Extreme Selections and Dimensions

Tsugunori NOGURA

Ehime University, Matsuyama, Japan

For a Hausdorff space X, let $\mathcal{F}(X)$ be the set of all nonempty closed subsets of X. Usually, we endow $\mathcal{F}(X)$ with the Vietoris topology τ_V, and call it the Vietoris hyperspace of X. Recall that τ_V is generated by all collections of the form

$$\langle \mathcal{V} \rangle = \left\{ S \in \mathcal{F}(X) : S \subset \bigcup \mathcal{V} \text{ and } S \cap V \neq \emptyset, \text{ whenever } V \in \mathcal{V} \right\},$$

where \mathcal{V} runs over the finite families of open subsets of X.

Let \mathcal{D} be a subspace of the hyperspace $(\mathcal{F}(X), \tau_V)$. A map $\sigma : \mathcal{D} \to X$ is a selection for \mathcal{D} if $\sigma(S) \in S$ for every $S \in \mathcal{D}$. A selection $\sigma : \mathcal{D} \to X$ is continuous if it is continuous with respect to the relative Vietoris topology τ_V on \mathcal{D}.

In this talk we mainly concern dimensions of a space X which has a continuous selection for $\mathcal{F}(X)$ or $\mathcal{F}_2(X) = \{ S \in \mathcal{F}(X) : |S| = 2 \}$. Especially we give an answer to the following Question(Open Problems in Topology II, No. 394).

Question Let X be a space which has a continuous selection for $\mathcal{F}(X)$. Then is it true that $\text{ind}(X) \leq 1$?