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Abstract. Most anti-cancer drugs in use today exert their effects by inducing a programmed
cell death mechanism. This process, termed apoptosis, is accompanied by degradation of
the DNA and produces cells with a range of DNA contents. We have previously developed
a phase transition mathematical model to describe the mammalian cell division cycle in
terms of cell cycle phases and the transition rates between these phases. We now extend this
model here to incorporate a transition to a programmed cell death phase whereby cellular
DNA is progressively degraded with time. We have utilised the technique of flow cytometry
to analyse the behaviour of a melanoma cell line (NZM13) that was exposed to paclitaxel,
a drug used frequently in the treatment of cancer. The flow cytometry profiles included a
complex mixture of living cells whose DNA content was increasing with time and dying
cells whose DNA content was decreasing with time. Application of the mathematical model
enabled estimation of the rate constant for entry of mitotic cells into apoptosis (0.035 per
hour) and the duration of the period of DNA degradation (51 hours). These results provide
a dynamic model of the action of an anticancer drug that can be extended to improve the
clinical outcome in individual cancer patients.

1. Introduction

The cancer cell division cycle can be divided into four distinct phases, namely
G1-phase, DNA synthesis or S-phase, G2-phase and mitosis or M-phase (Fig. 1).
The transitions between these phases are largely controlled by stochastic processes
and we have developed a mathematical model to describe these phases and the tran-
sitions rates between them ([2]). Anticancer drugs used in the treatment of cancer
generally affect cancer cells by inducing a combination of programmed cell death,
termed apoptosis, and cell cycle arrest. Paclitaxel, an anticancer drug commonly
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Fig. 1. Cell cycle control.

used to treat ovarian and other types of cancer, arrests cancer cells at the stage
of mitosis, where the chromosomes of the daughter cells are segregated prior to
cell division. Apoptosis occurs subsequent to mitotic arrest ([7]) and is thought to
account for the therapeutic properties of paclitaxel. The clinical response to pac-
litaxel varies considerably in different patients and in different types of cancer,
suggesting that the degree of induction of apoptosis in individual cancers can vary.
In the melanoma line that we used previously for the development of the math-
ematical model ([2]), we found little evidence of apoptosis and this process was
omitted from the model. In this report, we have studied a cancer cell line that shows
evidence of both cell cycle arrest and apoptosis in response to paclitaxel.

The induction of apoptosis in cultured cells is accompanied by the appearance
of cells with partially degraded DNA, which can be observed by flow cytometry
([18]). In order to describe this induction of apoptosis, we define here a model
whereM-phase cells undergo a stochastic transition to a phase we termA-phase, in
which DNA is degraded with time. This model enables us to calculate, the rate of
entry of mitotic cells into A-phase, the rate of DNA degradation with time during
A-phase and the rate of eventual cell loss. The model generates a series of flow
cytometry profiles that can be compared with experimental data. It also provides
new insights on how paclitaxel acts on tumour cells and has the potential to further
our understanding of this drug.

For clarity, we give an overview of the paper: Firstly, in section 2.1 we introduce
a generalised size structured model for a cell population. In section 2.2 we consider
the model for a cell line unperturbed by cancer therapy. We look for separable solu-
tions of this model and we find these in a ‘no dispersion’ case in section 2.2.1. For
the dispersion case, section 2.2.2, the problem is reduced to solving a Fredholm
integral equation. We discuss the numerics of this in section 2.2.3. We summarise
the uniqueness and attractiveness of our model solutions in section 2.2.4. In section
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2.3 we model the addition of the anticancer drug paclitaxel to an unperturbed cell
population. We then compare model outputs to those obtained experimentally in
sections 3 and 4. Finally, in section 5 we discuss the biological significance of our
results.

We aim to describe the effects of exposure of an unperturbed cancer cell line
growing in culture to paclitaxel, an anticancer drug. The mode of analysis is as
follows: A cohort of cells has its DNA content measured using the technique of
flow cytometry. This involves staining of the cellular DNA with a fluorescent dye
and then measuring the fluorescence of each cell in a flow cytometer. Since fluores-
cence is proportional to DNA content, a frequency histogram (or DNA distribution
profile) can be obtained where cells are binned according to their DNA content at
various ‘snapshots’ in time. When cells are in a logarithmic or exponential growth
phase, the shape of the DNA profile does not change. Starting from this steady
DNA distribution (SDD), the cell line is perturbed by the addition of an anticancer
drug. Further flow cytometry DNA profiles at discrete later times provide a series
of ‘snapshots’ of the effects of the treatment. Drug-induced perturbation of some
cell lines may cause arrest of cells at certain phases of the cell cycle, leading to
an accumulation of cells with this DNA content. It may also cause a proportion to
undergo apoptosis, whereupon their DNA content is reduced with time.

2. Mathematical model

2.1. Generalised model equations

In [2] we devised a mathematical model for the cell division cycle in which the rate
of transition to cell death was set at zero. We now extend this model to incorporate
a transition from mitosis to cell death. This extension will enable us to model the
addition of paclitaxel, an anticancer drug that induces not only mitotic arrest but
also subsequent cell death.

For the mathematical model we choose five compartments representing the sub-
populations of cells,G1, S,G2,M , andA distinguished by their position within the
cell cycle compartments for G1-phase, S-phase, G2-phase, M-phase and A-phase
respectively (Fig. 1). Our model equations, with appropriate initial and boundary
conditions, are:

G1-phase:

∂G1

∂t
(x, t) = 4bM(2x, t)− k1G1(x, t), t > 0, 0 < x < L, (1)

G1(x, 0) = G10(x), 0 < x < L. (2)

S-phase:

S(x, t) =
∫ TS

0
S̄(x, t; τS)dτS, (3)
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where S̄(x, t; τS) represents cells that have been in S phase for τS hours and is the
solution of the partial differential equation:

∂S̄

∂t
(x, t; τS)+ ∂S̄

∂τS
(x, t; τS)

= D
∂2S̄

∂x2 (x, t; τS)− g
∂S̄

∂x
(x, t; τS), t, τS > 0, 0 < x < L, (4)

with side conditions:

S̄(x, t; τS = 0) = k1G1(x, t), t > 0, 0 < x < L, (5)

S̄(x, t = 0; τS) = S̄0τS (x, τS), τS > 0, 0 < x < L, (6)

D
∂S̄

∂x
(0, t; τS)− gS̄(0, t; τS) = 0, t, τS > 0, (7)

D
∂S̄

∂x
(L, t; τS)− gS̄(L, t; τS) = 0, t, τS > 0. (8)

Thus the initial distribution for cells in S-phase is:

S(x, t = 0) = S0(x) =
∫ TS

0
S̄(x, t = 0; τS)dτS

=
∫ TS

0
S̄0τS (x, τS)dτS, τS > 0, 0 < x < L. (9)

G2-phase:

∂G2

∂t
(x, t) = S̄(x, t; TS)− k2G2(x, t), t > 0, 0 < x < L, (10)

G2(x, 0) = G20(x), 0 < x < L. (11)

M-phase:

M(x, t) =
∫ ∞

0
M̄(x, t; τM)dτM, (12)

where M̄(x, t; τM) represents cells that have been in M phase for τM hours and is
the solution of

∂M̄

∂t
(x, t; τM)+ ∂M̄

∂τM
(x, t; τM)

= −bM̄(x, t; τM)− µMM̄(x, t; τM), t, τM > 0, 0 < x < L, (13)

with side conditions

M̄(x, t; τM = 0) = k2G2(x, t), t > 0, 0 < x < L, (14)

M̄(x, t = 0; τM) = M̄0τM (x, τM), τM > 0, 0 < x < L. (15)
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Thus the initial distribution for cells in M-phase is:

M(x, t = 0) = M0(x) =
∫ ∞

0
M̄(x, t = 0; τM)dτM

=
∫ ∞

0
M̄0τM (x, τM)dτM, τM > 0, 0 < x < L. (16)

A-phase:

∂A

∂t
(x, t) = gA

∂A

∂x
(x, t)+

∫ t

TM

µMM̄(x, t; τM)dτM, t, τM > 0, 0 < x < L,

(17)

A(x, 0) = A0, 0 < x < L, (18)

A(L, t) = 0, t > 0. (19)

For a detailed description of the model, excluding apoptosis, we refer the reader to
[2]. For completeness, we give a brief description here and a summary of parame-
ters and their descriptions in Table 1. The model equations are generic and provide

Table 1. Model parameters and variables. Mesh size: �t=0.5; �x = .01; xmax=2.5. LB and
UB are the lower and upper bounds respectively as applied during the optimisation routine
of fitting model outputs to those obtained experimentally.

Parameter (Dim.) Description Value LB UB

x ([1]) relative DNA content
t (hours) time
G1(x, t) number density of cells in G1-phase
S(x, t) number density of cells in S-phase
G2(x, t) number density of cells in G2-phase
M(x, t) number density of cells in M-phase
A(x, t) number density of cells in A-phase
k1 ( 1

[t] ) transition probability of cells from 4 × 10−4 1
G1 to S-phase

D ( [x]2

[t] ) dispersion coefficient 4 × 10−4

g = 1
TS

( [x]
[t] ) average growth rate of DNA in S-phase 0.1

TS = 1
g

(hours) time in S-phase 10
k2 ( 1

[t] ) transition probability of cells from 4 × 10−4 1
G2 to M-phase

b ( 1
[t] ) division rate 2

µM ( 1
[t] ) eventual death rate in M-phase 0 1

gA ( [x]
[t] ) average disintegration rate of DNA 0 2/�t

in A-phase
TM (hours) time in M-phase before apoptosis onset 0 40
Tc (hours) total cell cycle time 12 250
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the basis for modelling cell lines both unperturbed and perturbed by a range of
cancer treatments. The time variables, t, τS and τM , are measured in hours while
x, relative DNA content, is dimensionless and is assumed to be smaller than some
maximum DNA content L ∈ R

+. All parameters in the model may be functions
of (one or more of) t, τS, τM and x but for the scope of this paper it is suffi-
cient to consider only constant parameter values. Initial distributions in each phase,
G1(x, t = 0), S̄(x, t = 0, τS),G2(x, t = 0), M̄(x, t = 0, τM) and A(x, t = 0)
at time t = 0, are the arbitrary (positive) functions: G10(x), S̄0τS (x, τS), G20(x),
M̄0τM (x, τM) andA0(x) respectively. Boundary conditions in S̄-phase andA-phase,
expressions (7), (8) and (19) respectively, ensure that cells do not travel into the
infeasible region (x < 0 or x > L) during times in these phases. The integrals of
equations (3), (9), (12) and (16) represent summation over previous time and do
not violate causality.

FromG1-phase, equation (1), cells transit to S-phase with transition probability
k1. Newly divided cells from M-phase join G1-phase at a rate of b divisions per
unit time.

During S-phase, equations (3)–(9), the parameter g is the average rate of in-
crease of DNA content during S-phase. The dispersion parameter,D, has two roles,
firstly, it accounts for the apparent variation in DNA content caused by flow cytom-
etry and the fact that cells are not always illuminated evenly when they pass through
a laser beam in a flow cytometer. Secondly, many human tumours exhibit genetic
instability that can result in changes to the chromosomal complement (and thus of
DNA content) of individual cells ([8]).

The length of time that human tumour cells spend in S-phase, TS , varies in
different cell lines but is typically 10 hours in a melanoma line ([2]). The time in
S-phase, TS, is related to the parameter g, the average rate of increase of DNA
during S-phase, by the equation TS = 1/g hours ([17]). This gives us the integral
relation of equation (3) for cells in S phase. It can be shown (see [2]) that:

1. The case D = 0,

S̄(x, t; τS) =
{
k1G1(x − gτS, t − τS), t − τS ≥ 0, x > gτS,

0, t − τS < 0 or x ≤ gτS.
(20)

2. The case D �= 0,

S̄(x, t; τS) =


∫ L

0
k1G1(z, t − τS)γ (τS, x, z) dz, t − τS ≥ 0,

0, t − τS < 0,
(21)

where L ∈ R+, is some large positive number, representing maximum DNA
content, and

γ (τS, x, z) ≈ 1√
4πDτS

(
e−((x−gτS)−z)

2/4DτS
)
, (22)

(see appendix, equation (103)). Thus, the number density of cells inS-phase,S(x, t)
can be found in terms of G1-phase cells in both cases as:
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1. Case D = 0,

S(x, t) ≈
{∫ t1

0 k1G1(x − gτS, t − τS)dτS, t − τS ≥ 0, x > gτS,

0, x ≤ gτS.
(23)

2. Case D �= 0,

S(x, t) ≈



k1G1(x, t)+ ∫ t1

0+
∫ L

0 k1G1(z, t − τS)

× γ (τS, x, z) dzdτS, t − τS ≥ 0,

0, t − τS < 0,

(24)

where

t1 =
{
TS, t ≥ TS,

t, t < TS.
(25)

It should be noted that we can combine equations (3) and (4) to give one partial
differential equation for cells in S-phase

∂S

∂t
(x, t) = D

∂2S

∂x2 − g
∂S

∂x
(x, t)+ k1G1(x, t)− S̄(x, t; TS), (26)

with zero flux boundary conditions corresponding to equations (7) and (8),

D
∂S

∂x
(0, t)− gS(0, t) = 0, t > 0, (27)

D
∂S

∂x
(L, t)− gS(L, t) = 0, t > 0, (28)

respectively.
The source term, S̄(x, t; τS = TS), in equation (10) represents cells that have

been in S-phase for TS hours. The transition rate of cells fromG2-phase toM-phase
is k2. Cells that have been in M-phase for τM hours enter A-phase with transition
probability µM. This gives rise to the loss term in equation (13). We assume that
µM = 0 when τM < TM . Generally, µM will increase as τM increases but as a first
approximation we assume µM is constant after time TM .

Finally, equation (17) depicts the removal phase for A-phase cells and is simi-
lar to equation (4) (S-phase) in that the DNA content of a cell changes in time. In
equation (4) the DNA content increases corresponding to DNA synthesis whereas
during A-phase the DNA content of a cell decreases, representing DNA degrada-
tion. The average rate of DNA degradation during A-phase is gA per unit time and
there is no dispersion. Since cells disappear as x approaches 0, for simulations we
impose the condition A(0, t) = 0. The integral term in this equation represents the
arrival of cells from M-phase.
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2.2. Unperturbed cell lines and Steady DNA Distributions (SDD’s)

Tumour cell lines which are unperturbed by radiation or anticancer drugs typically
have an unchanging DNA profile over time. In this case we use the terminology
steady DNA distribution or SDD. In addition, unperturbed cell lines generally have
low rates of cell death. The model equations for an unperturbed cell line are gained
by taking the generalised model equations from section 2.1 and setting the tran-
sition rate to A-phase, of cells that have been in M-phase for τM hours, µM, to
zero:

∂G1

∂t
(x, t) = 4bM(2x, t)− k1G1(x, t), (29)

∂S

∂t
(x, t) = D

∂2S

∂x2 − g
∂S

∂x
(x, t)+ k1G1(x, t)− S̄(x, t; TS), (30)

∂G2

∂t
(x, t) = S̄(x, t; TS)− k2G2(x, t), (31)

∂M

∂t
(x, t) = k2G2(x, t)− bM(x, t), (32)

where side conditions are those given in section 2.1. Equation (32) represents
M-phase cells. The cells enterM-phase fromG2-phase with probability k2 per unit
time and exit M-phase when they divide with division rate b per unit time.

In [2] we used the method of finite differences to solve equations (29)–(32)
and hence find the SDD’s in each phase. However the method of finite differences
becomes impractical for certain parameter values. In this section we look for sepa-
rable solutions which allow us to find SDD’s directly as opposed to asymptotically.
We now prove, by using the method of separation of variables, that our model for
unperturbed cell lines has separable solutions. We set

G1(x, t) = y1(x)N(t), (33)

S(x, t) = yS(x)N(t), (34)

G2(x, t) = y2(x)N(t), (35)

M(x, t) = yM(x)N(t), (36)

and emphasise that y1(x), yS(x), y2(x) and yM(x) represent the SDD solution
mode in G1, S, G2 and M-phase respectively. From equations (23) and (24) (with
τS = TS and g = 1/TS),

S̄(x, t; TS) =
{
k1H(t − TS)G1(x − 1, t − TS), D = 0,

k1H(t − TS)
∫ L

0 G1(z, t − TS)γ (x, z; TS)dz, D �= 0,
(37)

where the Heaviside unit step function, H(t − TS), is equal to 1 for t ≥ TS and
zero otherwise. Thus, when t ≥ TS, we may write

S̄(x, t; TS) = k1N(t − TS)Y1(x, TS), (38)
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where

Y1(x, TS) =
{
y1(x − 1), D = 0,∫ L

0 y1(z)γ (x, z; TS)dz, D �= 0.
(39)

Substituting equations (33)–(36) and (38) into equations (29)–(32) and on letting
λ be the separation constant we have

N ′(t)
N(t)

= λ = 4b
yM(2x)

y1(x)
− k1, (40)

N ′(t)
N(t)

= λ = D
y′′
S(x)

yS(x)
− g

y′
S(x)

yS(x)
+ k1

y1(x)

yS(x)
− k1

N(t − TS)

N(t)

Y1(x, TS)

yS(x)
, (41)

N ′(t)
N(t)

= λ = k1
N(t − TS)

N(t)

Y1(x, TS)

y2
− k2, (42)

N ′(t)
N(t)

= λ = k2
y2(x)

yM(x)
− b, (43)

where the prime denotes differentiation with respect to the function argument. The
separation constant, λ, will be a time constant governing the growth of the cell
cohort. In equations (40) and (43), the variables separate easily giving N(t) =
N0e

λt . This in turn gives

N(t − TS)

N(t)
= e−λTS , (44)

thus ensuring the complete separation of variables in the remaining equations (41)
and (42).

Substituting equation (44) into equations (40)–(43) and rearranging leads to the
following delay equation (45), whenD = 0, and Fredholm integral equation (46),
for the case where D �= 0 :

y1(x − 1) = �y1

(x
2

)
, x > 0, D = 0, (45)

∫ L

0
γ (2x, z; TS)y1(z)dz = �y1(x), 0 < x < L, D �= 0, (46)

where

� = F(λ) = (λ+ k1)(λ+ k2)(λ+ b)eλTS

4bk1k2
(47)

is determined as an eigenvalue of equations (45) and (46), and y1(x) is the cor-
responding eigenfunction. Note that all parameters are non-negative. Taking the
limit as D → 0 of equation (46) gives equation (45), that is, γ is a δ-sequence as
D → 0+.

We will solve equations (45) and (46) to obtain a discrete set of eigenvalues
� = {�0,�1, . . . } and a set of corresponding eigenfunctions. These eigenfunc-
tions are the candidates for y1(x), the steady DNA distribution of the G1-phase
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cells. We will see that, for both the casesD = 0 andD �= 0, the largest eigenvalue,
denoted �0, is simple and corresponds to a positive eigenfunction, y1(x). In the
case D = 0 there is only one simple eigenvalue and therefore the corresponding
eigenfunction is unique. In the caseD �= 0, there are many eigenvalues and so there
may be other positive eigenfunctions. We cannot guarantee uniqueness in this latter
case. However, numerical investigation suggests that the eigenfunction appears to
be unique.

Once the positive eigenfunction, y1(x), and corresponding eigenvalue,�0, has
been found we then find the critical values of λ, denoted λ̃, which satisfy the equa-
tion �0 = F(λ) (equation (47)). The function F(λ) is a cubic polynomial with
zeros at −b, −k2 and −k1, multiplied by an exponential (see equation (47) and
Fig. 2). A horizontal line through �0 intersects F(λ) in either 1, 2 or 3 places,
thus λ̃ can take on 1, 2 or 3 possible values. If F(0) < �0, then there is only
one intersection of the curve F(λ) and a horizontal line through �0 at the value
λ̃. The value of λ̃ will be positive and this will correspond to population growth.
Thus, in mathematical and intuitive terms, a necessary and sufficient condition for
population growth is:

−6 −5 −4 −3 −2 −1 0
−0.1

0

0.1

0.2

0.3

0.4

0.5

λ

F
(λ

)

Fig. 2. Plot of F(λ), equation (47), as a function of λ as given by equation (47) where
k1 = 0.1, k2 = 0.2, b = 2 and g = 0.4.
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F(0) = 1

2

(
k1

2b

)
×
(

1

k1

)
×
(
k2

1

)
×
(
b

k2

)

= 1

2

(
rate out G1

rate in G1

)
×
(

rate out S

rate in S

)
×
(

rate out G2

rate in G2

)
×
(

rate out M

rate in M

)

< �0. (48)

We will see that in the case D = 0, �0 = 0.5 and in the D �= 0 case, numerical
investigation suggests �0 ∼ 0.5, ensuring population growth for the unperturbed
system (since F(0) = 0.25). Substituting �0 = 0.5 into inequality (48), our intui-
tive condition for population growth is that the product of the outgoing rates must
be smaller than the product of the incoming rates. i.e.

(rate out G1)× (rate out S)× (rate out G2)× (rate out M)

< (rate in G1)× (rate in S)× (rate in G2)× (rate in M). (49)

To gain the steady DNA distribution of the other phases we solve the following
equations (obtained via equations (40)–(43)):

4byM(2x)− (λ̃+ k1)y1(x) = 0, 0 < x < L, (50)

k2y2(x)− (λ̃+ b)yM(x) = 0, 0 < x < L, (51)

Dy′′
S(x)− gy′

S(x)− λ̃yS(x)+
k1y1(x)− (λ̃+ k2)y2(x) = 0, 0 < x < L, (52)

Dy′
s(0)− gyS(0) = 0, 0 <

∫ L

0
yS(x)dx < ∞, 0 < x < L, (53)

Dy′
s(L)− gyS(L) = 0, 0 <

∫ L

0
yS(x)dx < ∞, 0 < x < L. (54)

It should be noted that equation (52) with side conditions (53) and (54), is a
linear two point boundary value problem. To ensure the positivity of yM and y2 in
equations (50) and (51), we must specify that λ̃ > −k1 and λ̃ > −b respectively
and this in turn specifies that λ̃ is the only positive root of the equation F(λ) = �0.

Thus yS , y2 and yM are able to be determined in terms of the previously determined
y1(x). Since λ̃ is positive, this corresponds to population exponential growth.

For the total cell cohort we incorporate all phases and the SDD is given by

yT (x) = y1(x)+ yS(x)+ y2(x)+ yM(x), (55)

where ∫ L

0
yT (x)dx = 1, (56)

and

n(x, t) = N0yT (x)e
λ̃t = N0(y1(x)+ yS(x)+ y2(x)+ yM(x))e

λ̃t (57)

is the asymptotic (assuming n(x, t) is an attracting solution) form of the total cell
cohort. Thus



B. Basse et al.

λ̃
>
< 0, (58)

determines the growth/decay of the cell cohort. Obviously this threshold will depend
on the model parameters (k1, k2, b, g,D etc).

2.2.1. The no dispersion case (D = 0): The eigenvalue problem from equation
(45),

y(x − 1) = �y(
x

2
), (59)

is the calculation of � for which there are non-negative solutions with support
{x : x ≥ 0}. Simple integration of equation (59), shows it has solutions for which∫ L

0 y1(x) �= 0, iff � = �0 = 0.5. Thus we have a unique eigenvalue. We then
solve the equation in the space of Schwarz’s distributions (see [15]). Writing ŷ(u)
as the Fourier transform of y(x), we get from equation (59),

eiuŷ1(u) = 2�0ŷ1(2u) = ŷ1(2u). (60)

Accordingly,

ŷ1(u) = e(
1
2 + 1

4 + 1
8 +... )iuŷ1(0) = eiuŷ1(0), (61)

which gives

y1(x) = c1δ(x − 1), c1 ∈ R+. (62)

This shows that the long term SDD in G1-phase is a point distribution centred at
x = 1. Similarly from equations (50) - (52), y2(x) and yM(x) are point distributions
centred at x = 2, and yS(x) is a sum of two Heaviside functions:

yM(x) = c1
(λ̃+ k1)

2b
δ(x − 2), (63)

y2(x) = c1
(λ̃+ k1)(λ̃+ b)

2k2b
δ(x − 2), (64)

yS(x) = c1

[
k1

g
e

−λ̃
g
(x−1)H(x − 1)

− (λ̃+ k1)(λ̃+ k2)(λ̃+ b)

2bk2g
e

−λ̃
g
(x−2)H(x − 2)

]

= c1

[
k1

g
e

−λ̃
g
(x−1)H(x − 1)− 2k1

g
F(λ̃)e

−λ̃
g
(x−2)H(x − 2)

]
. (65)

By substituting F(λ̃) = � = 0.5 into equation (65) and g = 1/TS we may rewrite
the solution for yS(x) more succinctly as:

yS(x) = c1k1TSe
−λ̃TS(x−1) (H(x − 1)− H(x − 2)) . (66)
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The constant c1 can be found by using the property (equation (56))
∫ L

0 yT (x)dx = 1,
giving

c1 =
(

1 + λ̃+ k1

2b

(
1 + λ̃+ b

k2

)
+ k1

λ̃

(
1 − e−λ̃TS

))−1

. (67)

Since λ̃ is unique, the constant c1 in equation (67) will specify unique distributions
in each phase and hence a unique SDD for the case D = 0.

2.2.2. The dispersion caseD �= 0: In section 2.2.1 we saw that whenD = 0, the
SDD solution in the G1-phase was a point distribution. In this section we will see
that when D becomes non-zero it acts as a smoothing parameter so that the point
distributions are smoothed out into classical distributions.

We would like to ensure the existence of a positive eigenfunction and here
we make use of the following theorem due to Jentzsch (see [6] page 256) for the
homogeneous Fredholm integral equation:∫ L

0
k(x, s)u(s)ds = −�u(x). (68)

Theorem 1. Jentzsch’s Theorem. Let k(x, s) be continuous and positive on 0 ≤
x, s ≤ L. Let �0 be the largest eigenvalue of equation (68), then all other eigen-
values are smaller than �0 in absolute value and �0 is simple (i.e., there is only
one independent eigenfunction associated with �0). The eigenfunction associated
with �0 is positive.

It is not surprising that the first eigenfunction is positive (see for example [11]),
here Jentzsch’s theorem ensures the existence (but not uniqueness) of a suitable
candidate for y1 the SDD in G1-phase and the corresponding eigenvalue of our
Fredholm integral equation (46), �0.

2.2.3. Numerical Methods for finding the SDD in the D �= 0 case: We first
describe the numerical algorithm used to solve the eigenvalue problem described
by the Fredholm integral equation (68). The algorithm chosen is simple and of
low order but it suffices to solve the eigenvalue problem rapidly and to the desired
accuracy.

Define the natural numbers i, j,M,N ∈ N, and then a mesh {xi}Ni=0, with
uniform mesh interval h = L/N , and x0 = 0, xi = xi−1 + h, 1 ≤ i ≤ N , is
established on the x-axis. Now we initially describe the collocation algorithm to
solve the eigenvalue problem for the homogeneous integral equation

�u(x)+
∫ L

0
k(x, s)u(s) ds = 0, x ∈ [0, L]. (69)

The function u(x) is approximated by a B-spline of degree n, from the linear space
of B-splines of degree n, denoted by Sn, such that

u(x) =
M∑
i=0

αibi(x), (70)



B. Basse et al.

where M + 1 is the cardinality of the B-spline basis, {bi(x)}Mi=0 ∈ Sn[0, L] and
{αi}Mi=0 ∈ R. Collocation of the equation (69) then provides the finite dimensional
equation

�αj +
M∑
i=0

αi

∫ L

0
k(xj , s)bi(s) ds = 0, j ∈ [0, N ]. (71)

For a concrete implementation of the algorithm here, the integral is approximated
by the composite trapezoidal rule on the nodes x	, and n is chosen to be one; so
that the B-spline basis functions are the piecewise linear, or hat, functions. Now
M = N , and denote k(xj , si) by kj,i , then (71) can be written as

�αj + h

M∑
i=0

N∑′′

	=1

αikj,	δi,	 = 0, j ∈ [0, N ], (72)

�αj + h

N∑′′

i=0

αikj,i = 0, (73)

where use has been made of the fact that bi(s	) = δi	, with δi	 denoting the Kro-
nneker delta, and the double prime on the summation sign is to signify that the first
and last value in the summation is to be halved. From this discretization it is nec-
essary to find the eigenvalues � that lead to a non-trivial solution. The expansion
algorithm, as implemented, for the eigenfunctions with B-splines of degree one is
equivalent to the Nyström method for Fredholm eigenvalue problems. It follows
that for the repeated trapezoidal rule, the eigenvalues converge as O(h2

)
([3]).

The kernel matrix is of small bandwidth, to a given accuracy, because the kernel
function is of approximately finite support; this follows from observing from equa-
tion (103) that the exponential term has nearly compact support, i.e. the exponential
function is very nearly zero outside ±3

√
4Dτ of the centre: x−gτ . This means that

sparse matrix techniques can be used to find a few of the eigenvalues and associated
eigenvectors. In particular the sparse eigenfunction package eigs that is available
in Matlab is utilized for our numerical implementation. This function utilizes the
implicitly re-startedArnoldi iteration algorithms from the Fortran libraryARPACK.
When running this algorithm on an AMD2000+ CPU with N = 600 the largest
eigenvalue and eigenvector are found in around 2 seconds.

This method of finding the SDD solution is superior to solving the time depen-
dent model (equations (29)–(32)) using finite difference methods, as was done in
[2], because the time it takes for the model to converge to a SDD becomes large as
parameter values become small and the numerical solution becomes impractical.
We should also note that when equation (46) was solved using the numerical meth-
ods described in this section, for different parameter values, the eigenvalue, �0,

always had approximately the same constant value, �0 ∼ 0.5. We can compare
this to theD = 0 case (section 2.2.1) where we have�0 = 0.5 and to the intuitive
meaning of F(0) described in equation (49).

From here we use the Matlab function fzero (starting at λ = 0.01) to solve
F(λ) = �0 to find λ̃, the only positive root of the equation F(λ) − �0 = 0. We
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Fig. 3. The SDD solutions of the model for unperturbed cell lines (equations (29)–(32))
have been plotted for the cases D = 0 and D �= 0, illustrating the smoothing effect that D
has on the SDD. The heights of the point distributions in G1, G2 and M-phase are the con-
stants of multiplication in equations (62)–(64). Arbitrary parameter values are k1 = 0.05,
k2 = 0.2, b = 2, D = 4 × 10−4, g = 0.1, xmin = 0, xmax = 4, �x = 0.1 (D = 0),
�x = 0.0133 (D �= 0), F(λ) = 0.5 ⇒ λ = 0.0218.

may proceed to find the SDD solutions in the remaining S, G2 and M-phases by
solving equations (50)–(52) and hence the total separable SDD solution. To find
yS(x), the SDD solution in S-phase, an approximation of the auxiliary boundary
value problem (equations (52)–(54)) was solved using the Matlab solver ode23t.

In Fig. 3, the SDD solutions of the model for unperturbed cell lines (with
arbitrary parameter values) have been plotted for the cases D = 0 and D �= 0,
illustrating the smoothing effect that D has on the SDD.

2.2.4. Uniqueness and attractiveness of SDD solutions: For the case D = 0 we
have found a unique positive separable solution for the total DNA distribution,
n(x, t). For the caseD �= 0 we have found one positive separable solution but there
may be others. In both casesD = 0 andD �= 0 we state the following conjectures:

1. there may be other types of non-separable solutions,
2. we have assumed that our separable solutions are attracting.
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Conjectures 1. and 2. have not been proven and will be the subject of further inves-
tigations.

2.3. Modelling a cell line perturbed by the anticancer drug paclitaxel

Paclitaxel, given at a high enough concentration, causes the complete arrest of cells
in M-phase and the subsequent induction of apoptosis. Flow cytometry suggests
that cells build up in G2/M-phase and then after a time these cells may undergo
apoptosis. To model the addition of paclitaxel we start with a steady DNA profile,
set the division rate parameter b to zero and set the transition rate to A-phase from
M-phase, µM to a non-zero value when t ≥ TM . We assume that cells stay in
M-phase for TM hours before the onset of apoptosis. Using the notation from sec-
tion 2.1, the model equations for a cell line perturbed by paclitaxel are summarised:

∂G1

∂t
(x, t) = −k1G1(x, t), (74)

∂S

∂t
(x, t) = D

∂2S

∂x2 − g
∂S

∂x
(x, t)

+ k1G1(x, t)− S̄(x, t; TS), (75)

∂G2

∂t
(x, t) = S̄(x, t; TS)− k2G2(x, t), (76)

∂M̄

∂t
(x, t; τM)+ ∂M̄

∂τM
(x, t; τM) = −µMM̄(x, t; τM), (77)

M(x, t) =
∫ ∞

0
M̄(x, t; τM)dτM, (78)

∂A

∂t
(x, t) = ∂(gAA)

∂x
(x, t)

+
∫ t

TM

µMM̄(x, t; τM)dτM, (79)

where 0 < x < L and t, τM > 0. Initial and boundary conditions are:

G1(x, 0) = G10(x), 0 < x < L, (80)

S(x, 0) = S0(x), 0 < x < L, (81)

D
∂S

∂x
(0, t)− gS(0, t) = 0, t > 0, (82)

D
∂S

∂x
(L, t)− gS(L, t) = 0, t > 0, (83)

G2(x, 0) = G20(x), 0 < x < L, (84)

M̄(x, t; τM = 0) = k2G2(x, t), 0 < x < L, t > 0, (85)

M̄(x, t = 0; τM) = M̄0τM (x, τM), τM > 0, 0 < x < L, (86)
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M(x, 0) = M0(x) =
∫ ∞

0
M̄(x, 0; τM)dτM

=
∫ ∞

0
M̄0τM (x, τM)dτM, 0 < x < L, (87)

A(x, 0) ≡ 0, 0 < x < L, (88)

A(0, t) = 0, t > 0, (89)

whereG10(x), S0(x),G20(x) andM0(x), the initial distributions inG1, S,G2 and
M-phase respectively at time t = 0, represent the starting point for an experiment
and are the SDD solutions obtained from the model of an unperturbed cell line.

The model for a cell line perturbed by paclitaxel does not display SDD behav-
iour in the sense that we cannot express the total DNA distribution as nT (x, t) =
N0e

λtyT (x) as we did with the model for an unperturbed cell line. This can be
seen firstly by considering equation (74) which indicates that G1(x, t) ∼ e−k1t .

However, substituting this (by way of S̄(x, t; TS)) into equation (76), we see that
G2(x, t) ∼ e−(k2+k1)t . If we assume that k2 is strictly positive, then there are dif-
ferent rates of population decay in the G1 and G2 phases and similarly for the
other phases. Asymptotically, the DNA distribution in each phase, and hence the
total distribution tends to zero. This is because, without cell division, cells progress
throughG1, S,G2 andM-phase where they accumulate for at least TM hours before
entering A-phase. Once in A-phase the DNA continues to degrade until it can no
longer be detected by the flow cytometer. Here we have accounted for this by the
boundary condition (89) A(0, t) = 0. This corresponds to cells exiting the system.

The parametersTM,µM andgA(x)provide the possibility of measuring the time
spent in M-phase before the onset of apoptosis, the rate that cells enter A-phase
and the degradation rate respectively. The proportion of M-phase cells entering
A-phase at time t is given by the expression:

µM
∫ t
TM
M̄(x, t; τM)dτM(∫ TM

0 k2G2(x, t − τM)dτM + ∫ t
TM
M̄(x, t; τM)dτM

) , (90)

which tends to µM as t → ∞, since G2(x, t) → 0 as t → ∞. Thus we can call
µM the eventual rate of entry of M-phase cells into A-phase.

3. The optimisation

For the model of a cell line perturbed by paclitaxel, our aim is to find the least
square error between the experimental DNA distributions and total DNA distri-
butions predicted by the model. Consequently, we define the objective function,
ψ(β), as

ψ(β) =
J∑
j=1

I∑
i=1

(
nT (xi, tj )−Data(xi, tj )

)2
, (91)

where β is a vector of model parameters,

nT (xi, tj ) = G1(xi, tj )+ S(xi, tj )+G2(xi, tj )+M(xi, tj )+ A(xi, tj )
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is the total number density of cells with DNA content xi at time tj andData(xi, tj )
is the corresponding data point. Our aim is to minimiseψ(β), with respect to β, i.e.
by variation of a fixed set of model parameters over their expected range of values.

In this paper we consider one particular melanoma cell line, denoted NZM13 or
New Zealand melanoma-13 ([13]). We choose to minimise the objective function,
equation (91), over the parameter set β = [k1, k2, TM (scaled), µM , gA], where k1
and k2 are the transition rates fromG1-phase to S-phase andG2-phase toM-phase
respectively. TM is the time inM-phase before the onset ofA-phase,µM is the even-
tual transition rate of cells fromM-phase toA-phase and gA is the degradation rate
duringA-phase. These parameters are chosen because they are the most difficult to
estimate experimentally. The parameter TM is scaled by a factor of 1×10−3 during
the optimisation so that it has the same order of magnitude as the other parameters.
When presenting results we will only refer to the parameter TM without scaling.
Remaining model parameters are fixed at the values: D = 4 × 10−4, g = 0.1 and
b = 2, see Table 1. The values of g and b are chosen because the average time
that a cell spends in S-phase and M-phase is TS = 1/g = 10 hours and 1/b = 30
minutes respectively. The value of D can be estimated by comparing model and
data profiles prior to the optimisation procedure.

To perform the optimisation, we use the Matlab function fmincon. We put
bounds on certain parameter values as summarised in Table 1. Firstly, the param-
eters k1, k2 and µM represent transition probabilities and therefore lie within the
interval [0,1]. We require the parameters k1 and k2 to be strictly positive and fmin-
con requires a compact interval. We can use rough estimates of the average time
in G1 and G2-phase to be 1/k1 and 1/k2, respectively ([16]). If we enforce the
condition that the time in each phase must be less than 250 hours we may choose
both parameters, k1 and k2, to lie in the interval [4 × 10−4, 1]. Secondly, TM is
assumed to lie between 0 and 40 hours. Thirdly, the degradation rate, gA is chosen
to lie in the interval [0, 2/�t]. The right hand side of this interval is chosen so that it
takes more than one time step, �t, for a cell to degrade its DNA content from x = 2
to x = 0. Finally, we assume that the total cell cycle time of the unperturbed system
(estimated as Tc = 1/k1 + 1/g + 1/k2 + 1/b) lies between 12 and 250 hours.

During the optimisation, in order to obtain each objective function value, we
must first solve the unperturbed system using the methods described in section
2.2.3. We then use the resultant SDD of the unperturbed system as the starting
point of the perturbed system as described in section 2.3. For reasons discussed at
the beginning of this section, we use the method of finite differences to solve the
perturbed system as described in [2]. The model output of the perturbed system is
the total DNA profile, nT (x, t), which can be compared to the data DNA distri-
butions at the appropriate discrete times, tj , in the least squares sense, giving the
objective function value of equation (91).

4. Results

4.1. The optimal parameter fit

Figures 4–6 show the optimal fit between model and data for the NZM13 cancer
cell line at times 0, 18, 48, 72 and 96 hours after the addition of paclitaxel. As
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Fig. 4. Model and experimental DNA distributions for the human cancer cell line NZM13
at times 0 and 18 hours (graphs (a) and (b) respectively) after the addition of paclitaxel. This
anticancer drug causes mitotic arrest and the subsequent build up of cells in theG2/M-phase.
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Fig. 5. Model and experimental DNA distributions for the human cancer cell line NZM13 at
times 48 and 72 hours (graphs (a) and (b) respectively) after the addition of paclitaxel. This
anticancer drug causes mitotic arrest and the subsequent build up of cells in theG2/M-phase.



Modelling cell death in human tumour cell lines

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

140

160

180

x (Relative DNA Content)

Ce
ll C

ou
nt

NZM13 DNA profile 96 hours after the addition of Taxol

Data
Model

Fig. 6. Model and experimental DNA distributions for the human cancer cell line NZM13
at 96 hours after the addition of paclitaxel. This anticancer drug causes mitotic arrest and
the subsequent build up of cells in the G2/M-phase.

time evolves, cells build up in M-phase. A small peak centred at the DNA con-
tent of G1-phase cells persists and could suggest the presence of senescent cells
(cells that have irreversibly left the cell division cycle). At 18 hours, DNA degra-
dation has already begun, as seen by the accumulation of A-phase cells distributed
through both the S-phase region and between the G1-phase and the origin. The
model enables us to obtain graphs of the percentages and absolute numbers of cells
in each phase as a function of time (Fig. 7 and 8 respectively).

The optimal parameter set is β = [k1 = 0.0191, k2 = 0.0513, TM = 0,
µM = 0.0354, gA = 0.0394]. Thus the model predicts that apoptosis begins
immediately (TM = 0) and that the eventual rate of entry of mitotic cells into
A-phase tends to µM = 0.0354 per hour (Fig. 9). The rate of DNA degradation
with time during A-phase is gA = 0.0394. The gA parameter provides an estimate
of the time a cell spends in A-phase. Cells generally enter A-phase with relative
DNA content at approximately x = 2. Thus the time it takes for a cell to degrade
its DNA content to x = 0 when the rate of degradation is gA is 2

gA
≈ 51 hours. The

doubling time, Td, of the unperturbed system is numerically estimated as Td = 71
hours (λ = ln(2)

Td
= 0.0090), agreeing well with an experimentally estimated dou-
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Fig. 7. Percentage of cells in each phase as a function of time as predicted by the model
for human cell line NZM13. Division stopped at t = 0 hours, prior to this the model had a
steady DNA distribution as seen by constant percentages in each phase. Model parameters
that were fitted were: k1, k2, TM and µM and gA. For parameter descriptions and units see
Table 1.

bling time (data not shown) of 3.2 days (λ = 0.0098). The model assumes that the
degradation rate of DNA in A-phase is constant, but the lack of exact fit at lower
DNA contents suggests a time dependence of degradation (see section 5).

4.2. Uniqueness of the optimal parameter fit

An exploration of objective function values, expression (91), over the appropriate
domain for the parameter values TM,µM and gA suggest that we have a global
optimum. However the objective function seems to have a ‘flat valley’, meaning
that certain combinations of the parameters TM,µM and gA give similar (albeit
greater) objective function values and hence a good fit between model and data.
Further work may be needed to eliminate biologically unreasonable parameter sets.

5. Biological significance

Paclitaxel, an important anticancer drug used in the treatment of ovarian cancer,
causes the arrest of cells in M-phase and the subsequent induction of apoptosis
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Fig. 8. Number of cells in each phase as a function of time as predicted by the model for
human cell line NZM13. Division stopped at t = 0 hours, prior to this cells can be seen to
be growing exponentially. Model parameters that were fitted were: k1, k2, TM and µM and
gA. For parameter descriptions and units see Table 1.

([7]). While haemopoietic cells (i.e. of bone-marrow origin) enter apoptosis from
interphase (G1-phase, S-phase or G2-phase), carcinoma and melanoma cells are
more likely to enter apoptosis at mitosis by a process called mitotic cell death or
mitotic catastrophe ([5]). The present results are consistent with this latter mech-
anism. A-phase cells, while degrading their DNA, appear to remain close to their
original size, as measured by forward scatter measurements in the flow cytometer
(data not shown).

The best fit for the model suggests TM = 0, suggesting that once paclitaxel is
added, all M-phase cells have a finite chance of entering A-phase. The model also
predicts that the rate of entry of cells into A-phase converges to a constant value
from an initial higher value (Fig. 9). A possible explanation for these properties is
that in the unperturbed population of cycling cells, a proportion of cells (approxi-
mately 0.5%) is already inM-phase and may be affected immediately.At subsequent
times M-phase cells are generated from the G2-phase population. The model pre-
dicts that the DNA is degraded progressively over a period of approximately 50
hours. In most descriptions of apoptosis, DNA is degraded by an endonuclease,
which causes double-stranded DNA breaks and subsequent DNA fragmentation
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Fig. 9. Model estimation for human cell line NZM13 of the rate of entry of cells intoA-phase
as a function of time. This rate quickly converges to the optimal value of µM = 0.0394. For
parameter descriptions and units see Table 1.

([14]). However, breakage alone would not cause a decrease in cellular DNA con-
tent, and DNA degradation by an exonuclease, which starts with a DNA break
and removes DNA bases sequentially, would be more consistent with the observed
results. An apoptosis-associated enzyme with both exonuclease and endonuclease
functions has been described ([10]). Variations in the balance of exonuclease and
endonuclease activities could change the apparent rate of DNA degradation with
time, as suggested by the results in Fig. 6.

The mathematical model used here offers a new approach to analysing the
effects of paclitaxel, predicting both the changes to cell cycle distribution (Figs. 4
-6) and the loss of cells from a population (Fig. 8 and 10). We are currently applying
this model to a series of human cancer cell lines in order to determine the extent of
variation among cancer lines from different individuals. Human tumours generally
have longer cell cycle times than do cell lines ([1]) and one obvious application
of the model is to predict the response to paclitaxel and related drugs of human
tumours in a clinical setting.
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Fig. 10. Model estimation of the rate of eventual cell loss from A-phase as a function of time
for human cell line NZM13. Division stopped at t = 0 hours. Model parameters that were
fitted were: k1, k2, TM and µM and gA. For parameter descriptions and units see Table 1.
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Appendix: The Green function for the advection diffusion equation

We denote the group of cells, entering S-phase at time t as S̄(x, t; τ = 0) =
S̄0(x, t). The model assumes that this group of cells simply enter S-phase, double
their DNA content (or die) and then exit to the next phase (G2) without any inter-
action with cells that enter S-phase at different times. Thus, for a particular time
t , the transition of the group of cells into S-phase occurs as an initial condition
and the dynamics of any one particular cell group, while in S-phase, are governed
by the homogeneous initial-boundary problem:

∂S̄

∂t
(x, t; τ)+ ∂S̄

∂τ
(x, t; τ)+ g

∂S̄

∂x

−D∂
2S̄

∂x2 + µSS̄ = 0, 0 < x < L, t, τ > 0, (92)
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with initial and boundary conditions

S̄(x, t; τ = 0) = S̄0(x, t), 0 < x < L, t ≥ 0, (93)

D
∂S̄(0, t; τ)

∂x
− gS̄(0, t; τ) = 0, t, τ ≥ 0, (94)

D
∂S̄(L, t; τ)

∂x
− gS̄(L, t; τ) = 0, t, τ ≥ 0. (95)

The parameter τ (in the paper referred to as τS) represents the time that a cell has
spent in S-phase. For future reference we have included a parameter µS represent-
ing possible cell loss (death) from S-phase -in the paper we have assumed that
µS = 0.

In all problems of interest here the diffusion coefficient,D, is very small, and of
the order 10−4; this will mean the second order derivative term can be considered
as a singular perturbation in the partial differential equation and the boundary con-
ditions. Therefore, to first order we will assume that the boundary conditions (equa-
tions (94) and (95)) can be approximated by the Dirichlet conditions S̄(0, t; τ) = 0
and S̄(L, t; τ) = 0 respectively.

To find an analytic solution to equation (92) we transform the dependent variable

S̄(x, t; τ) = exp
[
g(x − gτ/2)/(2D)

]
w(x, t; τ), (96)

and then express the problem in characteristic coordinates w(x, t; τ) = v(x, r, s)

where r = t − τ and s = τ . The equation (92), and the side conditions become

∂v

∂s
−D

∂2v

∂x2 + µSv = 0, 0 < x < L, t, s > 0, (97)

v(x, r; s = 0) = S̄0(x, r)e
−gx/2D, 0 < x < L, t ≥ 0, (98)

v(0, r; s) = 0, t, s ≥ 0, (99)

v(L, r; s) = 0, t, s ≥ 0. (100)

The solution for S̄ on the quadrant x, τ > 0, with Dirichlet conditions on x = 0
and x = L is, by the method of Green functions

S̄(x, t; τ) =




∫ L

0
S̄0(z, t)γ (τ, x, z) dz, 0 < t < τ, x > 0,

S̄0(x, t), τ = 0,

0, t < τ,

(101)

where

γ (τ, x, z) = e−µSτ eg(x−z−gτ/2)/(2D)

2
√
πDτ

×
∞∑

n=−∞

(
e−(x−z+|n|2L)2/4Dτ − e−(x+z−|n|2L)2/4Dτ

)
, τ, x, z > 0,

(102)
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is the Green function for equation (92). Note that we have used the method of
images (see [12] or [9] for example) to obtain the Green function in (102).

As the diffusion coefficient is typically very small in this problem, as stated in
Table 1, the exponential terms in equation (102) have nearly compact support, i.e.
the exponential functions are very nearly zero outside ±3

√
4Dτ of the respective

centres: x+|n|2L for the first exponential and −x+|n|2L in the second exponential.
It is therefore readily seen by examination of the support of x, namely 0 ≤ x ≤ L

that the series converges rapidly, and in fact one term suffices to approximate γ as:

γ (τ, x, z) ≈ e−µSτ

2
√
πDτ

e−(x−gτ−z)
2/4Dτ , τ, x, z > 0. (103)

Now we justify the replacement of a single flux free boundary condition at
x = 0 by the Dirichlet boundary condition. To do this we first define the initial
condition (98) as f (x, t; τ) = S̄0(x, t)e

−gx/2D , this is prescribed on 0 ≤ x < ∞,
and we need continue this as an odd function on (−∞,∞) through defining the
extension function

∂f̃

∂x
(x, t; τ)− g

2D
f̃ (x, t; τ)

= −D∂f
∂x
(−x, t; τ)+ g

2D
f (−x, t; τ), −∞ < x < 0.

The solution of this differential equation gives the odd extension of the initial con-
dition as

f̃ (x) = f (−x)− g

D
egx/2D

∫ −x

0
egz/2Df (z) dz, −∞ < x < 0,

and integration of the integral by parts yields the following expansion in powers of
D/g

f̃ (x, t; τ) = −f (−x, t; τ)+ 2f (0, t; τ)egx/2D

+4D

g

(
f ′(−x, t; τ)− f ′(0, t; τ)egx/2D

)
+ O((D

g
)2
)
,

where −∞ < x < 0. With this extension of the initial condition the partial differ-
ential equation in (97) is now defined on (−∞,∞), and its solution (with s = τ )
will be given by

v(x, t; τ) =


∫ ∞

0
S̄0(z, t)e

−gz/2Dγv(τ, x, z) dy + Icorr , t, τ, x > 0,

S̄0(x, t)e
−gx/2D, τ = 0,

where

γv = e−µSτ

2
√
πDτ

(
e−(x−z)

2/4Dτ − e−(x+z)
2/4Dτ

)
, τ, x, z > 0,
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and

Icorr = 2S̄0
(
0, t)

∫ ∞

0
γ0(τ, x,−z) dz+ O(D

g

)
,

= S̄0(0, t)

(
1 − erf(

x

2
√
Dτ

)

)
+ O(D

g

)
τ > 0,

with

γ0(τ, x, z) = e−µSτ

2
√
πDτ

e−(x−z)
2/4Dτ , τ > 0.

It is now observed that the asymptotic expansion of the error function for large
argument is

erf(x) = 1 − e−x2

√
π

1

x
+ O(x−3)

so that it follows, except in the small layer region 0 < x < 2
√
Dτ, the correction

term Icorr ≈ 0. This is as stated above a singular perturbation effect. With D very
small and τ ≈ 10 (Table 1) it follows the correction term has no significant effect
on the numerical calculations so is omitted. It then follows the solution of S̄ is
obtained via equation (101) with the Green function, γ, being approximated via
equation (103). By using similar reasoning we can justify the replacement of the
flux free boundary conditions by the Dirichlet boundary condition at x = L and
thus the approximation Green function (equation (103)) suffices in all our numerical
calculations.
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