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EXECUTIVE SUMMARY  
 

• The calculation of carbon stored in New Zealand Kyoto planted forests is likely to 
be estimated as some functional combination of variables that describe the land 
area of forest and forest biomass. The details of the final carbon model are not 
currently available. 

 
• Uncertainty analysis will be conducted to identify the limits to the accuracy of 

any carbon estimate.   
 

• Sensitivity analysis will be undertaken to identify and rank model variables in 
terms of their contribution to the overall uncertainty.  Variables that contribute 
most to the overall uncertainty and cause the greatest effect should be the highest 
priority for allocation of extra survey resources. 

 
• A combination of analytical and numerical methods (Monte Carlo simulations) 

will be used in the uncertainty analysis.   
 

• Standard methods assume that the variables are normally distributed and are 
independent.  Our analysis may account for variables that are not normally 
distributed and display lack of independence.  At present there are very little data 
to test for normality and dependencies. 
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1. GENERAL PRINCIPLES 
 
The object of this Report is to summarise the techniques available to quantify errors 
associated with calculating carbon stored in New Zealand’s Kyoto planted forests.  
  
The Report is divided into two major sections: 
 
(a) A general review of the methods to assess uncertainty in estimating stored carbon.  
Many of these methods rely on the  availability of the data that will be used to estimate 
carbon.  To date these data are not available, but it is anticipated data will be acquired as 
the overall Kyoto process in New Zealand develops.     
 
(b) A specific description of the method likely to be employed in 2004-2005 to obtain 
first estimates of the error involved in estimating carbon stored in New Zealand’s Kyoto 
planted forests. 
 
1.1 An Overview 
 
Forest inventories conducted according to good practice are those that neither over- nor 
under-estimate and where uncertainty has been reduced as far as practicable.  Under- and 
over-estimation is a result of bias where the estimate of carbon change is inaccurate. 
Good practice implies that any identifiable bias is removed. However, some uncertainty 
in the final estimate will remain and identification of this is an important part of good 
practice. Identification and attaining some level of understanding of uncertainty allow 
resources to be directed to reducing uncertainty. 
 
 ‘Uncertainty’ can be regarded as a lack of knowledge about the true value of a quantity 
(Cullen & Frey, 1999). Uncertainty analysis is concerned with identification of credible 
limits to the accuracy of an estimate and the extent that an estimate may differ from the 
true value.  It is a structured process where appropriate methods are used to determine 
uncertainty in each component of the estimation process and to aggregate these.  
Sensitivity analysis is a valuable tool for identifying and ranking model variables in terms 
of their contribution to the overall uncertainty.  Variables that contribute most to the 
overall uncertainty and cause the greatest effect should be the highest priority for 
allocation of extra survey resources.    
 
1.2 Uncertainty Analysis 
 
1.2.1 Terminology and definitions  
 
Some of the current literature on uncertainty analysis uses terminology that differs from 
standard statistical practice, for example, the terms parameters and variables (see 
Winiwarter and Rypdal, 2001). We use normal statistical practice and define a variable to 
be generally, any quantity that varies.  More formally a variable is a quantity that can take 
any one of a specified set of values.  
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Associated with most variables is the concept of a probability distribution. Any specific 
mathematical distribution has a set of parameters that are used in defin ing the 
distribution. For example, the Weibull probability density function has a form: 
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where a is a location parameter, b a scale parameter, and c a shape parameter. 
 
1.2.2 Steps in uncertainty analysis 
 
Central to uncertainty analysis is the concept of a probability distribution function. Such a 
distribution describes the range and likely variation in the possible values of any variable.  
Using this distribution and its associated error term, confidence intervals can be 
calculated and defined, with a specified probability, the range of values within which the 
true variable will lie. 
 
The major steps in uncertainty analysis are: 
 

• Defining the model. 
 
• Listing all input variables. 
 
• Specifying the maximum likely range of potential values for  the  unknown 

parameters that will be estimated. 
 
• Specifying a specific probability distribution for values occurring within this 

range. 
 

• Determining and accounting for correlations among the input variables. 
 

• Using either analytical or numerical procedures, and estimating the uncertainty in 
each of the model variables.  

 
To perform a quantitative uncertainty analysis, probability distributions are assigned to 
each of the uncertain variables. The chosen distributions preferably result directly from 
data but sometimes are selected from subjective judgment. There are a number of 
different distributions that are commonly used, including the normal distribution, and the 
assumption of these or other empirical distributions is usually dependent on the 
availability of relevant data. Distributions that possess explicit expressions for estimation 
of their parameters are clearly to be preferred. Therefore, whe n empirical data exists a 
normal distribution is a good first approximation (or lognormal or truncated if negative 
values are unrealistic, and supplemented by uniform or triangular distributions ).  If there 
is good, compelling reason, other more complex distributions can be considered. 
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If the appropriate probability distribution is unknown, uncertainty analysis needs to 
include the uncertainty of the unknown distributions.  This is easiest to do in Monte Carlo 
simulations by using a number of different distributions in multiple simulations.  Monte 
Carlo simulation is described in section 1.2.4. 
 
1.2.3 General methodology for fitting a probability density function 
 
The choice of probability distribution starts by inspecting the data.  If the data are from a 
valid random probability sample and can be assumed to be representative of the range of 
conditions, then classical statistical methods can be used to estimate distribution-
parameter values (e.g., the mean and variance for a normal distribution) using the method 
of moments or maximum likelihood (Meyer, 1965). Specific details for some 
distributions are given in section 2.3. The goodness of fit of the distribution to the sample 
data needs to be assessed using the standard methods with probability plots and other 
statistical tests, for example, χ2, Anderson-Darling, or Kolmogorov-Smirnov goodness-of 
fit tests (Stephens, 1986)       
 
1.2.4 Assessing total errors: Monte Carlo simulation 
 
Error propagation is the calculation of the cumulative errors from the model-equation.  
For a simple additive model with no dependencies among   variables the variance of the 
model can be estimated directly by the weighted sum of the variances of the variables  
(see section 1.5.2). When dependencies exist among the variables  analytical methods 
become more complex and for non-normal distributions numerical methods can be used, 
for example, Monte Carlo simulation. 
 
There are various explanations and descriptions for what are Monte Carlo simulations.  
We use the definition that Monte Carlo simulations are a numerical method to sample the 
distributions of input variables to  generate a representative distribution of predicted 
model values. 
 
Monte Carlo simulations, in their simplest form proceed by taking a random value from a 
specified probability density function of each variable in the model. The process is 
repeated for a very large number of iterations resulting in a probability distribution of the 
model estimate. More sophisticated methods of choosing the random values include latin-
hypercube-sampling (McKay et al., 1979), a method that is statistically more efficient. 
Instead of choosing each value randomly, the probability density function is 
systematically divided into (small) equiprobable intervals and samples taken from each 
interval thus ensuring representation of a full range of values.  The actual algorithm for 
drawing the random values uses the inverse cumulative density function rather than the 
probability density function.  
 
One of the advantages of Monte Carlo simulations is that if the model becomes more 
complex, the complexity of the Monte Carlo technique  largely does not necessarily 
change.  In comparison, with analytical methods variance estimation can become very 
difficult (Hammonds et al., 1994). Another advantage is that when the probability 



Estimation of errors associated with the calculation of carbon in Kyoto Forest  
University of Canterbury 

July 2005 
7 

distribution of any input variable is completely unknown Monte Carlo procedures can 
include simulation over several different distributions, in effect adding in uncertainty due 
to the lack of knowledge about any variable’s distribution.  
 
When dependencies exist among the variables Monte Carlo methods can still be used. In 
the case of two variables that are normally distributed simple algorithms exist to generate 
random deviates allowing for the existence of correlation between them (see section 
2.5.2). For non-normal distributions the methods become approximate and complex, 
although is still possible. More generally, correlations among any type and number of 
distributions can be simulated using an approximation based on rank correlation (Cullen 
& Frey, 1999, Frey, 1992). 
 
1.3 Sensitivity Analysis   
 
Sensitivity analysis is used to assess the relative importance or contribution of variables 
in a model to the overall uncertainty and can be used to prioritise effort to reduce 
uncertainty.  Uncertainty will be reduced by expending extra effort in the estimation of 
the variables with the highest contribution.  
 
Spearman rank correlation coefficients can be used to quantify individual variable’s 
contribution.  This method involves ranking the values simulated in the Monte Carlo 
process.  The model estimates simulated in the Monte Carlo process are also ranked.  The 
association between the rankings is measured by the Pearson rank correlation coefficient, 
R.  The correlation coefficient between the two rank orderings (x and y) is calculated as:  
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where n is the number of values ranked and Rix is the rank of the ith value in the x data set 
and Riy is the rank of the ith value in the y data set, and ,x yR R  are the respective means 
(Iman and Conover 1982).   
 
The Pearson rank correlation coefficient varies between +1 and -1.  A value of +1 is 
when the rankings are identical, and -1 when the rankings are as greatly in disagreement 
as possible (that is, one rank order is the opposite of the other).  The significance of R can 
be tested as: 
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with (n - 2) degrees of freedom and compared to the Student’s t distribution (McBean and 
Rovers, 1998).  Higher coefficients indicate higher relative contribution.   
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Other methods for sensitivity analysis are to graph the Monte Carlo estimates against the 
simulated variables.  Graphs with obvious trends are indications of higher contribution to 
the uncertainty.  Tornado graphs  (Winston, 2001) are a very useful summary of the 
ranking of variables. Many other methods exist including multivariate linear regression 
and probabilistic sensitivity analysis (Cullen and Frey, 1999). Smith and Heath, (2001) 
discuss the use of two ‘Importance indices’ for ranking the contributions of 10 carbon 
inputs to an uncertainty model.   
 
1.4 Sources of Uncertainty: Components of Error 
 
The contribution to the uncertainty in the estimate of carbon stored in New Zealand’s 
Kyoto planted forests from the assessment process has many components. Errors will 
occur from measurement, sampling, classification, estimation, model errors and 
uncertainty from expert judgment.  
 
Measurement errors include incorrect measurement in the field, limitations in instrument 
accuracy or discrimination threshold, and errors in recording and transcribing data. 
Sampling uncertainty is introduced when there is inherent natural variation and only a 
fraction of the entire population is measured. An example of classification error is the 
map estimates of forest land.  Classification errors can occur when forest land is mapped 
as non-forest or vice versa, or  is incorrectly aged, thus introducing errors in estimation of 
the total forested area. Model uncertainty is used to represent lack of confidence that the 
mathematical model is a "correct" formulation for carbon-change assessment. Model 
uncertainty exists if there is a possibility of obtaining an incorrect result even if exact 
values are available for all of the model parameters (variables) and above all if the 
structure of the model is incorrect.  
 
1.5 Estimating Uncertainty 
 
1.5.1 Analytical methods  for combining uncertainties 
 
When uncertainties are combined by addition, that is, the model Z is the linear and the 
sum of variables,   
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where ai are constants, the variance of Z, when there are no dependencies or correlations 
among the variables, is: 
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where V(Yi) is the variance of the variable Yi.  
 
However when dependencies are existent the covariance (Cov(YiYj)) between every pair 
of  variables is included 
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and ?ij is the correlation coefficient between Yi  and Yj and si and sj the respective standard 
deviations (Lindgren, 1993) 
 
When uncertainties are combined by multiplication, that is, the model Z is the product of 
variables, the overall uncertainty can be more complicated to calculate.  If there are only 
two variables, Y1 and Y2,  
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the overall uncertainty when there is no dependency or correlation among the variables is 
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When there are dependencies between two variables the correlation, ρ, between the 
variables is included, 
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These formulae can be extended to three or more variables.  
 
1.5.2 Numerical methods for combining uncertainties 
 
The advantage of Monte Carlo methods is that dependencies can be more readily 
incorporated into the uncertainty estimation process.  When there are no dependencies, 
given some distributional form for each variable  in the carbon estimation model, values 
are randomly selected from each distribution and combined using the model.  When 
dependencies exist, the method of selecting the random variables is effectively 
constrained.  If two variables, Y1 and Y2, are correlated, then the range of likely values of 
Y2 is conditional on the value of Y1. 
 
1.5.3 The effect of dependencies 
 
Correctly specifying dependency and correlations may be less important for variables that 
do not have a high contribution to the uncertainty.  The relative contribution of variables 
to the uncertainty can be identified in the sensitivity analysis. Similarly, weak 
dependency among variables that do have high contribution to the uncertainty will have 
little consequence to the analysis. Dependencies can be incorporated into the uncertainty 
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analysis by modeling it explicitly, or to use a range of methods that manipulate the data 
directly including aggregating the input variable values into categories and re-sampling 
techniques. 
 
1.6 Changes in Kyoto Carbon: estimation of differences 
 
Many carbon statistics will be estimated in terms of change in variables or as differences 
over time.  Assuming no dependencies, the variance of the difference of a variable  
measured in time 1 and then in time 2 is,    
 

2 2
1 1 2 2 1 1 2 2( ) ( ) ( )V a Y a Y a V Y a V Y− = + ,   

 
and with dependenc ies,  
 

1 2

2 2
1 1 2 2 1 1 2 2 12( ) ( ) ( ) 2 y yV a Y a Y a V Y a V Y s sρ− = + − . 

 
In estimating change in carbon uncertainty is reduced when the value of the variable 
when measured at time (t + ? t) is correlated to the value at time t.  An example of this is 
when sample plots are repeatedly surveyed for the same variable.  Tree volume at time (t 
+ ? t) will be correlated with tree volume at time t etc.  Growth variables typically have  
strong correlations.  
 
It is likely that variables will be measured in installed permanent sample plots then re-
measured later, maybe several times. In these situations, and dependent on the sample 
survey technique chosen, the variance of the average difference (for example, at two 
different ages) of a variable can be surprisingly precise.  
 
There are several variants to the appropriate survey methods but most give good 
precision by virtue of strong correlations frequently existing between variables at two 
distinct ages; growth variables give especially strong correlations. For example, if we 
have a set of sample plots and we estimate volume/ ha at ages T and (T + ? T) then 
correlations in excess of 0.9 can be expected (Some details and an example are given in 
Appendix 1). 
 
2 METHODS 
 
2.1 Uncertainties in Carbon Estimation: Current Situation in July 2004 
 
The major sections above summarise strategies for the estimation of total stored carbon 
together with potential methodologies to calculate the likely errors. These methods 
assume the on-going availability of data collected over several years and a scenario of 
continuing estimation of changes in carbon stored in New Zealand’s Kyoto planted 
forests.  
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However, it is certain relatively few of these methods will be able to be used in 2004-
2005 or will only be able to be used if various assumptions are made. Essentially the data 
are or will not be available. It is therefore difficult to describe specific and detailed 
methodology to measure uncertainty when the specific methods to estimate carbon 
changes are yet to be decided.  
 
2.2 A Simple Method of Estimation 
 
One basic method to estimate carbon stored in New Zealand’s Kyoto planted forests is as 
a function of the following major variables: 

 
C1= area x stem volume x BEF x density x carbon fraction   (1) 

 
or, 
 

C`1 =  area x (stem mass + stem bark mass + live branch mass + dead- 
branch mass + total foliage  mass + total root mass) x carbon fraction  (2) 

 
C2 = area x soil carbon       (3) 

 
C3 = area x dead organic matter x carbon fraction    (4) 

 
where BEF, the biomass expansion factor, is 
 

BEF = (above ground biomass + below ground  biomass) / stem biomass. 
 
Thus depending upon whether C1 or C`1 is used the appropriate error formulae (addition 
or products, given above) are applicable. 
 
Equations (1) to (4) are simplistic in the sense in that most of the components later should 
be able to be expanded in many ways or broken down into several sub -components. For 
example, in the simplest case ‘area’ might be defined to be the total estimated area of 
Kyoto defined forest. An extension is Kyoto forest area, but broken down by age classes. 
In the same way, volume/ha could be a simple average or alternatively expressed in the 
form of a yield-age volume table. In both cases, the introduction of age should 
significantly enhance accuracy but whe n these additional data will become available  is 
not known.   
 
2.3 Estimating Parameters of Probability Density Functions 
 
Theoretically, there are a wide range of probability density functions available to 
summarize data. Most important in this context is the symmetric Normal distribution but 
also relevant are the log-normal, Weibull, Gamma and Beta distributions that can depict 
asymmetric data. For other datasets, the uniform and exponential distributions may be 
relevant (Johnson et al., 1994). 
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Table 1 Common probability density functions (p.d.f.’s) with their mathematical 
expressions and limits. 

Distribution   p.d.f     Limits 
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Given suitable data, for any selected distribution this leads to the method to estimate the 
distribution’s parameters. Well-known methods of estimation include moments, 
maximum- likelihood, and percentiles (Kendall et al., 1994). Statistically, maximum 
likelihood estimation can be shown to be the most robust technique, possessing minimum 
variance properties. 
 
In practice, however, the advantages of maximum- likelihood estimation can be minimal 
because biological data is frequently characteris ed by high variation and lack of strict 
adherence to distribution models and many of the above distributions do not have 
analytic maximum- likelihood solutions.   
 
We consider the most important functions to be the Normal, Weibull and occasionally the 
Uniform and Exponential distributions (Table 1). Collectively, they are capable of 
reasonably depicting most biological datasets, and all have practical methods of 
parameter estimation (Table 2).   
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Table 2 Methods of estimation of common probability density functions, where X  is the 
sample mean  and n the sample size. 

Distribution Estimation method Estimates 
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     k0 = -0.22106417 
k1 = 0.010060668 
k2 = 0.117358987 
k3 = -0.050999126 

Uniform ML   b = Max(Xi)  a = Min(Xi)  
Exponential ML   a  = X  

 
 
2.4 Methods for Combining Uncertainties  
 
2.4.1 Analytic methods 
 
Given access to the average values of each major input variable and an estimate of each 
corresponding standard deviation then assuming independence among the variables, 
uncertainty can be estimated using the methods described previously.   
 
It is likely that some of the input variables will show some dependence to each other. We 
anticipate, for example, that volume/ha and density may show some dependence. Both 
change with age so some association is expected.  The linear relationship between any 
two variables can be measured using Pearson correlation coefficients (?i) estimated by r, 
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If relationships between variables are curvilinear or non-linear then transformations can 
be useful (for example, logarithmic or square-root).   
 
See section 1.5.1 for details of analytical methods to combine uncertainty.  
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2.4.2 Numerical methods  
 
Simulation methods will use Monte Carlo approaches. Monte Carlo simulations can be 
generated using SAS with a purpose-built program. Initial simulations will assume that 
each input variable is normally distributed and independent of each other.  The normal 
random number generator in SAS will be used, RANNOR, to generate a large number (j) 
of random normal deviates, Zij, for the i distributions, each with an estimated mean (µi) 
and standard deviation (s i) . 
 
  Zij = µi +  s i RANNOR (seedi) 
 
where seedi  is a set of (different) random numbers 
 
Total carbon can be estimated for each of the j simulations.  The associated total error is 
estimated by the distribution of the j estimates of carbon.  
 
In this basic form the method is likely to produce  very similar results to those outlined in 
2.4.1. However, small extensions to the methodology are likely to give more information.  
For example, as suitable data becomes available some of the major predictor inputs 
should be able to be split into a series of sub-classes, each represented by a set of 
distributions, and combined through appropriate addition or multiplication. For example, 
volume may be able to be divided into age-classes.  Moreover the methodology here 
easily extends to subsequent sensitivity analyses (see section 2.7). 
 
Some input variables are likely not to be normally distributed, that is, they exhibit some 
degree of asymmetry or are better modelled on theoretical grounds by alternative 
distributions. Provided independence is still assumed, the methods described still holds, 
but rather than using the algorithm given, alternative algorithms to generate random 
deviates specific to each distribution will be used. Distributions will be expressed in 
inverse cumulative form and uniform random deviates used to generate the appropriate 
deviates (Neelamkavil, 1987). Table 3 lists the appropriate inverse functions for the 
commonly used distributions. The various parameters shown are identical to those in 
Table 1. 
 
Monte Carlo methods can be modified to account for dependencies.  If a correlation (?) 
exists between any two variables then the suitable algorithm can be used to generate two 
correlated normal deviates Z1 and Z2, e.g.,  
 
 Z1 = µ1 +  ?s1 RANNOR(seed1), 
then 
 Z2 = µ2 +  ?s2 RANNOR(seed1) + s2(1 – ?2)RANNOR(seed2), 
 
where seed1, seed2 are two randomly chosen positive numbers. 
 



Estimation of errors associated with the calculation of carbon in Kyoto Forest  
University of Canterbury 

July 2005 
15 

When the probability density functions are not normal then the Monte Carlo process is 
considerably more complex although still possible through approximate methods (Cullen 
and Frey, 1999). One method is to use approximations based on rank correlations.  
 
Table 3 Inverse cumulative distribution functions 

 
Distribution  Function 

 
 
Normal  No closed form (use SAS RANNOR) 

Weibull  c
p pbaX /1))1ln(( −−+=  

Uniform   )( abpaX p −+=  

Exponential  )1ln( pX p −−= α  
where p is a random uniform deviate. 

 
 
2.5 Uncertainty in the Estimated Change in Carbon 
 
The primary interest is in changes in carbon estimates over time (flux), rather than in 
estimates of carbon at a given time (stocks). If estimates in two different years are made 
in the same manner using the same data collection procedures and analysis techniques 
then the variance of the difference between the two years is likely to be considerably 
smaller than the variance of the individual estimates.  Monte Carlo simulation methods 
will be used to estimate uncertainty in the estimated change in carbon stocks. 
 
2.6 Sensitivity Analyses 
 
For initial analyses, inspection of the respective coefficients of variation will give some 
insight into the relative importance of any input variables. In general, the larger the 
coefficient the more the variable’s influence on estimated carbon.  This can be used on 
ranking variable importance.   
 
Sensitivity analyses with the Monte Carlo simulations will include scatter plots of the 
estimated carbon versus the individual variable values of each simulation. These have the 
advantage of not only providing visual evidence of dependence but more importantly 
they reveal the shape of any associations. The estimated strength of the relationship 
between the variable values and estimated carbon can be used to rank the variables by 
relative importance. Pearson correlation coefficients  are suitable for measuring linear 
relationships, and when there is nonlinearity still provide monotonic dependency rank 
correlations that can be used. 
 
3 CONCLUDING COMMENTS  
 
In this report we describe the vario us techniques available to quantify the size of the  
various errors associated with carbon stock changes in New Zealand Kyoto planted 
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forests. Initial analysis of linear models with variables that are normally distributed and 
have no dependencies will be relatively straightforward. Complexity will be introduced 
when non-normal and dependent va riables are analysed.     
 
We have been restrained in this preliminary report to describing potential methods.  
When we have been provided with information on how carbon stocks changes are to be 
estimated, and access to pilot data the analysis will be conducted.  The estimation of 
carbon is likely to be based on a model with input variables for area, volume, density, and 
biomass.  The degree of complexity and detail intended to be included in each component 
is currently unknown. Thus, and especially for initial estimates of carbon uncertainty, we 
cannot be totally specific; similarly it would have been advantageous to demonstrate 
some of the techniques with pilot data. 
 
For an initial estimate of carbon uncertainty we have indicated we intend to use SAS 
software to construct the various algorithms or simulation routines we require.  For this 
initial development of the analysis SAS is appropriate to use espec ially because of the 
ability in SAS to produce deviates from any distribution). In the longer run, however we 
may recommend application orientated software such as @RISK (Palisade Corporation, 
1997) which is specifically designed for uncertainty analysis.  
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APPENDIX 
 
Relevant sample survey techniques include sampling with partial replacement and double 
sampling (De Vries, 1986; Shiver and Borders, 1996). There are several variants of 
double sampling including ratio rather than regression estimators and/or incorporating 
stratification. The variance formulae needed to part estimate uncertainty are given in 
Shiver and Borders, 1996. A common application of double sampling is utilizing a 
straight-line regression estimator without stratification. The variance of the mean 
(response variable) is given by:   
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where, 

n1 = number of observations in the large sample 
n2 = number of observations in the sub-sample 
N = number of sample units in the population 

1x  = large sample mean 

2x  = small sample mean 

 2
ys  = sampling variance of y, the response variable 

  2
.y xs = error mean square of the regression.  

 2 2 2( )x X X= −∑ ∑ ∑  
 
An example of acalculating the variance of average volume/ ha using a regression 
estimator and double sampling (adapted from Freese, 1962) follows. 
 
In 1995, two hundred (200) sample plots of 0.1 ha in a 20000 ha forest showed a mean 
volume of 10.52 m3 / plot. A sub-sample of 40 plots was subsequently re-measured in 
2000. 
 
The mean of the 40 plots in 1995 = 10.46 m3/ plot 
The mean of the 40 plots in 2000 = 13.32 m3/ plot   
 
The data are illustrated in Figure 1. The correlation coefficient = 0.94. 
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Figure 1: Volume/ plot measured five years apart  
 
To work out the average volume/ plot at the second occasion and it’s error, we have 
(from section 1.7) 
 

n1 = 200, N = 200 000, 1x  = 10.52, n2 =  40, 2 13.32y = , 2 10.46x =  
 
The corrected SS for the data are:  
 
  2 2154.27 242.23 182.21x y xy= = =∑ ∑ ∑  
 
so the regression coefficient  ß  =  1.1811 
 

 2110.639/23.2422 ==ys  
 
and 2 2 2 2

. ( ( ) / )/( 2)y xs y xy x n= − −∑ ∑ ∑  
 

= (242.23 – (182.21)2/ 154.27)/38 = 0.7111   
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so the double sample estimate of the volume/ plot on the second occasion is 
 

)( 212 xxyyRd −+= β  
 

=13.32 + 1.1811(10.52 – 10.46) 
 

  = 13.39 m3/ plot 
 
The variance of this estimate (from above) is: 
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=0.7111[(0.025 + 0.00002333)(0.8) + 0.031055(0.999)] 

  
 = 0.7111[0.0200187 + 0.0310239] = 0.03629 

 
so the standard error of the mean = ± 0.1905 m3  
 
Note that if the auxiliary information of the initial plot estimates had not been utilized 
then the variance is: 
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 =  (6.211/40)(1 – 40/200 000)  

  
 =  0.1552 

 
giving a standard error of  ± 0.3939 m3, that is, the uncertainty estimate is doubled. 
 


