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APPROXIMATION AND SPANNING IN THE HARDY SPACE, BY AFFINE
SYSTEMS

H.-Q. BUI AND R. S. LAUGESEN

Abstract. We find weak conditions on ψ ∈ L1(Rd) with ψ̂(0) = 1 such that every function in the
Hardy space is a linear combination of translates and dilates of ψ. More precisely, we prove for
each f ∈ H1(Rd) the scale averaged approximation formula

f(x) = lim
J→∞

1

J

J∑
j=1

∑
k∈Zd

cj,kψ(ajx− k) in H1(Rd),

where {aj} is an arbitrary lacunary sequence (such as aj = 2j) and the coefficients cj,k are local
averages of f . This holds in particular if ψ is Schwartz class, or if ψ ∈ Lp (for some 1 < p < ∞)
has compact support. A corollary is a new affine decomposition of H1 in terms of differences of ψ.

1. Introduction

We recently proved [2] a scale averaged, discretized approximation to the identity formula for
Lp = Lp(Rd). Precisely, if ψ ∈ Lp ∩ L1, 1 ≤ p < ∞,

∫
Rd ψ dx = 1,

∑
k∈Zd |ψ(x − k)| ∈ Lploc and

{aj}∞j=1 is a sequence of real numbers that grows exponentially (i.e., is lacunary), then

f(x) = lim
J→∞

1
J

J∑
j=1

∑
k∈Zd

cj,kψ(ajx− k) in Lp (1)

for all f ∈ Lp. The coefficients cj,k =
∫

Rd f(a−1
j y)φ(y − k) dy are sampled average values of f ;

here the analyzer φ has integral 1 and satisfies some other conditions. The scale averaging over
j = 1, . . . , J , in formula (1), cannot generally be omitted [2, §1].

Theorem 1 in this paper extends (1) to the Hardy spaceH1 = H1(Rd). Special cases of Theorem 1
say that (1) holds in H1 if

∫
Rd ψ dx = 1 and either ψ ∈ Lp (1 < p < ∞) has compact support or

else ψ ∈ L1 has gradient Dψ ∈ H1 (which holds for example for all Schwartz functions ψ).
Our conditions on ψ and φ, as well as our proof, must be substantially modified from the Lp

case to deal with the Riesz transform. To hint at the difficulties, observe in formula (1) that
ψ(ajx−k) /∈ H1 because

∫
Rd ψ(ajx−k) dx 6= 0, but that the infinite sum

∑
k∈Zd cj,kψ(ajx−k) can

still belong to H1 provided
∑

k∈Zd cj,k = 0. We further discuss the modifications needed for H1 in
Section 8, after the proof of Theorem 1.

Corollary 2 shows the Hardy space is spanned by an affine system of differences of ψ, somewhat
in the spirit of atomic and molecular decompositions of function spaces (for which see [5, 6, 7, 14]).
It particularly recalls the work of J. E. Gilbert et al. [7], who obtained frame decompositions
for Triebel–Lizorkin spaces using affine systems generated by “Mδ-molecules”. Their theorem
immediately implies a spanning result for H1. In Section 3.6 we construct an example to show that
their spanning result and our Corollary 2 are independent.
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2. Definitions and Notation

1. Fix the dimension d ∈ N and write C = [0, 1)d for the unit cube in R
d. Write Lp = Lp(Rd) for

the class of complex valued functions with finite Lp-norm ‖f‖p = (
∫

Rd |f(x)|p dx)1/p. Occasionally
we consider C

d-valued functions, especially the gradient Df and the Riesz transform Rf , defined
below. If a function F is C

d-valued then we interpret its Lp norm in the obvious way, with |F (x)|
denoting the euclidean length of the vector F (x).

2. Define the Fourier transform with 2π in the exponent: f̂(ξ) =
∫

Rd f(x)e−2πiξx dx, for row
vectors ξ ∈ R

d.
3. Write Rf = (R1f, . . . , Rdf) for the Riesz transform of f ∈ L1, where

Rsf(x) = cd p.v.
∫

Rd

f(x− y)
ys

|y|d+1
dy for s = 1, . . . , d,

with normalizing constant cd = Γ((d+ 1)/2)π−(d+1)/2 . Then Rsf is finite a.e., and is a measurable
function of x ∈ R

d. Recall Rs : Lp → Lp for 1 < p <∞.
The Hardy space is

H1 = H1(Rd) = {f ∈ L1 : Rf ∈ L1}, with the norm ‖f‖H1 = ‖f‖1 + ‖Rf‖1.

A vector valued function is said to belong to H1 if each of its components does. In particular,
Df ∈ H1 means Dtf ∈ H1 for each t = 1, . . . , d, where D is the gradient operator and Dt = ∂/∂xt.

Notice

R̂f(ξ) = −i ξ|ξ| f̂(ξ).

If f ∈ H1 then Rf ∈ L1 and so R̂f is continuous, which implies

f̂(0) =
∫

Rd

f(x) dx = 0 and R̂f(0) =
∫

Rd

Rf(x) dx = 0. (2)

Recall too that the Riesz transform commutes with dilations and translations: R(f(αx − β)) =
sign(α)(Rf)(αx−β) when α ∈ R \ {0}, β ∈ R

d. Dilation invariance fails when α is a matrix, which
is why we restrict to isotropic dilations aj ∈ R throughout this paper. (Our Lp results do hold for
general dilation matrices [2].) If f ∈ H1 and g ∈ L1, then f ∗ g ∈ H1 and Rs(f ∗ g) = Rsf ∗ g.

See [10, 11] for all these facts about Riesz transforms and H1.
4. Let the dilations aj for j > 0 be nonzero real numbers with |aj | → ∞ as j →∞.
In some results we will further assume the aj grow exponentially, meaning |aj+1| ≥ γ|aj | for all

j > 0, for some growth factor γ > 1 (so that the dilation sequence is lacunary).
5. Fix a translation matrix b, assumed to be an invertible d× d real matrix.
6. For θ ∈ L1, define

θj,k(x) = |aj |dθ(ajx− bk), j > 0, k ∈ Z
d, x ∈ R

d.

Notice we have put an L1 normalization on θj,k (namely ‖θj,k‖1 = ‖θ‖1) instead of the L2 normal-
ization that is customary in wavelet theory.

7. We will use the periodization operator

Pf(x) = |det b|
∑
k∈Zd

f(x− bk) for x ∈ R
d.

If f ∈ L1, then the series for Pf converges absolutely for almost every x, and Pf is locally
integrable.

8. The first difference operator ∆zf(x) = f(x)− f(x− z) commutes with the Riesz transform.
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3. Statements of the results

3.1. The results. We define an approximation to f at scale j by

fj(x) = |det b||aj |−d
∑
k∈Zd

〈f, φj,k〉ψj,k

= |det b|
∑
k∈Zd

(∫
Rd

f(a−1
j y)φ(y − bk) dy

)
ψ(ajx− bk), j > 0, x ∈ R

d, (3)

where f is the signal, φ is the analyzer and ψ is the synthesizer. To understand fj, consider φ to
be a delta function (although admittedly this extreme case is not covered by our theorem); then
with b = I we get the quasi-interpolant fj(x) =

∑
k∈Zd f(a−1

j k)ψ(ajx− k).
Our theorem finds conditions under which the fj provide a good approximation to f .

Theorem 1 (Approximation). Assume ψ ∈ L1 with
∫

Rd ψ dx = 1. Let φ ∈ L∞ be compactly
supported with Pφ = 1 a.e. (so that

∫
Rd φdx = 1). Consider f ∈ H1. Then (a), (b) and (c) hold.

(a) [Stability] The series (3) defining fj converges unconditionally in L1, so that fj ∈ L1. If

sup
|z|≤1

‖∆zψ‖H1 <∞ (4)

then fj ∈ H1 with

‖fj‖H1 ≤ C(φ,ψ)‖f‖H1 . (5)

(b) [Constant periodization] If

‖∆zψ‖H1 → 0 as z → 0 (6)

and ψ has constant periodization Pψ = 1 a.e., then the stability bound (5) holds and

f = lim
j→∞

fj in H1. (7)

(c) [Scale averaging] If (6) holds and the dilations aj grow exponentially, then the stability bound
(5) holds and

f = lim
J→∞

1
J

J∑
j=1

fj in H1. (8)

If the dilations do not grow exponentially, then one can always pass to a subsequence that does,
before applying part (c).

A spanning corollary follows from Theorem 1. Write et for the unit vector in the tth coordinate
direction and let θ(t) = ψ − ψ(· − bet), for t = 1, . . . , d.

Corollary 2 (Spanning). Assume ψ ∈ L1 with
∫

Rd ψ dx 6= 0 and ‖∆zψ‖H1 → 0 as z → 0.
Then θ(t) ∈ H1 for each t, and the system {θ(t)

j,k : j > 0, k ∈ Z
d, t = 1, . . . , d} spans H1.

Spanning means the finite linear combinations of the functions

θ
(t)
j,k = ψj,k − ψj,k+et (9)

are dense in H1.

We discuss these results before proving them.
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3.2. Properties of fj.
• Theorem 1(a) shows fj ∈ H1. This is plausible because∫

Rd

fj(x) dx = |det b||aj |−d
∑
k∈Zd

〈f, φj,k〉 using
∫

Rd

ψ dx = 1

=
∫

Rd

f(y)Pφ(ajy) dy

=
∫

Rd

f(y) dy = 0 since Pφ = 1 a.e. and f ∈ H1.

This calculation demonstrates that our assumption Pφ ≡ 1 is natural, in Theorem 1.
• fj is related to a classical approximation to the identity:

f(x) = lim
j→∞

(f ∗ ψa−1
j

)(x) in H1

= lim
j→∞

∫
Rd

f(z)|aj |dψ(aj(x− z)) dz

= lim
j→∞

∫
Rd

f(a−1
j y)ψ(ajx− y) dy by z = a−1

j y

≈ lim
j→∞

∑
k∈Zd

(∫
k+C

f(a−1
j y) dy

)
ψ(ajx− k) (10)

by a Riemann sum approximation. This last line (10) is exactly limj→∞ fj, with φ = 1C and b = I.
Caution is required in the Riemann sum approximation step, because we discretize with fixed step
size 1. Theorem 1 nonetheless shows the approximation (10) is exact in the H1-norm as j → ∞
provided either ψ has constant periodization or else we average over all dilation scales.
• In terms of integral kernels, fj(x) =

∫
Rd Kj(x, y)f(y) dy where

Kj(x, y) = |aj |dK(ajx, ajy) and K(x, y) = |det b|
∑
k∈Zd

ψ(x− bk)φ(y − bk).

Thus Theorem 1(a) says Kj : H1 → H1 with a norm estimate that is independent of j.
• The coefficients in fj are controlled by the L1-norm of f :

|det b||aj |−d
∑
k∈Zd

|〈f, φj,k〉| ≤ ‖f‖1‖P |φ|‖∞.

3.3. Examples for ψ. Many functions satisfy the hypotheses in Theorem 1 and Corollary 2:
• Lemmas 3 and 4 show that

ψ ∈ L1, Dψ ∈ H1 =⇒ ‖∆zψ‖H1 → 0 as z → 0. (11)

In the notation for Triebel–Lizorkin spaces the subclass {ψ ∈ L1 : Dψ ∈ H1} equals L1 ∩
Ḟ 1

1,2 = F 1
1,2, by [6, (5.30)] or [15]. This subclass certainly contains all Schwartz functions (see [15,

Theorem 2.2.3]).
• Lemma 5 shows that

ψ ∈ Lp compactly supported for some p > 1 =⇒ ‖∆zψ‖H1 → 0 as z → 0.

In particular, in dimension 1 with ψ = 1[0,1), aj = 2j and b = 1, Corollary 2 says the collection
{θj,k : j > 0, k ∈ Z} spans the Hardy space H1(R), where θ = 1[0,1) − 1[1,2) is a Haar-like function.
Note this collection is oversampled by a factor of 2 compared with the usual Haar system, since
θj,k overlaps θj,k+1 and so on.
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3.4. Hypotheses on ψ: some finer points.
• By Lemma 6,

‖∆zψ‖H1 → 0 as z → 0 =⇒ sup
|z|≤1

‖∆zψ‖H1 <∞. (12)

That is, (6) implies (4).
• The constant periodization condition Pψ = 1 a.e. in Theorem 1(b) says that the integer

translates of ψ form a partition of unity. The condition is equivalent to

ψ̂(0) = 1, ψ̂(nb−1) = 0 for n ∈ Z
d \ {0},

which is the first Strang–Fix condition in approximation theory [1, 12]. All B-splines satisfy it.
The simplest examples with Pψ ≡ 1 in one dimension (for b = 1) are the characteristic function
ψ = 1[0,1) and the tent function ψ(x) = 1− |x| for |x| < 1.
• Corollary 2 fails for some ψ ∈ L1, because θ = ∆betψ need not belong to H1 even though it

integrates to zero; see the example in the remarks after Lemma 5.

3.5. Connection to MRA scaling functions. Suppose φ ∈ L∞ has compact support and con-
stant periodization Pφ = 1 a.e. Then for all f ∈ H1, Theorem 1(b) with ψ = φ gives

fj = |det b||aj |−d
∑
k∈Zd

〈f, φj,k〉φj,k → f in H1 as j →∞. (13)

(The hypothesis limz→0 ‖∆zψ‖H1 → 0 in Theorem 1(b) is ensured by Lemma 5.)
Approximations like (13) in Lp arise in wavelet theory, when φ is a scaling (or refinable) function

for a multiresolution analysis (MRA) in one dimension. There the φj,k are assumed orthogonal for
k ∈ Z, for each j, and so fj in (13) represents the L2-projection of f onto the span of the φj,k. We
are not aware of (13) having been proved previously for H1.

Incidentally, if a scaling function φ is integrable then it automatically satisfies the constant
periodization condition Pφ ≡ 1 by [8, Proposition 5.3.14].

3.6. Comparison with molecular affine systems.
• Let 0 < δ < 1. A continuous function θ : R → C is called an Mδ-molecule if

∫
R
θ(x) dx = 0

and it satisfies the two conditions

|θ(x)| ≤ C(1 + |x|)−1−δ,

|θ(x+ y)− θ(x)| ≤ C|y|δ(1 + |x|)−1−2δ ,

for all x, y ∈ R with |y| ≤ (1 + |x|)/2, for some C > 0. The “frame decomposition” theorem of
Gilbert et al. [7, Theorem 1.5] immediately implies the following spanning result for H1(R): if θ is
an Mδ-molecule and there are 0 < A ≤ B <∞ such that

A ≤
∫ ∞

0
|θ̂(tξ)|2 dt

t
≤ B

for all ξ ∈ R \ {0}, then there exist numbers a > 1, b > 0 such that the full affine system

{θ(ajx− bk) : j ∈ Z, k ∈ Z}
spans H1(R).

The allowable values of a and b are unknown, unlike in our Corollary 2 where the dilations aj
and translation step b can be arbitrary (subject only to |aj | → ∞). Also, Corollary 2 uses only the
small scales j > 0, rather than all scales j ∈ Z. Moreover the example below gives a function ψ
satisfying the assumptions of Corollary 2 for which θ(x) = ψ(x)−ψ(x− 1) is not an Mδ-molecule.

On the other hand, θ(x) = d
dx [e−x2

] gives an example of anMδ-molecule that cannot be expressed
as a difference like ψ(x) − ψ(x − b) in Corollary 2, because θ̂ vanishes only at the origin. Such
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examples are plentiful. And the work in [7] gives more than just spanning for H1(R): it provides
norm convergent expansions of the form f =

∑
j,k〈f, ρ(j,k)〉θj,k for a whole scale of homogeneous

Triebel–Lizorkin spaces including H1, and it does so in R
d for all d ≥ 1.

In any event, the spanning results deduced from our Corollary 2 and the work of Gilbert et al.
in [7] are independent of each other.
• Example. Let I = [−1/2, 1/2] and let g be the function supported in I with g(±1/2) = 0 and

g(±1/4) = ∓1 and with g being linear between those points. Let gn(x) = n4g(n4(x− 3n)), n ∈ N,
so that gn is supported in In = [3n − 1/(2n4), 3n + 1/(2n4)] with gn(3n ± 1/(2n4)) = 0 and
gn(3n± 1/(4n4)) = ∓n4. Since ‖gn‖∞ = n4 ≤ |In|−1 and

∫
R
gn dx = 0, each gn is an H1-atom (see

[4],[11, pp. 91–92]). Let cn = 1/(3n(log 3n)2). Then ‖∑n cngn‖H1 ≤ ∑n cn · ‖g‖H1 < ∞ because
‖gn‖H1 = ‖g‖H1 by translation and dilation invariance of the Riesz transform (or Hilbert transform,
since we are in one dimension). Define ψ(x) =

∫ x
−∞(

∑
n cngn(y)) dy. Then ψ′ =

∑
n cngn ∈ H1.

Observe the graph of ψ consists of infinitely many disjoint nonnegative bumps supported in ∪In;
the bump supported in In peaks at x = 3n, at which ψ(3n) = cn/4. We deduce 0 <

∫
R
ψ dx <∑

n(cn/4)/n
4 <∞. It follows now from (11) that ψ satisfies all the assumptions in Corollary 2.

Writing θ(x) = ψ(x)−ψ(x− 1), notice the graph of θ consists of infinitely many disjoint bumps,
with positive bumps around x = 3n and negative ones around x = 3n + 1. Moreover, |θ(x)| ∼
1/(x(log x)2) for x near 3n (or near 3n + 1), and so θ does not decay at infinity like |x|−1−δ for
any δ > 0. Thus θ fails the first condition for an Mδ-molecule. Clearly θ fails the other condition
too, since |θ(x+ 1)− θ(x)| ∼ 1/(x(log x)2) for x near 3n− 1, which does not decay at infinity like
|x|−1−2δ .

3.7. Unconditional bases for H1. Corollary 2 generates (small-scale) affine spanning sets for
H1. A basis would be stronger than a spanning set, since bases require unique representations.
Unconditional bases forH1 certainly do exist with affine structure: Strömberg [13] showed this using
the Franklin wavelet system, and by now it is known that every wavelet basis is unconditional for
H1 provided the wavelet possesses sufficient smoothness and decay [8, Theorem 5.6.19]. Of course,
requiring that the generating function ψ be a wavelet is a very strong assumption. In this paper
we try instead to assume as little as possible about ψ, when obtaining spanning sets.

3.8. Open problems. The idea underlying Theorem 1 is to discretize the translation step in an
approximate identity formula. We have succeeded in doing this for H1, and also for Lp in the
earlier paper [2]. We will treat Sobolev spaces in a forthcoming paper. But a number of interesting
spaces remain, such as Hp for 0 < p < 1.

Regarding Corollary 2 and spanning questions, even H1(R) presents simple questions we cannot
yet answer. Consider for example the Mexican hat function θ(x) = (1− x2)e−x2/2. Does its dyadic
system {θ(2jx − k) : j ∈ Z, k ∈ Z} span H1(R)? And if so, then does it span also using only the
small scales j > 0?

The Mexican hat has integral zero,
∫

R
θ dx = 0, because it is the second derivative of −e−x2/2.

But the Mexican hat cannot be written as a difference of some ψ like in Corollary 2, since the
Fourier transform of the Mexican hat vanishes only at the origin.

It is an open problem raised by Y. Meyer [9, p. 137] to determine whether the Mexican hat
system spans Lp for 1 < p <∞. This is known to be true for p = 2, but the question remains open
for all other p-values. See [2, §4] for more discussion of such spanning problems.

4. Preparatory lemmas

The next four sections develop tools for understanding and proving Theorem 1.

We start with a simple result on Riesz transforms and derivatives, already used in Section 3.3.
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Lemma 3. If ψ ∈ W 1,1 and Dψ ∈ H1, then Rψ ∈ Lp for all 1 < p < d/(d − 1), and Rψ ∈ W 1,1
loc

with weak derivatives Dt(Rsψ) = Rs(Dtψ) ∈ L1 for each s, t = 1, . . . , d.

Proof. The Sobolev imbedding [10, p. 124] gives ψ ∈ W 1,1 ⊂ Lp for 1 < p < d/(d − 1), and so
Rψ ∈ Lp. Now we show Rsψ is weakly differentiable, with Dt(Rsψ) = Rs(Dtψ) (which is integrable
by the hypothesis Dψ ∈ H1). Indeed for all test functions v ∈ C∞c ,∫

Rd

(Rsψ)Dtv dx = −
∫

Rd

i
ξs
|ξ| ψ̂(ξ) 2πiξtv̂(ξ) dξ

=
∫

Rd

i
ξs
|ξ|D̂tψ(ξ)v̂(ξ) dξ

= −
∫

Rd

(RsDtψ)v dx.

�
Next is a lemma used in proving (11).

Lemma 4. If ψ ∈W 1,1
loc with Dψ ∈ L1, then ‖∆zψ‖1 ≤ |z| · ‖Dψ‖1 for all z ∈ R

d.

Proof. Fix z ∈ R
d. Then for almost every x ∈ R

d,

∆zψ(x) = ψ(x)− ψ(x− z) =
∫ 0

−1
Dψ(x+ uz) · z du.

Now integrate with respect to x. �
The third lemma shows a way to satisfy hypothesis (6).

Lemma 5. If ψ ∈ Lp for some p > 1 and ψ has compact support, then ‖∆zψ‖H1 → 0 as z → 0.

Proof. First, ψ ∈ L1 and so ‖∆zψ‖1 → 0 as z → 0, by continuity of translation in L1.
To handle the Riesz transform of ∆zψ, we introduce a cut-off function χ ∈ C∞c such that χ ≡ 1

on a neighborhood of the support of ψ, and decompose Rψ = h1 + h2 where

h1 = χ ·Rψ, h2 = (1− χ) · Rψ.
Because ψ ∈ Lp we get Rψ ∈ Lp. Hence h1 ∈ L1, so that ‖∆zh1‖1 → 0 as z → 0. Further, h2 is
smooth because the Riesz transform

Rψ(x) = cd

∫
spt(ψ)

ψ(y)
x− y

|x− y|d+1
dy

is smooth off the support of ψ. And Dh2 ∈ L1, because near infinity one has h2 ≡ Rψ and

|D(Rψ)(x)| ≤ C

∫
spt(ψ)

|ψ(y)|
|x− y|d+1

dy ≤ C‖ψ‖1|x|−d−1 as |x| → ∞.

Now Lemma 4 says ‖∆zh2‖1 → 0 as z → 0. Therefore ‖∆zRψ‖1 → 0 as z → 0, as desired. �
Side remarks (not needed later).

1. Lemma 5 fails for p = 1, because ∆zψ need not even belong to H1 when ψ ∈ L1 has compact
support, as the following one dimensional example shows. Let

ψ(x) =

{
1

x(log x)2
if 0 < x < 1/2,

0 otherwise.

Put f = ∆zψ ∈ L1, where z > 0 is arbitrary. Then it is easy to see f ≥ 0 on the interval (−∞, z),
but that f log(1 + f) is not locally integrable around x = 0. Hence f /∈ H1 by [11, §III.5.3].

2. Lemma 5 and its proof do hold for p = 1 under the additional assumption that Rψ ∈ L1
loc.
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3. The decomposition in the proof can be used to show that ψ ∈ H1 if ψ ∈ Lp for some 1 < p <∞
and ψ has compact support and vanishing moment

∫
Rd ψ dx = 0. That result is known, of course

[11, §III.1.2.4].
The fourth lemma shows that the supremum taken over |z| ≤ 1 in assumption (4) of Theorem 1

could just as well be taken over any other ball of z-values.

Lemma 6. Let α, β > 0 and x, y ∈ R
d. Then

ψ measurable and finite a.e. =⇒ sup
z∈B(x,α)

‖∆zψ‖1 ≤ C(α, β, x, y) sup
z∈B(y,β)

‖∆zψ‖1,

ψ ∈ L1 =⇒ sup
z∈B(x,α)

‖∆zψ‖H1 ≤ C(α, β, x, y) sup
z∈B(y,β)

‖∆zψ‖H1 .

Proof. Let τ denote the translation operator: τzψ(x) = ψ(x− z). Then for all z,w ∈ R
d one has

∆z−wψ = τ−w(∆zψ −∆wψ), ∆z+wψ = τw(∆zψ) + ∆wψ.

The lemma now follows, using translation invariance of the L1- and H1-norms. �

The next lemma develops a simple H1-density result, to be used in the proof of Theorem 1.
Define the local supremum of f by

Qf(x) = ess. sup|z|≤√d|f(x+ z)| = ‖f‖L∞(B(x,
√
d)),

which is a lower semicontinuous function of x.

Lemma 7. The collection {f ∈ H1 : Qf ∈ L1} is dense in H1.

Proof. Finite linear combinations of H1 atoms are dense by the atomic decomposition of H1 [11,
§III.2.2]. Each such finite linear combination f is a bounded function with compact support, and
hence Qf is also bounded with compact support. This more than proves the lemma.

We prefer to avoid calling on heavy machinery, though, and so we now present a direct, elementary
proof of the lemma. Let η be a smooth, compactly supported mollifier. Then Qη is bounded with
compact support, and so Qη ∈ L1. Let f ∈ H1, so that f ∗ η ∈ H1, and

Q(f ∗ η)(x) ≤ ess. sup|z|≤√d

∫
Rd

|f(y)||η(x + z − y)| dy

≤
∫

Rd

|f(y)|Qη(x− y) dy

= (|f | ∗Qη)(x) ∈ L1.

Thus Q(f ∗ η) ∈ L1. Obviously Q(f ∗ ηε) ∈ L1 by the same reasoning, for each ε > 0. Since
f ∗ ηε → f in H1 as ε→ 0 (noting R(f ∗ ηε) = (Rf) ∗ ηε → Rf in L1), we conclude the collection
of f ∈ H1 with Qf ∈ L1 is dense in H1. �

Now we show that convolution interacts well with the Riesz transform and differences. Fix a
compact set E ⊂ R

d and define a local modulus of continuity operator by

Sf(x) = ess. supz∈E |f(x)− f(x+ z)| = ess. supz∈E |∆−zf(x)|, x ∈ R
d.

Sf is measurable whenever f is measurable and finite a.e.

Lemma 8. If ψ ∈ L1 and η ∈ C∞c , then S(ψ ∗ η) ∈ L1 and SR(ψ ∗ η) ∈ L1.
8



Proof. Sη ∈ L1 because η is bounded with compact support. Thus S(ψ ∗ η) ≤ |ψ| ∗ Sη ∈ L1.
To treat SR(ψ ∗ η), we first observe that

∆−zR(ψ ∗ η) = R∆−z(ψ ∗ η)
= R(ψ ∗∆−zη)
= ψ ∗ (R∆−zη),

where it is valid to move the Riesz transform inside the convolution because ∆−zη ∈ H1 by [11,
§III.1.2.4] (noting ∆−zη is bounded with compact support and has integral zero). Next,

∆−zη(x) = η(x)− η(x+ z) = −
d∑
t=1

zt

∫ 1

0
Dtη(x+ uz) du

by the chain rule, so that

R∆−zη(x) = −
d∑
t=1

zt

∫ 1

0
RDtη(x+ uz) du.

Hence for x ∈ R
d, z ∈ E,

|R∆−zη(x)| ≤ ρ

d∑
t=1

ess. sup|y|≤ρ |RDtη(x+ y)| =: σ(x),

where ρ = maxz∈E |z|.
This new function σ is integrable, because RDtη is locally bounded and it decays at infinity

like |x|−d−1 (by integrating by parts in the formula for the Riesz transform RDtη, using that η is
smooth with compact support).

Combining the above estimates gives

SR(ψ ∗ η)(x) ≤ ess. supz∈E (|ψ| ∗ |R∆−zη|)(x)
≤ |ψ| ∗ σ(x)

∈ L1.

�

The final lemma of the section controls H1-convergence for an approximate identity.

Lemma 9. If f ∈ H1, and η ∈ L1 is supported in the unit ball, then

‖f − ηε ∗ f‖H1 ≤ sup
|y|≤ε

‖∆yf‖H1 · ‖η‖1, ε > 0.

Proof.

‖f − ηε ∗ f‖1 =
∫

Rd

∣∣∣∣∫
Rd

ηε(y)∆yf(x) dy
∣∣∣∣ dx

≤
∫

Rd

|ηε(y)|‖∆yf‖1 dy.

A similar estimate applies to ‖R(f − ηε ∗ f)‖1 = ‖Rf − ηε ∗ Rf‖1, and so ‖f − ηε ∗ f‖H1 ≤∫
Rd |ηε(y)|‖∆yf‖H1 dy, which implies the lemma. �
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5. Riesz transforms through the integral

Given a function F (x, y), write RF for the Riesz transform of F with respect to x. The Riesz
transform can be taken through an integral with respect to y, as the next lemma shows.

Lemma 10. Let E ⊂ R
d be compact. Suppose F ∈ L1(Rd × E) and RF ∈ L1(Rd × E).

Then the function f(x) =
∫
E F (x, y) dy belongs to H1, with Riesz transform

Rf(x) =
∫
E
RF (x, y) dy (14)

and norm

‖f‖H1 ≤
∫
E
‖F (·, y)‖H1 dy.

Proof. By Fubini’s theorem, f ∈ L1 with

‖f‖1 ≤
∫
E
‖F (·, y)‖1 dy = ‖F‖1 and f̂(ξ) =

∫
E
F̂ (ξ, y) dy, ξ ∈ R

d.

Similarly the function G(x) =
∫
E RF (x, y) dy belongs to L1 with ‖G‖1 ≤ ∫

E ‖RF (·, y)‖1 dy =
‖RF‖1, and G has Fourier transform

Ĝ(ξ) =
∫
E
R̂F (ξ, y) dy

= −
∫
E
i
ξ

|ξ| F̂ (ξ, y) dy

= −i ξ|ξ| f̂(ξ).

Thus Rf = G, which is (14). Moreover,

‖f‖H1 = ‖f‖1 + ‖Rf‖1

≤ ‖F‖1 + ‖RF‖1

=
∫
E
‖F (·, y)‖H1 dy.

�

6. Averages of rapidly oscillating functions

This section investigates norm convergence of scale averages of rapidly oscillating functions, in
preparation for the proof of Lemma 13.

Lemma 11. Let g ∈ L1
loc be bZd-periodic with mean value zero, and assume the dilations aj grow

exponentially.
(i) Then

lim
J→∞

1
J

J∑
j=1

g(ajx) = 0 in L1
loc.

(ii) If f ∈ L1 with Qf ∈ L1, then

lim
J→∞

f(x)
1
J

J∑
j=1

g(ajx) = 0 in L1.

10



Proof. Part (i) is proved in [2, Lemma 6].
To prove part (ii), first notice f ∈ L∞ because for each y ∈ R

d,

‖f‖∞ ≤ sup
k∈Zd

‖f‖L∞(B(y+k,
√
d))

≤
∑
k∈Zd

‖f‖L∞(B(y+k,
√
d))

=
∑
k∈Zd

(Qf)(y + k),

and integrating over y ∈ C = [0, 1)d gives ‖f‖∞ ≤ ‖Qf‖1 <∞.
Let K > 0 be arbitrary. Then∫

B(0,K)

∣∣∣∣∣∣f(x)
1
J

J∑
j=1

g(ajx)

∣∣∣∣∣∣ dx ≤ ‖f‖∞
∫
B(0,K)

∣∣∣∣∣∣ 1J
J∑
j=1

g(ajx)

∣∣∣∣∣∣ dx
→ 0 as J →∞,

by the L1
loc convergence in part (i). Furthermore, |f(x)| ≤ Qf(k) for almost every x ∈ k + C ⊂

B(k,
√
d) by definition of Q. Thus for each J ,∫

Rd\B(0,K)

∣∣∣∣∣∣f(x)
1
J

J∑
j=1

g(ajx)

∣∣∣∣∣∣ dx ≤
∑

|k|>K−√d

∫
k+C

Qf(k)

∣∣∣∣∣∣ 1J
J∑
j=1

g(ajx)

∣∣∣∣∣∣ dx
≤

∑
|k|>K−√d

Qf(k)
1
J

J∑
j=1

|aj |−d
∫
aj(k+C)

|g(x)| dx

≤
∑

|k|>K−√d
Qf(k) · C‖g‖L1(bC) (15)

since the integral of the bZd-periodic function |g| over the set aj(k+ C) is bounded by C|aj |d times
the integral of |g| over bC (see for example [3, Lemma 25]; the constant C here depends on b and
on the dilation sequence {aj}). The expression (15) can be made as small as we like by choosing K
sufficiently large, because B(x,

√
d) ⊂ ∪|`|<3

√
dB(`,

√
d) whenever |x| < √

d and translating these
balls by k− x gives Qf(k) ≤∑|`|<3

√
dQf(`+ k− x), which implies by integrating over x ∈ C that∑

k∈Zd

Qf(k) ≤
∑
k∈Zd

∫
C

∑
|`|<3

√
d

Qf(`+ k − x) dx

=
∑

|`|<3
√
d

‖Qf‖1 <∞.

This proves part (ii). �

7. The T -operator

Recall the periodization operator P defined in Section 2. Let φ ∈ L∞ have compact support,
and define a new operator T by

Th(x) = Tφh(x) =
∫

Rd

(P∆zh)(x)φ(z) dz.

We show this operator is well defined. Later it plays a role in proving Theorem 1: see formula (26).
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Lemma 12. Assume h is measurable and finite a.e. and sup|z|≤1 ‖∆zh‖1 < ∞. Let φ ∈ L∞ have
compact support. Then Th is bZd-periodic and locally integrable.

Proof. We have∫
bC

∫
Rd

|(P∆zh)(x)||φ(z)| dzdx ≤ |det b|
∫

sptφ

∫
bC

∑
k∈Zd

|∆zh(x− bk)| dxdz ‖φ‖∞

= |det b|
∫

sptφ
‖∆zh‖1 dz ‖φ‖∞

≤ C(φ, b) sup
|z|≤1

‖∆zh‖1‖φ‖∞ <∞,

where the last step uses Lemma 6 to replace a supremum over z ∈ sptφ with one over |z| ≤ 1.
Hence the series defining (P∆zh)(x)φ(z) converges absolutely for almost every (x, z) ∈ bC ×R

d,
and defines an integrable function there. Hence the a.e. defined function Th(x) =

∫
Rd(P∆zh)(x)φ(z) dz

is measurable, with ‖Th‖L1(bC) <∞. Clearly Th is bZd-periodic. �

The scale averages of T converge to zero, by the next lemma.

Lemma 13. Assume ψ ∈W 1,1 with Dψ ∈ H1. Let φ ∈ L∞ have compact support. Suppose f ∈ L1

with Qf ∈ L1.
If the dilations aj grow exponentially then

lim
J→∞

f(x)
1
J

J∑
j=1

(Tψ)(ajx) = 0 in L1, and

lim
J→∞

f(x)
1
J

J∑
j=1

(TRsψ)(ajx) = 0 in L1, for each s = 1, . . . , d.

Proof. Tψ belongs to L1
loc by Lemma 12, and so does TRsψ by (11) and (12) and Lemma 12. We

need only show these functions have mean value zero, because then Lemma 11(ii) can be applied.
The mean value of Tψ is

|det b|−1

∫
bC
Tψ(x) dx =

∫
Rd

|det b|−1

∫
bC

(P∆zψ)(x) dxφ(z) dz

=
∫

Rd

∫
Rd

(∆zψ)(x) dxφ(z) dz

= 0

since ∆zψ(x) integrates to zero over x ∈ R
d, using ψ ∈ L1. The mean value of TRsψ is

|det b|−1

∫
bC
TRsψ(x) dx =

∫
Rd

|det b|−1

∫
bC

(P∆zRsψ)(x) dxφ(z) dz

=
∫

Rd

∫
Rd

(Rs∆zψ)(x) dxφ(z) dz

= 0,

since ∆zψ ∈ H1 for each z by Lemmas 3 and 4 so that the integral of Rs(∆zψ) equals zero by
property (2).

Note. The use of Fubini’s theorem above is justified by Lemma 12 and its proof. �

The T -operator vanishes when ψ has constant periodization, as the next lemma shows.
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Lemma 14. Assume ψ ∈W 1,1 with Dψ ∈ H1. Let φ ∈ L∞ have compact support.
If Pψ = 1 a.e. then Tψ = 0 and TRsψ = 0 a.e., for each s = 1, . . . , d.

Proof. Tψ and TRsψ are well defined and locally integrable, as in Lemma 13. The integrability of
ψ implies that Pψ is well defined pointwise a.e., and so P∆zψ = ∆zPψ. Hence if Pψ ≡ 1 then
∆zPψ ≡ 0, leading to Tψ ≡ 0.

To get TRsψ ≡ 0 we must argue more carefully, since Rsψ /∈ L1. We do have by Lemma 3
that Rsψ ∈ Lp for 1 < p < d/(d − 1) and Rsψ ∈ W 1,1

loc with gradient D(Rsψ) ∈ L1. This implies
∆zRsψ(x) =

∫ 0
−1D(Rsψ)(x+ uz) · z du for almost every (x, z), so that

(P∆zRsψ)(x) =
∫ 0

−1
PD(Rsψ)(x+ uz) · z du.

We will show PD(Rsψ) ≡ 0, so that P∆zRsψ ≡ 0 and hence TRsψ ≡ 0, by definition of the T
operator.

We need the simple fact that if h ∈ L1 then the bZd-periodic function Ph(x) has Fourier se-
ries

∑
n∈Zd ĥ(nb−1)e2πinb

−1x. Applying this observation to h = D(Rsψ) yields that the Fourier
coefficients of PD(Rsψ) are

[D(Rsψ)]̂(nb−1) = 2πinb−1(Rsψ)̂(nb−1)

= 2πnb−1 (nb−1)s
|nb−1| ψ̂(nb−1)

= 2πnb−1 (nb−1)s
|nb−1| [nth Fourier coefficient of Pψ]

= 0 for all n 6= 0,

because the constant function Pψ ≡ 1 must have all its Fourier coefficients equalling zero for n 6= 0.
Further, the zero-th Fourier coefficient of PD(Rsψ) is [D(Rsψ)]̂(0) = [Rs(Dψ)]̂(0) = 0 by (2).

We have shown all the Fourier coefficients of PD(Rsψ) are zero, and so PD(Rsψ) ≡ 0. �

8. Proof of Theorem 1

Suppose ψ ∈ L1. Take a compactly supported L∞-function φ, so that P |φ| ∈ L∞. Let f ∈ H1.

8.1. Proof of Part (a). We first prove fj ∈ L1, where we recall the definition (3):

fj(x) = |det b|
∑
k∈Zd

(∫
Rd

f(a−1
j y)φ(y − bk) dy

)
ψ(ajx− bk). (16)

The sum defining fj converges absolutely a.e. to a function in L1 because

‖fj‖1 ≤
∫

Rd

|det b|
∑
k∈Zd

∣∣∣∣∫
Rd

f(a−1
j y)φ(y − bk) dy

∣∣∣∣ |ψ(ajx− bk)| dx

≤ |det b|
∑
k∈Zd

∫
Rd

|f(a−1
j y)||φ(y − bk)| dy · |aj |−d‖ψ‖1

=
∫

Rd

|f(a−1
j y)|(P |φ|)(y) dy · |aj |−d‖ψ‖1

≤ ‖f‖1‖P |φ|‖∞‖ψ‖1 <∞.

It follows that the series defining fj converges unconditionally in L1.
13



Next assume Pφ = 1 a.e. (so that
∫

Rd φdx = 1, by integrating Pφ over the period cell bC) and
suppose ψ satisfies hypothesis (4). We will show fj ∈ H1. We have

fj(x) = |det b|
∑
k∈Zd

∫
Rd

f(a−1
j y)φ(y − bk)|aj |−dψj,k(x) dy

= |aj|−d|det b|
∑
k∈Zd

∫
Rd

f(a−1
j y)φ(y − bk)ψj,b−1y(x) dy + Ejψ(x) with Ej defined below,

= |aj|−d
∫

Rd

f(a−1
j y)ψj,b−1y(x) dy + Ejψ(x) (17)

by interchanging sum and integral and using that Pφ = 1 a.e.; here ψj,b−1y(x) = |aj|dψ(ajx − y)
and the error (or remainder) term is

Ejψ(x) = |aj|−d|det b|
∑
k∈Zd

∫
Rd

f(a−1
j y)φ(y − bk)[ψj,k(x)− ψj,b−1y(x)] dy. (18)

Hence
fj(x) = (f ∗ ψa−1

j
)(x) +Ejψ(x), (19)

by putting y 7→ ajy in (17) to get the convolution f ∗ ψa−1
j

in (19).

Since f ∗ ψa−1
j
∈ H1, to verify that fj ∈ H1 we need only show Ejψ ∈ H1. So temporarily fix j

and write Ejψ =
∑

k∈Zd Fk where

Fk(x) = |aj |−d|det b|
∫

Rd

f(a−1
j y)φ(y − bk)[ψj,k(x)− ψj,b−1y(x)] dy

= |aj |−d|det b|
∫

Rd

f(a−1
j y)φ(y − bk)(∆y−bkψ)a−1

j
(x− a−1

j bk) dy.

It follows from Lemma 10 that Fk ∈ H1 with

‖Fk‖H1 ≤ |aj |−d|det b|
∫

Rd

|f(a−1
j y)||φ(y − bk)|‖(∆y−bkψ)a−1

j
(· − a−1

j bk)‖H1 dy

≤ |aj |−d|det b|
(∫

Rd

|f(a−1
j y)||φ(y − bk)| dy

)(
sup

z∈sptφ
‖∆zψ‖H1

)
,

where we used the translation and dilation invariance of the H1-norm. (Note supz∈sptφ ‖∆zψ‖H1 <

∞ by assumption (4) and Lemma 6.) Summing over k ∈ Zd gives that

Ejψ =
∑
k∈Zd

Fk ∈ H1

with norm estimate

‖Ejψ‖H1 ≤
∑
k∈Zd

‖Fk‖H1 ≤ ‖P |φ|‖∞‖f‖1

(
sup

z∈sptφ
‖∆zψ‖H1

)
<∞.

Moreover, since
‖f ∗ ψa−1

j
‖H1 ≤ ‖f‖H1‖ψ‖1

we deduce from (19) that fj ∈ H1 with the stability estimate

‖fj‖H1 ≤
(
‖ψ‖1 + ‖P |φ|‖∞ sup

z∈sptφ
‖∆zψ‖H1

)
‖f‖H1 . (20)
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Hence part (a) of Theorem 1 is proved. (Aside. The proof gives unconditional convergence in H1

for the series defining Ejψ. But we cannot claim the series defining fj converges in H1, because
ψj,k need not belong to H1.)

For use later in the proof, we pause here to define Ij[ψ, φ]f := fj, emphasizing by this notation
the fact that fj in (16) arises from applying to f a linear operator Ij [ψ, φ] depending on ψ and φ.
In this new terminology, the stability bound (20) says

‖Ij [ψ, φ]f‖H1 ≤
(
‖ψ‖1 + ‖P |φ|‖∞ sup

z∈sptφ
‖∆zψ‖H1

)
‖f‖H1 . (21)

8.2. Proof of Parts (b) and (c). Assume ψ ∈ L1 with
∫

Rd ψ dx = 1. Let φ ∈ L∞ be compactly
supported with Pφ = 1 a.e. Let f ∈ H1. Assume hypothesis (6) holds, that is ‖∆zψ‖H1 → 0
as z → 0. In particular ‖∆zψ‖H1 is bounded for all small z and so is bounded for all |z| ≤ 1 by
Lemma 6. Hence part (a) of the theorem holds, including the stability bound (20).

We can suppose Qf ∈ L1 when proving parts (b) and (c), because of the density of such functions
in H1 (by Lemma 7) and the stability ‖fj‖H1 ≤ C(φ,ψ)‖f‖H1 in (20).

Next we reduce to proving the theorem for a dense class of synthesizers ψ. Specifically, we
will show we can reduce to ψ ∈ W 1,1 ∩ C∞ with Dψ ∈ H1 and Sψ ∈ L1, SRψ ∈ L1, where the
S-operator was defined before Lemma 8 (take E = sptφ in that definition).

Choose a smooth, nonnegative mollifier η(x) supported in the unit ball and define ψ(ε) = ηε ∗ψ.
Then ψ(ε) ∈ W 1,1 ∩ C∞ satisfies

∫
Rd ψ

(ε) dx = 1 and ‖ψ − ψ(ε)‖1 → 0 as ε → 0. By Lemma 8,
Sψ(ε) ∈ L1 and SRψ(ε) ∈ L1.

Also Dψ(ε) = (Dηε) ∗ ψ ∈ H1, noting Dηε ∈ H1 because Dηε is bounded, compactly sup-
ported and has integral zero [11, §III.5.5]. Hence ψ(ε) satisfies hypothesis (6) by implication (11).
Furthermore

sup
z∈Rd

‖∆z(ψ − ψ(ε))‖H1 = sup
z∈Rd

‖∆zψ − ηε ∗∆zψ‖H1

≤ sup
z∈Rd

sup
|y|≤ε

‖∆y∆zψ‖H1 by Lemma 9 applied to f = ∆zψ ∈ H1

≤ 2 sup
|y|≤ε

‖∆yψ‖H1 after commuting ∆y∆z = ∆z∆y

→ 0 as ε→ 0, by hypothesis (6).

Hence

‖Ij [ψ, φ]f − Ij[ψ(ε), φ]f‖H1

= ‖Ij [ψ − ψ(ε), φ]f‖H1

≤
(
‖ψ − ψ(ε)‖1 + ‖P |φ|‖∞ sup

z∈sptφ
‖∆z(ψ − ψ(ε))‖H1

)
‖f‖H1 by the stability estimate (21)

→ 0 as ε→ 0,

and this estimate is uniform with respect to j. It follows that Theorem 1(b)(c) need only be proved
for ψ(ε), for each fixed ε > 0; regarding part (b), note also that if ψ has constant periodization
Pψ = 1 a.e. then so does ψ(ε), in fact P (ψ(ε)) = ηε ∗ Pψ ≡ 1.

This completes the reduction step on ψ, and so from now on we may assume ψ ∈ W 1,1 ∩ C∞
with Dψ ∈ H1 and Sψ ∈ L1, SRψ ∈ L1, and

∫
Rd ψ dx = 1.

Notice
f ∗ ψa−1

j
→ f in H1 as j →∞. (22)
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In view of decomposition (19), then, our task is to understand the error term Ejψ as j →∞. We
decompose it as

Ejψ = E
(1)
j ψ + E

(2)
j ψ

where

E
(1)
j ψ(x) = |aj |−d|det b|

∑
k∈Zd

∫
Rd

[f(a−1
j y)− f(x)]φ(y − bk) [ψj,k(x)− ψj,b−1y(x)] dy,

E
(2)
j ψ(x) = f(x) |aj |−d|det b|

∑
k∈Zd

∫
Rd

φ(y − bk)[ψj,k(x)− ψj,b−1y(x)] dy.

(Convergence of these two series is justified by our work below.) These formulas can be expressed
more usefully as

E
(1)
j ψ(x) = |det b|

∑
k∈Zd

∫
Rd

[f(x)− f(a−1
j y)]φ(y − bk) (∆bk−yψ)(ajx− y) dy, (23)

E
(2)
j ψ(x) = f(x) |det b|

∑
k∈Zd

∫
Rd

φ(y − bk)(∆y−bkψ)(ajx− bk) dy. (24)

We first show E
(1)
j converges to zero in L1. Note by definition of the S operator that

|(∆bk−yψ)(ajx− y)| ≤ Sψ(ajx− y)

when y − bk ∈ sptφ. Therefore

|E(1)
j ψ(x)| ≤ |det b|

∑
k∈Zd

∫
Rd

|f(x)− f(a−1
j y)||φ(y − bk)|Sψ(ajx− y) dy

≤ ‖P |φ|‖∞
∫

Rd

|f(x)− f(a−1
j y)|Sψ(ajx− y) dy

= ‖P |φ|‖∞
∫

Rd

|f(x)− f(x− a−1
j y)|Sψ(y) dy by y 7→ ajx− y.

Thus

‖E(1)
j ψ‖1 ≤ ‖P |φ|‖∞

∫
Rd

‖f − f(· − a−1
j y)‖1 Sψ(y) dy

→ 0 as j →∞, (25)

by dominated convergence with respect to the y-integral. (Here we use Sψ ∈ L1.)
Next we evaluate

E
(2)
j ψ(x) = f(x) |det b|

∑
k∈Zd

∫
Rd

∆zψ(ajx− bk)φ(z) dz by letting z = y − bk in (24)

= f(x)
∫

Rd

(P∆zψ)(ajx)φ(z) dz by interchanging sum and integral,

which is valid for almost every x by the proof of Lemma 12,

= f(x)Tψ(ajx). (26)

In part (b) of the theorem, if Pψ = 1 a.e. then Tψ = 0 a.e. by Lemma 14 (using that ψ ∈
W 1,1,Dψ ∈ H1), so that

E
(2)
j ψ = 0 a.e. for each j > 0. (27)
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In part (c) of the theorem, if the dilations aj grow exponentially then

1
J

J∑
j=1

E
(2)
j ψ(x) = f(x)

1
J

J∑
j=1

(Tψ)(ajx)

→ 0 in L1 as J →∞ (28)

by Lemma 13 (using that ψ ∈W 1,1,Dψ ∈ H1 and Qf ∈ L1). From (25), (27) and (28) we deduce
“L1 error estimates”, namely for part (b) that Ejψ → 0 in L1 as j → ∞, and for part (c) that
1
J

∑J
j=1Ejψ → 0 in L1 as J →∞.

We still need to prove analogous “H1 error estimates”, namely for part (b) that RsEjψ → 0 in
L1 as j →∞, and for part (c) that 1

J

∑J
j=1RsEjψ → 0 in L1 as J →∞; then the L1 and H1 error

estimates together with (19) and (22) will prove parts (b) and (c) of the theorem.
We have RsEjψ = Rs

∑
k∈Zd Fk =

∑
k∈Zd RsFk in L1, and so

(RsEjψ)(x) = |aj |−d|det b|
∑
k∈Zd

∫
Rd

f(a−1
j y)φ(y − bk)Rs[ψj,k − ψj,b−1y](x) dy,

where the validity of taking Rs through the integral defining Fk is justified by Lemma 10 (cf. the
proof of part (a) above). Now the translation and dilation invariance of the Riesz transform gives

(RsEjψ)(x) = |aj |−d|det b|
∑
k∈Zd

∫
Rd

f(a−1
j y)φ(y − bk) sign(aj)[(Rsψ)j,k(x)− (Rsψ)j,b−1y(x)] dy

= sign(aj)(EjRsψ)(x)

= sign(aj)[(E
(1)
j Rsψ)(x) + (E(2)

j Rsψ)(x)].

We find that sign(aj)E
(1)
j Rsψ → 0 in L1 as j → ∞, by modifying the earlier proof for E(1)

j ψ

(and remembering that SRsψ ∈ L1 by construction).
Next we consider sign(aj)E

(2)
j Rsψ. For part (b), if Pψ = 1 a.e. then TRsψ = 0 a.e. by Lemma 14,

so that E(2)
j Rsψ = 0 for all j by replacing ψ with Rsψ in (26). For part (c), if the dilations aj grow

exponentially then 1
J

∑J
j=1 sign(aj)E

(2)
j Rsψ → 0 in L1 as J → ∞, simply by modifying the proof

above (and splitting the sum over j into two parts, treating the terms with aj > 0 and those with
aj < 0 separately). This completes the proof of the H1 error estimates and hence of Theorem 1.

Remark. Our corresponding L1-approximation result in [2, Theorem 1] holds under less restrictive
assumptions on ψ and φ, namely ψ ∈ L1 and P |φ| ∈ L∞. The proof uses a different decomposition
of fj , in [2, (5.6)]. The cancellation property f̂(0) = 0 of functions in H1 requires us, in this paper,
to use the more elaborate decompositions (18), (19), (23) and (24), which then necessitate stronger
assumptions on ψ and φ in our H1 results.

9. Proof of Corollary 2

First, θ(t)(x) = ψ(x)−ψ(x− bet) = ∆betψ(x) is integrable and belongs to H1 by Lemma 6, since
‖∆zψ‖H1 is bounded for all small z by the hypothesis that ‖∆zψ‖H1 → 0 as z → 0.

We can assume the dilations aj grow exponentially, after passing to a subsequence if necessary.
And we may normalize ψ by

∫
Rd ψ dx = 1, since multiplying ψ by a nonzero constant does not

affect the span of the θ(t)
j,k.

We first prove the corollary in one dimension, and then sketch the extension to higher dimensions.
17



Suppose b > 0 (the case b < 0 being similar). Take φ = b−1
1(−b,0], so that φ is bounded with

compact support and Pφ ≡ 1. Consider f ∈ H1 with (1 + | · |)f ∈ L1. Such functions are dense in
H1; in fact the Schwartz functions in H1 are already dense by [10, p. 231].

The series (3) defining fj converges in L1 by Theorem 1(a), with

fj(x) =
∑
k∈Z

(∫
a−1

j b(k−1,k]
f(y) dy

)
ψj,k(x) by putting y 7→ ajy in (3) (29)

=
∑
k∈Z

(∫
(−∞,a−1

j bk]
f(y) dy

)
θj,k(x), (30)

where one recovers (29) by substituting θ(x) = ψ(x)−ψ(x− b) into (30), noting that the coefficient
sequence belongs to `1:∑

k∈Z

∣∣∣∣∣
∫

(−∞,a−1
j bk]

f(y) dy

∣∣∣∣∣ ≤ C‖(1 + |ajx|)f‖1 <∞ for each j > 0, (31)

as we prove below.
The new series (30) for fj converges not only in L1 but also in H1, by the coefficient bound

(31) and because ‖θj,k‖H1 = ‖θ‖H1 is independent of j and k. Hence fj lies in the H1-span of
{θj,k : k ∈ Z}. Theorem 1(c) shows how to approximate f in H1 using linear combinations of the
fj with j > 0, and so f too lies in the H1-span of the θj,k. Thus the θj,k span H1.

It remains to prove the coefficient bound (31), which we shall do for all f ∈ L1 satisfying
(1 + |x|)f ∈ L1 and

∫
R
f dx = 0. Suppose aj > 0; the case aj < 0 is similar. We have

∑
k≤0

∣∣∣∣∣
∫ a−1

j bk

−∞
f(y) dy

∣∣∣∣∣ ≤∑
k≤0

(1 + |k|)
∫ a−1

j bk

a−1
j b(k−1)

|f(y)| dy

≤
∑
k≤0

∫ a−1
j bk

a−1
j b(k−1)

(1 + |b−1ajy|)|f(y)| dy

=
∫ 0

−∞
(1 + |b−1ajy|)|f(y)| dy.

A similar estimate holds for the sum over k > 0, after substituting
∫ a−1

j bk

−∞ f(y) dy = − ∫∞a−1
j bk f(y) dy

(recalling
∫

R
f dy = 0). These two estimates imply (31), completing the proof in one dimension.

In higher dimensions the analogue of (30) fails because its coefficient sequence is generally not in
`1: essentially, we cannot expect f to integrate to zero on every line parallel to a coordinate axis.

A less elegant argument still gives spanning in higher dimensions, as we now show. Take φ =
|det b|−1

1−bC , so that φ is bounded with compact support and Pφ ≡ 1. Again consider f ∈ H1

with (1+ | · |)f ∈ L1. The analogue of series (29) for fj is fj =
∑

k∈Zd cj,kψj,k where the coefficients
are cj,k =

∫
a−1

j b(k−C) f(y) dy. They satisfy
∑

k∈Zd |k||cj,k| < ∞ since |x|f ∈ L1. Also
∑

k∈Zd cj,k =∫
Rd f dy = 0. Hence we can subtract ψj,0 to obtain

fj =
∑
k∈Zd

cj,k[ψj,k − ψj,0].

By reverse telescoping ψj,k−ψj,0, it can be expressed as a sum of at most |k1|+ · · ·+ |kd| = O(|k|)
functions θ(t)

j,` , with coefficients ±1 that depend on the signs of the entries in k = (k1, . . . , kd). For
18



example, when k = −e1 + e2 we can express

ψj,k − ψj,0 = ψj,−e1+e2 − ψj,e2 + ψj,e2 − ψj,0 = θ
(1)
j,−e1+e2 − θ

(2)
j,0

by formula (9) for the θ(t)
j,k. Such reverse telescoping yields a formula for fj in terms of the θ(t)

j,k.
The coefficient sequence of this formula belongs to `1 since

∑
k∈Zd |k||cj,k| <∞. Hence the formula

converges to fj in H1, leading to the desired spanning result by Theorem 1(c).

Remarks on the one dimensional proof.
1. The factor of |aj | → ∞ on the righthand side of the coefficient bound (31) suggests “instability”

of the representation (30) for fj. Such instabilities when the generating function θ has integral zero
have been known in the Lp setting since at least Strang and Fix [12, p. 827].

2. Formula (30) was derived for f ∈ H1 with (1 + | · |)f ∈ L1. One might nonetheless hope it
would hold for all f ∈ H1, so that every H1 function could be explicitly approximated by our linear
combinations of the θj,k. This seems unlikely with our approach, because the coefficient series on
the lefthand side of (31) can diverge, as follows. Choose F ∈ C∞ with F = 0 on (−∞, 1) and
F (x) = (x log x)−1 for x ∈ [2,∞). Then f(x) = F ′(x) = O(1/x2) at infinity and

∫
R
f dx = 0, so

that f ∈ H1 (see [11, §III.5.7], [5] or [14]). However for dilations aj > 0 we see∑
k∈Z

∣∣∣∣∣
∫ a−1

j bk

−∞
f(y) dy

∣∣∣∣∣ ≥ ∑
k≥2b−1aj

(a−1
j bk log a−1

j bk)−1 = ∞.

3. One would like an “atomic” representation of the form f =
∑

j>0

∑
k∈Z

cj,kθj,k for each
f ∈ H1, with the coefficients cj,k given explicitly and having `1-norm comparable to the H1-norm
of f . We do not see how to achieve this with our quasi-interpolants fj.
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