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Abstract

We present the technical details of the logitnormal distribution of a variable supported on
the open unit-interval. Although this distribution has been used widely in a variety of sta-
tistical applications under a transformation, its direct analysis has not been exposited. The
density function can be expressed algebraically, and the moments can be computed easily by
numerical integration as functions of the parameters of the transformed normal distribution.
The family of densities has characteristics different from the Beta family especially near 0
and 1, although some members of each family resemble each other. Limiting members of the
family provide examples of distributions with adherent masses at 0 and 1. We also examine
the bivariate exchangeable logitnormal distribution.
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1 The Logitnormal density and its moments

While the logit transformation of a variable on the unit-interval is well-known and has been
studied in myriad applications, the Logitnormal distribution has escaped direct exposition.
This is somewhat surprising given the widespread use of logistic regression analysis. The dis-
tribution has also been used in hierarchical Bayesian modelling as early as Leonard (1972)
and in applications such as that of Kass and Steffey (1989). In these cases it is applied in
the form of the normal distribution for the logit transformation of a variable in the unit-
interval, rather than directly in the form of a distribution over that interval. In this note we
examine the density directly in the univariate and exchangeable bivariate form, exhibiting
its structure and its properties. The direct analysis of the density via numerical integra-
tion yields much clearer understanding of the possible choice of a family member as a mixing
distribution in applications, and it also can aid the interpretation of logistic regression results.

Definition: A variable Θ is distributed Logitnormal (µ, σ2) if its logit transformation,
log(Θ/(1−Θ)), is distributed Normal (µ, σ2).

The density function for Θ can be derived from the normal density for log(Θ/(1 − Θ))
using standard transformation methods.

Theorem: If Θ ∼ Logitnormal(µ, σ2) then its density function is

g(θ) =
1√

2π σ θ (1− θ)
exp{−1

2
[

log ( θ
1−θ )− µ

σ
] 2} for θ ∈ ( 0, 1 ) . (1)

This density function for θ is not symmetric unless µ = 0, in which case E(Θ) = 1/2.
Generally, the expectation and variance for Θ are determined by functions M(µ, σ2) and
V (µ, σ2) that do not have algebraic solutions in closed form. However, we can easily com-
pute values for these mean and variance functions using numerical integration. Figure 1
displays the mean and variance functions using the signal to noise parameter, µ/σ, and σ as
arguments. Figure 2 displays contours of (µ/σ, σ) pairs that support constant values of the
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mean at E(Θ) = .6, .75, and .9, and values of the variance at V (Θ) = .01, .04, and .10.
We have limited this display to non-negative values of µ/σ due to the obvious result that if
Θ ∼ Logitnormal(µ, σ2), then (1− Θ) ∼ Logitnormal(−µ, σ2).
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Figure 1: The graph at left depicts values of E(Θ) as a function of the Logitnormal µ/σ and
σ parameters. At right appears the Variance of Θ as a function of these same parameters.
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Figure 2: The graph at left shows contours of (µ/σ, σ) combinations that support constant
values of E(Θ) at .6, .75, and .9. The mean E(Θ) = .5 whenever µ/σ = 0. At right appear
contours of constant values of the variance, V (Θ), at .01, .04 and .10.

The displayed functions E(Θ) = M(µ, σ2) and V (Θ) = V (µ, σ2) are invertible, of course,
so that a specification of E(Θ) would determine a contour of supporting (µ, σ2) values from
Figure 2, and a specification of V (Θ) would then identify the appropriate single (µ, σ2) pair,
selected from this contour. Once E(Θ) is specified, it is probably easier to specify V (Θ) by
examining an array of densities that support this mean value, as we shall now see.

Figures 3 and 4 display graphs of some logitnormal densities that support E(Θ) = .5
and E(Θ) = .60, respectively, to indicate what members of this family of densities can look
like. It is interesting to see how they are different from the Beta family of densities. When
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σ2 is small, the densities are unimodal and look similar to the Beta(α, β) densities when α
and β both exceed 1. However the logitnormal densities always converge to 0 as θ → 0+

and as θ → 1−, and when σ2 is large enough the densities are bimodal. In this way they
differ markedly from the family of Beta(α, β) densities when α and β are both less than 1.
These Beta densities have asymptotes at 0+ and at 1−. The logitnormal family contains no
members that resemble the Beta densities when α ≤ 1 and β ≥ 1, or vice versa.
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Figure 3: Logitnormal (µ, σ2) densities with expec tation E(Θ) = .5 are specified by µ = 0
and the values of σ indicated.
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Figure 4: Logitnormal (µ, σ2) densities with expectation E(Θ) = .60 are specified by various
(µ, σ) pairs. Again, higher values of σ specify a bimodal logitnormal density.

Depending on the size of σ2, a logitnormal density may be unimodal or bimodal. Large
values of σ2 in the Logitnormal (µ, σ2) specification characterise bimodal distributions for Θ
with a large variance; small values of σ2 specify unimodal distributions with a small variance.
For example, in the graph of the densities with mean E(θ) = .5 (meaning the logitnormal
parameter µ = 0), the density for θ bunches near 0 and near 1 when σ = 3.2, while it is
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concentrated near .5 when σ = 0.1. Figure 4 shows a similar feature of the family of densi-
ties with expectation .60. The extreme values for the variance of a logitnormal density with
expectation M are 0 and M(1−M). The upper bound variance agrees with the variance of
a Bernoulli distribution, though the limiting member of the Logitnormal family is slightly
different, as we shall now see.

2 Limiting family members are delta functions or deploy

adherent masses

The limiting members of the Logitnormal (µ, σ2) family of distributions are unusual. Sup-
pose µ and σ are constrainted to lie on a contour supporting some E(Θ) = M(µ, σ2). Then
as σ2 → 0, the density approaches a delta function, infinite at θ = E(Θ) and 0 elsewhere. At
the same time, the distribution function for Θ approaches the step function that indicates
(θ ≥ E(Θ)). Here and following we use parenthetic notation to denote an indicator function.
Parentheses around any mathematical expression that may be true and may be false denote
the function that equals 1 if the interior expression is true, and 0 if it is false.

Under the same constraint that µ and σ lie on a contour supporting a specific value of
E(Θ), as σ2 → ∞ the density for θ approaches a function that equals 0 everywhere on the
interval (0, 1), but has an adherent mass of E(Θ) at 1, and 1 − E(Θ) at 0. An alternative
terminology is an agglutinated mass. An adherent mass is a feature of finitely additive dis-
tributions that was developed by Bruno de Finetti (1955). In the context of a distribution
over (0,1) with adherent masses at 0 and 1, it is defined as follows:

Definition: A probability distribution for Θ over (0,1) is said to have adherent masses of
E(Θ) and 1−E(Θ) at 1 and 0, respectively, if P (Θ = 0) = P (Θ = 1) = 0, yet for any num-
bers a and b for which 0 < a < b < 1, P [Θ ∈ (b, 1)] = E(Θ) and P [Θ ∈ (0, a)] = 1−E(Θ).

This property of distributions with adherent masses appears unusual, because such dis-
tributions are only finitely additive, not countably additive. The image of adherence is that
the total probability of 1 does not attach itself to any open intervals that are separated from
0 and 1, because the probability that Θ lies in any open interval inside of (0, 1) is zero. Yet
the entire probability of 1 adheres to the end-points of the unit-interval without amassing at
these points themselves.

The reason that these masses merely adhere to 0 and 1 in the limiting logitnormal case
derives from the fact that the regular family density values always converge to 0 as θ → 0+

and as θ → 1−. Moreover for any choice of E(Θ), as σ2 →∞ the densities converge to 0 at
all interior points of the interval as well. Thus, for any finite σ2 and ε > 0, there always exist
ordered positive numbers aL < aU < bL < bU and open intervals (0, aL), (0, aU ), (bL, 1), and
(bU , 1) with the properties that P [Θ ∈ (0, aL) or Θ ∈ (bU , 1)] < ε and P [Θ ∈ (0, aU ) or Θ
∈ (bL, 1)] > 1 − ε. As σ2 increases, the total measure of 1 becomes concentrated in smaller
and smaller intervals that are getting moved closer and closer to 0 and 1, but for any choice
of σ2 they are buffered from the endpoints by intervals with negligible probabilities. In the
limit, all probability gets pushed off every open interval inside of (0, 1), but it never gets to
attach itself to the endpoints 0 and 1.

3 The Multivariate Logitnormal Distribution

Definition: The vector of variables (Θ1, Θ2, ...ΘN ) is distributed Logitnormal (µ,Σ) if the
vector of their logit transformations is distributed Multivariate Normal (µ,Σ).

We limit our exposition here to the bivariate exchangeable distribution, having equal
means and variances for the two components. This is the context in which we have recently
applied the distribution, and this serves to exemplify a feature of extendible exchangeable
distributions. What we need to do is to identify the correlation between the two vari-

4



ables Θ1 and Θ2 when the distribution has been specified in terms of the mean, variance,
and the correlation between the logits of these two variables. Determining this function
Cor(Θ1, Θ2) = C(µ, σ2, ρ) is a little more intricate than the analysis of the univariate mean
and variance.

The correlation between two variables jointly distributed Logitnormal in this way must
also be determined by numerical integration. The exchangeable bivariate density function
for Θ1 and Θ2 is printed in Quintana and Newton (1998). It has the form

g(θ1, θ2) =
exp{− Q / 2 }

2π σ2(1− ρ2)1/2 θ1 θ2 (1− θ1) (1 − θ2)
for (θ1, θ2) ∈ ( 0, 1 )2 (2)

where

Q = (σ2 (1− ρ2))−1 [(logit(θ1)−µ)2 +(logit(θ2)−µ)2 − 2 ρ (logit(θ1)−µ)(logit(θ2)−µ)]

which is easily derived from the quadratic form of the bivariate normal density of the joint
logitnormal, along with the Jacobian of the transformation.

There are specific constraints on the correlation between two variables with an exchange-
able bivariate normal distribution that need to be considered. When the covariance matrix
of a K-variate normal distribution is expressed in the form Σ = a I + b 1 where I and 1 are
the identity matrix and a matrix of 1’s, respectively, then it is required that b ≥ − a/K in
addition to the positivity of a and a+b. (See Lad, 1996, p. 387). This implies that the corre-
lation between any two components of the K-variate normal vector must exceed −1/(K−1).
In the case of a bivariate distribution that is not exchangeably extendible, the correlation
coefficient is not constrained further than the usual constraint that | ρ | ≤ 1. However, if it
were specified further that the bivariate distribution be exchangeably extendible to dimen-
sion K, then the bivariate constraint on any two components would be that ρ ≥ − 1/(K−1).
Infinitely extendible exchangeable distributions must have non-negative correlations.

To study the correlations between the two thetas themselves, we have computed the value
of Cor(Θ1, Θ2) for an array of (µ/σ, σ) parameters, while specifying various values of ρ, the
correlation between the logits of Θ1 and Θ2. Numerical results for three (µ, σ) configurations
supporting EΘ = .6 appear in Table 1. For each configuration of (µ, σ) pairs, the values
of ρ entertained were -.3 through +.8 in gradations of .1. Notice that when the correlation
between the logits of Θ1 and Θ2 equals 0, the correlation between Θ1 and Θ2 is also 0. This
is evident from equation 2 when ρ = 0, noticing that this function is then a product of two
functions in the form of equation 1.

It is also of interest to view some of the exchangeable bivariate densities specified by
different values of ρ. I am still not sure which figures we should print, nor in what form. For
now I shall just print three figures of symmetric densities specified by (µ = .6, σ = 2) each
with a different value of ρ = −.25, 0 or .25.

4 Remarks

We have had reason to study the Logitnormal distribution on account of its relevance to the
problem of combining information elicited from experts in the form of probabilities. This
research is reported in DiBacco, Frederic, and Lad (2003). We were surprised to find that
the distribution has not been studied directly in the form we have reported here. We surmise
that its neglect has been due to the extensive effort that the numerical integrations would
have required prior to the contemporary ease of numerical computing.
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Table 1: Correlations between Θ1 and Θ2 computed by numerical integrations when the
logits of Θ1 and Θ2 are distributed exchangeably bivariate normal with the specified values
of µ and σ displayed in the headings of columns 2-4, and the correlation value ρ specified in
the row beginning with column 1.

ρ µ = .77851, σ = 2.5 µ = .509, σ = 1 µ = .4528, σ = .4

-.3 -0.266 -0.292 -0.299
-.2 -0.177 -0.195 -0.199
-.1 -0.089 -0.097 -0.100
0 0 0 0
.1 0.089 0.098 0.100
.2 0.179 0.196 0.199
.3 0.270 0.294 0.299
.4 0.363 0.393 0.399
.5 0.458 0.492 0.499
.6 0.556 0.592 0.599
.7 0.657 0.692 0.699
.8 0.764 0.794 0.799
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Figure 5: ρ = −.25.
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Figure 6: ρ = 0.
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