I,t

+µ2
I,t−ξσ

2
I,t + µ2

I,tσ
2
I,t−ξ

)

+ b2
I,t

(

σ2
R,tσ

2
I,t−ξ + µ2

R,tσ
2
I,t−ξ

+µ2
I,t−ξσ

2
R,t + σ2

R,t−ξσ
2
I,t + µ2

I,tσ
2
R,t−ξ + µ2

R,t−ξσ
2
I,t

)

+2bR,tbI,t

(

σ2
R,tµR,t−ξµI,t+ξ + σ2

I,t−ξµR,tµI,t

−σ2
R,t−ξµR,tµI,t − σ2

I,tµR,t−ξµI,t−ξ

)

+2bR,tbR,t+ξ

(

σ2
R,tµR,t−ξµR,t+ξ + σ2

I,tµI,t−ξµI,t+ξ

)

+2bR,tbI,t+ξ

(

σ2
I,tµI,t−ξµR,t+ξ − σ2

R,tµR,t−ξµI,t+ξ

)

+2bI,tbR,t+ξ

(

σ2
R,tµI,t−ξµR,t+ξ − σ2

I,tµR,t−ξµI,t+ξ

)

+2bI,tbI,t+ξ

(

−σ2
R,tµI,t−ξµI,t+ξ − σ2

I,tµR,t−ξµR,t+ξ

))

. (47)

When µR,t = µI,t = µ, bR,t = bI,t = 1 and σ2
R,t = σ2

I,t = σ2 for all t, the expectation

and variance of the error metric reduce to

E (Me(s, ŝ)) = 2Nξµ2 (48)

and V (Me(s, ŝ)) = 4Nξσ2
(

σ2 + 2µ2
)

(49)

5.2 Calculation of the Error Metric using Numerical Inte-

gration and Convolutions

To use numerical integration and convolutions to identify the density of the error

metric via the processes discussed in the preceding Sections, each product must be

uncorrelated with any other product. A study of Equation 44 shows that we cannot
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rearrange Me(s, ŝ) so that this will be the case. However, an inspection of Equa-

tions 48 and 49 shows that, whether we are summing independent or correlated

variables, the expectation and variance of the error metric will be the same. Simu-

lations suggest that this relationship does not hold for any higher moments. Thus,

although we cannot expect the approximation of the error metric attained by using

our numerical integration and convolution procedure to be as accurate as a Monte

Carlo approximation, the two methods should produce densities that are reasonably

similar. This is because, as Nξ increases, both distributions will approach Normal-

ity (by the Central Limit Theorem) and will have the same mean and variance (by

Equations 48 and 49).

A study of Equation 44 shows that to assess the distribution for the error metric,

we first need to find the density of the product of two Normally distributed variables

via numerical integration. Then we convolute Nξ of these individual densities of

products of Normal variables. Since each of our YR,t and YI,t terms is Normally

distributed with mean µ and variance σ2, we merely find the density for the product

of two N(µ, σ2) densities using numerical integration, and then use the Convolution

Formula to find the density of the sum of Nξ of these products. Finally, we calculate

P (Me(s, ŝ)) < 0 by forming the cumulative sum of Me(s, ŝ) and finding its value at

0.

5.3 Calculation of the Error Metric using a Monte Carlo

Construction

A Monte Carlo construction can be used to simulate the error metric directly from

Equation 44. We can approximate the distribution of the error metric by imple-

menting Monte Carlo simulations on either MATLAB or WinBUGS. A value of

Me(s, ŝ) can be calculated for any set of received Y values. If a large number of sets

of Y values are randomly drawn, and if Me(s, ŝ) is calculated for each of the sets,

then we have a large number of random samples drawn from the distribution of the

error metric, our target distribution. An estimate of P [Me(s, ŝ) < 0] is obtained by

counting the number of random samples which have taken on a negative value, and

dividing by the total number of samples.
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The density of the error metric is approximated by sorting the samples into in-

tervals and normalising. Scott (1992) showed that the shape of a histogram estimate

depends on how the bins are defined. The smaller the bin widths, the more accu-

rate the estimates are. However, narrow bins tend to introduce extra variability.

In Section 3.2 we discussed how finely inaccurate the Monte Carlo approximation

is compared to the numerically integrated and convoluted approximation, viz. Fig-

ures 5 and 11. This is a common problem for researchers who are interested in

studying the density of the target distribution (Hoti et al., 2002). One way to al-

leviate this is to ‘smooth’ the data using the average of M different histograms,

all based on the same bin width, h, but using different equally spaced sideways

shifts (Scott, 1985). When the number of histograms is increased to infinity the bin

width of the averaged shifted histogram vanishes (since h/M → 0 as M → ∞) and

the estimate becomes the kernel density estimator (KDE),

f̂KDE(x) =
1

nh

n
∑

i=1

K
(

x − Xi

h

)

, (50)

where K(u) is a kernel smoothing function, n is the number of draws from the

target density and h > 0 is a smoothing parameter. The smoothing parameter

plays a role similar to that of the bin widths of the histogram. When comparing

the approximated histogram with the KDE, we can view the KDE as the average of

infinitely many histograms with bin width h.

MATLAB programs to implement kernel density estimates are available from the

Rolf Nevanlinna Institute’s internet site3. The smoothing function used in Examples

1 and 2 is K(u) = (1 − |u|)+, where (u)+ = u if u > 0 and zero otherwise. This

is known as the triangle kernel function. To compare the approximated histogram

with the KDE, we can view the KDE as the average of infinitely many histograms

with bin width h.

The density of the error metric can be directly simulated using WinBUGS. Y

values are generated and the relevant statistics are directly obtained. If the vari-

able under investigation is assessed as continuous, as it is in this case, WinBUGS

automatically plots a smoothed KDE of the target density. The KDE is calculated

using a default h value of 0.2.

3www.rni.helsinki.fi/∼fjh
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5.4 Calculation of the Error Metric using Normal

Approximations

If the values of α3(Y ) are sufficiently small we can assess the distribution of the

error metric by approximating the product of two Normal distributions as another

Normal distribution. This approximation will improve as Nξ increases, since the

Central Limit Theorem tells us that the distribution of the error metric will become

increasingly Normal as the number of sums of products increases. In Section 5.1

we showed that, for our problem, the mean and variance of Me(s, ŝ) are 2Nξµ2 and

4Nξσ2 (σ2 + 2µ2) respectively.

5.5 Example 1

To illustrate the discussion of the previous two subsections, and to show how to

calculate P [Me(s, ŝ) < 0] in practice, let N = 2, ξ = 1, bR,i = bI,i = [1 1] and
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.

The form of the error metric is, from Equation 44,

Me(s, ŝ) =
2

∑

t=1

(yR,tyR,t−1bR,t + yR,tyI,t−1bI,t − yI,tyR,t−1bI,t + yI,tyI,t−1bR,t)

= yR,0yR,1 + yR,1yI,0 − yR,0yI,1 + yI,0yI,1 + yR,1yR,2 + yR,2yI,1

−yR,1yI,2 + yI,1yI,2. (51)

5.5.1 Example 1: Numerical Integration and Convolutions

We use numerical integration, as described in Section 3.1, to approximate the density

of the product of two N(1, 1) distributions. Each product is integrated between

limits of -8.0005 and 17.0005, with interval width 0.001.

To compute density Me(s, ŝ), we sum the eight products of Normal variables us-

ing the Convolution Formula. Me(s, ŝ) has values recorded on the interval
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Figure 19: The density of the error metric approximated by numerical

integration and convolutions (blue), a Monte Carlo method (red), a kernel

density estimate (black) and a Normal density (green) for Example 1.

(−82.004, 118.004). In Figure 19 this approximation of Me(s, ŝ) is represented by

the smooth blue line.

5.5.2 Example 1: Monte Carlo using MATLAB

By directly using a Monte Carlo construction we can approximate the density of

the error metric. To simulate the Y vectors needed we randomly select 15, 000, 000

observations for each YR,t and YI,t, t = 0, 1, 2. We chose to select 15, 000, 000 obser-

vations because that is the maximum number that can currently be stored in the

memory of a computer operating in the Department of Mathematics and Statistics,

University of Canterbury. A value of the error metric is calculated for each of these

15, 000, 000 sets of Y values. By sorting these values into fine intervals we obtain an
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approximation of the density of the error metric. The simulated values of Me(s, ŝ)

were sorted into bins of width 0.001. Figure 19 shows this approximation as the

jagged red line. To estimate P [Me(s, ŝ) < 0] we calculate the proportion of our

15, 000, 000 simulations that produce a negative value of Me(s, ŝ).

The KDE was computed using a smoothing parameter of h = 0.4. It is dis-

played in Figure 19 as the smooth black line. As expected the KDE bisects the

approximating histogram.

5.5.3 Example 1: Monte Carlo using WinBUGS

The density of the error metric can be directly simulated using WinBUGS. 5, 000, 000

sets of Y values were generated and the mean, variance, skewness and

P [Me(s, ŝ) < 0] were directly obtained. These statistics are displayed in Table 2.

The KDE computed using WinBUGS has the same shape and coverage as the KDE

generated using MATLAB.

5.5.4 Example 1: Normal Approximation

In the previous section we showed that, for our examples, the expectation and

variance of the error metric can be represented as E (Me(s, ŝ)) = 2Nξµ2 and

V (Me(s, ŝ)) = 4Nξσ2 (σ2 + 2µ2). Since YR,t ∼ N(1, 1) and YI,t ∼ N(1, 1) for

t = 0, 1, 2, N = 2 and ξ = 1, the density of the error metric is approximated

by a Normal density with mean 4 and variance 24.

Recall that in Section 3.3 we found that the skewness of the product of two inde-

pendent Normal variables, α3(Y1Y2), is greatest when µ1 = σ1 and µ2 = σ2. In this

example each individual α3(Y ) value is the largest possible. Although the Central

Limit Theorem tells us that the distribution of Me (s, ŝ) will approach Normality as

the number of summed variables increases, in this case we are only summing eight

products of Normals. Thus, although the resulting density is less non-Normal than

the original product, it is still far from Normal itself.
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NI MC MAT KDE MC WinB Normal

Mean 4.0032 3.9993 3.9985 3.9996 4

Variance 23.9955 24.0006 24.1588 23.9648 24

Skewness 0.2067 0.8165 0.8166 0.8135 0

P [Me(s, ŝ) < 0] 0.2007 0.1840 0.1881 0.1851 0.2071

Table 2: Comparison of statistics for the different error metric approxi-

mations for Example 1.

5.5.5 Example 1: Results

Figure 19 displays the four densities produced by our different approximation meth-

ods. The density of the error metric is clearly non-Normal. The KDE (black) is a

smoothed version of the Monte Carlo (red), and both of these densities are quite

different from the numerically integrated and convoluted (blue) and Normal (green)

densities. Given the high skewness of each product of Normal variables this is hardly

surprising.

Table 2 shows that the mean, variance and skewness for the error metric, and

the probability of observing a value less than 0, are very similar for both Monte

Carlo approximations and the smoothed KDE. Again, this is not a surprise when

we consider that both Monte Carlo estimates were formed using the same process on

different computer packages, and that the KDE is a smoothed estimate of the Monte

Carlo data. The numerically integrated and convoluted and Normal approximations

have a similar mean and variance to the other methods, but both underestimate the

skewness.

When we consider the probability of observing a value of the error metric less

than zero, all five methods are reasonably similar, but examination of Figure 19 sug-

gests this may be a matter of luck! The numerical integration and Normal densities

both give higher probabilities to large negative values and smaller probabilities to

values slightly below zero.
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5.6 Example 2

In the second example we assume that N = 2, ξ = 1, bR,i = bI,i = [1 1] and
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.

The form of the error metric is the same as in Equation 51,

Me(s, ŝ) = yR,0yR,1 + yR,1yI,0 − yR,0yI,1 + yI,0yI,1 + yR,1yR,2 + yR,2yI,1

−yR,1yI,2 + yI,1yI,2.

5.6.1 Example 2: Numerical Integration and Convolutions

Numerical integration is used to identify the density of the product of two N(1, 0.1)

distributions. The product is integrated between limits −1 and 4 with interval

widths of 0.001, and is convoluted to produce an approximate density for M(s, ŝ).

This is displayed in Figure 20 as the smooth blue line.

5.6.2 Example 2: Monte Carlo using MATLAB

A Monte Carlo construction can be used to simulate an error metric directly.

15,000,000 values were simulated for each of the six Normally distributed variables.

An approximating histogram is shown in Figure 20 as the jagged red line. A KDE,

displayed as a smooth black line, was computed using h = 0.2.

5.6.3 Example 2: Monte Carlo using WinBUGS

WinBUGS was used to directly obtain the density of the error metric. 5, 000, 000 sets

of Y values were generated and the mean, variance, skewness and P [Me(s, ŝ) < 0]

were calculated. They are displayed in Table 3.
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Figure 20: The density of the error metric approximated by numerical

integration and convolutions (blue), a Monte Carlo method (red), a kernel

density estimate (black) and a Normal density (green) for Example 2.

5.6.4 Example 2: Normal Approximation

Equations 48 and 49 tell us that E(M(s, ŝ)) = 4 and V (M(s, ŝ)) = 1.68. We ap-

proximate the density of the error metric with a N(4, 1.68) density. This is shown

in Figure 20 as the green line.

On this occasion we expect the Normal approximation will more accurately re-

flect the density of the error metric. Each individual product of Normals is less

skewed than in Example 1, since µ = 1√
10

σ.

5.6.5 Example 2: Results

Figure 20 shows that the densities produced have much more in common than they

did in the previous example. The approximations obtained through numerical inte-
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NI MC MAT KDE MC WinB Normal

Mean 4.0023 4.0002 3.9993 3.9993 4

Variance 1.6755 1.6805 1.8463 1.6810 1.68

Skewness 0.1183 0.4404 0.4393 0.4396 0

P [Me(s, ŝ) < 0] 0.0007 0.0002 0.0001 0.0002 0.0010

Table 3: Comparison of statistics for the different error metric approxi-

mations for Example 2.

gration and convolutions and the Normal density are very similar. Although they

are still noticeably different from the Monte Carlo and KDE approximations, the

four densities are much more similar than they were in Example 1. This is due to

the individual densities of products of two N(1, 0.1) variables being more Normal

themselves, since the µ/σ ratio is larger.

In both of the examples we have studied Nξ has been small. In fact it has been

2, the smallest specification possible. In an example with a larger value of Nξ, which

contains more densities to sum, we can expect the different approximation methods

to produce increasingly similar results.

Table 3 shows how similar the statistics for the different approximations are.

As expected, the difference between the different means and variances is small.

The KDE and the two Monte Carlo approximations are still more skewed, but the

skewness is roughly half what it was in Example 1. For all approximation methods

P [Me(s, ŝ) < 0] is very small, although the numerically integrated and convoluted

and Normal approximations still give higher probabilities to negative values.

6 Summary

We began this Report by briefly introducing the process of Differential Continuous

Phase Frequency Shift Keying. The error metric was introduced and we stated

our problem in full detail. We discovered that the calculation of the error metric

involves two distinct steps: we must assess the distribution for the product of two

Normally distributed variables, and we must identify the distribution of the sum of

a number of these products of Normal distributions. Sections 3 and 4 discuss these
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two processes in depth.

In Section 3 the density of the product of two independent Normal variables is

approximated using three different methods. We considered a numerical methods

approximation, which consisted of implementing numerical integration procedures

on both MATLAB and Maple. We considered a Monte Carlo construction. We

investigated the moment generating function of the product of two correlated Nor-

mal variables, and showed how the mean, variance and skewness change for three

special cases. We also showed that as the ratio of µ to σ increases, the distribu-

tion of the product of two independent Normal variables tends towards a Normal

distribution. These three approximation methods were compared over two exam-

ples. It was shown that although both the numerical integration and the Monte

Carlo simulation produced densities of the same shape, and similar statistics, the

numerical integration was finely accurate compared to the crudeness of the Monte

Carlo method. It was shown that it is inappropriate to use a Normal density as an

approximation when µ/σ is small.

Section 4 considered how to identify the density of the sum of the products of

two Normal variables. The Convolution Formula was introduced, and the compu-

tational steps used to identify the density of a sum of random variables outlined.

The technique was demonstrated using the product Normal densities obtained in

Section 3.

In Section 5 the theory of the preceding Sections was combined. The density of

the error metric was approximated using numerical integration and the Convolution

Formula, and P [Me(s, ŝ) < 0] was computed. A Monte Carlo method was used

to approximate the density of the error metric, as was a Normal density. The

densities were shown to have the same shape and similar statistics, but the density

of (Me(s, ŝ)) approximated using numerical integration and convolutions is more

accurate.
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Appendix A: The Moment-Generating Function of

the Product of Two Correlated Normally Distributed

Variables

Assume X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2) and that X1 and X2 have correlation ρ. If

we define X1 = X0 + Z1 and X2 = X0 + Z2, where
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Z2















∼ N





























0

µ1

µ2















,















ρσ1σ2 0 0

0 σ2
1 − ρσ1σ2 0

0 0 σ2
2 − ρσ1σ2





























.

We have decomposed X1 and X2 into independent summands of which one is shared

between them.

To find the moment-generating function of Y = X1X2 = (X0 +Z1)(X0 +Z2), we

know that

MY (t) =

∞
∫

−∞

etyf(y)dy

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

et(x0+z1)(x0+z2)f(x0, z1, z2)dx0dz1dz2

=
1√

2πρσ1σ2

1
√

2π (σ2
1 − ρσ1σ2)

1
√

2π (σ2
2 − ρσ1σ2)

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

e
t(x0+z1)(x0+z2)− 1

2

(x0−0)2

ρσ1σ2
− 1

2

(z1−µ1)2

σ2
1
−ρσ1σ2

− 1
2

(z2−µ2)2

σ2
2
−ρσ1σ2 dx0dz1dz2 (52)

To undertake the triple integration in Equation 52, we will need to reorganise the

exponent of the exponential term. Let

q1 = t (x0 + z1) (x0 + z2) −
1

2

(

(x0 − 0)2

ρσ1σ2

− (z1 − µ1)
2

σ2
1 − ρσ1σ2

− (z2 − µ2)
2

σ2
2 − ρσ1σ2

)

. (53)

If we define

q2 = −1

2

(

x0 − c1 (z1 + z2) − c2

c3

)2

− 1

2

(

z1 − c4z2 − c5

c6

)2

− 1

2

(

z2 − c7

c8

)2

+ c9, (54)

we can rewrite q1 in the form of q2 by equating terms c1 to c9 with some part of q1.

The moment-generating function of Y can then be written in the form

MY (t) =
1√

ρσ1σ2

1
√

σ2
1 − ρσ1σ2

1
√

σ2
2 − ρσ1σ2

c3c6c8e
c9 . (55)
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By rewriting q1 and q2 as

q1 = x2
0

(

t − 1

2ρσ1σ2

)

+ x0 (z1 + z2) (t) + x0 (0) + z2
1

(

− 1

2(σ2
1 − ρσ1σ2)

)

+z1

(

µ1

σ2
1 − ρσ1σ2

)

+ z2
2

(

− 1

2(σ2
2 − ρσ1σ2)

)

+ z2

(

µ2

σ2
2 − ρσ1σ2

)

+ z1z2 (t)

+

(

− µ2
1

2(σ2
1 − ρσ1σ2)

− µ2
2

2(σ2
2 − ρσ1σ2)

)

(56)

and

q2 = x2
0

(

− 1

2c2
3

)

+ x0 (z1 + z2)

(

c1

c2
3

)

+ x0

(

c2

c2
3

)

+ z2
1

(

− c2
1

2c2
3

− 1

2c2
6

)

+z1

(

−c1c2

c2
3

+
c5

c2
6

)

+ z2
2

(

− c1

2c2
3

− c4

2c2
6

− 1

2c2
8

)

+ z2

(

−c1c2

c2
3

− c4c5

c2
6

+
c7

c2
8

)

+z1z2

(

−c2
1

c2
3

+
c4

c2
6

)

+

(

− c2
2

2c2
3

− c2
5

2c2
6

− c2
7

2c2
8

+ c9

)

, (57)

and then solving on Maple, we get the results:

c1 =
tρ

1 − 2tρσ1σ2

,

c2 = 0,

c3 =

√

ρ

1 − 2tρσ1σ2

,

c4 =
tσ1(tρσ1σ2 − 1)(σ1 − ρσ2)

t2ρσ3
1σ2 − (tρσ1σ2 − 1)2 ,

c5 =
µ1(2tρσ1σ2 − 1)

t2ρσ3
1σ2 − (tρσ1σ2 − 1)2 ,

c6 =

√

√

√

√

2tρσ2
1σ2 (σ1 − ρσ2

2) − σ1 (σ1 + ρσ2)

t2ρσ3
1σ2 − (tρσ1σ2 − 1)2 ,

c7 =
tρσ1σ2 (tρσ1σ2 (µ1 + µ2) − t (µ1σ

2
2 + µ2σ

2
1) − µ1 − 2µ2) + tµ1σ

2
2 + µ2

(tρσ1σ2 − 1)2 − t2σ2
1σ

2
2

,

c8 =

√

√

√

√

t2ρ2σ2
1σ

2
2 (σ2

1 − ρσ1σ2 + σ2
2) + tρσ1σ2

2 (2ρσ1 − tσ2
1σ2 − 2σ2) + σ2 (σ2 − ρσ1)

(tρσ1σ2 − 1)2 − t2σ2
1σ

2
2

,

c9 =
t2 (µ2

1σ
2
2 + µ2

2σ
2
1 − 2µ1µ2σ1σ2ρ) + 2tµ1µ2

2
(

(tρσ1σ2 − 1)2 − t2σ2
1σ

2
2

) .

Also

c3c6c8 =

√

√

√

√

ρσ1σ2 (σ2
1 − ρσ1σ2) (σ2

2 − ρσ1σ2)

(tρσ1σ2 − 1)2 − t2σ2
1σ

2
2

. (58)

To find the moment-generating function of Y , substitute c3, c6, c8 and c9 into
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Equation 55,

MY (t) =
1

√

ρσ1σ2 (σ2
1 − ρσ1σ2) (σ2

2 − ρσ1σ2)

√

√

√

√

ρσ1σ2(σ2
1 − ρσ1σ2)(σ2

2 − ρσ1σ2)

(tρσ1σ2 − 1)2 − t2σ2
1σ

2
2

e

t2(µ2
1σ2

2+µ2
2σ2

1−2µ1µ2σ1σ2ρ)+2tµ1µ2

2((tρσ1σ2−1)2−t2σ2
1

σ2
2)

=
(

√

(tρσ1σ2 − 1)2 − t2σ2
1σ

2
2

)−1

e

µ1µ2t+1
2(µ2

1σ2
2+µ2

2σ2
1−2ρµ1µ2σ1σ2)t2

(1−tρσ1σ2)2−σ2
1

σ2
2

t2 . (59)

Appendix B: Moments

The moment-generating function can be used to find moments about the origin of Y .

By differentiating MY (t) and evaluating at t = 0 we can find as many moments as

required. These moments can be used to calculate the mean, variance and skewness

of the product of two correlated Normal variables. Using Maple we find that

MY (0) = 1,

M ′
Y (0) = µ1µ2 + ρσ1σ2,

M ′′
Y (0) =

(

µ2
1 + σ2

1

) (

µ2
2 + σ2

2

)

+ 4µ1µ2ρσ1σ2 + 2ρ2σ2
1σ

2
2,

M ′′′
Y (0) =

(

µ3
1 + 3µ1σ

2
1

) (

µ3
2 + 3µ2σ

2
2

)

+ 9ρσ1σ2

(

µ2
1 + σ2

1

) (

µ2
2 + σ2

2

)

+6ρ2σ2
1σ

2
2 (ρσ1σ2 + 3µ1µ2) .

Thus

E(Y ) = µ1µ2 + ρ, (60)

V (Y ) = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2µ1µ2ρσ1σ2 + ρ2σ2

1σ
2
2, (61)

α3(Y ) =
6σ1σ2 (µ1µ2σ1σ2 (ρ2 + 1) + ρ (µ2

1σ
2
2 + µ2

2σ
2
1)) + 2ρσ3

1σ
3
2 (3 + ρ2)

(µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 (1 + ρ2) + 2ρµ1µ2σ1σ2)

3/2
. (62)
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