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Abstract

We develop a new outlook on the use of experts’ probabilities for inference, distinguish-
ing the information content available to the experts from their probability assertions based
on that information. Considered as functions of the data, the experts’ assessment func-
tions provide statistics relevant to the event of interest. This allows us to specify a flexible
combining function that represents a posterior probability of interest conditioned on all the
information available to any of the experts; but it is computed as a function of their prob-
ability assertions. We work here in the restricted case of two experts, but the results are
extendible in a variety of ways. Their probability assertions are shown to be almost suffi-
cient for the direct specification of the desired posterior probability. A mixture distribution
structure that allows integration in one dimension is required to yield the complete compu-
tation, accounting for the insufficiency. One sidelight of this development is a display of the
moment structure of the logitnormal family of distributions. Another is a generalisation of
the factorisation property of probabilities for the product of independent events, allowing
a parametric characterisation of distributions which orders degrees of dependency. Three
numerical examples portray an interesting array of combining functions. The coherent pos-
terior probability for the event conditioned on the experts’ two probabilities does not specify
an externally Bayesian operator on their probabilities. However, we identify a natural con-
dition under which the contours of asserted probability pairs supporting identical inferences
are the same as the contours specified by EB operators. Our discussion provides motivation
for the differing function values on the contours. The unanimity and compromise proper-
ties of these functions are characterised numerically and geometrically. The results are quite
promising for representing a vast array of attitudes toward experts, and for empirical studies.

Key Words: Combining probabilities, expert judgement, unanimity, compromise, exter-
nally Bayesian pooling operators, exchangeability, conditional independence, logitnormal
distribution.

1 Introduction

Resolving statistical problems of combining information presented by two experts hinges on
the difficult feature that we typically regard the opinions of the experts dependently. That
is, knowledge of what one expert says tells us something about what the other expert will
say ... even when the second expert does not know specifically what the first expert has
said. The dependence in our attitude towards the experts arises from recognition of the
similar training and apprenticeship they would have engaged in order to become recognised
as experts. Deciphering the information that they share from their unique contributions is
a statistical problem amenable to probabilistic analysis.

∗Address for correspondence: Frank Lad, Department of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand. Email: F.Lad@math.canterbury.ac.nz
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We propose a new formal resolution to the problem of combining the information pre-
sented via probability assertions of two experts. We presume that “the statistician” is a
coherent expert on inferential logic and a generally educated person, but is not an expert
on the specific subject matter at hand. The statistician may be consulting for an interested
client who is not an expert on the subject matter either. Even when the statistician (or
client who is represented) cannot imagine the content of the expertise to be elicited from the
two experts, he/she may be able to formulate an uncertain opinion regarding the strength of
the evidence they might be able to provide for the question at hand. Such judgements mo-
tivate the reliance on an expert in the first place, as well as the decision to consult a second
expert for an opinion. What would be unknown is whether the strength of the information
is supportive or in opposition to the occurence of the event in question. We shall describe
how the consulting statistician’s uncertainty may be expressed and the form in which the
experts’ probability assertions must be combined in order to make coherent inferences from
their assertion. Although each of their probilities is presumed to be a sufficient summary
of their own information sources, the two probabilities are not sufficient for all of the infor-
mation jointly. We identify conditions under which the product of the experts’ odds ratios
is a statistic that is almost sufficient to portray the information both of their expertise pro-
vides, and we show what assessments need to be made by the statistician to complete the
combination function via a mixture intergration. Under more general conditions, sufficiency
requires the multiplicand odds ratios to be raised to differing powers. However, in no case are
the experts’ probabilities completely sufficient for all the information available to the experts.

The question of combining experts’ probabilities to inform one’s uncertainty about an
event has received regular attention over the past forty years. Nonetheless, the developments
we present here are novel. An insightful technical review of research relevant to our contri-
bution appears in an article by Clemen and Winkler (1999), and a broader review of related
literature appears in a book by French and Rios Insua (2000). We shall recall here only two
themes of the multi-faceted research on this problem that relate specifically to our work.

One line of research stemming from the original work of McConway (1981) has developed
important results on the mechanical pooling of individual opinion distributions into a consen-
sus opinion. In this tradition, functional analysis is used to identify all pooling functions that
satisfy various reasonable sounding properties. Once proposed among desireable features of
a combination function is that the pooled distribution, when updated by a likelihood func-
tion agreed upon by all contributing individuals, should equate with the pooled distribution
generated from the individuals’ updated distributions. This feature was termed “external
Bayesianity” by Madansky (1964). A complete array of studied properties appears in the
review of French and Rios Insua (4.5-4.10, pp. 111-115). The promise of this line of research
was exemplified by a synthetic technical result characterising the algebraic form of externally
Bayesian pooling operators, achieved by Genest, McConway and Schervish (1986). In the
context of a single event, H, assessed by two experts with the probabilities p1 and p2 (the
context we shall study here), it says that a pooling function g(p1, p2) yielding a “combined
probability” is an externally Bayesian operator if and only if it has the form

g(p1, p2) = pw
1 p

(1−w)
2 / [pw

1 p
(1−w)
2 + (1− p1)w(1− p2)(1−w)] for some w ∈ [0, 1] . (1)

Two other possible properties of combining functions have been aired as the unanimity prin-
ciple, proposed in Morris (1974), and its extension to the compromise principle, studied
in Clemen and Winkler (1990). The former requires that when the two experts assert the
same probability value then the combination function agrees as well: g(p, p) = p . The lat-
ter requires more generally that the combination functions yields a value between the two
experts’ probabilities when they do not agree: g(p1 < p2) ∈ [p1, p2] . When studying an
array of combination functions that do not universally honour these principles, Clemen and
Winkler assess the extent to which they do and do not. For example, it is evident from (1)
that external Bayesianity would imply unanimity. Further developments along the line of
establishing families of distributions that exhibit specific properties appear in the article of
Dawid, DeGroot and Morterra (1995) followed by extensive discussion.

A second tack was originated by Winkler (1968) and Morris (1974), followed by works
of Lindley, Tversky and Brown (1979), Good (1979) and Dickey (1980). It explicitly treats
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experts’ probabilities as data relevant to an event, and derives coherent forecasting distribu-
tions implied by various assumptions about the generation of this “data.” Lindley’s further
considerations (1985) were the first to claim that the property of external Bayesianity is not
appropriate to a coherent inference from experts’ assertions. Algebraic details of his analy-
sis rely on the use of a multivariate normal distribution over the experts’ log-probabilities,
applied only to contrasts. With this proviso, O’Hagan concurred in the discussion, though
Bernardo questioned it.

The outlook we present here follows Winkler’s tack of treating experts’ probabilities as
statistical data relevant to the uncertain event at hand. But we highlight the fact that these
probabilities are statistics, that is, functions of the complete data available to the experts.
We investigate the sufficiency of these statistics for the complete information available to
the experts that motivates their probabilities. In deriving an exact solution, we find that
the coherent posterior probability does not specify an externally Bayesian operator; nor
does it even support unanimity of the inference with the two experts when they agree in
their probability assertion value. This non-concurrence arises even in the context that the
experts are highly trusted, a context that we define precisely. Moreover, we can identify
precisely the extent to which the Clemen-Winkler extension to the compromise principle will
be honoured. When algebraic details are addressed, a logitnormal rather than a lognormal
distribution over experts’ probabilities is motivated.

An important feature of our analysis is the formal distinction between information that
the two experts hold in common and the information they hold only separately. This dis-
tinction has been made as early as the works of Zeckhauser (1971) and Winkler (1981), and
is studied in clever examples by Clemen (1987) yielding interesting insights when formal
conditions of exchangeable quantities are involved. We analyse this distinction in a more
general context and show that its recognition is useful for the problem of decyphering the
evidential impacts of the distinct information types.

The survey of French and Rios Insua references several applied studies using experts’
judgements as data. A further application by Lad and Di Bacco (2002) exemplifies a distri-
bution which assesses a pair of experts’ probabilities exchangeably, but subsequently learns
not to regard succeeding pairs of their assertions exchangeably. The authors’ reconsideration
of that problem led to the analysis reported in the present article. While the computational
results presented in the present article are merely numerical, they do exemplify very general
features of the problem that are worth examining. The easiest first application of our results
to the data presented in Clemen and Winkler (1990) is currently under investigation.

2 Trusting and Cooperative Scientific Inference

At the heart of the problem we address here is an event whose value is unknown to anyone.
We shall denote it by H . For example, H might equal 1 if a patient has a cancer of the
lung, and equal 0 if not. Again, H might equal 1 if a skull discovered in an anthropological
excavation is the skull of a male, and equal 0 if from a female; or H might equal 1 if a scoop
of about 50 honey bees taken from a beehive shows evidence of Varroa mites in a powdered
sugar test, and equal 0 if not.

The problem revolves upon the uncertain knowledge of three different people: a statisti-
cian, whom we shall designate by S, for example in denoting probability assertions by PS(.);
a person who is considered by S to be a specialist expert about matters related to H, whose
probability assertions we shall denote by P1(.); and a second expert on such matters, whose
assertions we denote similarly by P2(.). The statistician is typically a consultant for still
another person who has a practical interest in H but is no more specifically informed about
H than is the statistician. However, in our notation we attribute the opinions to S.

We also distinguish three different sources of information relevant to this problem. There
is basic background information that would be known by most educated people, including
the statistician. We denote this basic information by the event B. (Following the style of
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de Finetti, we do not distinguish between an event and its numerical indicator. An event is
defined to equal 1 if the statement that defines it is true, and to equal 0 if it is false.) Of
course B itself might equal 1 or 0, because these facts might in principle be true or false.
However, most people with very basic background knowledge of the general subject would
know it to equal 1. For example, most people know that in human populations the sex ratio
of males to females at birth is almost equal to but is slightly larger than 1. In principle, it
might not even be close to 1, and in populations of different species the sex ratio at birth is
not close to 1. However, most people know that in human populations it is. Since all three
people involved in our problem are presumed to be aware of the truth of B, there will be
no need for us to declare it specifically in any probability assertions we shall discuss. It can
always be presumed to be a motivating component of any probability assertion P (.), however
P may be subscripted. Nonetheless, B needs to be recognised as relevant, and is mentioned
explicitly in some of our discussion.

A second type of information concerning our problem is information that would be known
by most any specialist expert, but would generally not be known or even thought about by
people who are not specifically knowledgeable experts. Again, in principle this information
might or might not be true. For example, most beekeepers (with the specialist knowledge
they gain) would know that in a healthy beehive, the sex ratio of male to female bees at
birth in the early spring is close to 1/25. This information is not widely known among the
generally educated public, including the statistician who would be uncertain about the ratio
if asked, and who may never have even thought about the role this ratio plays in the health
of a hive. We shall denote such information by the event F.

A third type of information is detailed information that is known uniquely by specifically
informed experts. The information known specifically to expert 1 in our problem is denoted
by G1, and that specifically known to expert 2 by G2. For example, expert 1 might know
that a specific beehive has been treated with the insecticide “Capstan” during the previous
year, although this is unknown to expert 2. Alternately, expert 2 might know that the “mite
count” in this very same beehive during a recent check of the bottom board screen was 3,
while this is unknown to expert 1.

When asked to assert their probabilities for event H , we shall suppose that these three
individuals respond with the numbers

PS(H) = πS , P1(H) = π1, and P2(H) = π2 . (2)

3 How should the statistician use the probability

assertions of the experts?

The problem we address here does not concern the very real possibility that two different
people may assert different probabilities for an event even when informed by the very same
data. We shall assume the statistician trusts the two experts to the extent he/she presumes
that if informed by the same training, experience and information as the experts, the statis-
tician would assert the same probabilities they do. The reason for relying on the experts’
assertions is that not only does the statistician lack the training and general experiences of
these experts along with their specific information, but the statistician cannot even imagine
what the relevant information possibilities F, F̃ , G1, G̃1, G2, G̃2 are (meaning, how they are
defined) so to assert personal probabilities for H conditioned upon them!

Nonetheless, the statistician is aware that in asserting their personal probabilities P1(H)
and P2(H), these experts are making use of their knowledge of FG1 and FG2 in assessing
their probabilities. Although unaware of what this information and its relevance to the
experts’ probability assertions might be, the statistician would like very much to use both of
their their announced probabilities to specify his/her own appropriate PS(H |FG1G2) based
on the information available to both of them. We shall derive explicitly how this can be
done using only the probabilities elicited from the experts, π1 and π2, rather than requiring
a complete description of the information on which they base their assertions.
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4 Modelling the experts’ probabilities as statistics

Firstly, the statistician realises that each expert i’s probability assertion Pi(H) is identical
to Pi(H |FGi). This is due to the theorem of total probability because expert i also asserts
Pi(FGi) = 1; for expert i knows the information defining FGi to be the case. Moreover,
as we explained above, S trusts each expert i to the extent that PS(H |FGi) would also
equal each Pi(H |FGi) if only S had the training, experience and information to know what
these conditioning quantities were. Now, being told the values of these probabilities by the
experts, S agrees with them and thus is able to assert them too! To summarise this realisation
formally, we can write

PS(H |FGi) = PS(H |FGi, πi) = PS(H |πi) = πi = Pi(H |FGi) = Pi(H) for each i .
(3)

It is worth a technical remark here that equation (3) amounts to the specification that ex-
pert i’s probability is consider by S to be sufficient for the information on which it is based:
PS(H |FGi, πi) = πi . That is, the data provided by the expert’s πi is sufficient to express
the conditional probability given a complete description of the information upon which it is
based, FGi . Although the statistician would agree with either expert’s assertion, asserted on
its own, the question remains how to use the information provided by both of their assertions.
What we need to develop is the appropriate value desired by the statistician, PS(H |FG1G2).
This is a probability that conditions on all the relevant information, whether shared or unique
to the two individuals.

We presume a second useful agreement to feature in this scenario of cooperative and
trusting science. Both experts are presumed to understand the same evidential content of
their common information, F , for the unknown event, H . That is, they would agree on an
asserted probabilistic basis for the likelihoods

Pi(F |H) ≡ L(H ; F ) and Pi(F |H̃) ≡ L(H̃ ; F ) . (4)

(We use tilde notation, as in H̃ , to denote the complement of an event throughout this pa-
per.) It is not required that these likelihood probabilities are evaluated or asserted by the
experts. In fact, we presume explicitly that they do not announce such valuations. Nonethe-
less, were they able to compare notes with one another, we presume they would agree in
their assessments.

Using the same notation of likelihood symbol, L, we shall denote the specific likelihoods
defined by the considered opinions of experts 1 and 2 about their personal information sources
by

Pi(Gi|H) ≡ L(H ; Gi) and Pi(Gi|H̃) ≡ L(H̃ ; Gi) . (5)

Moreover, we presume that S would agree with these likelihoods as well if the probability
assertions defining them were publicly specified.

These agreements that we presume among the three people are natural to presume about
the relations among an educated person and the probabilistic assertions of two trusted ex-
perts. However, they explicitly preclude situations where the statistician may distrust an
“expert’s” assessments on account of suspected bias as may be the case in an adversarial
situation such as legal evidence presented by an opponent. The overall framework we are
developing may be expanded to address such situations, but that is a matter beyond our con-
siderations here. Our framework does not preclude the experts having different approaches
or personalities underlying their investigations. In fact it expressly allows for this. That is
why a second expert is consulted, for another perspective on the matter of H. What we do
presume is that the statistician does not have specific knowledge of the experts’ differences
... only knowing that they are both recognised experts worth consulting. Nonetheless, the
general result we shall derive allows for this as well, that the specific information of one
expert may be considered to preempt that of the other to some extent.

Before continuing with the analysis of how the experts’ announced probabilities are now
to be used, let us introduce a bit more useful notation. When the experts announce their
probabilities, it will be convenient for us to transform them into odds ratios (in favour), and
to use the notation

5



ρ ≡ πS

1− πS
and Ti ≡ Pi(H |FGi)

Pi(H̃ |FGi)
=

πi

1− πi
≡ ti for i = 1, 2 . (6)

Similarly, we transform the likelihoods into likelihood ratios, denoted by

`F ≡ L(H ; F )
L(H̃ ; F )

and `Gi ≡
L(H ; Gi)
L(H̃ ; Gi)

for i = 1, 2 . (7)

Notice one difference between the quantities Ti and `F , `Gi : the quantities Ti are public
quantities, reported to the statistician by the experts; whereas the quantities `F and `Gi

have not been reported publicly as such. They have merely been assessed either formally or
informally by the experts when assessing the probabilities Pi(H) that they do report. Of
course ρ is a number asserted by S via PS(H). We will use all of these quantities in the
derivation that follows.

A second notice regarding the quantities Ti is in order. Before the statistician asks the
experts for their probability assertions regarding H, the numbers they will respond are un-
known. The statistician, of course, has no way of knowing the content of these assertions,
but is merely uncertain about what the experts might say. It is for this reason that the
upper case quantities Ti are defined in (6) as unknown variables, while the lower case ti
denote the specific values these quantities take on as announced by the experts. We shall
see the relevance of this feature later on in our development. The same comment could be
made about the likelihood ratios that we have denoted by `F , `G1 and `G2 . Although the
experts will never announce the values of these quantities in our scenario, a consideration
of what their values might be will be found relevant to the statistician’s inferences from the
probabilities the experts do announce.

In this context, it is worth noting now that the presumptions of equation (3) imply that
the statistician’s prevision (expectation) for the expert’s probability assertion value must be
identical to the statistician’s own (relatively uninformed ... only by B) probability. For

PS [Pi(H |FGi)] = PS [PS(H |FGi)] = PS(H) . (8)

Readers who are unfamiliar with de Finetti’s language of “prevision” would know this result
by the familiar statement that “the expectation of a conditional expectation must equal the
unconditional expectation.”

5 Computational representation of PS(H|FG1G2)

Our goal in this section is to analyse the statistician’s posterior probability for H given
all the information available to the two experts, PS(H |FG1G2), expressed in terms of the
probability for H conditioned only on the experts’ probability assertions, viz.,

PS [H |FG1G2) = PS(H |(P1(H |FG1) = π1) (P2(H |FG2) = π2)] .

It will be convenient to derive the computational form of this probability in terms of the
posterior odds ratio in favour of H:

OddsS(H |FG1G2) = PS(H |FG1G2) / PS(H̃ |FG1G2) .

In deriving this odds ratio, it will be helpful to recall and use a simple relation between
any conditional odds ratio and the associated inverse probability ratio, which you can derive
for yourself, viz.,

Odds(A|B) =
P (B|A)
P (B|Ã)

Odds(A) (9)

Applying the general structure of (9) to arguments in the first and third lines that follow,
along with standard factoring in the second line, our desired odds ratio reduces to

OddsS(H |FG1G2) =
P (G1G2F |H)
P (G1G2F |H̃)

OddsS(H)
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=
P (G2|G1FH)
P (G2|G1FH̃)

P (G1|FH)
P (G1|FH̃)

P (F |H)
P (F |H̃)

OddsS(H)

=
P (G2|G1FH)
P (G2|G1FH̃)

Odds(H |G1F )
Odds(H |F )

P (F |H)
P (F |H̃)

OddsS(H)

=
P (G2|G1FH)
P (G2|G1FH̃)

T1

`F ρ
`F ρ . (10)

The final line uses the notation we defined in (6) and (7), and allows for some cancellations.
The conditional probability ratio P (G2|G1FH)

P (G2|G1FH̃)
will require some discussion.

5.1 An array of expected relations among
the information contents of F , G1 and G2

To complete the analysis of (10) we need now to address the statistician’s attitude toward
the relation between the information available uniquely to each of the experts, G1 and G2,
and F and H . This relation arises in the conditional probabilities in the numerator and de-
nominator of (10). In terms of the numerator for example, the question rests as to whether
knowing H is the case and knowing all the information F that is available to any “recog-
nised expert”, the information provided by knowing additionally what expert 1 knows would
provide further information about the truth of what expert 2 knows. Should P (G2|G1FH)
simply equal P (G2|FH)? Or should P (G2|G1FH) be augmented on account of the addi-
tional conditioning on G1? The simplest, and we believe often relevant assertion would be to
regard the additional information sources G1 and G2 exchangeably via a mixture of condi-
tional independent assertions given FH and given FH̃. Such an assertion is appropriate in
situations where much more information about H is required, above and beyond the general
information of experts provided by F, and it is expected that each of the separate experts
would have extensive individual information to provide, unrelated to that available to the
other. Intuitively, one’s feelings in these situations are much like those experienced at the
early stages of a huge picture puzzle. Technically it would mean that

PS(G2G1|FH) = PS(G1|FH) PS(G2|FH) , and
PS(G2G1|FH̃) = PS(G1|FH̃) PS(G2|FH̃) (11)

or equivalently,

PS(G2|G1FH) = PS(G2|FH) , and PS(G2|G1FH̃) = PS(G2|FH̃) . (12)

However we can extend this analysis to a wider class of exchangeable and non-exchangeable
assessments which would be appropriate in situations where it is felt that we are accumulat-
ing the final bits of information that could possibly be available about H. This is signalled
by the feeling that “things are finally falling into place”, much as at the final stages of com-
pleting a picture puzzle. In this case, the evidence provided by G1 may be felt to make much
more likely the evidence provided via G2, and perhaps vice-versa in a symmetric fashion
(or perhaps not symmetrically if G1 is expected to be more informative than G2). Such
assertions can be expressed technically by generalising the assertions of equations (11) and
(12) to

PS(G2G1|FH) = PS(G1|FH)α PS(G2|FH)β , and
PS(G2G1|FH̃) = PS(G1|FH)α PS(G2|FH̃)β (13)

for appropriate values of α and β, or equivalently

PS(G2|G1FH) = PS(G1|FH)α−1 PS(G2|FH)β , and
PS(G2|G1FH̃) = PS(G1|FH̃)α−1 PS(G2|FH̃)β . (14)

A complete explanation of the allusion to “appropriate values of α and β” is deferred a
separate tech report by Frank Lad, entitled “Factoring Bivariate Distributions.” It is cur-
rently available to any interested reader as a .pdf file. Please email him if you are reading
this draft and are interested. For now, notice firstly that when α = β = 1, assertions (13)
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and (14) reduce to assertions (11) and (12) which are a special case. Exchangeable attitu-
tudes toward G1 and G2 are allowed (though not required) only by (α, β) pairs within the
unit-square whose sum is not less than 1. Surprisingly, the generalisation of the well-known
independence equation P (AB) = P (A)P (B) to P (AB) = P (A)αP (B)β has never been stud-
ied heretofore. The complete parameter space of coherent (α, β) pairs is somewhat unusual,
as described in the appendix. For now, we mention only that every infinitely exchangeably
extendible distribution over two events subscribes to the restrictions of (13) and (14) for
some parameter configuration in the region α = β ∈ [12 , 1].

Using (13) and (14) we can represent virtually every interesting assessment of the ex-
perts’ individual information sources. Thus, we shall now continue our development of
PS(H |FG1G2) through equation (10) using this representation. However once we have de-
rived the desired result, we shall continue our numerical examples using only the special case
of conditional independence of the experts’ information sources, identified by α = β = 1.

5.2 Experts’ probabilities as ‘almost sufficient’ statistics for FG1G2

Inserting the stipulations of (13) into (10) and performing the allowable cancellations yields
the result

Odds(H |FG1G2) =
P (G1|FH)α−1 P (G2|FH)β

P (G1|FH̃)α−1 P (G2|FH̃)β
T1

=
(

Odds(H |FG1)
Odds(H |F )

)α−1 (
Odds(H |FG2)
Odds(H |F )

)β

T1

=
T α

1 T β
2

(ρ `F )α+β−1
. (15)

The second equality derives from an application of (9), with the final line following from
notational substitutions and appropriate algebra.

In the special case of assessed conditional independence regarding G1 and G2 given FH
and FH̃ , this reduces to

Odds(H |FG1G2) =
T1 T2

ρ `F
. (16)

We can now recognise from (15) that T1 and T2 together are not sufficient for the com-
plete information in FG1G2, even though T1 is sufficient for FG1 and T2 is sufficient for
FG2, as we had noticed after equation (3). Along with ρ, a third statistic would be required
to suffice for all three components of this information, viz. the non-elicited value of `F . Of
course ρ has been specified via the statistician’s assertion of PS(H).

In fact, having stipulated the values of α and β, it is the product T α
1 T β

2 that is almost
sufficient for FG1G2, requiring only the additional assertion of ρ`F for sufficiency. This
statement flows more simply in the special case of asserted conditional independence of G1

and G2 given FH and given FH̃: the product of the odds ratios asserted by the two experts is
almost sufficient for the totality of the information they provide regarding the event of inter-
est. In this form, the statement of this result is striking, for the common response of people
who hear of the problem of combining probabilities from two experts is to suggest combining
them via their arithmetic average, which is not a sufficient statistic. The near-sufficiency
of the product of the odds ratio for the unobserved (by S) and perhaps not even described
(by the experts) informational events F, G1 and G2 is a pleasing result. It is possible and
even likely that the experts cannot precisely explain the informational substance of their
expertise, but only the measure of their resulting inferences from it, their assertion values
πi. It is thus quite pleasing to find that their numerical probability assertions Pi(H) = πi

which determine the Ti = ti are almost sufficient to inform the statistician of the inductive
content of most everything they know that is relevant to H !

From this point on in this article, we shall restrict the details of our analysis to the special
case of the presumed conditional independence of G1 and G2 given FH. All details can be
generalised tractably to the more general case. However, until we have a chance to describe
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the opinion structures represented by values of α and β that are different from 1 beyond the
concise presentation appearing in the appendix, generalisations would be superfluous. As we
shall see, the special case alone yields very interesting computational results, and its practical
relevance is not so very limited. Its strength comes from the realisation that conditioning
on H (or H̃) is a strong property, for the knowledge of H gives fairly precise meaning to the
information contained in the signal of either Gi.

5.3 Transforming posterior odds to posterior probabilities

We can transform a posterior odds ratio into a posterior probability using the inverse of the
odds transformation, prob = odds/(odds+1). Applying this inversion to (16) and simplifying
the result yields

PS(H |FG1G2) =
T1T2

T1T2 + ρ`F
. (17)

This useful equation requires some consideration. For until we learn the values of T1 and
T2 from the experts, we can only imagine what they might be. Furthermore, the value of
`F is never elicited from the experts, so the statistician will always be limited to living with
uncertainty about it. Once we learn the values of T1 = t1 and T2 = t2, we would be able to
derive the desired posterior probability PS(H |FG1G2) as the prevision (expectation) of (17)
considered as a conditional prevision, PS(H |(T1 = t1)(T2 = t2)ρ`F ), viz.

PS(H |(T1 = t1)(T2 = t2)) =
∫ ∞

0

t1t2
t1t2 + ρ`F

dF (ρ`F |(T1 = t1)(T2 = t2)) . (18)

We need only to formulate an appropriate form of opinion about `F , T1 and T2.

Remember that the value of `F has not been elicited from the experts, nor have they
even necessarily assessed it explicitly. Nonetheless, `F is a quantity that a statistician can
think about, and perhaps assess a mixing distribution that would allow integration of the
conditional probability and the mixing distribution F (ρ`F |(T1 = t1)(T2 = t2) as required by
(18). Realising that the content of `F is a component of the experts’ considerations when
asserting their T1 and T2, whether considered explicitly or not, we shall investigate next the
practicality of assessing this conditional mixing distribution.

6 Assessing a distribution for ρ`F given T1 and T2

We shall begin by addressing an assessment of ρ`F jointly with T1T2. To do this, we need to
analyse S’s opinions regarding all the information sources we have delineated in the forms of
`F , `G1 , `G2 and T1T2. This will allow us to formalise the conditional mixing distribution that
we require. Although the statistician cannot imagine the content of the experts’ information
sources F, G1 and G2, he/she will surely have some idea about the amount of information
these sources contain regarding H . That is what motivates the statistician to ask the experts
their opinions about H in the first place. Expecting a large amount of information would
mean expecting a probability assertion close to 1 or close to 0. Expecting only a little infor-
mation would mean expecting an assertion either a little above or a little below the assertion
of a generally educated person, πS .

We are fortunate to be able to transform the representation of ρ`F via the equations

ρ`F =
P (H)Pi(F |H)
P (H̃)Pi(F |H̃)

=
Pi(HF )
Pi(H̃F )

=
Pi(H |F )
Pi(H̃ |F )

≡ φF , (19)

which derive from the Bayes’ factorisation. The variable denoted by φF is subscripted with
an F to distinguish it from two other quantities we shall define shortly in a similar way as
φ1 and φ2.

The practical merit of transformation (19) is that it would be much simpler for a statisti-
cian to assess a mixing distribution for the odds defined as φF , which are specified in terms
of Pi(H |F ), than for the likelihood ratio defined by `F , specified in terms of Pi(F |H) and
Pi(F |H̃). The odds ratio φF of course is the ratio of probabilities assessed by the experts on
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the basis of F. What does the statistician expect about this ratio, a-priori? Remember that
the statistician does not even know precisely what the information possibilities defining F
are. That is why a direct assessment of `F in terms of the ratio P (F |H)/P (F |H̃) would be
so difficult. Nonetheless, he/she would have some idea of how informative this shared expert
information might be. Otherwise there would be no reason to consult an expert. This is
the value of recognising the equivalence of ρ`F with the conceptually accessible odds ratio
P (H |F )/P (H̃ |F ).

For the same reasons as (19), we also find it worthwhile to define two similar transfor-
mations, φ1 and φ2 :

ρ`G1 =
P1(H |G1)
P1(H̃ |G1)

≡ φ1 , and ρ`G2 =
P2(H |G2)
P2(H̃ |G2)

≡ φ2 . (20)

Now a useful factorisation of Ti can be achieved via an argument which requires discussion:

Ti ≡ Pi(H |FGi)
Pi(H̃ |FGi)

=
Pi(FGi|H)PS(H)
Pi(FGi|H̃)PS(H̃)

=
Pi(F |H)Pi(Gi|H)PS(H)
Pi(F |H̃)Pi(Gi|H̃)PS(H̃)

= ρ `F `Gi for each i = 1, 2 . (21)

The first defining equality merely repeats the definition made in (6). The second equality,
then follows from Bayes’ theorem, using additionally the fact that S’s asserted probability
for H is the same as would be the assertions of experts 1 and 2, if they did not know for
certain the precise expert information that they do, but rather merely B as S does. The
third equality follows from an assertion of conditional idependence between F and each Gi

given H and H̃ that we motivate in the paragraph that follows. The fourth and final equality
of (21) makes use of the concise notation specified in (4), (5), (6) and (7). We now need
digress on the motivation.

The truth or falsity of H rests within the context of conditions that convey confusing
signals regarding its truth. If this were not the case, virtually every observant person who
thinks about H and observes its context would be certain of its truth or falsity! Now the
truth of F is a signal about H that is received and is shared by both of our experts, typically
in the form of the likelihoods L(H ; F ) and L(H̃ ; F ). Nonetheless, this signal is not definitive
about the truth or falsity of H. This is why the experts are still uncertain about H. To the
statistician, who is not even accustomed to thinking about the definition of F, the truth of
F̃ would be another possible signal about H. But one thing the statistician would say is this:
whatever H signals about its truth via the truth or falsity of F, the additional evidential
content H would signal about itself via the truth of either expert’s specific experience, Gi,
would be the same no matter whether F or F̃ were true. For S has no way of knowing
whether the evidence that F and Gi provide about H are in support of its truth or put in
doubt its truth, or are either one in support and the other leading to doubt. It is the truth
or falsity of H itself that provides the basis for the information signal. This is the general
motivation for the presumed conditional independence of F and each Gi.

As an example, consider again the incidence of Varroa mites in a sample from a beehive.
H is the event that a sample of bees shows evidence of Varroa in a powdered sugar test
today. F is the event that the sex ratio at birth of male to female honey bees in a healthy
hive in the spring is around 1/25, a fact known to both bee experts. G1 is the event known
to expert 1 that this hive was treated with the insecticide “Capstan” last year. Whether
or not G1 is the case would be evidenced in a naturally confusing way by the truth of H .
It is easy to imagine assessing a conditional probability such as P (G1|H). Whether or not
F is also the case would be irrelevant to an assertion for the probability of G1 given the
truth of H . The assertion value of P (G1|FH) would be the same as that of P (G1|H). The
same could be said given the falsity of H . This is the substantive content of the conditional
independence in this context. Let us now return to our development.
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Using equation (21), it is also clear that each ρTi = φF φi, and thus, T1T2 = φ2
F φ1φ2 /ρ2.

Equivalently,
log(T1T2) = 2log(φF ) + log(φ1) + log(φ2)− 2log(ρ) . (22)

Consideration of these three φ quantities together will allow us to specify the mixing function
F (φF |(T1 = t1)(T2 = t2)) that we desire; for log(T1T2) is a linear function of log(φF ), log(φ1)
and log(φ2).

For this and other reasons that will become clear, it is natural to consider the lognormal
family of distributions to represent prior opinions for the odds ratios defined by the φ’s. On
account of equation (22), this form would allow a joint lognormal distribution for the φ’s
and the product T1T2 as well. As shall be seen, this would imply that the distribution for
the probabilities P (H |F ) and P (H |Gi) is joint logitnormal. It will be best to discuss these
distributions in stages.

6.1 Specifying a joint lognormal distribution for φF , φ1, φ2, T1 and T2

To begin, we shall merely specify the form of a joint distribution that requires the elicita-
tion of three understandable parameters, σ2

F , σ2
G and c1,2. Then we shall discuss what the

assessment of the statistician’s opinions in this form would mean.




φF

φ1

φ2

− −−
T1

T2




∼ Lognormal (




µ (π, υF )
µ (π, υG)
µ (π, υG)

−−−−−−−−−−
µ (π, υF ) + µ (π, υG) − log(ρ)
µ (π, υF ) + µ (π, υG) − log(ρ)




, Σ ) ,

where Σ =



σ2
F (π, υF ) ci,F ci,F | σ2

F + ci,F σ2
F + ci,F

ci,F σ2
G(π, υG) c1,2 | σ2

G + ci,F σ2
G + ci,F

ci,F c1,2 σ2
G(π, υG) | σ2

G + ci,F σ2
G + ci,F

−−−−− −−−−− −−−−− | − −−−−−− −−−−−−−
σ2

F + ci,F σ2
G + ci,F σ2

G + ci,F | σ2
F + σ2

G + 2ci,F σ2
F + 2ci,F + c1,2

σ2
F + ci,F σ2

G + ci,F σ2
G + ci,F | σ2

F + 2ci,F + c1,2 σ2
F + σ2

G + 2ci,F




.

(23)
The multivariate distribution (23) has been partitioned only to distinguish that the statis-
tician’s uncertainty about the first three component variables is to be assessed, while the
cohering distribution with the fourth and fifth components is implied from the first three on
account of the fact that each Ti = φfφi/ρ, and thus each log(Ti) = log(φF )+log(φi)−log(ρ).
The new parameters υF and υG and their roles in determining µ(π, υF ), µ(π, υG), σ2

F (π, υF )
and σ2

G(π, υG) that appear in this specification shall now be discussed.

We need to consider the statistician’s initial opinion about the conditional odds ratios
φF , φ1 and φ2 coherently in the context of the assertion PS(H) = πS that has already been
specified . Coherency requires that PS(H) = PS [Pi(H |F )] = PS [Pi(H |Gi)] for reasons we
discussed around equation (8) at the end of section 4.

In motivating (23), consider marginally a distribution for the experts’ shared odds ratio,
φF . How precise will the common information F be regarding H? ... and how secure
can a person be in locating its strength, knowing only the background information, B? The
statistician’s answer to these questions will be represented by a parametric choice of σ2

F which
appears in equation (23). Although the form of that distribution for φF ≡ Pi(H |F )/Pi(H̃ |F )
is specified as lognormal, it will be easier to assess through direct consideration of possible
values for the experts’ assertion, Pi(H |F ). Under this transformation, the statistician’s
distribution for Pi(H |F ) is logitnormal.
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6.2 A technical review of the logitnormal distribution

To think clearly about the lognormal distribution specified in (23) and to use it in practice,
we need to recall a few relevant aspects of a related transformation, the logitnormal distri-
bution. While the logit transformation of a variable on the unit-interval is well-known and
has been studied in myriad applications, the Logitnormal distribution has escaped direct
exposition. This is somewhat surprising given the widespread use of logistic regression anal-
ysis. The logitnormal distribution was suggested for statistical work in the seminal work of
Lindley (1964) on contingency tables. It has subsequently been used in hierarchical Bayesian
modelling as early as Leonard (1972) and in applications such as that of Kass and Steffey
(1989). In all these cases it was applied in the form of the normal distribution for the logit
transformation of a variable in the unit-interval, rather than directly in the form of a distri-
bution over that interval.

If Θ is a variable within the unit interval, the following three specifications are equivalent:

Θ ∼ Logitnormal(µ, σ2)
Φ = Θ/(1−Θ) ∼ Lognormal(µ, σ2)

X = log[Θ/(1−Θ)] ∼ Normal(µ, σ2) .

While the lognormal density for Φ is completely tractable, with moments specifiable in terms
of µ and σ2 (the moments of the normal density for X), the logitnormal moments of Θ require
numerical evaluation. The logitnormal density for Θ derives easily from the normal density
for X via the inverse transformation θ = ex

(ex+1) , viz.,

f(θ|µ, σ2) =
1√

2πσθ(1 − θ)
exp{−1/2[(

log( θ
1−θ )− µ

σ
)]2} for θ ∈ ( 0, 1 ) . (24)

However the moments of this density cannot be integrated algebraically, and require numer-
ical integration. We can study them graphically.

Figure 1 displays the mean and variance functions for the Logitnormal(µ, σ2) family using
the Normal(µ, σ2) family’s signal to noise parameter, µ/σ, and σ as arguments. Figure 2
displays contours of (µ/σ, σ) pairs that support constant values of the mean at E(Θ) = .6, .75,
and .9, and values of the variance at V (Θ) = .01, .04, and .10. We have limited this display
to non-negative values of µ/σ due to the obvious result that if Θ ∼ Logitnormal(µ, σ2), then
(1−Θ) ∼ Logitnormal(−µ, σ2). The choice of µ/σ as the argument variable is for practical
reasons in limiting the range required for the display.

The functions E(Θ) = M(µ, σ2) and V (Θ) = V (µ, σ2) are invertible, of course, so that a
specification of E(Θ) would determine a contour of supporting (µ, σ2) values from Figure 2,
and a specification of V (Θ) would then identify the appropriate single (µ, σ2) pair, selected
from this contour. Once E(Θ) is specified, it is probably easier to specify V (Θ) by examining
an array of densities that support this mean value, as we shall now see.

Figure 3 displays graphs of three logitnormal densities that support E(Θ) = .60, to indi-
cate what members of this family of densities can look like. It is interesting to see how they
can be different from Beta family densities. When σ2 is small, the densities are unimodal and
do look similar to the Beta(α, β) densities when α and β both exceed 1. However the logit-
normal densities always converge to 0 as θ → 0+ and as θ → 1−, and when σ2 is large enough
the densities are bimodal. In this way they differ markedly from the family of Beta(α, β)
densities when α and β are both less than 1. These Beta densities have asymptotes at 0+

and at 1−. The logitnormal family contains no members that resemble the Beta densities
when α ≤ 1 and β ≥ 1, or vice versa.

We end this review by noting that the quantities represented by Θ in this technical
review would be those designated θF , θ1 and θ2 in our experts’ problem. That is, they are
conditional probabilities tendered by the experts that are unknown to the statistician. We are
imagining the statistician to assess them with a logitnormal distribution as expressed in (23).
In this context it is worth recognising specifically that large values of σ2 in the lognormal
specification for the distribution characterise opinions that expect Θ to be more informative,
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Figure 1: The graph at left depicts values of E(Θ) as a function of the Logitnormal µ/σ and
σ parameters. At right appears the Variance of Θ as a function of these same parameters.
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Figure 2: The graph at left shows contours of (µ/σ, σ) combinations that support constant
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V (Θ), at .01, .04 and .10. The logitnormal densities pertaining to the three parametric
points exhibited by circles on the contour of E(Θ) = .6 are displayed in Figure 3.
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Figure 3: Logitnormal (µ, σ2) densities with expectation E(Θ) = .60 are specified by various
(µ, σ) pairs. Again, higher values of σ specify a bimodal logitnormal density. The (µ/σ, σ)
values that specify these three densities are indicated by small circles in Figures 1 and 2.

not less informative. For example, in Figure 3 of the densities with mean E(Θ) = .6 the
density for Θ bunches in intervals close to 0 and in intervals close to 1 when σ = 2.5, while
it is more concentrated near .6 when σ = 0.4. This is not really counterintuitive, but it is
a bit tricky to get straight in your mind. Think about it. When σ2 is large, Θ is expected
to be very informative, for it is expected to be a number (the probability for H assessed by
the experts) that is close to either 0 or 1. But when σ2 is small, the density for Θ is sharply
bunched around .6, which is to say that the probability to be asserted by the experts is
expected to be only mildly informative.

6.3 Motivating the parameter selection for the joint lognormal

Based on our knowledge of properties of the logitnormal distribution, we need to motivate a
sensible specification of the parameters υF , υG, and c1,2 that identify the multivariate logit-
normal density of (23). The quantity in our problem that plays the role of Θ in the technical
review is the experts’ shared assertion value of Pi(H |F ). Having already assessed an expec-
tation for this quantity via the initial assertion of PS(H) = πS , the statistician need now
only choose a value for V [Pi(H |F )] to have specified a distribution in the form of (23), which
is lognormal for the odds ratio φF , or equivalently logitnormal for the probability Pi(H |F ).
We denote the selected value of V [Pi(H |F )] by υF in the covariance matrix of equation
(23.) The choice of υF can be made most easily by examining densities that support this
expectation, πS , in the form of the contour of M(µ, σ2) = πS values. This is exemplified in
the graph of logitnormal densities for which E(θ) = .60. In this case, each of the densities
with this mean is characterised by a different choice of both µ and σ. Examine Figure 3. A
choice of υF , and thus of σ2

F , can be made from the density that appropriately represents
the statistician’s uncertainty by visual inspection. We shall compute three examples based
upon different expectations about expert information. The first assesses strong information
in F, with υF = .1130. The associated density is bimodal with peaks near 0 and 1, and
a central relatively uniform trough. The second assesses moderate information in F, with
υF = .0405. It is unimodal but rather diffuse over a large region. The third will assess
rather weak information in F, with υF = .0085. The density appears roughly triangular over
the interval (.4, .8), peaking around .6. In terms of the lognormal variance parameter, these
translate to σF = 2.5 (strong), σF = 1.0 (moderate) and σF = .4 (weak).

The next feature of (23) the statistician needs to consider is his/her opinion about
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the relative strength of either Pi(H |Gi) to the common Pi(H |F ). Remember that both
of these conditional probability assertions have been assessed with the same expectation,
PS [Pi(H |F )] = PS [Pi(H |Gi)] = PS(H) = πS . The relative sizes of V [Pi(H |F )] ≡ υF and
V [Pi(H |Gi)] ≡ υG then depend on whether the statistician thinks the common information
available to both experts is more or less informative about H than the specific information
they hold separately. The resolution of this consideration determines υG and thus the value
of σ2

G. Again, the assessment is aided by visual inspection of the family of densities that sup-
port the same expectation value. In the solution to the problem presented here, we suppose
that the same variance applies to our consideration of the information sources specific to each
expert, so the joint distribution for φ1 and φ2 is an exchangeable one. Of course this is not
required by coherency. It is easy to imagine problems in which one expert is considered to
be more knowledgeable than another, though both are considered to have information worth
exploiting. In such cases, distinct variance specifications, υG1 and υG2 , would be required.

Our third specification of c1,2 requires an assessment of the mutuality of the direction of
the evidence about H that is held specifically by the two experts, when specified in terms
of their log-odds ratios. The imagined communality of the directions of their private in-
formation specifies the covariance between the two of them, denoted in the joint lognormal
parameterisation (23) by c1,2. Does the statistician imagine that the information sources
privately available to the experts would be mutually supportive (or non-supportive) about
H, or perhaps would they be opposing? (the one supportive, the other non-supportive) ...
or would they be assessed independently? The size of c1,2 would typically be easier to assess
in the form of a correlation, either between log φ1 and log φ2, or between P1(H |G1) and
P2(H |G2). The numerical sizes of the correlations between these transforms are surprisingly
close. Computational examples appear in a systematic Table in a technical note by Frederic
and Lad (2003). The sign of either correlation could be positive or negative. Positivity
would be appropriate in problems in which the experts rely on similar experiences which are
different from each other only in their precise details. Negativity could be appropriate in
cases when the consulted experts are recognised as having very different and even contrast-
ing experiential bases for their assertions. We shall comment further on this matter in our
concluding discussion, for there are technical limits on the sizes of negative correlations that
can be considered in the context of the problem we are studying here. Moreover, in some
scenarios the influence of the correlation is minimal. Nonetheless we shall present numerical
examples involving negative as well as positive correlations.

We are finally left to consider a covariance between log φF and log φi, denoted in (23)
by c1,2. For the particular solution of trusting and cooperative science we consider here,
we presume that this is determined so that the correlations between these two quantities
are equal to the correlation between the log-odds ratios corresponding to the two specific
information sources. The equality of these two correlations would imply that the covariance
denoted by ci,F must equal c1,2 (σF /σG).

Having discussed motivations for the determinations of σ2
F , σ2

G, c1,2 and ci,F , we have
thus completely specified the joint lognormal distribution identified in (23). It remains only
to comment that the distribution of the fourth (partitioned) component of the multivariate
lognormal distribution in (23) derives from standard methods for linear combinations of nor-
mal variables, on account of the log-linear equation (22).

7 Computing PS(H|(T1 = t1)(T2 = t2))

We can now use the distribution (23) to complete the integration we specified in equation
(18) which we repeat here using the notation of φF ≡ ρ`F .

PS(H |(T1 = t1)(T2 = t2)) =
∫ ∞

0

t1t2
t1t2 + φF

dF (φF |(T1 = t1)(T2 = t2)) (18)

We need only identify the conditional distribution of φF given (T1 = t1)(T2 = t2) from the
bivariate lognormal distribution for (φF , T1T2) embedded in the multivariate lognormal dis-
tribution specified in (23). Normal theory tells us that this conditional distribution is also
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lognormal, with the conditional moment parameters

E [ log(φF ) | (T1 = t1)(T2 = t2) ] = µ (π, υF ) +

[ log (t1) + log (t2)− 2 µ (π, υF )− 2 µ (π, υG) + 2log (ρ)] [
(σ2

F + ci,F ) (σ2
G − c1,2)

D
] (25)

and

V [ log(φF ) | (T1 = t1)(T2 = t2) ] = σ2
F − 2(σ2

F + ci,F )2 (σ2
G − c1,2)

D
,

(26)
where

D = (σ2
G)2 + 2σ2

Gσ2
F + 4σ2

Gci,F − 2σ2
F c1,2 − 4ci,F c1,2 − c2

1,2 .

A final aspect of this long development requires us to realise that it is the conditional
expectation of t1t2/(t1t2 + φF ) which is specified by (18) rather than the expectation of
log(φF ). Although this expectation cannot be expressed in a closed algebraic form, the
integration can be computed numerically for any specific values of t1t2, π, σ2

F , σ2
G and c1,2.

It is interesting that this expectation is a weighted modification of the standard “odds to
probability transformation”: prob = odds/(odds + 1). The modified transform declines from
1 to 0 as φF increases from 0 without bound. We shall discuss its interpretation after we
examine some numerical results in the next two Sections.

8 Contours of equivalent inferences

The inference the statistician makes from hearing the probability assertions P1(H) = π1

and P2(H) = π2 depends only on the product of the odds ratios that their probabilities
imply. (Remember too that this is a special case of the more general result which requires
that the multiplicand odds ratios be raised to powers.) It is clear from equation (18) that
PS(H |(T1 = t1)(T2 = t2)) is constant for all pairs of the experts’ probabilities (π1, π2) that
yield the same value of the product t1t2. This means that in the space of all possible prob-
ability assertion pairs, the posterior probability for H is constant on contours for which
π2 = t1t2(1 − π1)/[t1t2(1 − π1) + π1]. Of course, in any specific application, the constant
conditional probability value on each contour depends on the specification of π, σ2

F , σ2
G, c1,2

and ci,F by the statistician.

It is well worth examining a few contour lines of the constant posterior probability values
to understand the procedure we shall follow in exhibiting the consequences of various possi-
ble prior specifications. Figure 4 displays contours of constant products of the experts’ odds
at values of t1t2 = .01, .10, .40, 1, 2.5, 10 and 100. For now, let us only notice an interesting
feature of our conclusion thus far. As long as π1 + π2 = 1, the product of the experts odds
ratios also equals 1. These pairs are identified by the contour line showing t1t2 = 1. Thus,
for examples, the statistician will make exactly the same inferences from hearing the experts
announce (.1, .9) as from hearing (.5, .5). Precisely what the inference will be depends on
prior expectations, which we shall examine in three examples. However the other contours
of equal inferential probabilities are not linear. If the average of the experts’ probabilities
were the sufficient statistic (instead of the product) the contours would be lines for which
π1 + π2 = K. It is quite evident both geometrically and algebraically in this problem that
they are not. The average of the experts’ probabilities becomes more and more a distortion
of the inferential content of their expertise as the product of their odds ratios increase or
decrease away from 1.

Before proceeding to some numerical examples, notice that the contours of equivalent
inferences from the experts’ assertions of (π1, π2) are identical to the contours specified by
the family of externally Bayesian pooling operators. Reviewing the identification of these
operators in equation (1) shows that the pooling operator yields the same probability K for
all (π1, π2) pairs specified by the contour

π2 =
( K
1−K )1/(1−w) (1− π1)w/(1−w)

( K
1−K )1/(1−w) (1− π1)w/(1−w) + π

w/(1−w)
1

. (27)
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Figure 4: Contours of constant products of experts’ odds ratios: π2 = t1t2(1−π1)
t1t2(1−π1)+π1

When w = .5, the form of this contour is identical with the contour determined by the
product of the experts’ odds ratios as a sufficient statistic. Thus, the coherent use of experts’
probabilities we have characterised specifies contours of constant posterior probability for H
that coincide with the contours prescribed by an externally Bayesian operator. However, we
shall see shortly that the coherent function values on these contours are completely different
from those associated with EB operators. (We also mention here without proof that the
contours of the other EB operators with values of w 6= .5 coincide with those representing
inferences when the (α, β) pairs specified in (13) that differ from (1, 1).)

9 Numerical examples

Since the posterior probabilities are constant on contours through the (π1, π2) space, we need
only to compute this probability once for each contour line. This is fortunate, because it
will allow us to exhibit a lot of information from examples of inferences on a single graph.
Since the sufficient statistic is the product of the odds ratios, t1t2, we shall present graphs
of inferential probabilities, P (H |(T1 = t1)(T2 = t2)) as functions of the square root of this
product, transformed into a probability value which can vary from 0 to 1. Functionally, the
argument of the inferential probability will thus be denoted by π∗ =

√
t1t2/(

√
t1t2 + 1). If

both experts had asserted this same probability value, the product of their odds ratios would
be the same as was their actual product. We shall refer to this convenient computation as
the experts’ “equivalent shared probability,” and denote it by π∗ ≡ π(t1, t2).

We need to stress here that the following analysis does not presume that both experts
assert the same predictive probability. The same inference is made for any pair of experts’
probabilities that lie on the same contour as does (π1, π2) = (π∗, π∗). We defer discussion of
the implications of the results for the principles of unanimity and compromise to the section
that follows.

We now examine some numerical results of inference patterns using specific choices of
assessments for the relative expected strengths of the shared information, F, and the in-
dividuals’ specific information G1 and G2. The following three graphs are based on prior
expectations of the strength of the shared and specific informations that are represented by
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the densities displayed in Figure 3. Each of these densities describes a situation in which the
public information to the statistician mildly favours the occurrence of the event in question,
for they all support PS(H) = .60. Nonetheless, each density describes a different attitude
toward the amount of information additionally available to the experts. The single peaked
central density in that Figure (showing V (Θ) = .0085) is the one that expects the informa-
tion source to be the weakest; for the probabilities based on the information are expected to
be only marginally above or below the expectation, which is .60. The bimodal density with
the modes near the extreme values of 0 and 1 (showing V (Θ) = .1130) is the one that expects
the information source to be the strongest, for the probabilities based on the information
are expected to be either closer to 0 or closer to 1, away from the expectation of .60. The
milder unimodal density (showing V (Θ) = .0405) represents a moderate level of expectation
regarding the strength of the information, for it entertains substantial expectations of prob-
abilities markedly above .60 and markedly below .60, likely to be as low as .20 and as high
as .90. However, it highly supports probabilities near to .60 as well.

Each of the following graphs is based on a distribution in the form of equation (23)
that picks a different pair of these densities to represent the statistician’s expectation about
the strength of the probabilities supported by the shared information, F, and the experts’
specific informations, Gi. In each case, the probabilities based on the two experts’ spe-
cific information are regarded exchangeably, with the correlation between them denoted by
ρ1,2. Moreover, the correlation between the probability supported by either specific expert
information and the probability supported by the shared information is also assessed with
this same correlation value. Thus, each graph will show the posterior probability functions
P [H |(T1 = t1)(T2 = t2)] based on the variances V (ΘF ) and V (ΘGi) specific to that Figure,
and with an array of specified correlation values covering −.25, 0, .25, .5 and .75.

9.1 Strong shared information, F, and weak specific Gi

The first results we examine represent the situation that the shared information is expected
to be very informative, while the specific information of each expert is expected to be rather
weak. The posterior probability functions in Figure 5 are ordered by the size of correlations
they specify between the information sources.

For low values of t1t2 (and thus of π∗) the highest function corresponds to the assessment of
ρ = −.25, and the functions are layered lower and lower for values of ρ = 0, .25, .5 and .75,
respectively. The five functions meet and reverse this order in the vicinity of an equivalent
shared probability of π∗ = .68. At this point, all the posterior probabilities equal about .69.
At higher or lower values of π∗, however, the posterior probabilities are never really much
different from π∗ itself. The largest discrepancies occur at π∗ = .25. (This implies a product
of experts’ odds ratios of 1/9, making a contour of t1t2 ≈ .11 in Figure 4.) In this case, the
inferential probabilities based on the product of the experts’ odds ratios equal to 1/9 are
equal to 0.2736, 0.2579, 0.2444, 0.2323 and 0.2214, based on correlations of −.25, 0, .25, .5
and .75 respectively. When the product of the experts odds ratios equals (.6/.4)2, whether
or not it is based upon π1 = π2 = .6, the posterior inference of the statistician is very close
to .6, though not precisely equal. The exact values are computed as 0.6131, 0.6080, 0.6042,
0.6012 and 0.5990, respectively, again based on the assessed value of ρ1,2. Above values of
π∗ = .68 the functions reverse their order from smallest to largest, but they remain quite
close to an inference agreeing with π∗.

It is worth remarking right here that all of these inference functions differ from the
function that would correspond to an EB operator on π1 and π2. As can be seen from
equation (1), that function would specify an exact 45-degree line: g(π∗, π∗) = π∗.

9.2 Moderate shared information, F, and weak specific Gi

The next results represent the situation that the shared information is still expected to be
fairly informative, but less so than in Figure 5. Again, the specific information of each
expert is expected to be weak, only mildly augmenting the basic information. To be precise,
the inferences are based on the logitnormal densities with E(Θ) = .6 and V (ΘF ) = .0405
with V (ΘGi) = .0085. Equivalently, σF = 1.0 while σG = .4. The posterior probability
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Figure 5: Posterior probability functions P [H |(T1 = t1)(T2 = t2)] based on prior expecta-
tions of a strong information source in the shared information and weak information sources
specific to the two experts.
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functions displayed in Figure 6 are again ordered by the size of correlations they specify
between the information sources. Again, for low values of t1t2 (and its π∗) the highest
function corresponds to the correlation value of −.25, and the functions are layered lower
and lower for correlations of 0, .25, .5 and .75, respectively. The functions are now a bit more
separated from one another compared to Figure 5, and they now meet and reverse this order
in the vicinity of π∗ = .64. At this point, all the posterior probabilities also equal about .64.
The largest discrepancies among the posterior probabilities based on different values of ρ1,2

occur around π∗ = .25. Here the inferential probabilities decline from .28 to .19 based on
correlations of −.25, 0, .25, .5 and .75. Above values of π∗ = .64 the functions reverse their
order from smallest to largest, but they remain quite close to an inference agreeing with π∗.
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Figure 6: Posterior probability functions P [H |(T1 = t1)(T2 = t2)] based on prior expec-
tations of moderate shared information while still weak information sources specific to the
two experts.

9.3 Weak shared information, F, and moderately informative Gi

The final results we display here are based on a scenario of expectation that only a little
information is shared by the experts, while their specific information sources are regarded
as being more promising, though not definitive. Figure 7 appears markedly different from
the two figures we have already examined. The five functions based on different correlation
values are now virtually indistinguishable to the eye. Moreover, rather than straddling the
45-degree line as in the previous two cases, the functions now ride well below that line before
crossing it near π∗ = .6. The five inferential probability functions are almost always equal
to two decimal places. It is numerically insignificant but interesting that the order of the
functions now changes, with the highest correlation-based function (ρ1,2 = .75) now being
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the highest function for low values of π∗, and being the lowest at high values. However the
functions are no longer completely ordered by the sizes of the correlation either.
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Figure 7: Posterior probability functions P [H |(T1 = t1)(T2 = t2)] based on prior expecta-
tions of a weak shared information source while stronger information sources (though still
moderate) are expected specific to the two experts.

9.4 An interpretation

The three graphical examples we have displayed, which are somewhat surprising, can be
understood by thinking about the meaning of their parametric specifications. The inter-
pretation does not arise in a straightforward manner from the algebraic specification of the
result on account of the transformation from the logitnormal to lognormal specification and
the numerical integration required to achieve the functional solution. Nonetheless, some mo-
tivation for the interpretation can be found directly in the algebraic schema as well. We shall
firstly discuss the interpretations via the meaning of the specifications, and then remark on
some algebraic aspects without belabouring every gruesome detail.

The stipulation that σ2
F is much larger than σ2

G signifies that the information common
to both experts is considered to be much greater than that specific to each. The common
information motivates both of their probability assertions, but it should be used only once as
a basis for the statistician’s inference rather than twice. Thus, since the additional infor-
mation available to the experts individually is weak, the statistician’s inferred probability
for H given the product-odds ratio, should not differ very much from the experts’ equivalent
agreed probability, π∗. This is observed in both Figures 5 and 6. Both of these graphs show
the conditional probabilities enveloping the line P (H |T1T2 = t1t2) = π∗(t1, t2) for various
values of the shared correlation ρ1,2 = ρi,F . When it is further specified that σ2

F is large
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itself, rather than merely large in relation to σ2
G, the strength of the common information,

even though counted only once, is such that it is only mildly affected by the information in
G1 and G2. This is why the envelope displayed in Figure 5 is somewhat tighter than that in
Figure 6. The ordering of the functions forming the envelope is also understandable. In the
context of greater information expected in common, the marginal addition of information
from G1 and from G2 would be expected to cancel each other when the correlation ρ1,2 is
negative, while the two sources are expected to accentuate each other when the correlation is
positive. Thus, when the product T1T2 is observed to be less than expected, adjustments of
the conditional probability downward from π∗ increase as the specification of the correlation
increases. This is also observed in both Figures 5 and 6.

When the strength of each expert’s separate information source is expected to exceed
that of their common source, the situation is rather different. On the one hand there is less
information in each of the experts’ assertions that needs to be diminished for the inference on
account of “double counting” the shared information. Thus, the two assertions contain rel-
atively more information than when they share substantial motivating information sources.
This difference can be observed in comparing Figures 6 and 7. In Figure 7, the two experts’
distinct assertions being different from their expected value of πS conveys relatively more
information than when the experts share greater common information, in Figure 6. Thus,
the adjustments of the the conditional probability away from the “equivalent shared proba-
bility” is greater in this case. Differences among inferences based on the range of correlations
specified are much smaller, as we observe in Figure 7. Nonetheless, it is sensible that the
less correlated are these different information sources expected to be, the greater should be
the adjustment away from the equivalent shared probability.

An algebraic analysis of the lognormal conditional distribution of φF |(T1T2 = t1t2), iden-
tified in equations (25) and (26), supports this interpretation. Without displaying details,
we report here only that the adjustments to the conditional mean occur through a regression
coefficient that is an increasing rational function of the variance ratio σ2

F /σ2
G. Analysis across

the spectrum of ratio values supports the interpretation we have explained. Interestingly,
it also shows that the sign of the partial derivative of the coefficient with respect to the
correlation ρ1,2 changes from negative to positive as the variance ratio declines through 1/2
toward 0. Exact detail of the interpretation is modified by corresponding changes in the
conditional variance of φF and is somewhat obfuscated by the log and logit transformations
and the numerical itegration required.

10 The status of unanimity and compromise

Figures 5-7 show that the principle of unanimity does not generally hold for inference from
the two experts’ predictive probabilities. Otherwise the graphs of P (H |T1T2 = t1t2) as func-
tions of π∗ would be the 45◦ line in every case. Whenever P (H |T1T2 = t1t2) 6= π∗, the
unanimity principle does not hold. Moreover, a graphical exposition can display precisely
the extent to which the principle of compromise does and does not hold, as well.

Suppose that P (H |T1T2 = t1t2) = πG < π∗. Figure 8 depicts such a situation when
πG = .25 and π∗ = .4. Any (π1, π2) pair lying on that section of the equivalent inference
contour containing points northeast of (πG, πG) exemplifies a pair of experts’ assertions for
which the principle of compromise does not hold. A result they exemplify is general. When
coherent inference delineated by P (H |T1T2 = t1t2) = πG < π∗ does not subscribe to
unanimity, then neither will the principle of compromise pertain to any pair of probabilities
on the equivalent inference contour for which which min(π1, π2) ∈ [πG, π∗]. When πG > π∗,
a similar statement holds with min(π1, π2) ∈ [πG, π∗] replaced by max(π1, π2) ∈ [π∗, πG].

11 Concluding discussion

We shall conclude with one technical remark and three brief substantive comments. The
results seem to provide much scope for discussion and further development.
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Technically, it is worth mentioning that there is a limitation in the degree of correlations
that can be specified between the content of the expert-specific information sources and be-
tween either of these sources and the shared information, ρ1,2 and ρi,F . It is evident from
equation (23) that the likelihood ratios φ1 and φ2 are regarded exchangeably. Examination
of (23) allows that although φF is not exchangeable with the φi in that distribution, the
linear transformation (σG/σF )[φF − µ(π, νF ) + µ(π, νG)] is exchangeable with the φi. For
this reason, both of the two correlations must exceed −1/2. For technical explanation, see
Lad (1996, p. 387). This is why the minimum specified common value of ρ1,2 that we display
in Figures 2, 3, and 4 was −.25.

Substantively, we begin with a remark regarding common allusions to a second opinion as
an “independent opinion.” The details of our analysis seem to clarify what can and should be
meant by such a characteristic of the second opinion. It does not mean that our expectation
of the desired second opinion is assessed as stochastically independent of the first. There
are many many reasons why this would virtually never be the case. In none of the scenarios
that we have displayed here numerically has stochastic independence been involved. However
what would be desirable about a second opinion is that it be motivated by an information
base that differs as much as possible from the base that motivates the first opinion. This
is the feature that distinguishes the truly informative second opinion used for inference in
Figure 7 from the second opinions underlying Figures 5 and 6.

We must comment specifically on the result that coherent inference does not require
the combination of experts’ opinions via an externally Bayesian operator, nor need it even
support the principle of unanimity. The reason for the coherent defiance of EB operators
is that when an expert asserts a probability value without an extensive explication of all
evidence-based motives, the user of this probability does not know which nor how much of
the evidence arises from each of the three types of sources we have characterised as B, F
and G. Thus, a clear posterior inference based on further specific data can make use of it
in a different way than it must when this same data content is known to inform already
the experts who have been consulted. It is the disentangling of information shared by the
experts from the information specific to each expert that is the real problem of making in-
ference from experts’ assertions. Our derived result achieves a resolution to this problem in
an interpretable formal way.

A final remark is in order regarding a concept that we believe has provided a red herring
in a sizeable literature on the combination of probabilities. We refer to the questionable
desireability of the so-called “calibration” of assessors over an arbitrary range of probability
assertions, an issue that has a fairly long history. It should be noted explicitly that none of
the analysis we have presented has anything at all to do with the so-called recalibration of
experts’ probabilities. Indeed, we believe that the popularity of this concept derives from
incomplete analysis of the issue. The review of French and Rios-Insua (2000, 4.21-4.23, pp.
122-125) discusses literature on the topic. However, it fails to address and even to refer-
ence the critical work on the calibration of probabilities that has been aired in Lad (1984,
1996 Section 6.6), Hill (1984) and Blattenberger and Lad (1985). Properly understood, all
coherent probabilities of any assessor are well-calibrated. The arguments that challenge the
widely referenced concept of calibration of probabilities have not really been addressed in
the statistical community beyond the offhand dismissal by Shafer (1999, p. 648). We believe
they deserve more serious consideration.
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