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On a cell-growth model for plankton
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The frequency distribution of diatoms (microscopic unicellular alga with silicified cell-
walls, found as plankton) is shown to evolve in time as a steady-size distribution with
constant shape, scaled by time. This distribution is preserved when the division occurs at
a fixed size into two daughter cells of half-size. In cases where the parameters for growth,
division frequency, dispersion and mortality are constants, the frequency distributions can
be found explicitly and thus provide a benchmark for computations in more complex cases.
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1. Introduction

In this paper we study a model for cell growth in plankton based on a modified Fokker–
Planck equation. The cells are assumed to be undergoing both growth and fission, and
mortality is incorporated into the model. Letn(x, t) denote the number density functions
of cells of sizex at timet . Thus, for 0� a < b the quantity

∫ b
a n(x, t) dx is the number

of cells of size betweena andb at timet . The cell growth process can be modelled by a
modified Fokker–Planck equation of the form

∂

∂t
n(x, t) = ∂2

∂x2 (D(x, t)n(x, t)) − ∂

∂x
(g(x, t)n(x, t))

+α2B(αx, t)n(αx, t) − (B(x, t) + µ(x, t)) n(x, t), (1.1)

whereD (m2/s) is the dispersion coefficient,g (m/s) is the rate of growth andµ (1/s) is
the rate of death. The functionB (1/s) is the rate at which cells divide intoα equally sized
daughter cells. Hereα > 1 is regarded as a constant, and the functionsD, g, µ andB are

†Email: britta.basse@paradise.net.nz
‡Email: graeme.wake@canterbury.ac.nz
§Email: d.wall@math.canterbury.ac.nz
¶Email: b.vanBrunt@massey.ac.nz

Mathematical Medicine and Biology 21(1),c© Institute of Mathematics and its Applications 2004; all rights reserved.



50 B. BASSEET AL.

all non-negative. The partial differential equation (1.1) is supplemented by the boundary
conditions

lim
x→∞ n(x, t) = 0; (1.2)

lim
x→∞

∂

∂x
n(x, t) = 0; (1.3)

∂

∂x
(D(x, t)n(x, t)) − g(x, t)n(x, t)

∣∣∣∣
x=0

= 0. (1.4)

Conditions (1.2) and (1.3) place decay conditions onn as x → ∞ for any fixed time.
Equation (1.4) is a ‘no flux’ condition on the boundaryx = 0. The model above is
deterministic though the dependent variable is in fact a probability distribution evolving
in time. Thus it is partially ‘stochastic’ in character.

Of particular interest are solutions to the boundary-value problem (1.1)–(1.4) that
correspond to steady size distributions (SSDs) for the number density function. SSD
solutions to the boundary-value problem correspond to solutions of the formn(x, t) =
N (t)y(x) (i.e. separable solutions). IfD, B, g andµ are functions of onlyx a separation
can be made formally, i.e. ifn(x, t) = N (t)y(x) then

N ′(t)
N (t)

= (D(x)y(x))′′

y(x)
− (g(x)y(x))′

y(x)
+ α2 B(αx)y(αx)

y(x)
− (B(x) + µ(x))

= Λ,

where Λ is a constant of separation and′ denotes differentiation with respect to the
indicated argument. Evidently, this separation leads to the solution

N (t) = N0eΛt , (1.5)

whereN0 is a constant, and the equation

(D(x)y(x))′′ − (g(x)y(x))′ + α2B(αx)y(αx) − (B(x) + µ(x)) y(x)

= Λy(x). (1.6)

Under suitable normalization (i.e. choice ofN0) a solution y ∈ L1[0, ∞) to (1.6)
corresponds to a probability density function (PDF) in the model. The boundary conditions
(1.2)–(1.4) imply that

lim
x→∞ y(x) = 0, (1.7)

lim
x→∞ y′(x) = 0, (1.8)

(D(x)y(x))′ − g(x)y(x)
∣∣
x=0 = 0, (1.9)

and the requirement thaty be a PDF leads to the conditionsy(x) � 0 for all x ∈ [0, ∞)

and ∫ ∞

0
y(x) dx = 1. (1.10)



ON A CELL-GROWTH MODEL FOR PLANKTON 51

Note thatn(x, 0) = N0y(x); hence, (1.6) along with the boundary conditions (1.7)–
(1.9) and normalizing condition (1.10) determine the initial number density function. In
essence, the requirement of separability supplements the original boundary conditions for
the Fokker–Planck equation by specifying the initial number density distribution.

The conditions (1.7)–(1.10) restrict the possible values of the separation constant.
Specifically, integrating (1.6) from 0 to∞ and applying the boundary conditions gives

Λ =
∫ ∞

0
((α − 1)B(x) − µ(x)) y(x) dx . (1.11)

(Note that the sign ofΛ determines whether the number density function decays or grows
exponentially in time.) Equation (1.6) can thus be written

(D(x)y(x))′′ − (g(x)y(x))′ + α2B(αx)y(αx)

−
(

B(x) + µ(x) +
∫ ∞

0
((α − 1)B(x) − µ(x)) y(x) dx

)
y(x)

= 0, (1.12)

which is a nonlinear non-local functional integro-differential equation.
It is of interest to note that if the mortality is constant then theµ term disappears

completely from (1.12), though it is still present inn throughN (t). In this model, constant
mortality does not affect the probability distribution, but only the exponential decay or
growth of the number density function in time. If, in addition,B is constant then (1.12)
simplifies to a linear second-order advanced functional differential equation.

In the context of cell growth in plant tissues, SSD solutions for the boundary-value
problem (1.1)–(1.4) have been studied by Hallet al. (1991), Hall & Wake (1989), and Hall
(1991) for the first-order case (D = 0) with g and B constant, andµ = 0. In addition,
Hall & Wake (1990) studied the first-order problem for exponential growth (i.e.g = axm ,
B = bxn , wherea, b are constants). The second-order problem was studied by Wake
et al. (2000) and Kim (1998) for constantD �= 0, g and B, with µ = 0. The crux of
these analyses lies in solving (1.12). For the first-order case, (1.12) can be solved by use
of Laplace transforms (cf. Hall & Wake, 1989). In fact, (1.12) reduces in this case to a
well-known functional equation now called the pantograph equation (cf. Iserles, 1993).
The second-order case can also be solved using Laplace transforms though there are some
complications (cf. van-Bruntet al., 2001). In each case, the solutiony can be represented
as a Dirichlet series. Note that the solutionsn(x, t) = y(x)N (t) represent, in practice,
phases of the growth cycle of the cell cohort distribution. This is because

(a) given arbitrary initial distributionsn(x, 0) = n0(x), the solutions transpire to be only
long term attractors, so that

n(x, t) ∼ y(x)N (t),

for larget , with exponentially decaying error; and

(b) the parameters in the description of the cell distribution (e.g. growth, division) are
subject to frequent re-settings owing to genetic modifications and environmental
adjustment.
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Unlike cell growth in plant tissues, cell growth in plankton is characterized by cell
division only at a critical sizel. Evidence for this is developed in Roundet al. (1990), where
size is characterized by DNA content. A full micro-model of the cell cohort would consist
of four or more compartments incorporating cell biomass in the respective sections of
the cell-cycle: the growth one orG1-phase, DNA synthesis or S-phase, growth two orG2-
phase, and finally mitosis or M-phase. When these compartments are lumped together, as in
this model, in order to determine macro-features of the model, we use the fact that cells split
at a fixed size. This is in fact borne out in more detailed models as demonstrated in Basse
et al. (2003). Cells double in size as well as doubling their chromosomes and segregate a
full complement of components to each daughter cell. The chromosome content is for the
survival of the daughter cell, and it is prescribed fairly precisely for these simple unicellular
organisms, namelyl/2: that is, there are exactly two daughter cells from each division.
However, the model can be kept more general by allowing the parameterα to be arbitrary
in the analysis that follows, with the specific valueα = 2 employed only at the end. The
value of l represents the threshold value of the chromosome content at which division
only occurs (i.e. single size division). This behaviour is in contrast with more complex
organisms where cell division occurs over a specified size interval. Mathematically, we can
model this behaviour by a function of the formB(x) = bδ(x − l), whereb is a constant
andδ denotes the Dirac delta function. (In practiceB(x) will have support with meanl
and small variation about this value.) We study in this paper SSD solutions for the case
where the dispersion coefficientD, the growth rateg and the mortalityµ are constant, but
B(x) = bδ(x − l). This case differs mathematically from the cases considered in earlier
studies because the constant of separationΛ depends on the solution. In this case,

Λ =
∫ ∞

0
((α − 1)bδ(x − l) − µ) y(x) dx

= (α − 1)by(l) − µ,

and (1.12) reduces to

Dy′′(x) − gy′(x) + α2B(αx)y(αx)

− (bδ(x − l) + b(α − 1)y(l)) y(x) = 0. (1.13)

2. Solution of the functional equation

In this section we study the boundary-value problem that consists of solving the equation

y′′(x) − γ y′(x) − λy(x) − βδ(x − l)y(x) + α2βδ(αx − l)y(αx) = 0, (2.1)

subject to the conditions (1.7), (1.8) and

y′(0) − γ y(0) = 0. (2.2)

Here,α, β, γ andl are positive constants withα > 1, and

λ = β(α − 1)y(l).
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This problem is simply a normalized version of the boundary-value problem in Section 1
with γ = g/D, β = b/D. Note that any non-trivial solution to this problem inL1[0, ∞)

automatically satisfies condition (1.10).
The presence of the Dirac delta functions in (2.1) indicates that we cannot expect

classical solutions to the problem inC2[0, ∞). We thus look for solutionsy such that
y ∈ C0[0, ∞) ∩ L1[0, ∞) and y has continuous second derivatives for allx ∈ [0, ∞)

except perhaps atx = l/α andx = l. Sincey is to be a PDF we also require thaty(x) � 0
for all x ∈ [0, ∞).

A feature of the above boundary-value problem is the presence of the termy(l) in
λ. This term is determined by the solution and acts as an eigenvalue parameter for the
problem. In short, the continuity ofy at l limits the potential values fory(l).

The boundary-value problem can be solved formally either by use of Laplace
transforms or by use of a Green function. We pursue the latter approach. Let

Ly = y′′ − γ y′ − λy.

Assuming thatλ > 0 (i.e. y(l) > 0) the Green function for the operatorL and the boundary
conditions (1.7), (1.8) and (2.2) is

G(x, ξ) =




r1er1x −r2er2x

r1(r2−r1)
e−r1ξ if 0 � x � ξ ,

r1e−r2ξ −r2e−r1ξ

r1(r2−r1)
er2x if ξ � x < ∞,

(2.3)

where

r1, r2 = γ ± √
γ 2 + 4λ

2
.

Note thatr1 > 0 andr2 < 0 sinceγ andλ are positive. The boundary-value problem can
thus be recast as the integral equation

y(x) =
∫ ∞

0
G(x, ξ)

(
βδ(ξ − l)y(ξ) − α2βδ(αξ − l)y(αξ)

)
dξ,

which simplifies to

y(x) = βG(x, l)y(l) − αβG(x, l/α)y(l). (2.4)

Using the definition ofG as given by (2.3) we get, forx � 0,

y(x) = βy(l)

r1(r2 − r1)

{
H(l − x)

(
r1er1(x−l) − r2er2x−r1l

)
+H(x − l)

(
r1er2(x−l) − r2er2x−r1l

)
−αH

(
l

α
− x

) (
r1e

r1

(
x− l

α

)
− r2er2x−r1

l
α

)

−αH

(
x − l

α

) (
r1e

r2

(
x− l

α

)
− r2er2x−r1

l
α

)}
, (2.5)



54 B. BASSEET AL.

where H denotes the Heaviside function. Evidently, the function defined by (2.5) is
continuous atx = l/α andx = l (provided a suitabley(l) exists) and it has continuous
second derivative for allx ∈ [0, ∞) except at these points. Moreover, sincer2 < 0 the
function is certainly inL1[0, ∞).

The expression (2.5) fory can be written in the more consolidated form

y(x) = βy(l)

r1 − r2

{
1

r1

(
αe−r1

l
α − e−r1l

) (
r1er1x − r2er2x)

+H(x − l)
(
er1(x−l) − er2(x−l)

)
−αH

(
x − l

α

) (
er1(x− l

α
) − er2(x− l

α
)
)}

. (2.6)

The function defined by (2.6) is a ‘formal solution’ to the problem because the existence
of a suitabley(l) has yet to be established. Indeed, this is where the difficulty lies because
(2.6) definesy at x = l in terms ofr1 andr2 both of which depend ony(l) throughλ.
Specifically, under the condition of continuity atx = l, (2.6) implies that

r1 − r2

β
= 1

r1

(
αe−r1

l
α − e−r1l

) (
r1er1l − r2er2l

)
−α

(
er1l(1− 1

α
) − er2l(1− 1

α
)
)

. (2.7)

The above condition is a transcendental equation fory(l) containing the four parameters
α, β, γ andl. Sincey needs to be a probability density function, only the positive solutions
y(l) to (2.7) are of interest, and it is not clear that this equation generically has positive
solutions for all positive values of the parameters withα > 1. Equation (2.7) can be
regarded as the condition that determines the eigenvaluesy(l) for the problem.

Now, y(l) > 0 corresponds tor2 < 0, and we can thus regard (2.7) as a condition
involving the five parametersα, β, γ, l andω = −r2. (Note thatω = 0 implies thatr2 = 0
so thaty(l) = 0 in this case.) In terms of these parameters, (2.7) is equivalent to the
condition

(γ + ω)(β + γ + 2ω) − αβ(γ + ω)e−ωl(1− 1
α
)

− βωe−ωl
(
αe−(ω+γ ) l

α − e−(ω+γ )l
)

= 0. (2.8)

Let F(ω) denote the left-hand side of (2.8). We thus look for positive zeros ofF . Note that
sinceF is an entire function the zeros ofF (if any) must be isolated. Note also that

F(0) = γ (β + γ − αβ) (2.9)

and

lim
ω→∞ F(ω) = ∞. (2.10)

Equation (2.10) implies thatF can have at most afinite number of positive zeros, since
all zeros must be isolated. Equations (2.9) and (2.10) can be used to identify a parameter
region whereF must have at least one positive zero. Suppose that

β + γ < αβ. (2.11)
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Then (2.9) implies thatF(0) < 0; hence, the continuity ofF and (2.10) imply thatF
must have at least one positive zero. The possibility of non-uniqueness cannot be answered
clearly here without further investigation; which SSD is approached will depend on the
correspondingy(x) being non-negative and the correspondingn(x, t) being asymptotically
attracting.

There are parameter regions whereF cannot have a positive zero. Given that all the
parameters are positive andα > 1, we have

0 < ωe
−ωl

(
1− 1

α

)
� 1

le
(
1 − 1

α

) ,

and

0 < ωe
−ωl

(
1+ 1

α

)
� 1

le
(
1 + 1

α

) ,

for all ω > 0; consequently,

F(ω) > (γ + ω)(β + γ + 2ω) − αβγ − αβ

le
(
1 − 1

α

) − αβe− γ l
α

le
(
1 + 1

α

)

> γ (β + γ − αβ) − αβ

le

(
1

1 − 1
α

− e− γ l
α

1 + 1
α

)

> γ (β + γ − αβ) − αβ

l
(
1 − 1

α2

) ,

for all ω > 0. Hence, if

β + γ > αβ


1 + 1

lγ
(
1 − 1

α2

)

 , (2.12)

thenF(ω) > 0 for all ω > 0 and thus there are no positive solutions to (2.8).
Under the assumption that there is a positive solutiony(l) to (2.7) we show that the

solutiony defined by (2.6) is positive, monotonic strictly increasing in the interval(0, l/α),
and monotonic strictly decreasing in the interval(l/α, ∞). This in turn means that the PDF
y is unimodal with a maximum value atx = l/α. If x ∈ (0, l/α), then

y(x) = βy(l)

r1 − r2

{
1

r1

(
αe−r1

l
α − e−r1l

) (
r1er1x − r2er2x)} .

Note that

y(0) = βy(l)

r1

(
αe−r1

l
α − e−r1l

)
> 0. (2.13)

Now,

y′(x) = y(0)

r1 − r2

(
r2
1er1x − r2

2er2x
)

,
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and sincer1 > 0 andr2 < 0,

y′(x) � βy(l)

r1

(
r2
1 − r2

2

)
= y(0)(r1 + r2) = y(0)γ

> 0.

Hencey is monotonic strictly increasing in(0, l/α), and sincey(0) > 0 we havey(x) > 0
in this interval.

If x ∈ (l/α, l), then

y(x) = βy(l)

r1 − r2

{
1

r1

(
αe−r1

l
α − e−r1l

) (
r1er1x − r2er2x)

−α
(
er1(x− l

α
) − er2(x− l

α
)
)}

,

so that

y′(x) = − βy(l)

r1 − r2

{
r2
2

r1

(
αer2x−r1

l
α − er2x−r1l

)
+ r1er1(x−l) − αr2er2(x− l

α
)

}
.

Now,
αer2x−r1

l
α − er2x−r1l > 0

for all x > 0, and sincer2 < 0 we havey′(x) < 0 for all x ∈ (l/α, l) and consequentlyy
is monotonic strictly decreasing in this interval. Sincey(x) > y(l) for all x ∈ (l/α, l) we
also have thaty is positive in this interval.

Finally, if x ∈ (l, ∞), then

y′(x) = −βy(l)r2er2x

r1(r1 − r2)
C,

where
C = α

(
r2e−r1

l
α − r1e−r2

l
α

)
− r2er1l + r1er2l .

Now,

−βy(l)r2er2x

r1(r1 − r2)
> 0

for all x , and sincey(x) → 0 asx → ∞ and y(l) > 0 we must have that the constant
C is negative. Thereforey′(x) < 0 for all x > l and hencey is a positive monotonic
strictly decreasing function in the interval(l, ∞). Solutions to (2.1) for various values of
the dispersion constantD are given in Fig. 1.

3. The limiting case

In this section we focus on the limiting case as the dispersion coefficientD approaches 0
in the boundary-value problem. We use the solution developed in Section 2 to show that
the limiting solution preserves the unimodal monotonic character of the general solution,
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FIG. 1. Solutions to (2.1) and (2.2) withα = 2, l = 0·2, β = 4/D, γ = 3/D.

but is discontinuous atx = l/α andx = l. The loss of continuity means that the value of
y(l) is not determined and the solution is not unique.

The fact that we do have the exact solution means we do not have to use the method of
matched asymptotic expansions, which would be the more natural approach. The solution
is shown to approach the solution of the first-order equation (1.13) whenD = 0. The latter
can of course be obtained easily by re-doing the piecewise approach in Section 2, but the
details are omitted.

The function defined by (2.6) can be written in terms of the parametersα, g, b, l, and
L = b(α−1)y(l) upon the substitutionγ = g/D andβ = b/D. This substitution indicates
that

r1, r2 = 1

2

(
g

D
±

√( g

D

)2 + 4L

D

)
.

Now, Taylor’s theorem shows that

√( g

D

)2 + 4L

D
=

(
1 + 2DL

g2
+ o(D)

)
g

D



58 B. BASSEET AL.

asD → 0, and hence

r1 = g

D
+ L

g
+ O(D)

r2 = − L

g
+ O(D)

asD → 0. The above expressions show that

lim
D→0

r1 = ∞ (3.1)

lim
D→0

r2 = − L

g
. (3.2)

Wealso have that

lim
D→0

D(r1 − r2) = g. (3.3)

If x ∈ (0, l/α) then

y(x; D) = by(l)

D(r1 − r2)

(
αer1(x− l

α
) − αr2

r1
er2x−r1

l
α − er1(x−l) + r2

r1
er2x−r1l

)
.

Now, x − l/α < 0 for any D � 0; therefore,r2x − r1l/α < 0, r1(x − l) < 0 and
r2x − r1l < 0; hence, (3.1)–(3.3) imply that

lim
D→0

y(x; D) = 0 (3.4)

for all x ∈ (0, l/α). The limiting solution in this interval thus corresponds to the trivial
solutiony ≡ 0.

If x ∈ (l/α, l) then

y(x; D) = by(l)

D(r1 − r2)

{
αer1(x− l

α
) − αr2

r1
er2x−r1

l
α − er1(x−l) + r2

r1
er2x−r1l

−αer1(x− l
α
) + αer2(x− l

α
)
}

,

and sincer2x − r1l/α < 0, r1(x − l) < 0 andr2x − r1l < 0 for any D � 0 we have

lim
D→0

y(x; D) = αby(l)

g
e− L

g (x− l
α
). (3.5)

Finally, if x > l then

y(x; D) = by(l)

D(r1 − r2)

{
αer2(x− l

α
) − αr2

r1
er2x−r1

l
α − er1(x−l) + r2

r1
er2x−r1l

+er1(x−l) − er2(x−l)
}

,
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and sincer2x − r1l/α < 0 andr2x − r1l < 0 for all D � 0 we have

lim
D→0

y(x; D) = by(l)

g
e− L

g x
(
αe

Ll
gα − e

Ll
g

)
. (3.6)

Let y(x) = limD→0 y(x; D). Note thaty(x; D) does not converge uniformly toy(x) in
[0, ∞) since the limiting function cannot be continuous atx = l/α (unlessy is the trivial
solution). We cannot without further investigation interchange the order of the integration
and the limit processes, and argue directly that condition (1.1) is satisfied; however, a direct
calculation shows that∫ α

l/α
y(x) dx = αby(l)

L

(
1 − e− Ll

g (1− 1
α
)
)

∫ ∞

l
y(x) dx = by(l)

L

(
αe− Ll

g (1− 1
α
) − 1

)

and hence condition (1.1) is satisfied for anyy(l) > 0. We thus conclude that there are an
infinite number of solutions to the boundary-value problem that correspond to probability
density functions. Evidently none of these solutions are continuous atx = l/α. Since

y−(l) = lim
x→l−

y(x) = αby(l)

g
e− Ll

g (1− 1
α
)
,

the requirement of continuity from the left (i.e.y−(l) = y(l)) implies that

y(l) = αg

bl(α − 1)2
ln

(
αb

g

)
; (3.7)

hence, there are probability density solutions continuous from the left only if

αb

g
> 1.

If we require continuity from the right then

y+(l) = lim
x→l+

y(x) = by(l)

g

(
αe− Ll

g (1− 1
α
) − 1

)
,

and the conditiony+(l) = y(l) implies that

y(l) = αg

bl(α − 1)2
ln

(
αb

g + b

)
. (3.8)

Sinceb > 0, there is no choice ofy(l) that produces a solution continuous atx = l.
It is possible to choose a value ofy(l) such thaty(x) = 0 outside the interval(l/α, l).

Specifically, if

y(l) = αg ln α

bl(α − 1)2
, (3.9)
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FIG. 2. A limiting solution asD → 0 with α = 2, l = 0·2, b = 4, g = 3 andy(l) = 1·3.

then
αe

Ll
gα − e

Ll
g = 0,

and (3.6) shows thaty(x) = 0 for all x ∈ (l, ∞). Which one is chosen again depends on
the asymptotic attaction of the correspondingn(x, t).

Figure 2 depicts a typical solution shape wheny(x) is not of bounded support for the
limiting case. Indeed, if the method of matched asymptotic expansions is employed on
(1.13) with no flux boundary condition, asD approaches 0, we do get the solution given
in (3.5) for the middle region, (3.6) in the region (l, ∞) with y(l) given by (3.8), and of
coursey(x) ≡ 0, for the region(0, l

α
).

4. Conclusions

There are SSD solutions for plankton cell growth distributions where division occurs at a
fixed size. These exist if the growth and division parameters satisfy the inequality

(α − 1)b > g

(cf. (2.11)) and have the general shape shown in Figs 1 and 2. The distributions track along
the transient SSD path

n(x, t) ∼ y(x)eΛt ,
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for large timet where the sign of the exponentΛ is determined by a transcendental equation
(equation (2.7)) and is negative for large mortality, and positive if the mortality is small.
Thus the plankton cohort has survival or extinction outcomes if

(α − 1)y(l)

{
> µ survival,

< µ extinction.

The existence of a threshold condition for the existence of a steady-size distribution
is revealed computationally for multicompartment models, see Basseet al. (2003). Here,
in a lumped compartment model, the threshold is able to be calculated explicitly. Future
work will be aimed at calculating this threshold for more detailed models. Here there is no
feasible (non-negative) steady-size distributions ifαb � g (whenD = 0). In this case, the
attracting solution of (1.1) will not be of this separable form.
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