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Abstract. In this article we study the phi and psi tranforms of
Frazier and Jawerth when either phi or psi is not band-limited.
Our main result concerns the invertibility of these transforms and
is used to show that certain affine system generated by the Mexican
hat function is complete in Lebesgue and Hardy spaces.

2000 AMS Classification: 42B25, 42C30, 46E35.

The phi and psi transforms were developed by M. Frazier and B.
Jawerth [8, 7], in parallel with the well-known wavelet theory. Their
principal aim was to obtain and then to study the decomposition of a
function or a distribution f in the form f =

∑
Q〈f, ϕQ〉ψQ, where the

sum is taken over the family of all dyadic cubes in Rn. In the notation
of wavelet theory, this decomposition takes the form

f =
∑

j∈Z,k∈Zn

〈f, ϕj,k〉ψj,k. (∗)

(See §1 for the relevant notations).
A most satisfactory theory was obtained by the authors when both ϕ

and ψ are in S, and satisfy certain additional conditions, including the
condition that ϕ and ψ have their Fourier transforms supported in an
annulus about the origin (and hence both are band-limited and have
infinitely many vanishing moments). The important feature of this
theory is that the norm of f (in various function spaces) is equivalent
to an appropriate norm of the sequence {〈f, ϕj,k〉} = Sϕ(f), the phi
transform of f . The decomposition (∗) then allows one to recover f
from its “coefficients” {〈f, ϕj,k〉} and the “building blocks” {ψj,k}.

In this article we study the non-bandlimited case of the phi and
psi transforms and aim also to simplify the original proofs given in
the fundamental work [8]. We treat these transforms separately and
aim to find simply stated conditions to ensure their boundedness on
various function spaces. By doing so we could see more transparently
the conditions which imply the boundedness of these transforms. As it
turns out this requires only an appropriate moment condition on the

The second author was supported by a Polish research grant KBN 5P03A05020.
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generating function phi or psi: The moment condition obtained for phi
is minimal, and that for psi is the same as in [8]. When ψ is band-
limited, the exact reconstruction (∗) is a consequence of a “Tauberian
condition” (see Theorem 3.1 and [8, Theorem 2.2]). However, when ψ
is not band-limited, the result corresponding to (∗) is less satisfactory
(see Theorem 3.2 and [8, Theorem 4.2]); one can only establish the
invertibility of an operator corresponding to the right-hand side of (∗).
This is due to the lack of a good replacement for a sampling theorem
by Frazier and Jawerth [7, Lemma 2.1].

Although we follow the general strategy of the proofs in [8], we use
some recent results in [2, 4] which allow us to deal directly with the
case where phi or psi is not band-limited. Moreover, the separation of
the moment condition and the Tauberian condition has its root in the
works [2, 3] by the authors and M.H. Taibleson. The results from the
Frazier-Jawerth approach that we will use are of a real-variable nature:
a Peetre-Stein typeestimate for sequence spaces (see Lemma 1.1), and
a Calderón type sampling formula for distributions ([7, Lemma 2.1]).

Another novelty of our work lies in the proof of Theorem 3.2, in
which we avoid the use of the molecular decompositions of the Triebel-
Lizorkin spaces in [8] and, consequently, we obtain a relatively simple
proof of the corresponding result in that paper. Theorem 3.2 is the
main result in this paper and is motivated by our attempt to solve an
Lp-spanning problem for the Mexican hat function posed by Y. Meyer
in [11] (see Theorem 3.3). Further discussion of our results with those
in [8] and other results in the literature will be given in the relevant
sections.

This paper may be considered as a part in the group of papers [2]–
[4], of which it is the final one. The aim was to study function spaces
in which the “kernel” function is not band-limited. As such, this series
of papers bridges the gap between the classical theory, in which the
Poisson kernel or the Gaussian kernel is used, and the more recent
Littlewood-Paley method where the kernel function is band-limited.
We hope that this series may also serve as an independent introduction
to some aspects of the theory of function spaces.

Acknowledgments. This work grew out of discussions the authors
have had with Professor Guido Weiss at Washington University during
1999. They would like to thank him for helpful comments and sugges-
tions. The authors also acknowledge the generous support, by Professor
Weiss and colleagues in the Mathematics Department at Washington
University, which has made their stay in St. Louis possible.
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1. Preliminaries

The aim of this section is to introduce the notation and the relevant
definitions, as well as to state three basic results to be used in the
proofs of our main theorems.

We use the standard notation regarding Lebesgue spaces, the Fourier
transforms and distributions. All functions and distributions are de-
fined on Rn, so that explicit reference to Rn in the notation will usually
be dropped. Thus, the Schwartz class is denoted by S and its dual,
the space of tempered distributions, by S ′. As usual ‖·‖p denotes the

Lp-norm, and 〈·, ·〉 denotes the inner product on L2. The set of poly-
nomials is denoted by P.

First we give the definitions of certain sequence spaces following M.
Frazier and B. Jawerth [8]. However, instead of the family of dyadic
cubes, we shall use {(j, k) : j ∈ Z, k ∈ Zn} as the index set for se-
quences.

For −∞ < α < ∞, 0 < p < ∞, 0 < q ≤ ∞, and a sequence
s = {sj,k}j∈Z,k∈Zn, we define

‖s‖ḟα
p,q

=

∥∥∥∥∥
( ∑

j∈Z

∑
k∈Zn

(2jα|sj,k|χj,k)q
)1/q

∥∥∥∥∥
p

, (1.1)

where χ = χQ0,0 is the characteristic function of the unit cube Q0,0 =
[0, 1)× · · · × [0, 1), and adopting the notation in wavelet theory we let

χj,k(x) = 2jn/2χ(2jx− k). (1.2)

Note that χj,k = 2jn/2χQj,k
, where χQj,k

is the characteristic function
of the cube

Qj,k = 2−j(Q0,0 + k) = [k12
−j , (k1 + 1)2−j)× · · · × [kn2

−j, (kn + 1)2−j).

We define ḟαp,q to be the space of all sequences s for which ‖s‖ḟα
p,q

is

finite.
The letters ϕ and ψ will be used to denote functions in S. Additional

assumptions on ϕ and ψ will be stated when required. For f ∈ S ′, we
define a sequence Sϕ(f) by

Sϕ(f) = {Sj,k(f, ϕ)} = {〈f, ϕj,k〉}, (1.3)

where ϕj,k is similarly defined to (1.2), 〈f, ϕj,k〉 = (f, ϕj,k), and (·, ·)
denotes the pairing between a distribution and a test function. For
j ∈ Z and k ∈ Zn, we let ϕj(x) = 2jnϕ(2jx), and

Mϕ(f) = {Mj,k(f, ϕ)} =

{
2−jn/2 sup

y∈Qj,k

|(ϕj ∗ f)(y)|
}
, (1.4)
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Let λ > 0. For every x ∈ Qj,k, it is easy to see that

Mj,k(f, ϕ) ≈ 2−jn/2 sup
y∈Qj,k

|(ϕj ∗ f)(y)|(1 + 2j|x− y|)−λ

≤ 2−jn/2ϕ∗j,λf(x) (1.5)

where

ϕ∗j,λf(x) = sup
y∈Rn

|(ϕj ∗ f)(y)|(1 + 2j|x− y|)−λ (1.6)

is the Peetre’s maximal function.
Let λ > 0 and 0 < r <∞. For a sequence s, we define its “maximal

sequence” s∗ = s∗(r, λ) = {s∗j,k} by

s∗j,k =

( ∑
m∈Zn

|sj,m|r(1 + |k −m|)−λ
)1/r

. (1.7)

Clearly, |sj,k| ≤ s∗j,k for all j, k.

Remark. As mentioned above we have changed the notation in [8]
where the sequences are indexed by the dyadic cubes. The sequence
Mϕ(f) is denoted by sup(f) in [8].

We next recall the definition of the homogeneous Triebel-Lizorkin
spaces ([12]). Let −∞ < α < ∞, 0 < p < ∞ and 0 < q ≤ ∞. Let
ϕ ∈ S be such that supp(ϕ̂) ⊆ {1/2 ≤ |ξ| ≤ 2}, and∑

j∈Z

(ϕ̂(2jξ))2 = 1 for all ξ 6= 0.

We define the homogeneous Triebel-Lizorkin spaces by

Ḟ α
p,q =


f ∈ S ′/P : ‖f‖Ḟα

p,q
=

∥∥∥∥∥
( ∑

j∈Z

(2jα|ϕj ∗ f |)q
)1/q

∥∥∥∥∥
p

<∞

 ,

with the usual interpretation when q = ∞.
It is well-known that the spaces Ḟ α

p,q are independent of the function
ϕ (satisfying the above conditions), and that they contain Lebesgue
spaces, Hardy spaces and Sobolev spaces as special cases (see e.g. [12, 9,
14]). Moreover, the characterization of these spaces, under “minimal”
moment and Tauberian conditions on ϕ, has been proved in [2, 3].

We now state three results which form the necessary tools for the
proofs of our theorems. The first is a norm-equivalence on sequence
spaces by Frazier and Jawerth [8, Lemma 2.3] .
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Lemma 1.1. If 0 < p < ∞, 0 < q ≤ ∞, λ > n, and r = min(p, q),
then we have the following norm-equivalence:

‖s‖ḟα
p,q
≈ ‖s∗‖ḟα

p,q

for every −∞ < α <∞.

The second is an estimate of Heideman type, which is a slight variant
of [2, Lemma 2.1 (Remark)]. Let m ∈ Z, we say that η ∈ S has m
vanishing moments if∫

Rn

xκη(x)dx = 0 for all |κ| ≤ m.

When m < 0, the above condition is vacuous.

Lemma 1.2. Let A ≥ 0, N1 ∈ R, m ∈ Z and b > 0. Let ϕ, ψ be in S.
Assume ψ has m vanishing moments and N1 +A− 1 ≤ m. Then there
is a positive constant C such that

|(ψt ∗ ϕs)(x)| ≤ Cs−n
(
t

s

)N1
(

1 +
|x|
t

)−A

for all x ∈ Rn, and 0 < t ≤ bs, where C = C(n,A, b, N1)pN(ψ)pN(ϕ),

pN(ψ) = sup
|κ|≤N,x∈Rn

(1 + |x|)N |Dκψ(x)|

for a sufficiently large non-negative integer N , and pN(ϕ) is similarly
defined.

Proof. When N1 + A − 1 = m, the proof (for non-negative integers
N1, A) indicated in [2] works also for the case A ≥ 0, N1 ∈ R. If
N1 +A− 1 < m, choose A1 > A such that N1 +A1 − 1 = m. Then by
the first case, we have

|(ψt ∗ ϕs)(x)| ≤ Cs−n
(
t

s

)N1
(

1 +
|x|
t

)−A1

.

But (1 + |x|/t)−A1 ≤ (1 + |x|/t)−A, so that the required inequality
follows. �

The third result is the discrete version of an estimate for the Peetre’s
maximal function in [2, Theorem 3.1].

Lemma 1.3. Let −∞ < α < ∞, 0 < p < ∞, 0 < q ≤ ∞, λ >
max(n/p, n/q) = n/min(p, q). Assume that ϕ ∈ S has [α] vanishing
moments. Then there is a positive constant C such that∥∥∥∥∥

( ∑
j∈Z

(2jαϕ∗j,λf(x))q
)1/q

∥∥∥∥∥
p

≤ C ‖f‖Ḟα
p,q
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for all f ∈ S ′/P.
Remark. Since the proof of [2, Theorem 3.1] used an estimate sim-
ilar to Lemma 1.2, the constant C in Lemma 1.3 has the form C =
C(n, α, λ, p, q)pN(ϕ) for a sufficiently large N .

2. Boundedness of phi and psi transforms

In this section we prove that the phi transform Sϕ is bounded under
a “minimal” moment condition on ϕ. We then show that the psi trans-
form Tψ, which is a left inverse of Sϕ (under some aditional conditions
on ϕ and ψ), is also bounded. While the proof in [8, Theorem 2.2] is
based on a certain norm-equivalence for entire functions of exponential
type, our proof uses Lemma 1.1, Lemma 1.2 and Lemma 1.3, in which
neither ϕ nor ψ is assumed to be band-limited.

Theorem 2.1. Let −∞ < α < ∞, 0 < p < ∞, and 0 < q ≤ ∞.
Assume that ϕ ∈ S has [α] vanishing moments. Then there is a positive
constant C such that

‖Mϕ(f)‖ḟα
p,q
≤ C ‖f‖Ḟα

p,q

for all f ∈ S ′/P.
Proof. By (1.4) and (1.5),

‖Mϕ(f)‖ḟα
p,q
≤ C

∥∥∥∥∥
( ∑

j∈Z

∑
k∈Zn

(2jα2−jn/2χj,k(x)ϕ∗j,λ(x))
q

)1/q
∥∥∥∥∥
p

.

Since χj,k(x) = 2jn/2χQj,k
(x), and for each j ∈ Z fixed, {Qj,k}k∈Zn is

a partition of Rn, the sum with respect to k in the right-hand side of
the above is equal to (2jαϕ∗j,λf(x))q. It follows that

‖Mϕ(f)‖ḟα
p,q

≤ C

∥∥∥∥∥
( ∑

j∈Z

(2jαϕ∗j,λf(x))q
)1/q

∥∥∥∥∥
p

≤ C ‖f‖Ḟα
p,q

if λ > max(n/p, n/q) by Lemma 1.3. �
Theorem 2.2. Let α, p, q and ϕ be as in Theorem 2.1. Then the the
map

Sϕ : Ḟ α
p,q → ḟαp,q

defined by (1.3) is bounded.
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Proof. Let ϕ̃ be the function defined by ϕ̃(x) = ϕ(−x). Then, for all
j, k,

| 〈f, ϕj,k〉 | = |2−jn/2(ϕ̃j ∗ f)(k2−j)|
≤ Mj,k(f, ϕ̃).

Since ϕ̃ also has [α] vanishing moments, the conclusion of the theorem
follows from Theorem 2.1. �

Remark. By the remark to Lemma 1.3, the constant C in Theorem 2.1
has the form C = C(n, α, p, q)pN(ϕ) for a sufficiently large integer N ,
and hence a quantitative version of Theorem 2.2 is that the inequality

‖Sϕ(f)‖ḟα
p,q
≤ C(n, α, p, q)pN(ϕ) ‖f‖Ḟα

p,q
(2.1)

holds for all f ∈ Ḟ α
p,q.

We next consider another operator which corresponds to a left inverse
of Sϕ when ϕ satisfies some additional properties (besides the moment

condition). Let ψ be a function in S. For a sequence s ∈ ḟαp,q, we define

Tψ(s) =
∑
j∈Z

∑
k∈Zn

sj,kψj,k (2.2)

whenever the sum on the right-hand side of the above converges in
S ′/P. We first show the convergence for a large class of functions
ψ ∈ S.

Lemma 2.3. Let −∞ < α < ∞, 0 < p < ∞, 0 < q ≤ ∞. If ψ ∈ S
has [n/min(p, 1)− n− α] vanishing moments, then the series defining

Tψ(s) in (2.2) converges in S ′/P for every s ∈ ḟαp,q.

Proof. We shall prove the lemma by showing that

(Tψ(s), ϕ) =
∑
j∈Z

∑
k∈Zn

sj,k(ψj,k, ϕ)

converges absolutely for every ϕ ∈ S∞, the space of functions in S
having infinitely many vanishing moments, where (· , ·) denotes the
pairing between a distribution and a test function. (Note that S ′∞ =
S ′/P.)
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First observe that, for each j ∈ Z,

‖s‖ḟα
p,∞

=

∥∥∥∥ sup
l∈Z,µ∈Zn

2l(α+n/2)|sl,µ|χQl,µ
(x)

∥∥∥∥
p

≥
∥∥∥∥ sup
µ∈Zn

2j(α+n/2)|sj,µ|χQj,µ
(x)

∥∥∥∥
p

=

{ ∑
k∈Zn

∫
Qj,k

(
sup
µ∈Zn

2j(α+n/2)|sj,µ|χQj,µ
(x)

)p

dx

}1/p

=

{ ∑
k∈Zn

(2j(α+n/2)|sj,k|)p2−jn
}1/p

. (2.3)

Fix ϕ ∈ S∞. Then for every j and k,

(ψj,k, ϕ) = 2−jn/2
∫

Rn

ψj(x− k2−j)ϕ(x)dx

= 2−jn/2(ψ̃j ∗ ϕ)(k2−j),

where in this proof only, we let ψ̃(x) = ψ(−x). Let N2 be a positive
integer, and choose N1 ∈ R and λ > n such that N1 > −n − α, and
N1 + λ/min(p, 1)− 1 = [n/min(p, 1)− n− α]; this is possible since

n/min(p, 1)− n− α− 1 < [n/min(p, 1)− n− α].

By the size estimates of Heideman type in Lemma 1.2, we have

|(ψj,k, ϕ)| ≤ C2−jn/2
{

2−jN1(1 + |k|)−λ/min(1,p) if j ≥ 0,

2jN2(1 + |k|)−λ/min(1,p) if j < 0.
(2.4)

(Note that in the second estimate in (2.4) we use the infinite moment
condition of ϕ.)

To show the absolute convergence of
∑

j,k sj,k(ψj,k, ϕ), we write

∑
j∈Z,k∈Zn

|sj,k(ψj,k, ϕ)| =
∑
j≥0

∑
k∈Zn

|sj,k(ψj,k, ϕ)|+
∑
j≤−1

∑
k∈Zn

|sj,k(ψj,k, ϕ)|

= I1 + I2.
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Assume first that p ≥ 1. Then by the above estimate (2.4) for each
|(ψj,k, ϕ)| and Hölder’s inequality, we have

I1 ≤ C
∑
j≥0

2−j(N1+n/2)

( ∑
k∈Zn

(1 + |k|)−λ
)1/p′( ∑

k∈Zn

|sj,k|p(1 + |k|)−λ
)1/p

≤ C
∑
j≥0

2−j(N1+n+α)

( ∑
k∈Zn

(2j(α+n/2)|sj,k|)p2−jn
)1/p

≤ C ‖s‖ḟα
p,∞

<∞
by (2.3). When p < 1, we obtain the same inequality by using the
p-triangle inequality (instead of Hölder’s inequality).

Since ϕ has infinitely many vanishing moments, (2.4) holds for any
N2, and so by using a similar argument to the estimate for I1, we can
show that I2 ≤ C ‖s‖ḟα

p,∞
< ∞. Since ḟαp,q ⊆ ḟαp,∞, the proof of the

lemma is complete. �
Theorem 2.4. Let −∞ < α < ∞, 0 < p < ∞, 0 < q ≤ ∞. Assume
that ψ ∈ S has [n/min(p, q, 1)− n− α] vanishing moments. Then

Tψ : ḟαp,q → Ḟ α
p,q

(defined by (2.2)) is bounded.

Proof. Let s ∈ ḟαp,q. Put

f = Tψ(s) =
∑

j∈Z,k∈Zn

sj,kψj,k.

Then by Lemma 2.3, the above series converges absolutely in S ′/P.
Note that the function ϕ in the definition of the Triebel-Lizorkin

norms satisfies supp(ϕ̂) ⊆ {1/2 ≤ |ξ| ≤ 2}. Since ϕl(x − ·) ∈ S∞ for
each l ∈ Z and x ∈ Rn, the convergence in S ′/P implies the pointwise
representation

(ϕl ∗ f)(x) =
∑

j∈Z,k∈Zn

sj,k(ψj,k ∗ ϕl)(x)

(where the convergence of the series on the right-hand side is also ab-
solute). It follows that

|(ϕl ∗ f)(x)| ≤
∑
j≥l

∑
k∈Zn

|sj,k||(ψj,k ∗ ϕl)(x)|

+
∑
j≤l−1

∑
k∈Zn

|sj,k||(ψj,k ∗ ϕl)(x)|

= I1(x, l) + I2(x, l). (2.5)
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Set r = min(p, q). Pick a non-negative integer N2 such that N2 −
α > 0. Choose λ > n and N1 ∈ R such that N1 > −n − α and
N1 + λ/min(r, 1)− 1 = [n/min(1, r)− n− α]. Since for all j and k,

(ψj,k ∗ ϕl)(x) = 2−jn/2(ψj ∗ ϕl)(x− k2−j),

ψ has [n/min(1, r) − n − α] vanishing moments, and ϕ has infinitely
many vanishing moments, Lemma 1.2 implies that

|(ψj,k ∗ ϕl)(x)| ≤

C2−jn/2
{

2ln2N1(l−j)(1 + 2j |x− k2−j|)−λ/min(1,r), j ≥ l

2jn2N2(j−l)(1 + 2l|x− k2−j|)−λ/min(1,r), j < l.
(2.6)

By using the above estimate and an argument similar to the proof of
Lemma 2.3, we obtain

I1(x, l) ≤ C
∑
j≥l

2−j(N1+n/2)2l(N1+n)

( ∑
k∈Zn

|sj,k|r(1+2j |x−k2−j |)−λ
)1/r

,

where we also used the obvious estimate:∑
k∈Zn

(1 + 2j|x− k2−j|)−λ =
∑
k∈Zn

(1 + |2jx− k|)−λ ≈
∑
k∈Zn

(1 + |k|)−λ

for all j ∈ Z and x ∈ Rn.
Next, note that( ∑

k∈Zn

|sj,k|r(1 + 2j|x− k2−j|)−λ
)1/r

=

∑
m∈Zn

( ∑
k∈Zn

|sj,k|r(1 + 2j|x− k2−j|)−λ
)1/r

χQj,m
(x)

≤ C
∑
m∈Zn

( ∑
k∈Zn

|sj,k|r(1 + 2j|m2−j − k2−j|)−λ
)1/r

χQj,m
(x)

= C
∑
m∈Zn

s∗j,mχQj,m
(x),

as (1+2j|x−k2−j|) ≈ (1+2j|m2−j−k2−j|), for all x ∈ Qj,m. It follows
that

I1(x, l) ≤ C
∑
j≥l

2(l−j)(n+N1)
∑
m∈Zn

s∗j,mχj,m(x).
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Therefore, if 1 ≤ q, then using Hölder’s inequality for the sum with
respect to j, we obtain∑
l∈Z

(2lαI1(x, l))
q ≤ C

∑
l∈Z

{∑
j≥l

2(l−j)(n+N1+α)

( ∑
m∈Zn

2jαs∗j,mχj,m(x)

)q
}

= C
∑
l∈Z

∑
j≥l

2(l−j)(n+N1+α)
∑
m∈Zn

(2jαs∗j,mχj,m(x))q

= C
∑
j∈Z

( ∑
l≤j

2(l−j)(n+N1+α)

) ∑
m∈Zn

(2jαs∗j,mχj,m(x))q

≤ C
∑
j∈Z

∑
m∈Zn

(2jαs∗j,mχj,m(x))q (2.7)

The last inequality in (2.7) and Lemma 1.1 imply that∥∥∥∥∥
( ∑

l∈Z

(2lαI1(x, l))
q

)1/q
∥∥∥∥∥
p

≤ C ‖s∗‖ḟα
p,q

≤ C ‖s‖ḟα
p,q
. (2.8)

Since we also have (2.7) when q < 1 (by using the q-triangle inequality
instead of Hölder’s inequality), we obtain (2.8) for all q.

On the other hand, using the second estimate in (2.6) and an argu-
ment similar to the estimate for I1(x, l), we have∥∥∥∥∥

( ∑
l∈Z

(2lαI2(x, l))
q

)1/q
∥∥∥∥∥
p

≤ C ‖s‖ḟα
p,q
. (2.9)

Thus, the conclusion of the theorem follows from (2.5), (2.8) and (2.9).
�

Remarks. (i) Since the constant C in (2.6) has the form

C = C(n)pN(ψ)

for a sufficiently large non-negative integer N (depending onN1, λ, n, p, q),
a quantitative version of Theorem 2.4 is that the inequality

‖Tψ(s)‖Ḟα
p,q
≤ C(α, n, p, q)pN(ψ) ‖s‖ḟα

p,q
(2.10)

holds for every s ∈ ḟαp,q. This remark is important in the next section.
(ii) A careful examination of the proofs shows that these can be

modified to prove that Lemma 2.3 and Theorem 2.4 hold when each

ψj,k is replaced by ψ
(a)
j,k , where ψ

(a)
j,k (x) = 2jn/2ψ(2jx− a(k)k), and 0 <

c1 ≤ a(k) ≤ c2 < ∞ for some positive constants c1, c2 and all k ∈ Z.
This remark is used in the proof of the last assertion of Theorem 3.2.
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(iii) Theorem 2.4 can also be proved by using the molecular decom-
positions of the Triebel-Lizorkin spaces [8, Theorem 3.5]. However, the
proof of this decomposition in [8] used the equivalence (3.4) which we
aim to prove by using our Theorems 2.4 and 2.2. We hope that our di-
rect and simple approach could be useful in some other circumstances.

3. Invertibility and norm-equivalence

First we recall a main result of [8], namely Theorem 2.2 in that
paper:

If ϕ and ψ are functions in S which satisfy

supp(ϕ̂), supp(ψ̂) ⊆ {1/2 ≤ |ξ| ≤ 2}, (3.1)

|ϕ̂(ξ)|, |ψ̂(ξ)| ≥ c > 0, if 3/5 ≤ |ξ| ≤ 5/3, (3.2)

and ∑
j∈Z

ϕ̂(2jξ)ψ̂(2jξ) = 1, |ξ| 6= 0, (3.3)

then

‖f‖Ḟα
p,q
≈ ‖Sϕ(f)‖ḟα

p,q
(3.4)

for all α, p, q, and all f ∈ S ′/P.
Note that if ψ ∈ S satisfies (3.1) and (3.2), then there exists ϕ ∈ S

such that (3.1)–(3.3) are satisfied.
The proof of the (3.4) in [8] uses certain equivalence which seems

true only for entire functions of exponential type. We give below a
proof based on the results in Section 2 and an identity in [7].

Assume that ϕ and ψ have appropriate vanishing moments. Then,
by Theorems 2.4 and 2.2,

‖(Tψ ◦ Sϕ)(f)‖Ḟα
p,q

≤ C ‖Sϕ(f)‖ḟα
p,q

≤ C ‖f‖Ḟα
p,q
. (3.5)

Therefore, if (3.1)–(3.3) are satisfied, then by (3.1) both ϕ and ψ
have infinitely many vanishing moments, so that (3.5) implies half of
the equivalence (3.4). The other half of this equivalence follows from
the first inequality in (3.5) and the identity

(Tψ ◦ Sϕ)(f) =
∑
j∈Z

∑
k∈Zn

〈f, ϕj,k〉ψj,k = f in S ′/P. (3.6)

(See [7, Lemma 2.1].) The proof of (3.6) depends crucially on a sam-
pling theorem in which the assumption (3.1) is critical (see [7, Lemma
2.1] or [9, Lemma 6.10] for this sampling theorem).
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By a similar argument, we can prove the following theorem in which
we require a slightly less stringent Tauberian condition than condition
(3.2).

Theorem 3.1. Let −∞ < α < ∞, 0 < p < ∞ and 0 < q ≤ ∞. Let
ψ ∈ S have [n/min(1, p, q)− n− α] vanishing moments. Assume that
ψ satisfies the following conditions:

(a) supp ψ̂ ⊂ Tn := {ξ : maxj=1,...,n |ξj| < π};
(b) For each |ξ| = 1, there exist positive numbers 0 < a < b < ∞

such that 2a ≤ b and for which

ψ̂(tξ) 6= 0 for all a ≤ t ≤ b.

The there exists ϕ ∈ S such that supp ϕ̂ is contained in Tn, and that
(3.4) and (3.6) hold for every f ∈ S ′/P. Moreover, if q <∞, then the
series in (3.6) converges also in the Ḟ α

p,q-norm.

Proof. As observed in [4, page 541], the Tauberian condition (b) implies
that there exists ϕ ∈ S such that ϕ̂ is supported in an annulus about
the origin and that (3.3) holds. By multiplying ϕ̂ by a cut-off function
and using (a) we may assume that ϕ̂ is supported in Tn. Since ϕ
has infinitely many vanishing moments and ψ has the right number of
vanishing moments (see Theorem 2.4), we can use Theorems 2.2 and

2.4 to obtain (3.5). Since both ψ̂ and ϕ̂ are supported in Tn and (3.3)
holds, we apply the sampling theorem [9, Lemma 6.10] to obtain (3.6).
We then deduce (3.4) as before. The norm-convergence when q < ∞
follows from Theorem 2.4. �

We next discuss the general case where ϕ and ψ have appropriate
vanishing moments, and (3.3) is satisfied. We are interested in the
equivalence (3.4). By the arguments preceding Theorem 3.1, we would
have this equivalence if we can prove (3.6). Applying Theorem 2.2 to

the spaces Ḟ 0
2,2 = L2 and ḟ0

2,2 = `2, we obtain∑
j∈Z

∑
k∈Zn

| 〈ϕj,k, f〉 |2 ≤ C ‖f‖2
2 , (3.7)

∑
j∈Z

∑
k∈Zn

| 〈ψj,k, f〉 |2 ≤ C ‖f‖2
2 . (3.8)

Assume furthermore that ϕ and ψ satisfy the tq-condition:

tq(ξ) =

∞∑
m=0

ϕ̂(2mξ)ψ̂(2m(ξ + 2πq)) = 0 for all ξ ∈ Rn and all q ∈ On,

(3.9)
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where On denotes the set of q ∈ Zn such that at least one component of
q is odd. Then (3.3), (3.7), (3.8) and (3.9), together with [6, Theorem
4.9], imply that

f =
∑
j∈Z

∑
k∈Zn

〈f, ϕj,k〉ψj,k =
∑
j∈Z

∑
k∈Zn

〈f, ψj,k〉ϕj,k

in L2. Hence it follows easily that (3.6) holds for every f ∈ Ḟ α
p,q.

Thus, we have proved that the norm-equivalence (3.4) holds when
ϕ and ψ have appropriate vanishing moments, and (3.3) and (3.9) are
satisfied. Therefore, for a given function ψ ∈ S with an appropriate
moment condition, it is of interest to find simply stated condtions on
ψ so that there is ϕ ∈ S for which (3.3) and (3.9) hold. Although
there is a simple condition on ψ to ensure the existence of ϕ such that
(3.3) holds (see (i) of the Remarks to the next theorem), a satisfactory
condition to imply (3.9) remains elusive. We note in the band-limited
case that (3.1) trivially implies (3.9).

As for the equivalence (3.4) in the general case we have the following
theorem, which is the main result of this paper.

Theorem 3.2. Let −∞ < α < ∞, 0 < p < ∞, 0 < q ≤ ∞. Suppose
that ψ ∈ S has [n/min(p, q, 1)− n − α] vanishing moments, and that
it satisfies the dyadic Tauberian condition; i.e., there is ϕ ∈ S such
that supp(ϕ̂) is contained in an annulus about the origin and that (3.3)
holds. Then there exist L ∈ Z and Φ ∈ S such that for each l ≤ L,

‖f‖Ḟα
p,q
≈ ‖Sϕl∗Φ(f)‖ḟα

p,q
(3.10)

for all f ∈ S ′/P, and Tψl
◦ Sϕl∗Φ is invertible on Ḟ α

p,q. Moreover, if
q <∞, then the linear span of

{ψ(2jx− k2l) : k ∈ Zn, j ∈ Z}

is dense in Ḟ α
p,q.

Proof. By dilating ϕ and ψ if necessary, we may assume that supp(ϕ̂) ⊆
{|ξ| ≤ 2}. Choose Φ ∈ S such that Φ̂ is non-negative and radial,

supp(Φ̂) ⊆ {|ξ| ≤ 3}, and Φ̂ = 1 on {|ξ| ≤ 2}. Let l ≤ 0. Then, since
ϕ̃l ∗ ψl = (ϕl ∗ Φ)̃ ∗ ψl ∗ Φ, the condition (3.3) implies that

f =
∑
j∈Z

(ϕl ∗ Φ)̃j ∗ (ψl ∗ Φ)j ∗ f
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in S ′/P. By this representation and the assumptions on the support

of Φ̂, together with the sampling theorem [9, Lemma 6.10], we have

f =
∑
j∈Z

∑
k∈Zn

〈f, (ϕl ∗ Φ)j,k〉 (ψl ∗ Φ)j,k

= (Tψl∗Φ ◦ Sϕl∗Φ)(f).

Since ψl ∗Φ has the same vanishing moments as ψ, and ϕl ∗Φ has infin-
itely many vanishing moments, Theorems 2.2 and 2.4 then imply (3.10)
for all f ∈ S ′/P. It also follows from the above and the quantitative
versions of Theorems 2.2 and 2.4 (see (2.1) and (2.10) that

‖f − (Tψl
◦ Sϕl∗Φ)(f)‖Ḟα

p,q
=

∥∥(
T(ψl∗Φ−ψl) ◦ Sϕl∗Φ

)
(f)

∥∥
Ḟα

p,q

≤ CpN(ψl ∗ Φ− ψl)pN(ϕl ∗ Φ) ‖f‖Ḟα
p,q
. (3.11)

By the assumptions on ϕ and Φ, there is N1 (depending on N), and
for each N2 > 0, there is a constant C which may depend on N1, N2

but not on l such that

pN(ϕl ∗ Φ) ≤ C2−lN1

pN(ψl ∗ Φ− ψl) ≤ C2lN2.

These estimates and (3.11) imply that, for every ε > 0, there is a
non-positive integer Lε such that

‖f − (Tψl
◦ Sϕl∗Φ)(f)‖Ḟα

p,q
≤ ε ‖f‖Ḟα

p,q
(3.12)

for all l ≤ Lε. Let ρ = min(1, p, q). Then (3.12) implies that there
exists L ∈ Z such that for each l ≤ L, and

Ul(f) = I(f)− (Tψl
◦ Sϕl∗Φ)(f) = f − (Tψl

◦ Sϕl∗Φ)(f),

we have ‖Ul(f)‖ρ
Ḟα

p,q
≤ (1/2) ‖f‖ρ

Ḟα
p,q

, and by iterating

‖Um
l (f)‖ρ

Ḟα
p,q
≤ (1/2)m ‖f‖ρ

Ḟα
p,q
, (3.13)

for all f ∈ Ḟ α
p,q, andm = 1, 2, . . . . Since ‖·‖Ḟα

p,q
is a ρ - norm, ‖f + g‖ρ

Ḟα
p,q
≤

‖f‖ρ
Ḟα

p,q
+‖g‖ρ

Ḟα
p,q

, and Ḟ α
p,q is complete, (3.13) and a well-known theorem

in functional analysis [13, Theorem 2.8] imply that I+Ul+U
2
l +U3

l +· · ·
is a bounded operator on Ḟ α

p,q. This last operator is the inverse of
I − Ul = Tψl

◦ Sϕl∗Φ.
To prove the last assertion of the theorem , fix l ≤ L such that

Tψl
◦ Sϕl∗Φ is invertible. Let f ∈ Ḟ α

p,q. Then there exists g ∈ Ḟ α
p,q such
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that

f = (Tψl
◦ Sϕl∗Φ)(g) =

∑
j,k

(Sϕl∗Φ(g))j,k(ψl)j,k (3.14)

=
∑
j,k

(Sϕl∗Φ(g))j,k2
j/22lnψ(2j+lx− k2l)

=
∑
j,k

(Sϕl∗Φ(g))j−l,k2j/22lnψ(2jx− k2l).

By Lemma 2.3 the series in the right-hand side of the above converges
in S ′/P, but if q < ∞, then Theorem 2.4 implies that we have also
convergence in Ḟ α

p,q. Thus we obtain the assertion on the density of the
spanning set and complete the proof of the theorem. �

Remarks. (i) The condition (3.3) and its use in the theory of function
spaces are well-known. However, the terminology “dyadic Tauberian
condition” was coined in [4] in which the authors also observed that
this condition holds if condition (b) of Theorem 3.1 is satisfied.

(ii) Our results should be compared to [8, Theorem 4.2] where, in-
stead of the dyadic Tauberian condition the authors assumed that
|ψ̂(ξ)| ≥ c > 0 if 1/2 ≤ |ξ| ≤ 2, and, in addition to the moment
condition the authors assumed certain size conditions and Hölder’s es-
timates on ψ and its derivatives. The proof in [8] uses the molecular
decompostions of the Triebel-Lizorkin spaces and is considerably more
complicated than our proof of Theorem 3.2. Their method could be
applied to the case where ψ may not be in S. Actually, all our results
are also valid in the case when ϕ or ψ is not in S, but they are suf-
ficiently smooth and satisfy appropriate moment conditions and size
conditions (of the form pN (ϕ) < ∞ and/or pN(ψ) < ∞). The proofs
are the same. We have restricted our theorems to the case ϕ and ψ in
S for simplicity of presentation. We refer to [2, Section 6, Remark (b)]
for a similar remark on Lemma 1.3, that this lemma holds for some ϕ
not in S.

(iii) Set Vl = Tψl
◦ Sϕl∗Φ. Then g = V −1

l (f) in the above proof and,
as in [8], (3.14) can be written as

f =
∑
j,k

〈V −1
l f, (ϕl ∗ Φ)j,k〉(ψl)j,k =

∑
j,k

〈f, (V −1
l )∗((ϕl ∗ Φ)j,k)〉(ψl)j,k.

This should be compared with the results in [10] in which the authors
prove that, under “minimal” conditions on the function ψ, and for
1 ≤ p, q < ∞, there exist r > 1, s > 0 and a family of functions {ρj,k}
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(the so-called molecules), such that

f =
∑
j,k

〈f, ρj,k〉ψ(r,s)
j,k ,

for every f ∈ Ḟ α
p,q, where ψ

(r,s)
j,k (x) = rjn/2ψ(rjx + sk). The explicit

values of r and s are unknown. The proofs in [10] use the molecu-
lar decompositions of the Triebel-Lizorkin spaces in [8] and the subtle
theory of Calderón-Zygmund operators. The results in [10] are proba-
bly the most comprehensive ones in the theory of molecular and frame
decompositions for these spaces.

(iv) A final point of interest of our approach: The simplicity of the
proofs of our results makes it possible to explicitly display the depen-
dence on α, p, q and ψ of the various constants appearing in each proof.
This may be useful in applications, for instance, when one wishes to
estimate the number Lε in the proof of Theorem 3.2 so that (3.12)
holds.

We next discuss a special case of Theorem 3.2, which has partially
motivated our work. In R consider the “Mexican hat” function

ψ(x) = −d
2

x2
[e−x

2/2] = (1− x2)e−x
2/2. (3.15)

This function is in S(R) and has one vanishing moment. Since ψ̂(ξ) 6= 0
for all ξ 6= 0, ψ also satisfies the dyadic Tauberian condition. If we
apply Theorem 3.2 to the Hardy space Hp(R) = Ḟ 0

p,2(R), then in this
case, [1/min(p, 2, 1)− 1] ≤ 1 when p > 1/3. Therefore, we obtain the
following theorem:

Theorem 3.3. Let ψ be the Mexican hat function given by (3.15), and
p > 1/3. Then there exists L ∈ Z such that for each l ≤ L, the linear
span of

{ψ(2jx− k2l) : j, k ∈ Z}
is dense in Hp(R).

Note that, since Hp(R) = Lp(R) if 1 < p < ∞, Theorem 3.3 is
closely related to a question posed by Y. Meyer in [11] where he asked
whether or not the linear span of

{ψ(2jx− k) : j, k ∈ Z}
is dense in Lp(R), p 6= 2. It was known from a result by I. Daubechies
that {ψj,k : j, k ∈ Z} is a frame in L2(R) (see [5], [11]).

From the proof of Theorem 3.2, it is very likely that the number L
in Theorem 3.3 is negative, and therefore Theorem 3.3 does not resolve
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the Meyer’s problem; we need “oversampling” to obtain a spanning
set. This “oversampling” phenomenon also occurs in [10] in which the
authors show that, for each 1 ≤ p <∞, there exist (sufficiently small)
r > 1 and s > 0 for which the linear span of

{ψ(rjx− ks) : j, k ∈ Z}
is dense in Hp(R). However, the explicit values of r and s are not
known.

A significant open problem is to investigate the explicit relationship
between the various conditions on a function ψ and the dilation factor
and sampling points in the spanning set. When

∫
Rn ψ(x)dx 6= 0, a

rather complete solution for the spanning problem in Lebesgue and
Sobolev spaces has been given given in [1].

We end this paper by a remark. Since the main tools in our approach,
Lemmas 1.1 and 1.3, hold for weighted spaces, all our main results
are valid in the weighted setting in which the weight function is in
the Muckenhoupt class A∞, and moreover, they are also valid for the
weighted Besov-Lipschitz spaces. By the same reasons, these results
(except Theorem 3.3 and the density result in Theorem 3.2) hold in
the case p = ∞. We leave the details to the interested reader.
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