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Abstract. Rooted phylogenetic networks provide a more complete rep-
resentation of the ancestral relationship between species than phyloge-
netic trees when reticulate evolutionary processes are at play. One way
to reconstruct a phylogenetic network is to consider its ‘ancestral pro-
file’ (the number of paths from each ancestral vertex to each leaf). In
general, this information does not uniquely determine the underlying
phylogenetic network. A recent paper considered a new class of phy-
logenetic networks called ‘orchard networks’ where this uniqueness was
claimed to hold. Here we show that an additional restriction on the
network, that of being ‘stack-free’, is required in order for the original
uniqueness claim to hold. On the other hand, if the additional stack-free
restriction is lifted, we establish an alternative result; namely, there is
uniqueness within the class of orchard networks up to the resolution of
vertices of high in-degree.

1. Introduction

Evolutionary relationships between species are generally represented by
phylogenetic trees, where the species at the present appearing as the leaves
of the tree, and ancestral species corresponding to interior vertices. Over
the last several decades, a wide variety of methods have been developed
for reconstructing phylogenetic trees from genomic data [8], and these are
now widely used in large-scale studies in systematic biology (e.g., [11, 19])
and associated fields (e.g, in epidemiology to classify strains of viruses such
as HIV, influenza, and SARS-Cov2 [22]). However, for certain groups of
organisms, the tree model is overly simplistic. This is because of the intri-
cacies of ancestral processes whereby lineages not only split, but sometimes
combine together to form new lineages. This latter pattern of evolution is
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collectively referred to as ‘reticulation’, and includes the formation of hy-
brid species, horizontal gene transfer, and endosymbiosis events [6, 9, 12].
Consequently, certain portions of the ‘Tree of Life’ are better described by a
phylogenetic network that explicitly exhibits reticulation events. Although
there is a well-developed theory for reconstructing phylogenetic trees from
various types of data [8, 17], phylogenetic network reconstruction is much
more subtle. In particular, for certain types of data it is impossible to
distinguish between different (non-isomorphic) phylogenetic networks [15].
One way to address this non-identifiability issue is to work within a sub-
class of phylogenetic networks that includes phylogenetic trees along with
phylogenetic networks that are sufficiently tame. An example is the class of
‘normal’ networks, for which certain reconstructive results have been estab-
lished [2, 13, 20, 21]. The slightly more general class of ‘tree-child’ networks
also allows for unique reconstruction from various types of data [4, 5].

In this paper, we focus on the unique reconstruction of networks from their
‘ancestral profile’, which, roughly speaking, is the number of paths from each
ancestral vertex in the network to each extant leaf. It was shown that all
binary ‘tree-sibling time-consistent’ and all binary ‘tree-child’ networks are
uniquely determined by their ancestral profile [4, 5]. In a recent paper [7],
this result was extended to the larger class of binary ‘orchard networks’,
which allows for an unbounded number of vertices in the network for a
given number of leaves. This contrasts with the classes of binary ‘tree-
sibling time-consistent’ and binary ‘tree-child’ networks, for which the size
of the network is bounded by the number of leaves. However, the result in [7]
omitted an extra condition required for unique reconstruction, namely, the
network cannot contain a tower (‘stack’) of reticulations. We show here that
this ‘stack-free’ condition is necessary, and that when this extra condition
is included the original result claimed in [7] holds. Moreover, this result
then generalises (Theorem 3.1) to the class of stack-free orchard networks in
which reticulate vertices are allowed to have arbitrarily high in-degree. Note
that, the uniqueness is amongst all phylogenetic networks with vertices of
arbitrarily high in-degree, that is, the ancestral profile of a stack-free orchard
network is always different to the ancestral profile of any other phylogenetic
network, even if it is neither orchard nor stack-free. When the stack-free
condition is lifted, we describe a second result (Theorem 3.2) which states
that, within the class of orchard networks, the ancestral profile of an orchard
network uniquely determines the orchard network up to the resolution of
vertices of high in-degree. Biologically speaking, each reticulate vertex of in-
degree more than two represents an uncertainty concerning the exact order
of reticulation events associated with that vertex. For examples of real-world
phylogenetic networks in which such vertices appear, see [1, 14, 18].

The structure of the paper is as follows. The next section recalls defini-
tions of phylogenetic networks (which are permitted here to contain vertices
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of high in-degree), along with the notion of ancestral profile. We also de-
scribe the class of orchard networks. This class was introduced and studied
independently in [7] (for binary networks) and [10] (for networks that allow
high in-degree). In Section 3, we turn to the question of whether the an-
cestral profile of an orchard network determines that network (either within
the class of orchard networks, or more generally), and state the two main
results of the paper. The first main result, Theorem 3.1, states a corrected
form of [7, Theorem 2.2] for stack-free networks. The necessary adjustments
required for the proof of Theorem 3.1 are given in the Appendix. The sec-
ond main result, Theorem 3.2, is a reconstructive result that holds when
the stack-free condition is removed. Additionally, we discuss the relation-
ships between Theorem 3.1 and the main results in [4, 5]. The proof of
Theorem 3.2 is given in Section 4. Some concluding comments are given in
Section 5, the last section of the paper.

2. Preliminaries

Throughout the paper X denotes a non-empty finite set and, unless oth-
erwise stated, all paths are directed. For sets A and B, we denote the set
obtained from A by removing every element in A that is also in B by A−B.
Furthermore, if (u, v) is an arc of an acyclic directed graph, we say u is a
parent of v.

Phylogenetic networks. The following definition of phylogenetic network
is slightly more general than in [7]. A phylogenetic network on X is a rooted
acyclic directed graph with no arcs in parallel and satisfying the following
properties:

(i) the (unique) root has in-degree zero and out-degree two;
(ii) a vertex with out-degree zero has in-degree one, and the set of vertices

with out-degree zero is X; and
(iii) all other vertices either have in-degree one and out-degree two, or in-

degree at least two and out-degree one.

We will refer to a phylogenetic network in which every vertex has in-degree
at most two as a binary phylogenetic network.

We pause to make two technical remarks. First, if |X| = 1, we addi-
tionally allow a single vertex to be a phylogenetic network, in which case,
the root is the vertex in X. Second, suppose that N1 and N2 are two phy-
logenetic networks on X with vertex and arc sets V1 and E1, and V2 and
E2, respectively. We say N1 is isomorphic to N2, denoted by N1

∼= N2, if
there exists a bijection ϕ : V1 → V2 such that ϕ(x) = x for all x ∈ X, and
(u, v) ∈ E1 if and only if (ϕ(u), ϕ(v)) ∈ E2 for all u, v ∈ V1.



4 ALLAN BAI, PÉTER L. ERDŐS, CHARLES SEMPLE, AND MIKE STEEL
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Figure 1. A phylogenetic network on {x1, x2, . . . , x6}. The
2-element set {x3, x4} is a cherry, while the ordered pair
{x5, x6} is a reticulated cherry, in which x5 is the reticu-
lation leaf.

Let N be a phylogenetic network on X. The vertices with out-degree zero
are the leaves ofN , and soX is called the leaf set ofN . Furthermore, vertices
with in-degree one and out-degree two are tree vertices, while vertices of in-
degree at least two and out-degree one are reticulations. The arcs directed
into a reticulation are called reticulation arcs, all other arcs are tree arcs.
To illustrate, a phylogenetic network on {x1, x2, . . . , x6} is shown in Fig. 1.
Vertices u and v are reticulations, while vertex w is a tree vertex. Here, as
throughout the paper, all arcs are directed down the page.

Ancestral tuples and ancestral profile. Let N be a phylogenetic net-
work on X with vertex set V . Let v1, v2, . . . , vt be a fixed (arbitrary) la-
belling of the vertices in V − X. For all x ∈ X, the ancestral tuple of x,
denoted σ(x), is the t-tuple whose i-th entry is the number of paths in N
from vi to x. Denoted by ΣN , we call the set

ΣN = {(x, σ(x)) : x ∈ X},

of ordered pairs the ancestral profile of N . Furthermore, if N ′ is a phylo-
genetic network on X and, up to an ordering of the non-leaf vertices of N ′,
we have ΣN ′ = ΣN , we say N ′ realises ΣN . Lastly, although ΣN depends
on the ordering of the vertices in V − X, the ordering is fixed and so the
labelling can be effectively ignored.

To illustrate these notions consider the two networks N and N ′ shown in
Fig. 2. Under the labelling of the non-leaf vertices of N shown, we have

ΣN = {(x1,(1, 1, 0, 0, 0, 0, 0)), (x2, (1, 0, 1, 1, 0, 0, 0)),

(x3, (1, 0, 1, 0, 1, 0, 0)), (x4, (3, 1, 2, 1, 1, 1, 1))}.

The other network N ′ in Fig. 2 also realises ΣN , because under the ordering
of the non-leaf vertices of N ′ shown in this figure, we have ΣN ′ = ΣN . On
the other hand, N and N ′ are not isomorphic. To see this observe that the
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Figure 2. Two binary networks N and N ′ with the same
ancestral profile (for the labelling of the vertices in V − X
shown). However, N and N ′ are not isomorphic.

parent of x2 in N has a unique path to x4 of length 3, while the parent of
x2 in N ′ also has a unique path to x4 but this path has length 2.

Cherries and reticulated cherries. Let N be a phylogenetic network
on X, and let {a, b} be a 2-element subset of X. Let pa and pb denote the
parents of a and b, respectively. We say {a, b} is a cherry of N if pa = pb.
Furthermore, if one of the parents, say pb, is a reticulation and (pa, pb) is
an arc in N , then {a, b} is a reticulated cherry of N , in which case, b is the
reticulation leaf of the reticulated cherry. Observe that pa is necessarily a
tree vertex. As an example, in Fig. 1, {x3, x4} is a cherry, while {x5, x6} is
a reticulated cherry with x5 as the reticulation leaf.

We next describe two operations associated with cherries and reticulated
cherries that are central to this paper. Let N be a phylogenetic network.
First suppose that {a, b} is a cherry of N . Then reducing b is the operation
of deleting b and suppressing the resulting vertex of in-degree one and out-
degree one. If the parent of a and of b is the root of N , then reducing
b is the operation of deleting b as well as deleting the root of N , thus
leaving only the isolated vertex a. Now suppose that {a, b} is a reticulated
cherry of N in which b is the reticulation leaf. Then cutting {a, b} is the
operation of deleting the reticulation arc joining the parents of a and b,
and suppressing any resulting vertices of in-degree one and out-degree one.
Note that the parent of a is always suppressed. However, the parent of b is
suppressed only if its in-degree in N is exactly two. It is easily seen that the
operations of reducing a cherry and cutting a reticulated cherry both result
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in a phylogenetic network. Collectively, we refer to these two operations as
cherry reductions.

Orchard networks. For a phylogenetic network N , the sequence

N = N0,N1,N2, . . . ,Nk(1)

of phylogenetic networks is a cherry-reduction sequence of N if, for all
i ∈ {1, 2, . . . , k}, the phylogenetic network Ni is obtained from Ni−1 by
a (single) cherry reduction. The sequence is maximal if Nk has no cherries
or reticulated cherries. If Nk consists of a single vertex, the sequence is com-
plete. If N has a complete cherry-reduction sequence, then N is an orchard
network. It is easily checked that the phylogenetic network shown in Fig. 1
is orchard.

A fundamental property of orchard networks is that if one cherry-
reduction sequence leads to a single vertex (in which case N is an orchard
network), then every maximal cherry-reduction sequence leads to a single
vertex (regardless of any choices made during the construction of a cherry-
reduction sequence). This result was established for binary orchard networks
in [7, Proposition 4.1], and independently shown to hold for general phylo-
genetic networks in [10, Theorem 1].

Proposition 2.1. Let N be an orchard network, and let

N = N0,N1, . . . ,N`

be a maximal cherry-reduction sequence. Then this sequence is complete.

3. Main Results

In this section we state the two main results of the paper. A stack in a
phylogenetic network N is a pair of reticulations, u and v, such that one of
the reticulations, say u, is a parent of the other; that is, (u, v) is an arc of
N . We refer to (u, v) as a stack arc of N . A phylogenetic network is said
to be stack-free if it has no stacks.

It was claimed in [7, Theorem 2.2] that, up to isomorphism, every binary
orchard network is uniquely determined by its ancestral profile. However,
Fig. 2 shows a pair of non-isomorphic phylogenetic networks that are both
binary orchard networks, and which have identical ancestral profiles. Notice
that both networks in Fig. 2 contain a stack, in particular, reticulations v6

and v7. A corrected version of [7, Theorem 2.2] is Theorem 3.1, the first main
result of the paper, which is now extended to allow phylogenetic networks
with reticulations of in-degree at least two. The proof follows the same
argument as in [7], but some adjustments are required to certain lemmas
to allow for the generality beyond binary phylogenetic networks, and (at
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Figure 3. The stack identifications id(N ) and id(N ′) of the
orchard networks N and N ′, respectively, shown in Fig. 2.
Observe that both id(N ) and id(N ′) are orchard networks,
and id(N ) ∼= id(N ).

one point) to impose the stack-free requirement. We describe the required
adjustments to the original proof in the Appendix.

Theorem 3.1. Let N be a stack-free orchard network on X with vertex set
V . Then, up to isomorphism, N is the unique phylogenetic network on X
realising ΣN .

We now consider what can be said if the stack-free condition is lifted. Let
N be a phylogenetic network on X with vertex set V . Define a relation
∼′ on V − X by writing u ∼′ v if u and v are reticulations and either
(u, v) or (v, u) is an arc of N . Let ∼ be the transitive closure of ∼′; the
equivalence classes of vertices under ∼ are called sinks. Thus, a phylogenetic
network N is stack-free if and only if each of its sinks has size 1 (i.e. each
reticulation forms its own equivalence class). The stack identification of N ,
denoted id(N ), is the phylogenetic network obtained from N by identifying
all the vertices within each sink S to a single vertex vS (and removing any
arcs between vertices of the same sink). Observe that id(N ) can be obtained
fromN by repeatedly deleting each stack arc and identifying its end vertices.
Note that id(N ) is not necessarily a phylogenetic network because it may
have arcs in parallel. However, if N is orchard, then, as we show in the
next section (Lemma 4.1), id(N ) is also orchard. To illustrate the notion of
stack identification, consider the two orchard networks N and N ′ shown in
Fig. 2. The stack identifications of N and N ′ are shown in Fig. 3. Observe
that id(N ) ∼= id(N ′).

The next theorem is the second main result of the paper.
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x1 x2 x3

Figure 4. An orchard network that is binary and stack-free,
for which the total number of vertices is not bounded by the
size of its leaf set.

Theorem 3.2. Let N and N ′ be orchard networks on X. If N and N ′ have
the same ancestral profile, then id(N ) ∼= id(N ′).

We end this section with a brief discussion concerning Theorem 3.1 and
its relationship with the main results in [4, 5]. Let N be a phylogenetic
network. We say N is tree-child if every non-leaf vertex of N is a parent of
a tree vertex or a leaf. Furthermore, N is tree-sibling if every reticulation
has a parent that is also a parent of a tree vertex or a leaf. Also, N is time-
consistent if there is a map t from the vertex set of N to the non-negative
integers having the property that if (u, v) is an arc of N , then t(u) = t(v) if
(u, v) is a reticulation arc; otherwise, t(u) < t(v).

The class of stack-free orchard networks includes the class of tree-child
networks as a proper subclass. (A proof that a binary tree-child network is
orchard is given in [3]. The generalisation to allowing reticulations with in-
degree more than two is straightforward.) Moreover, although a tree-child
network on a leaf set of size n can have at most n−1 reticulations [5], a stack-
free orchard network can have arbitrarily many reticulations, as indicated
in Fig. 4. The class of stack-free orchard networks also includes tree-sibling
time-consistent networks with no stacks. (A proof for the binary case is
given in [7]. This proof generalises to allowing reticulations with in-degree
more than two.) Like tree-child networks, the number of reticulations of
such a network on a leaf set of size n is linear, in this case at most 2n−4 [4].
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Theorem 3.1 in part generalises results in [4, 5]1. These papers consider
the classes of time-sibling time-consistent and tree-child networks, respec-
tively, in the context of a formation onX for reconstruction that is equivalent
to ancestral profile. They establish uniqueness results for tree-child [5, Theo-
rem 1] and for binary tree-sibling time-consistent networks with no stacks [4,
Theorem 6]. However, the uniqueness is within the respective classes. Thus,
for example, in our terminology, it is shown in [5] that if N is a tree-child
network on X, then, up to isomorphism, N is the unique tree-child network
on X realising ΣN .

4. Proof of Theorem 3.2

The proof of Theorem 3.2 makes use of a sequence of lemmas. We begin
by showing that the stack identification of an orchard network is orchard.

Lemma 4.1. Let N be an orchard network, and let e be a stack arc of N .
Suppose that N ′ is obtained from N by deleting e and identifying its end
vertices. Then N ′ is an orchard network.

Proof. Let e = (u, v). We first show that N ′ has no parallel arcs, that is,
N ′ is a phylogenetic network. Assume N ′ has two parallel arcs. Then, by
the construction of N ′, these arcs are directed out of a tree vertex t and
directed into the vertex, say v′, identifying u and v, in which case, (t, u) and
(t, v) are arcs of N . Since N is orchard, N has a complete cherry-reduction
sequence S. Applying S to N , this sequence eventually suppresses u and
v via cutting a reticulated cherry. Clearly, v is suppressed before u. Since
u is a reticulation parent of v, it follows that prior to v being suppressed,
(t, v) is cut as part of a cherry reduction of S. But this requires t to have a
descendant leaf that is not a descendant of v. Since u is the other child of t,
there are no such leaves, and so S is not a cherry-reduction sequence of N ,
a contradiction. Thus N ′ has no parallel arcs.

We complete the proof by showing that N ′ is orchard. Let

N = N0,N1,N2, . . . ,Nk

be a complete cherry-reduction sequence for N . Since u and v are reticu-
lations, and u is a parent of v, it follows that, for some i ∈ {1, 2, . . . , k},
the phylogenetic network Ni is obtained from Ni−1 by cutting a reticulated
cherry, and then suppressing u′ and v, where u′ is a parent of v that is not u
in N . A simple induction argument shows that exactly the same sequence

1The results in [4, 5] are slightly stronger than that described here as they allow tree
vertices to have out-degree at least two.
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of cherry reductions from N = N0 to Ni can be applied to N ′ to obtain the
cherry-reduction sequence

N ′ = N ′0,N ′1,N ′2, . . . ,N ′i ,
where, for all j ∈ {0, 1, . . . , i − 1}, the phylogenetic network is obtained
from Nj by deleting (u, v), and identifying u and v, and N ′i ∼= Ni. Using the
cherry-reduction sequence from Ni+1 to Nk, it now follows that there exists
a complete cherry-reduction sequence for N ′, and so N ′ is orchard. �

The next corollary is an immediate consequence of Lemma 4.1.

Corollary 4.2. Let N be an orchard network. Then id(N ) is an orchard
network.

We next describe two operations on sets of certain ordered pairs. These
operations parallel the graph operations of reducing cherries and cutting
reticulated cherries. Intuitively, these operations explicitly describe how the
ancestral profile of a phylogenetic networks changes if we reduce a cherry or
cut a reticulated cherry (see Lemma 4.3).

Let X be a non-empty set and, for some fixed non-negative integer t, let

Σ = {(x, σ(x)) : x ∈ X}
be a set of ordered pairs, where σ(x) is a t-tuple each entry of which is
either a non-negative integer or it is a placeholder symbol −. Note that
Σ is an abstraction of ΣN , where N is a phylogenetic network. We now
describe two operations on Σ that correspond to the two cherry-reduction
operations. Let {a, b} be a 2-element subset of X. The first operation
corresponds to reducing b when {a, b} is a cherry. Let j ∈ {1, 2, . . . , t} such
that σj(a) = σj(b) = 1, and σj(x) = 0 for all x ∈ X − {a, b}. Let Σ′ be the
set of |X−{b}| ordered pairs obtained from Σ as follows. For all x ∈ X−{b},
set σ′(x) to be the t-tuple whose i-th entry is

σ′i(x) =

{
σi(x), if i 6= j;

− if i = j.

Set Σ′ = {(x, σ′(x) : x ∈ X − {b}}. We say that Σ′ has been obtained from
Σ by reducing b.

The second operation corresponds to cutting {a, b}, when {a, b} is a
reticulated cherry with reticulation leaf b. Let j ∈ {1, 2, . . . , t} be such
that σj(a) = 1 = σj(b), and σj(x) = 0 for all x ∈ X − {a, b}, and let
k ∈ {1, 2, . . . , t} be such that σk(b) = 1 and σk(x) = 0 for all x ∈ X − b.
The second operation has two types2. First, let Σ′ be the set of |X| ordered

2In the correspondence of cutting a reticulated cherry {a, b}, the two types depend on
whether or not the parent of b is suppressed when cutting {a, b}.
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pairs obtained from Σ as follows. For all x ∈ X − {b}, set σ′(x) to be the
t-tuple whose i-th entry is

σ′i(x) =

{
σi(x), if i 6∈ {j, k};
−, if i ∈ {j, k}

and set σ′(b) to the t-tuple whose i-th entry is

σ′i(b) =

{
σi(b)− σi(a), if i 6∈ {j, k};
−, if i ∈ {j, k}.

Set Σ′ = {(x, σ′(x)) : x ∈ X}. We say that Σ′ has been obtained from Σ by
Type-I cutting {a, b}.

Now let Σ′′ be the set of |X| ordered pairs obtained from Σ as follows.
For all x ∈ X − {b}, set σ′′(x) to be the t-tuple whose i-th entry is

σ′′(x) =

{
σi(x), if i 6= j;

−, if i = j

and set σ′′(b) to be the t-tuple whose i-th entry is

σ′′(b) =

{
σi(b)− σi(a), if i 6= j;

−, if i = j.

Set Σ′′ = {(x, σ′′(x)) : x ∈ X}. We say that Σ′′ has been obtained from Σ
by Type-II cutting {a, b}.

The next lemma is established in [7, Lemma 5.1] for binary phylogenetic
networks. The extension to phylogenetic networks in which reticulations
have in-degree at least two is straightforward and omitted.

Lemma 4.3. Let N be a phylogenetic network on X with vertex set V and
|X| ≥ 2, and fix an ordering of V −X. Let {a, b} be a 2-element subset of
X.

(i) If {a, b} is a cherry of N , then, up to entries with symbol −, the set of
ordered pairs obtained from ΣN by reducing b is the ancestral profile of
a phylogenetic network isomorphic to the phylogenetic network obtained
from N by reducing b.

(ii) Suppose that {a, b} is a reticulated cherry of N with reticulation leaf
b. Then, up to entries with symbol −, the set of ordered pairs obtained
from ΣN by

(I) Type-I cutting {a, b} is the ancestral profile of a phylogenetic net-
work isomorphic to the phylogenetic network N ′ obtained from
N by cutting {a, b} in which the parent of b is suppressed, and

(II) Type-II cutting {a, b} is the ancestral profile of a phylogenetic
network isomorphic to the phylogenetic network N obtained from
N by cutting {a, b} in which the parent of b is not suppressed.



12 ALLAN BAI, PÉTER L. ERDŐS, CHARLES SEMPLE, AND MIKE STEEL

Let N be a phylogenetic network on X with vertex set V , and let
v1, v2, . . . , vt be a fixed labelling of the vertices in V − X. For distinct
i, j ∈ {1, 2, . . . , t}, we say vi and vj are clones if, for all x ∈ X, we have
σi(x) = σj(x). Characterising which pairs of vertices in an orchard network
are clones is crucial to establishing Theorem 3.2. The next lemma gives this
characterisation.

Lemma 4.4. Let N be an orchard network on X with vertex set V . Let
v1, v2, . . . , vt be a fixed labelling of the vertices of V −X. Then vi and vj are
clones if and only if one of the following holds:

(i) vi and vj belong to the same sink of N ; or
(ii) exactly one of vi and vj is a reticulation, say vi, and there is a reticu-

lation vk in the same sink of N as vi such that (vk, vj) is a (tree) arc
of N .

Before establishing Lemma 4.4, we give an illustration of the lemma.
Consider the orchard network shown in Fig. 1. Every pair of vertices in
{u, v, w} are clones. Vertices u and v satisfy (i) of Lemma 4.4, while vertices
u and w (as well as v and w) satisfy (ii) of Lemma 4.4.

Proof of Lemma 4.4. It is easily seen that if vi and vj are vertices for which
either (i) or (ii) holds, then vi and vj are clones. For the converse, suppose
that vi and vj are clones. The proof of the converse is by induction on the
sum of the number n of leaves and the number r of reticulations of N . If
n + r = 1, then n = 1 and r = 0, and N consists of a single vertex, and so
the converse holds. If n + r = 2, then, as N is orchard, n = 2 and r = 0,
and N consists of two leaves adjoined to the root of N . Again, the converse
holds.

Now assume that n + r ≥ 3, so n ≥ 2 as N is orchard, and that the
converse holds for all orchard networks in which the sum of the number of
leaves and the number of reticulations is at most n + r − 1. Since N is
orchard, N has a 2-element subset {a, b} of X such that {a, b} is either a
cherry or a reticulated cherry of N . First suppose that {a, b} is a cherry
of N . Let pa denote the common parent of a and b. Let N ′ denote the
phylogenetic network obtained from N by reducing b. By Proposition 2.1,
N ′ is orchard. Note that N ′ has the same number of reticulations as N but
one less leaf. If pa 6∈ {vi, vj}, then, as vi and vj are clones of N , it follows
by Lemma 4.3(i) that vi and vj are clones of N ′. Thus, by induction, either
(i) or (ii) holds in N ′. In turn, this implies that either (i) or (ii) holds in
N . Hence, without loss of generality, we may assume that pa = vj . Let ga
be the (unique) parent of pa in N . If ga is a tree vertex, then there is a
directed path from ga to a leaf ` such that ` 6∈ {a, b}. Since

σi(a) = σj(a) = 1,
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that is, there is a path from vi to a in N , it follows that there is a path from
vi to ga, and so σi(`) ≥ 1. But σj(`) = 0, a contradiction as vi and vj are
clones. Hence ga is a reticulation.

If vi belongs to the sink [ga], then (ii) holds as (ga, vj) is an arc of N . So
assume that vi does not belong to the sink [ga]. Since σi(a) = σj(a) = 1,
there is a path P in N from vi to ga. Let u denote the last tree vertex on
P . Since vi 6∈ [ga], such a vertex exists and is the parent of a vertex in [ga].
Then, as u is a tree vertex, either there are at least two paths from u to a
and so σi(a) ≥ 2, a contradiction as σj(a) = 1, or there is a path from u to
a leaf ` 6∈ {a, b}. But then σi(`) ≥ 1 and σj(`) = 0, another contradiction as
vi and vj are clones.

Now suppose that {a, b} is a reticulated cherry of N . Without loss of
generality, we may assume that b is the reticulation leaf. Let pa and pb denote
the parents of a and b, respectively. Let N ′ be the phylogenetic network
obtained from N by cutting {a, b}. By Proposition 2.1, N ′ is orchard. Note
that N ′ has the same number of leaves as N but one less reticulation. If
{pa, pb} ∩ {vi, vj} is empty, then, as vi and vj are clones of N , it follows by
Lemma 4.3(ii) that vi and vj are clones of N ′. Thus, by induction, either
(i) or (ii) holds in N ′, and therefore in N . If {pa, pb} = {vi, vj}, then either
σi(a) = 1 and σj(a) = 0, or σj(a) = 1 and σi(a) = 0, a contradiction as vi
and vj are clones. Thus we may assume that

|{pa, pb} ∩ {vi, vj}| = 1.

Without loss of generality, suppose that vj ∈ {pa, pb}. Say vj = pa. Let
ga be the (unique) parent of pa in N . Since σi(a) = σj(a) = 1, it follows
that there is a path from vi to ga. If ga is a tree vertex, then there is a
directed path from ga to a leaf ` not using (ga, pa). Observe that ` 6= a. If
` = b, then σi(b) ≥ 2, a contradiction as σj(b) = 1. On the other hand, if
` 6= b, then σi(`) ≥ 1 and σj(`) = 0, another contradiction. Thus we may
assume vj = pb.

If vi belongs to the same sink [pb], then (i) holds. So assume vi does not
belong to [pb]. Since σj(a) = 0, and vi and vj are clones, it follows that
there is no path from vi to pa. However, as σj(b) = 1, there is a path P
from vi to pb. Let u denote the last tree vertex on P . Since vi 6∈ [pb] such
a vertex exists and is the parent of a vertex in [pb]. But then, as u is a
tree vertex, either there are at least two paths from u to b, in which case
σi(b) ≥ 2, or there is a path from u to a leaf ` 6= b, in which case σi(`) ≥ 1.
Both cases contradict that vi and vj are clones as σj(b) = 1 and σj(x) = 0
for all x ∈ X − {b}. This completes the proof of the lemma. �
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The next two results are consequences of Lemma 4.4. The first result is
immediate.

Corollary 4.5. Let N be an orchard network on X with vertex set V , and
suppose that {v1, v2, v3} is a 3-element subset of V − X. If vi and vj are
clones for all distinct i, j ∈ {1, 2, 3}, then N has a sink of size at least two,
in which case at least two of the vertices in {v1, v2, v3} are in the same sink.

Next let N be a phylogenetic network on X with vertex set V , and let vi
and vj be distinct vertices of V −X. We say vi and vj are a maximal pair of
clones if vi and vj are clones, but there is no vertex vk ∈ V − (X ∪ {vi, vj})
such that every two elements in {vi, vj , vk} are clones.

Corollary 4.6. Let N and N ′ be orchard networks on X, and suppose
ΣN = ΣN ′. If vi and vj are a maximal pair of clones of N , then vi and vj
are reticulations of N if and only if vi and vj are reticulations of N ′.

Proof. Since ΣN = ΣN ′ , the vertices vi and vj are a maximal pair of clones
of N ′. Thus, to prove the lemma, it suffices to show that if vi and vj are
reticulations of N , then vi and vj are reticulations of N ′. Suppose that vi
and vj are reticulations of N . Then, as vi and vj are a maximal pair of
clones, we may assume that (vi, vj) is a stack arc of N and vj is the parent
of a leaf `. In particular, σi(`) = σj(`) = 1 and σi(x) = σj(x) = 0 for all
x ∈ X − {`}. Now, if vi and vj are not reticulations of N ′, then, without
loss of generality, we may assume by Lemma 4.4 that (vi, vj) is an arc of N ′,
in which vi is a reticulation and vj is a tree vertex. But then either there
are at least two paths from vi to a leaf or there is a path from vi to a leaf
that is not `. Both possibilities contradict the assumption that ΣN = ΣN ′ .
This completes the proof of the corollary. �

Let X be a non-empty finite set and, for some fixed integer t, let

Σ = {(x, σ(x)) : x ∈ X}

be a set of ordered pairs, where Σ(x) is a t-tuple whose entries are either non-
negative integers or − for all x ∈ X. We describe a further operation on Σ.
This time the operation corresponds to deleting a stack arc and identifying
its end vertices. Let j, k, and l be distinct element in {1, 2, . . . , t} such that

σj(x) = σk(x) = σl(x)

for all x ∈ X. Let Σ′ be the set of |X| ordered pairs obtained from Σ as
follows. For all x ∈ X, set σ′(x) to be the t-tuple whose i-th entry is

σ′i(x) =

{
σi(x), if i 6= j;

−, if i = j.
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Set Σ′ = {(x, σ′(x)) : x ∈ X}. We say that Σ′ has been obtained from Σ by
identifying j. The proof of the next lemma is routine and omitted.

Lemma 4.7. Let N be a phylogenetic network on X with vertex set V , and
fix an ordering of V −X. Suppose that (vj , vk) is a stack arc of N . Then, up
to entries with symbol −, the set of ordered pairs obtained from ΣN by iden-
tifying j is the ancestral profile of a phylogenetic network isomorphic to the
phylogenetic network obtained from N by deleting (vj , vk), and identifying
vj and vk.

Lemma 4.8. Let N and N ′ be orchard networks on X . If ΣN = ΣN ′, then
Σid(N ) = Σid(N ′).

Proof. Let V denote the vertex set of N , and suppose that ΣN = ΣN ′ . Let
v1, v2, . . . , vt be a fixed labelling of the vertices of N in V −X. Note that,
as ΣN = ΣN ′ , the total number of vertices in N and N ′ is t + |X|. The
proof is by induction on the number s of stack arcs of N . If s = 0, then
N = id(N ) and so, by Lemma 4.4, if vi and vj are clones of N , then exactly
one of vi and vj is a reticulation, say vi, and (vi, vj) is a tree arc of N . In
particular, all sink classes of N have size one. We next show that N ′ has
no stack arcs.

If N ′ has a stack arc e, then there exists either a 3-element subset of V −X
such that every pair of elements are clones or the two end vertices of e form
a maximal pair of clones. Since ΣN = ΣN ′ , it follows by Corollaries 4.5
and 4.6 that N has a sink of size two, a contradiction. Thus N ′ has no
stack arcs, and so N ′ = id(N ′). Hence Σid(N ) = Σid(N ′).

Now assume that s ≥ 1 and that the lemma holds for all pairs of orchard
networks on the same leaf sets, where one of the networks has at most s− 1
stack arcs. Since s ≥ 1, there exists a stack arc (vi, vj) of N , in which case
vi and vj belong to the same sink and are clones of N . Since ΣN = ΣN ′ ,
it follows by Corollaries 4.5 and 4.6 that N ′ has a pair v′i and v′j of clones,

where (v′i, v
′
j) is a stack arc of N ′ and, for all x ∈ X,

σi(x) = σj(x) = σi′(x) = σj′(x).

Let N1 denote the directed graph obtained from N by deleting (vi, vj), and
identifying vi and vj . By Lemma 4.1, N1 is orchard. Similarly, let N ′1 denote
the directed graph obtained from N ′ by deleting (v′i, v

′
j), and identifying v′i

and v′j . By Lemma 4.1 again, N ′1 is orchard. Then, as ΣN = ΣN ′ , we deduce
by Lemma 4.7 that ΣN1 = ΣN ′

1
. Since the number of stack arcs of N1 is

s− 1, it follows by the induction assumption that

Σid(N1) = Σid(N ′
1).

But id(N ) ∼= id(N1) and id(N ′) ∼= id(N ′1), and so Σid(N ) = Σid(N ′), thereby
completing the proof of the lemma. �
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Proof of Theorem 3.2. Suppose that N and N ′ are orchard networks on X
with ΣN = ΣN ′ . By Corollary 4.2, id(N ) and id(N ′) are orchard networks
and so, by Lemma 4.8, Σid(N ) = Σid(N ′). Thus, by Theorem 3.1, id(N ) is
isomorphic to id(N ′). �

5. Concluding Comments

We end by raising two questions concerning orchard networks that may
be interesting for future work (even in the case where such networks are
assumed to be binary). The first question is whether or not Theorem 3.2
remains true if one removes the requirement that N ′ is an orchard network.
Note that Theorem 3.1 requires only thatN is an orchard network. A second
question is whether orchard networks can be characterised succinctly in
terms of forbidden subgraphs. For example, a binary phylogenetic network
is tree-child if and only if it has no stack reticulations and no (tree) vertex
that is the parent of two distinct reticulations [16]. The class of binary ‘tree-
based’ networks have also been characterised in a similar way [23]. Such
‘forbidden subgraph’ characterisations have turned out to be particularly
helpful in the study of these phylogenetic networks and we expect the same
to apply in the study of orchard networks.
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[5] G. Cardona, F. Rosselló, G. Valiente, Comparison of tree-child phylogenetic networks,
IEEE/ACM Transactions on Computational Biology and Bioinformatics 6 (2009)
552–569.

[6] W.F. Doolittle, Phylogenetic classification and the universal tree, Science 284 (1999)
2124–2128.

[7] P.L. Erdös, C. Semple, M. Steel, A class of phylogenetic networks reconstructable
from ancestral profiles. Mathematical Biosciences 313 (2019) 33–40.

[8] J. Felsenstein, Inferring Phylogenies, Sinauer Associates, Sunderland, MA, 2004.
[9] D.H. Huson, R. Rupp, C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms

and Applications, Cambridge University Press, 2010.
[10] R. Janssen, Y. Murakami, On cherry-picking and network containment,

arXiv:1812.08065v2 (2020).
[11] W. Jetz, G.H. Thomas, J.B. Joy, K. Hartmann, A.O. Mooers, The global diversity

of birds in space and time, Nature 491 (2012) 444–448.



DEFINING NETWORKS USING ANCESTRAL PROFILES 17

[12] E.V. Koonin, The turbulent network dynamics of microbial evolution and the statis-
tical tree of life, Journal of Molecular Evolution 80 (2015) 244–250.

[13] S. Linz, C. Semple, Caterpillars on three and four leaves are sufficient to reconstruct
binary normal networks, Journal of Mathematical Biology 81 (2020) 961–980.

[14] T. Marcussen, L. Heier, A.K. Brysting, B. Oxelman, K.S. Jakobsen, From gene trees
to a dated allopolyploid network: Insights from the angiosperm genus Viola (Vio-
laceae), Systematic Biology 64 (2015) 84–101.

[15] F. Pardi, C. Scornavacca, Reconstructible phylogenetic networks: Do not distinguish
the indistinguishable, PLoS Computational Biology 11 (2015) e1004135.

[16] C. Semple, Phylogenetic networks with every embedded phylogenetic tree a base tree,
Bulletin of Mathematical Biology 78 (2016) 132–137.

[17] C. Semple, M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003.
[18] T. Thiergart, G. Landan, M. Schenk, T. Dagan, W.F. Martin, An evolutionary net-

work of genes present in the eukaryote common ancestor polls genomes on eukaryotic
and mitochondrial origin, Genome Biology and Evolution 4 (2012) 466–485.

[19] N.S. Upham, J.A. Esselstyn, W. Jetz. Inferring the mammal tree: Species-level sets
of phylogenies for questions in ecology, evolution, and conservation. PLOS Biology
17 (2019) e3000494.

[20] S.J. Willson, Reconstruction of certain phylogenetic networks from the genomes at
their leaves, Journal of Theoretical Biology 252 (2008) 338–349.

[21] S.J. Willson, Properties of normal phylogenetic networks, Bulletin of Mathematical
Biology 72 (2010) 340–358.

[22] M. Worobey, J. Pekar, B.B. Larsen, M.I. Nelson, V. Hill, J.B. Joy, A. Rambaut, M.A.
Suchard, J.O. Wertheim, P. Lemey, The emergence of SARS-CoV-2 in Europe and
North America, Science 370 (2020) 564–570.

[23] L. Zhang, On tree-based phylogenetic networks, Journal of Computational Biology
23 (2016) 553–565.

Appendix: Adjustments Required for the Proof of Theorem 3.1

The following lemma replaces [7, Lemma 3.3], in which the requirement
that the grandparents of b (i.e. parents of the parent of b), are tree vertices
was omitted. Without this extra constraint, the lemma does not hold; an
example to illustrate this the phylogenetic network N in Fig. 2 by taking
a = x3 and b = x4.

Lemma 5.1. Let N be a phylogenetic network on X, and let {a, b} be a
2-element subset of X. Then {a, b} is a reticulated cherry of N in which b
is the reticulation leaf and all grandparents of b are tree vertices if and only
if

(i) γ(a) ( γ(b),
(ii) there is no x ∈ X − {b} such that γ(a) ( γ(x), and

(iii)
∣∣∣γ(b)−

⋃
x∈X−{b} γ(x)

∣∣∣ = 1.

The proof of Lemma 5.1 follows the same argument as the original statement
of the lemma.
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In addition to Lemma 5.1, the proof of Theorem 3.1 requires two further
lemmas. The first replaces [7, Corollary 4.2] (which is correct as stated) and
the second is to connect Lemma 5.1 with stack-free orchard networks.

Lemma 5.2. Let N be a stack-free orchard network, and let {a, b} be a
cherry or a reticulated cherry of N . If N ′ is obtained from N by reducing
b if {a, b} is a cherry or cutting {a, b} if {a, b} is a reticulated cherry, then
N ′ is a stack-free orchard network.

Lemma 5.3. Let N be a stack-free orchard network. If {a, b} is a reticulated
cherry of N in which b is the reticulation leaf, then the grandparents of b
are tree vertices.

Using these replacement lemmas, together with [7, Proposition 4.1] and [7,
Lemma 5.1] replaced by Proposition 2.1 and Lemma 4.3, respectively, the
proof of Theorem 3.1 follows the same argument, mutatis mutandis, as [7,
Theorem 2.2].
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