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Abstract

Every probability distribution over two events is shown to have a representation for which
the probability mass function is factored into the marginal mass functions via a parametric
equation. We study the coherent parameter space and the restrictions on probability distribu-
tions induced by any parameter specification. All results are illuminated by graphic displays.
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1 Motivation

Common practice in statistical modelling often presumes the stochastic independence of
events for the mathematical convenience of the factorisation of P (AB) into P (A)P (B) rather
than for realistic merit. This article shows that every coherent distribution over the partition
generated by A and B has a factorised representation in terms of the marginal probabili-
ties via the parametric equation P (AB) = P (A)αP (B)β . We study the parameter space
of allowable pairs of (α, β) and the restrictions on (P (A), P (B), P (AB)) induced by each
specification of (α, β).

2 Results

For any two events A and B, consider the restrictions on probability assertions P(A), P(B)
and P(AB) induced by the relation

P (AB) = P (A)α P (B)β ,

for some real parameters α and β . When α = β = 1, this is the relation specifying an
assertion of independence regarding A and B, which allows the pair (P (A), P (B)) to reside
anywhere in the unit-square. The numbered statements that follow indicate provable proper-
ties of the parameter space of coherent (α, β) specifications and of the probability assertions
(P (A), P (B)) they support.

1. The specification that P (AB) = P (A)αP (B)β implies the following coherency
conditions on probabilities over the partition generated by A and B:

i. p00 ≡ P (ÃB̃) = 1− P (A)− P (B) + P (A)αP (B)β

ii. p01 ≡ P (ÃB) = P (B)− P (A)αP (B)β

iii. p10 ≡ P (AB̃) = P (A)− P (A)αP (B)β , and
iv. p11 ≡ P (AB) = P (A)αP (B)β .

2. The parameter space for (α, β) supporting coherent specifications of (p00, p01, p10, p11)
within the unit simplex is a symmetric subspace of <2 with five symmetrically paired parts:

I. 0 < α < 1, β ≥ α, and α + β ≥ 1 ;
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II. β ≥ α ≥ 1 ;
III. α ∈ (0, 1), and β > 1 ;
IV. α < 0, β > 1, and α + β ≥ 1 ; and
V. α < 0, β > 1, and α + β < 1 .

The five parts of this space are displayed in Figure 1-9, labeled appropriately by Roman
numerals I through V, along with their symmetric reflections which are labeled similarly
with primes (’) attached, viz. I’ through V’.

The symmetry of the parameter space of (α, β) pairs arises naturally from the fact that
the designation of the two events by letters A and B is arbitrary. We can confine our attention
to the half-space in which β ≥ α.
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Figure 1a.  The parameter space for (α,β) is composed 
of five regions, labeled  I  through  V, along with their 
symmetric reflections about the line β = α.  Regions         
marked with an "o" contain incoherent specifications                  
of (α, β) pairs.                                             
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Figure 1b.  Bounds on [P(A),P(B)] given α, β   
exemplified for α = β = 3/4.   In the case of  
α = β = 1/2 it is necessary that P(A) = P(B).  
When α = β = 1, (P(A),P(B)) may lie anywhere   
within  the unit−square.                                

α = β = 3/4
 max P(B)           

min P(B)            
α = β = 3/4

P(A) = P(B)         
α = β = 1/2

Figure 1: The figure at left, 1a, portrays the parameter space of coherent (α, β) pairs
described in statement 2. The figure at right, 1b, partrays bounds on (P (A), P (B)) pairs
that cohere with the specification of α = β = 3/4 and α = β = 1/2 as described in statement
3.I.

3. Coherency conditions on probabilities specified in 1 imply distinct bounds on pairs of
(P (A), P (B)) that are representable by (α, β) pairs in each of the five regions specified in 2:

I. P (A)
α

1−β ≤ P (B) ≤ P (A)
1−α

β . This condition derives from the requirements that
P (A)αP (B)β ≤ P (A) and P (A)αP (B)β ≤ P (B). The exponents on P (A) in the boundary
inequality must satisfy α

1−β ≥ 1−α
β , since P (A) ∈ [0, 1], as is P (B). Equivalently, α+β ≥ 1

.
II. P (A)αP (B)β ≤ P (A) + P (B) ≤ P (A)αP (B)β + 1. This is an implicit functional

inequality on (P (A), P (B)) deriving from the condition that p00 ≡ P (ÃB̃) ∈ [0, 1].

III. 0 ≤ P (B) ≤ P (A)
1−α

β . This derives solely from the requirement that
P (A)αP (B)β ≤ P (A). Notice that the exponent on P (A) in the bounding inequality
for P (B) is 1−α

β which is always less than 1 in this region. Thus, the bounding function here
is concave downward but is always exceeding P (A).

IV. Here again, 0 ≤ P (B) ≤ P (A)
1−α

β . Coherency conditions would imply both
that P (B) ≤ P (A)

1−α
β and that P (B) ≤ P (A)

α
1−β . However these upper bounds on P (B)
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are ordered by P (A)
1−α

β ≤ P (A)
α

1−β , deriving from the fact that α + β ≥ 1. As in region
III, the bounding function on P (B) is concave downward, always exceeding P (A).

V. 0 ≤ P (B) ≤ P (A)
α

1−β . Here the bounds on (P (A), P (B)) are derived exactly
as in region IV. However, in this region, P (A)

1−α
β > P (A)

α
1−β , for here α + β < 1. The

bounding function on P (B) is now a convex function of P (A), lying always beneath the 45◦

line of P (B) = P (A).

The parts of <2 that are excluded from the parameter space for (α, β) are eliminated
because they allow only specifications of (P (A), P (B)) that are incoherent. It is obvious
that when α and β are both negative, P (A)αP (B)β would exceed 1. Secondly, P (A)αP (B)β

would always exceed P (B) when α < 0 and β ∈ (0, 1). Finally, when β ≥ α > 0 and
α + β < 1, coherency would require the inequality P (A)

α
1−β < P (B) < P (A)

1−α
β , as

in region I. However under these parameter configurations this lower bound would have to
exceed the upper bound.

Figure 10 can be used to understand the type of bounds on (P (A), P (B)) pairs when
(α, β) lies regions I, III, IV or V. In region I, (P (A), P (B)) would be bounded within a
region such as typified by the minP (B) and the maxP (B) functions shown in the Figure.
(If α 6= β then the min and max functions would not be symmetric, but they would always
straddle the line P (B) = P (A).) In regions III and IV it is only required that (P (A), P (B))
lies beneath a concave function similar to the function labeled maxP (B) in the Figure. Its
lower bound would always be 0. Finally in region V, (P (A), P (B)) pairs are bounded below
a convex function similar to that shown as minP (B).

Figure 2 displays examples of the bounds on (P (A), P (B)) in Region II in six cases where
β = α > 1. An indicator function value of 1 is displayed for the probability pairs cohering
with several values of α from 1.1 through 4. It is evident that as β = α increases without
bound, the non-linear restrictions on (P (A), P (B)) converge toward P (A) + P (B) ≤ 1.

It is also interesting to view how distributions associated with the five regions of the
parameter space fill the unit-simplex of all bivariate distributions over A and B. Figures 3, 4
and 5 display arrays of distributions representable by an (α, β) pair within each of the regions.

4. One implication of the bounding functions on (P (A), P (B)) pairs is that exchange-
able assessments of A and B are representable by (α, β) pairs in any region except region V
which precludes exchangeability because it does not allow P (A) = P (B). (Remember that
exchangeability of two events is equivalent to their equiprobability.) However, the assertion
of exchangeability in addition to the restriction that P (AB) = P (A)α P (B)β would require
that P (A) = P (B). When this is the case, P (AB) is constant over all (α, β) pairs whose
sum is identical. Thus, exchangeable distributions can be represented and studied under the
restriction that β = α. The infinitely extendible exchangeable distributions are represented
by the specification α = β ∈ [ 12 , 1], whereas the finitely extendible exchangeable distributions
are those for which α = β > 1.

Geometrically, the exchangeable distributions lie on a plane within the unit-simplex,
according to the restriction that P (A) = P (B). Equivalently, p01 = p10. (See the analy-
sis of Diaconis (1977) as discussed in Lad (1996).) Figure 6 displays this plane, showing
curves of distributions representable by a few selected parameter configurations. Parameter
specifications in region I, where α + β ≤ 2, exhaust the infinitely extendible exchangeable
distributions, while those in region II, for which α + β > 2 exhaust the finitely extendible
distributions.

We have been displaying aspects of the array of probability distributions that are repre-
sentable by the assertion P (AB) = P (A)α P (B)β via restrictions on the cohering pairs
(P (A), P (B)) it implies. The reverse analysis is also enlightening. We turn to a comment
on the array of (α, β) pairs that can represent a specified coherent distribution over A and B.
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Figure 2: In each of the plots, values of (P (A), P (B)) pairs cohering with the specified
values of α = β are indicated by function values of 1 over subregions of the unit-square. As
α = β → inf, the bound on (P (A), P (B)) converges toward P (A) + P (B) ≤ 1. As shown,
this bound is virtually reached by the time α = β = 2.
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Figure 3: Displays of mass functions representable by three different configurations of α = β
in region I.
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Figure 4: Displays of mass functions representable by independent distributions, by one
configuration of α = β in region II, and one configuation in III.
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Figure 5: Displays of mass functions representable by one configuration of (α, β) in region
IV, and by two configurations in region V.
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Figure 6: The plane of exchangeable probability distributions within the unit-simplex is
filled by lines of distributions associated with (α, β) pairs within regions I and II along
with the additional restriction that α = β. Parameter specifications in region I, where
α = β ∈ [1/2, 1], exhaust the infinitely extendible exchangeable distributions. Those in
region II, where α = β > 1, exhaust the finitely extendible exchangeable distributions.
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5. Denote again by (p00, p01, p10, p11) a vector of coherent probability assertions for the
events P (ÃB̃), P (ÃB), P (AB̃) and P (AB), which identifies a probability distribution over
the events A and B. Taking logarithms of the specification P (AB) = P (A)α P (B)β yields
an equation for all (α, β) pairs that can represent this distribution, viz.,

β =
ln (p11)

ln (p01 + p11)
− ln (p10 + p11)

ln (p01 + p11)
α ≡ c − m α (1)

The intercept coefficient of these equations, c, is at least equal to 1, whereas the slope co-
efficient, m, need only be positive. (Notice the negative sign on this positive coefficient in
equation 1.) The slope coefficient, m, equals 1 only when p01 = p10, identifying the ex-
changeable distributions. In these cases, the specific associated exchangeable distributions
are identified by the value of the intercept, c. Figure 7 displays three lines of (α, β) pairs
that support a specific distribution.
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Figure 7: Three lines of (α, β) pairs that support specific distributions.

6. Our final concern are the conditional probabilities associated with the specification that
P (AB) = P (A)α P (B)β . The conditional probabilities have the forms

P (B|A) = P (A)α−1 P (B)β and P (A|B) = P (A)α P (B)β−1

along with
P (B|Ã) = P (B)−P (A)αP (B)β

1−P (A) and P (A|B̃) = P (A)−P (A)αP (B)β

1−P (B)

for appropriate values of P(A) and P(B). (Remember that coherent joint assertions of P(A)
and P(B) are restricted according to the values of α and β.) For examples, α = β = 1

2
implies P (B|A) = 1 and P (A|B) = 1 since it is required under this configuration that
P (A) = P (B). On the other hand, as is well-known, α = β = 1 implies P (B|A) = P (B) and
P (A|B) = P (A), the case of independence. Graphical depictions of conditional probabilities
P (B|A), P (B|Ã) and P (A|B), P (A|B̃) for allowable P(B) values when α = β = 3

4 and
P (A) = .4 appear in Figures 11 and 12.
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Figure 11.  Relations of P(B|A) and P(B|~A) to                        
P(B) over the range of cohering P(B) values                           
when α = β = 3/4 and P(A) = .4.  Cohering values             
of P(B) must lie within [.054, .736].  The line                       
P(B) = P(B) appears only for reference.                               
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Figure 12.  P(A|B) and P(A|~B) values for the range of       
cohering P(B) values when α = β = 3/4 and P(A) = .4.  
Again the values of P(B) must lie within [.054, .736]          
as in Fig. 11.  The line P(A) = .4 appears only for            
reference.                                                     
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Figure 8: Notice the odd figure numbering here. These two figures are called Figures 11
and 12 in the text.

3 Concluding comments

Bounds on probabilities have been proposed as appropriate for statistical modelling in writ-
ings as diverse as Shafer (1976), Walley (1991) and Lad (1996) who exposits de Finetti’s
fundamental theorem of probability. One of the features of the factorisation representation
we have have been studying is that it provides a convenient format for introducing bounds
into stochastic modelling in specific forms.
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