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Abstract. Reticulation processes in evolution mean that the ancestral his-

tory of certain groups of present-day species is non-tree-like. These processes

include hybridization, lateral gene transfer, and recombination. Despite the

existence of reticulation, such events are relatively rare and so a fundamental

problem for biologists is the following: given a collection of rooted binary phy-

logenetic trees on sets of species that correctly represent the tree-like evolution

of different parts of their genomes, what is the smallest number of “reticula-

tion” vertices in any network that explains the evolution of the species under

consideration. It has been previously shown that this problem is NP-hard

even when the collection consists of only two rooted binary phylogenetic trees.

However, in this paper, we show that the problem is fixed-parameter tractable

in the two-tree instance, when parameterized by this smallest number of retic-

ulation vertices.
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1. Introduction

Evolutionary (phylogenetic) trees are used in biology to represent the ancestral

history of a collection of present-day species. While this is appropriate for many

groups of species, there are some groups (including certain plant and fish species)

for which the ancestral history is non-tree-like. This is caused by processes that

include hybridization, lateral gene transfer, and recombination. Collectively, these

processes are referred to as reticulation events. For such species, it is more ap-

propriate to represent their ancestral history using rooted acyclic digraphs, where

vertices of in-degree at least two represent reticulation events

Although reticulation events do occur, they are still relatively rare and so a

fundamental problem for biologists studying the evolution of species is the following:

given a collection of rooted phylogenetic trees on sets of species that correctly

represents the tree-like evolution of different parts of their genomes, what is the

smallest number of reticulation events needed to explain the evolution of the species

under consideration. This smallest number sets a lower bound on the number of

such events.

This question has been considered in a number of papers including [2, 3, 6, 10, 14,

15]. Furthermore, variants of it (particularly when the input is a collection of binary

sequences) have also been considered, for example see [8, 9, 11, 12, 13, 18]. In an

earlier paper [6], we showed that, computationally, the above problem is NP-hard

even when the initial collection consists of two rooted binary phylogenetic trees.

However, the main result of this paper shows that in the case the input consists of

two such trees, there is a fixed-parameter algorithm for finding the optimal solution.
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The idea behind fixed-parameter complexity is that while the general case of

computing the minimum number of reticulation events is NP-hard, many biologi-

cally relevant cases have a relatively small number of hybridization events and so

may be tractable. In particular, we show that this minimum number can be com-

puted in time O(f(k) + p(n)), where n is the number of species, k is the actual

minimum number, f is some computable function, and p is a fixed polynomial. The

importance of this result is in the separation of the variables n and k; it shows that,

for a reasonable range of k, the problem may be tractable even for a very large n.

To formally describe the above problem and, in particular, the main result, we

need several definitions. A rooted binary phylogenetic X-tree is a rooted tree whose

root has degree two and all other interior vertices have degree three, and whose leaf

set is X . The set X is called the label set of T and is often denoted L(T ). Two

rooted binary phylogenetic trees are shown in Fig. 1(a).

A hybridization network (on X) is a rooted acyclic digraph with root ρ in which

(i) X is the set of vertices of out-degree zero,

(ii) the out-degree of ρ is at least 2,

(iii) for each vertex with out-degree 1, its in-degree is at least 2.

For completeness, if |X | = 1, then the digraph consisting of an isolated vertex

labelled by the element in X is also defined to be a hybridization network on X .

The set X represents a set of present-day species, and vertices of in-degree at least

two represent an inheritance of genetic information from their parents. Generically,

we call such vertices hybridization vertices. A hybridization network is shown in

Fig. 1(b). For convenience, throughout the paper, we adopt the convention that
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Figure 1. (a) Two rooted binary phylogenetic trees T and T ′ and

(b) a hybridization network H that displays them.

hybridization networks are always drawn with their arcs directed downwards and

so we omit the arrowheads. Note that hybridization networks are referred to as

“hybrid phylogenies” in [2, 3].

To quantify the number of hybridization events of a hybridization network H,

we define the hybridization number of H, denoted h(H), to be

h(H) =
∑

v 6=ρ

(d−(v) − 1),

where ρ denotes the root of H and d−(v) denotes the in-degree of v. Apart from

the root, every vertex has at least one parent and so “(d−(v) − 1)” represents the

number of “additional” parents of v. In Fig. 1(b), h(H) = 1.

Let T be a rooted binary phylogenetic X-tree and let H be a hybridization

network. We say that H displays T if T can be obtained from a rooted subtree of

H by suppressing degree-two vertices. In other words, T can be obtained from H by

first deleting a subset of the edges of H, and then deleting the isolated vertices and

suppressing non-root degree-two vertices. The hybridization network in Fig. 1(b)

displays the two trees in Fig. 1(a). For two rooted binary phylogenetic X-trees T

and T ′, we set

h(T , T ′) = min{h(H) : H is a hybridization network that displays T and T ′}.
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The decision problem Hybridization Number is formally stated as follows.

Problem Hybridization Number

Instance: Two rooted binary phylogenetic X-trees T and T ′, and an integer k.

Question: Is h(T , T ′) ≤ k?

The main result of this paper is the following theorem.

Theorem 1.1. The decision problem Hybridization Number, parameterized by

h(T , T ′), is fixed-parameter tractable.

We note here that, while Theorem 1.1 provides the first fixed-parameter algorithm

for Hybridization Number, Hallet and Lagergren [10] give a fixed-parameter

algorithm in a slightly different setting which may be interpreted as a restricted

version of this problem.

Informally, the overall approach we use in proving Theorem 1.1 is as follows.

We start by taking the input to Hybridization Number and reducing its size

using two reduction rules in a regulated way. We show that once fully reduced

the resulting input size is linear in our parameter: the hybridization number of the

original pair of input trees. We then apply brute force to compute the hybridization

number on the smaller input, which may take exponential time but is only ever

performed on the bounded size input. The resulting solution immediately provides

the hybridization number of the original pair of input trees.

This approach is similar to that used in showing that “rooted subtree prune and

regraft (rSPR) distance” is fixed-parameter tractable [5], in particular we kernalize

the problem by using two rules that reduce the size of the input trees sufficiently.
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Loosely speaking, for two rooted binary phylogenetic X-trees T and T ′, the rSPR

distance is the minimum number of subtrees that must be “moved” to transform T

into T ′. Denoting this distance by drSPR(T , T ′), the decision problem rSPR Dis-

tance is to decide whether drSPR(T , T ′) ≤ k for some given k. Like Hybridiza-

tion Number, this problem is also NP-hard [5]. In the last section, Section 4,

we compare the two approaches and highlight an interesting observation with re-

gards to finding a polynomial-time approximation algorithm for Hybridization

Number.

The paper is organized as follows. In the next section, we describe two notions

of an “agreement forest”. Both of these notions have proved fruitful in the study

of rSPR Distance and Hybridization Number. A third notion, which extends

the other two and will be central to the results in this paper, will be described in

Section 3, where the proof of Theorem 1.1 is established. Unless otherwise stated,

the notation and terminology follow [17]. For an authoritative reference on fixed-

parameter tractability, we refer the reader to [7].

2. Agreement Forests

Agreement forests have become an essential tool in understanding the decision

problem Hybridization Number and the closely related problem rSPR Dis-

tance. In this section, we describe two notions of agreement forests. The sec-

ond notion provides a characterization of Hybridization Number that underpins

many of the results in this area.
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Figure 2. Two rooted binary phylogenetic trees with their roots labelled.

Let T be a rooted binary phylogenetic X-tree and let X ′ be a subset of X .

The minimal rooted subtree of T that connects the vertices of T labelled by the

elements of X ′ is denoted by T (X ′). Furthermore, the restriction of T to X ′,

denoted by T |X ′, is the rooted binary phylogenetic tree that is obtained from

T (X ′) by suppressing any non-root vertices of degree two.

Now let T and T ′ be two rooted binary phylogenetic X-trees. For the purposes

of the definition of an agreement forest, we regard the root of both T and T ′ as a

vertex ρ at the end of a pendant edge adjoined to the original root. Furthermore,

we also regard ρ as part of the label sets of both T and T ′, thus we view their

label sets as X ∪ {ρ}. For example, in Fig. 2, we have adjoined the vertex ρ to

each of the original roots of T and T ′. An agreement forest for T and T ′ is a

collection F = {Tρ, T1, T2, . . . , Tk} of restricted subtrees of T and T ′, where Tρ

is a rooted tree whose (leaf) label set Lρ includes ρ and T1, T2, . . . , Tk are rooted

binary phylogenetic trees with label sets L1,L2, . . . ,Lk, respectively, such that the

following properties are satisfied:

(i) The label sets Lρ,L1,L2, . . . ,Lk partition X ∪ {ρ}.

(ii) For all i ∈ {ρ, 1, 2, . . . , k}, Ti
∼= T |Li

∼= T ′|Li.
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(iii) The trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} and {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}}

are vertex disjoint subtrees of T and T ′, respectively.

It is easily seen that if F is an agreement forest for T and T ′, then F can be

obtained from each of T and T ′ by deleting |F|−1 edges and suppressing non-root

vertices of degree two. An agreement forest for T and T ′ is a maximum-agreement

forest if it has the smallest number of components amongst all agreement forests

for T and T ′, in which case we denote the value of k by m(T , T ′).

While rSPR Distance can be characterized in terms of agreement forests [5]

(see Section 4), such a characterization for Hybridization Number requires an

additional condition. This condition excludes the possibility of circular inheritance,

that is inheriting genetic information from your own descendants. Suppose that

F = {Tρ, T1, T2, . . . , Tk} is an agreement forest for T and T ′. Let GF be the directed

graph whose vertex set is F and, for distinct vertices Ti and Tj , the ordered pair

(Ti, Tj) is an arc precisely if either

(i) the root of T (Li) in T is an ancestor of the root of T (Lj) in T , or

(ii) the root of T ′(Li) in T ′ is an ancestor of the root of T ′(Lj) in T ′.

We say that F is an acyclic-agreement forest if GF is acyclic, that is GF contains no

directed cycles. Furthermore, if F contains the smallest number of components over

all acyclic-agreement forests for T and T ′, we say that F is a maximum-acyclic-

agreement forest for T and T ′, in which case we denote this value of k by ma(T , T ′).

To illustrate these definitions, Fig. 3(a) shows a maximum-acyclic-agreement forest



HYBRIDIZATION NUMBER IS FPT 9

(a)

Tρ

T1

T3T2

ρ

fd ecba

T1 T2 T3 Tρ

(b)

Figure 3. (a) A maximum-acyclic-agreement forest F for T and

T ′ in Fig. 2 and (b) the graph GF .

F for the two rooted binary phylogenetic trees shown in Fig. 2, while Fig. 3(b)

shows the graph GF .

The following result is established in [2].

Theorem 2.1. Let T and T ′ be two rooted binary phylogenetic X-trees. Then

h(T , T ′) = ma(T , T ′).

To provide some intuition for Theorem 2.1, suppose that H is a hybridization

network that displays T and T ′ such that h(H) = h(T , T ′). Then it is easy to

see that the in-degree of every hybridization vertex is two. Furthermore, up to

suppressing degree-two vertices, an acyclic-agreement forest F for T and T ′ can

be obtained by deleting each of the edges coming into every hybridization vertex.

In this case, |F| − 1 = h(T , T ′) and so we have one direction of the statement

(in particular ma(T , T ′) ≤ h(T , T ′)). Biologically, the deleted edges correspond

to different paths of genetic inheritance. Consequently, the fewer edges deleted,

the smaller the number of hybridization events required to explain T and T ′. On

the other hand, if we have an acyclic-agreement forest F for T and T ′, then the
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acyclicity of GF allows one to construct a hybridization network H that displays

T and T ′ in which h(H) ≤ |F| − 1. This gives the other direction of Theorem 2.1.

3. Fixed-Parameter Tractability

In this section, we prove the main result of this paper, Theorem 1.1. As men-

tioned in the introduction, we use two reduction rules to kernalize the problem. We

begin this section by describing these two rules.

Let T be a rooted binary phylogenetic X-tree. For n ≥ 2, an n-chain of T is

an ordered tuple (a1, a2, . . . , an) of leaves of T such that the parent of a1 is either

the same as the parent of a2 or a child of the parent of a2 and, for all i ≥ 2, the

parent of ai is a child of the parent of ai+1. To illustrate, the tree T in Fig. 5 has

an n-chain (a1, a2, . . . , an). Furthermore, a pendant subtree of T is one that can be

detached by deleting a single edge.

Let T and T ′ be two rooted binary phylogenetic X-trees. Let P be a disjoint

collection of 2-element subsets of X such that each pair {a, b} ∈ P is a 2-chain in

both T and T ′. Let w : P → Z
+ be a weight function on the elements of P , that is

each pair in P is assigned a positive integer weight. In the remainder of the paper,

we refer to such a pair of trees with associated set P and weight function w as a

pair of weighted phylogenetic trees on X .

The above mentioned reduction rules are as follows. Let T and T ′ be a pair of

weighted phylogenetic trees on X .
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Figure 4. Two weighted phylogenetic trees reduced under Rule 1,

where S and S′ are the resulting trees.

Rule 1 Replace any maximal pendant subtree that occurs identically in both trees

by a single leaf with a new label. Furthermore, delete all members of P

whose elements label leaves of the pendant subtree.

Rule 2 For n ≥ 3, replace any maximal n-chain (a1, a2, . . . , an) that occurs iden-

tically in both T and T ′ by a 2-chain with new labels a, b. Furthermore,

add the new 2-element set {a, b} to P with weight

w({a, b}) = n − 2 +
∑

{ai,aj}∈P ;ai,aj∈{a1,...,an}

w({ai, aj}),

and then delete all pairs in P whose elements are in {a1, a2, . . . , an}.

Rules 1 and 2 are illustrated in Figs 4 and 5, respectively.

Remark. The label set of any maximal pendant subtree or maximal chain which

appears in both T and T ′ must intersect each pair in P in either both elements or

neither. Hence the rules above are well defined. We freely use this fact in the rest

of the paper.
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b b
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Figure 5. Two weighted phylogenetic trees reduced under Rule 2,

where S and S′ are the resulting trees.

We next introduce a third notion of agreement forests. This notion extends the

previous two and is central to this paper. For a pair of weighted phylogenetic X-

trees T and T ′, an agreement forest F for T and T ′ is legitimate if it is acyclic and

the following pairwise property holds:

(P) if {a, b} ∈ P , then either a and b are both contained in the label set of some

component of F , or a and b label isolated vertices in F .

Furthermore, let F be an (ordinary) agreement forest for T and T ′. We define the

weight of F , denoted w(F), to be

w(F) = (|F| − 1) +
∑

{a, b} ∈ P ; a and b isolated in F

w({a, b})

and set f(T , T ′) to be the minimum weight of a legitimate-agreement forest for T

and T ′. Note that we always have f(T , T ′) ≥ h(T ′, T ′), since the weight function

is non-negative, and f(T , T ′) = h(T , T ′) whenever the set P is empty.
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The next lemma is a key result in establishing Theorem 1.1. For a vertex v of a

rooted binary phylogenetic X-tree T , the subset of X whose elements are precisely

the descendants of v is a cluster of T . While the most recent common ancestor of

a subset A of X , denoted mrcaT (A), is the vertex of T whose associated cluster is

the minimal cluster of T containing A.

Lemma 3.1. Let T and T ′ be a pair of weighted phylogenetic trees on X. Let

A be the leaf set of a maximal pendant subtree common to T and T ′, and let

(a1, a2, . . . , an) be a maximal n-chain common to both T and T ′, where n ≥ 3.

Then every legitimate-agreement forest F for T and T ′ of minimum weight has the

following properties:

(a) F contains a tree whose label set contains every element of A; and

(b) either F contains a tree whose label set contains {a1, a2, . . . , an},

or each of a1, a2, . . . , an labels an isolated vertex in F .

Proof. We start with the proof of (a). Let F = {Tρ, T1, T2, . . . , Tk} be a legitimate-

agreement forest for T and T ′ of minimum weight. Assume for a contradiction

that no single component contains every element of A in its label set. We form a

new legitimate-agreement forest F ′ which satisfies (a) and has smaller weight than

F . Let J index the components of F which include members of A in their label

sets. To be precise, J = {j ∈ {ρ, 1, . . . , k} : Lj ∩ A 6= ∅}. Let F ′ be the forest

that is obtained from F by deleting each tree Tj such that j ∈ J and inserting the

new tree TA = T |(∪j∈JLj) with label set LA say. Observe that Lj − A 6= ∅ for

at most one member of J , since the corresponding subtrees in T (and T ′) must

be vertex disjoint. Hence F ′ is an agreement forest for T and T ′. Furthermore, it
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Figure 6. Under the assumption that this configuration appears

in F , then the rest of the members of {a1, a2, . . . , an}− {ai} must

label isolated vertices in F .

is acyclic since the elements of A labelled a pendent subtree, and legitimate since

A was maximal. It remains to observe that w(F) > w(F ′), since F ′ has fewer

components and no additional pairs in P whose elements are isolated, which gives

a contradiction.

We now turn to the proof of (b). Let F = {Tρ, T1, T2, . . . , Tk} be a legitimate-

agreement forest for T and T ′ of minimum weight, and assume that some ai does not

label an isolated vertex. Then, without loss of generality, the label ai is contained in

the label set Li of Ti, where Li −{ai} is non-empty. First we eliminate a particular

way that ai may be related to Li − {ai} in T and T ′.

Suppose ai is adjoined to the root of Ti such that the parent of ai in one of

the original trees, T say, is an ancestor of mrcaT (Li − {ai}) while the parent of

ai in T ′ is not an ancestor of mrcaT ′(Li − {ai}) (see Fig. 6). Then each of the

elements in {a1, a2, . . . , an} − {ai} must label an isolated vertex in F ; otherwise

the corresponding subtrees of two components of F in either T or T ′ overlap. By

deleting ai from Ti and replacing these isolated vertices with a single tree that

is isomorphic to T |{a1, a2, . . . , an}, it is easily seen that the resulting agreement
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elements in {a1, a2, . . . , an}.

a2

a3

a4

a5

a6

a7

a1

Ta

a2

a3

a4

a5

a6

a7

a1

L1L1

L2 L2

The components of F containing

Figure 7. Joining the components of F containing elements in

{a1, a2, . . . , an} to form a new component Ta in F ′.

forest F ′ is acyclic. Since (a1, a2, . . . , an) is a maximal n-chain and F is legitimate,

it follows that F ′ satisfies (P). But w(F ′) < w(F), contradicting the minimality of

F . Thus we may assume that if ai is adjoined to the root of Ti and the parent of

ai in T is an ancestor of mrcaT (Li − {ai}), then the parent of ai in T ′ is also an

ancestor of mrcaT ′(Li − {ai}).

Now let J index the components of F which contain elements of the chain.

To be precise, J = {j ∈ {ρ, 1, . . . , k} : Lj ∩ {a1, a2, . . . , an} 6= ∅}. Observe that

Lj−{a1, . . . , an} 6= ∅ for at most two members of J since the corresponding subtrees

in T (and T ′) are vertex disjoint. Let F ′ be the forest that is obtained from F by

deleting each tree Tj such that j ∈ J and inserting the new tree Ta = T |(∪j∈JLj)

with label set La say. Essentially, we have joined the components in F involving

elements of {a1, a2, . . . , an} together along the chain. An illustration of this is

shown in Fig. 7, where the left-hand side of the figure shows the components of

F containing elements in {a1, a2, . . . , an}, while the right-hand side shows Ta in

F ′. It follows from the assumption at the end of the previous paragraph that F ′
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is an agreement forest for T and T ′, since the chain is common to both trees.

Furthermore, as (a1, a2, . . . , an) is maximal, F ′ satisfies (P).

We next show that F ′ is acyclic. Consider the directed graphs GF ′ and GF

associated with F ′ and F , respectively. First, the vertex set of GF ′ is obtained

from GF by deleting the vertices Tj for all j ∈ J , and introducing the new vertex

Ta. Furthermore, if Tl, Tm ∈ F ′ −{Ta}, then (Tl, Tm) is an arc in GF ′ if and only if

(Tl, Tm) is an arc in GF . Regarding the arcs incident with Ta, there are two cases

to consider. First, suppose there is some j1 ∈ J such that the root of T (Lj1) in T is

above an (i.e. on the path from an to ρ). Then the root of T (La) is the same as the

root of T (Lj1 ) and, under our assumptions, the respective roots must also coincide

in T ′. This occurs in the example given in Fig. 7, where in both T and T ′ the root

of T (L2 ∪ {a6, a7}) is the same as the root of T (La). So (Ta, Tl) and (Tl, Ta) are

arcs in GF ′ if and only if (Tj1 , Tl) and (Tl, Tj1) are arcs in GF , respectively. Since

GF is acyclic, GF ′ must be also. Second, suppose there is no such j1 ∈ J . Then

the root of T (La) is the parent of an in T and likewise the root of T ′(La) is the

parent of an in T ′. Since not all of the elements in {a1, . . . , an} are isolated in F ,

there is some j2 ∈ J such that the root of T (Lj2 ) in T is above a1. It again follows

that (Ta, Tl) and (Tl, Ta) are arcs in GF ′ if and only if (Tj2 , Tl) and (Tl, Tj2) are

arcs in GF , respectively, and so GF ′ is acyclic. Hence F ′ is a legitimate-agreement

forest for T and T ′. If a1, . . . , an are not all in the same component of F (i.e. if

|J | > 1), then we have reduced the number of components and so w(F ′) < w(F).

This contradicts the minimality of F . Hence, under the original assumption that

some ai does not label an isolated vertex, we conclude that the chain is entirely

contained in a single component of F . This concludes the proof of the lemma. �



HYBRIDIZATION NUMBER IS FPT 17

Proposition 3.2. Let T and T ′ be a pair of weighted phylogenetic X-trees on X.

Let S and S′ be the pair of weighted phylogenetic X ′-trees obtained from T and T ′,

respectively, by applying either Rule 1 or Rule 2. Then f(T , T ′) = f(S,S′).

Proof. It is an immediate consequence of Lemma 3.1(a) that the proposition holds

if S and S′ have been obtained from T and T ′ by applying Rule 1. Therefore

consider a single application of Rule 2 to T and T ′, where the common n-chain of

T and T ′ that is used is (a1, a2, . . . , an) and the resulting 2-chain is (a, b).

Let FT be a legitimate-agreement forest for T and T ′ of minimum weight. Then,

by Lemma 3.1(b), either

(i) {a1, a2, . . . , an} is contained in the label set of a tree in FT or

(ii) each of a1, a2, . . . , an label isolated vertices in FT .

Let FS be the forest obtained from FT by either replacing the n-chain (a1, a2, . . . , an)

with the 2-chain (a, b) or replacing the isolated vertices labelled with the elements

of this n-chain with two isolated vertices labelled a and b depending upon whether

(i) or (ii) holds, respectively. Illustrations of FT and FS for (i) and (ii) are shown

in Fig. 8. Since FT is a legitimate-agreement forest for T and T ′, a routine check

shows that FS is a legitimate-agreement forest for S and S′. Moreover, in the case

that (ii) holds, the contribution of the isolated vertices a1, a2, . . . , an to w(FT ) is

exactly the same as the contribution of the isolated vertices a, b to w(FS). It now

follows that f(S,S′) ≤ f(T , T ′).

Now suppose that FS is a legitimate-agreement forest for S and S′ with minimum

weight. Since FS is legitimate, either
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Figure 8. Corresponding components of FT and FS for Cases (i)

and (ii).

(i) there is a tree, Si say, in FS , whose label set contains a and b or

(ii) a and b label isolated vertices in FS .

Depending on which holds, let FT be the forest obtained from FS by either replacing

Si with the restriction of T to (L(Si) − {a, b}) ∪ {a1, a2, . . . , an} or replacing the

isolated vertices labelled a and b with n isolated vertices labelled a1, a2, . . . , an,

respectively. Since FS is a legitimate-agreement forest for S and S′, a routine

check shows that FT is a legitimate-agreement forest for T and T ′. Furthermore,

as the contribution of the isolated vertices labelled a, b to w(FS) is the same as the

contribution of the isolated vertices labelled a1, a2, . . . , an to w(FT ) in case (ii), we

have that f(T , T ′) ≤ f(S,S′). This completes the proof of the proposition. �
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Proposition 3.2 says that the tree reduction rules, Rules 1 and 2, preserve the

function f . We now show that Rules 1 and 2 can be applied until the label set of

the resulting rooted binary phylogenetic trees has size bounded by a linear function

of the value of f .

Lemma 3.3. Let T and T ′ be two rooted binary phylogenetic X-trees, and let P

be an empty collection of 2-element subsets of X. Let S and S′ be two weighted

phylogenetic X ′-trees obtained from T and T ′, respectively, by repeatedly applying

Rules 1 and 2 until no further reduction is possible. Then |X ′| < 14h(T , T ′).

Proof. As in [5, Lemma 3.3], we follow the approach in [1, Lemma 3.7]. Let

{Sρ,S1, . . . ,Sk} be a legitimate-agreement forest for S and S′ with minimum weight.

For i = ρ, 1, 2, . . . , k, set Li = L(Si), and let ni denote the number of edges in

E(S) − E(S(Li)) which are incident with the subtree S(Li) and let n′
i denote the

number of edges in E(S′) − E(S′(Li)) which are incident with the subtree S′(Li).

The proof essentially consists of two claims.

Claim 1.
∑

i ni ≤ 2k and
∑

i n′
i ≤ 2k.

By symmetry, it suffices to show that
∑

i ni ≤ 2k. Consider the tree (V, E)

obtained from S by contracting each subtree S(Li) to a single vertex. In this

tree, V consists of the vertices corresponding to the trees Si each of which has

degree ni, and the additional vertices of degree 3. Hence, by the Handshaking

Lemma,
∑

i ni + 3(|V | − (k + 1)) = 2|E|. Therefore, as (V, E) is a tree and so

|V | = |E| + 1, it follows that

∑

i

ni = 2(|V | − 1) − 3(|V | − (k + 1)) = 3k − |V | + 1 ≤ 2k.
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Thus Claim 1 holds.

Claim 2. For each i, the number of leaves in Si is at most 5(ni + n′
i) − 6.

Let I be the set of edges e of Si such that, in the path of edges corresponding to

e in either S(Li) or S′(Li), one of the vertices in this path is incident with an edge

in E(S) − E(S(Li)) or E(S′) − E(S(Li)), respectively. Note that |I| ≤ ni + n′
i.

Let S′
i denote the tree obtained from the minimal subtree of Si that contains the

edges in I by suppressing non-root degree-2 vertices not incident with an edge in I.

Let J denote the set consisting of these new edges, E(S′
i)− I, and let Ipend denote

the set of pendant edges of S′
i. Note that Ipend ⊆ I. Observe that every subtree of

Si below an edge in Ipend will have been replaced by a single vertex using Rule 1,

as these pendant subtrees are clearly common to both trees since they are in the

agreement forest, and they are maximal by Lemma 3.1. Similarly, each chain of

subtrees in Si corresponding to an edge in J will have been replaced by a 2-chain

using Rules 1 and 2. Furthermore, the only other place a subtree, again reduced to

a leaf under Rule 1, could attach itself to Si is at a degree-2 vertex that is incident

with two edges in I. If we identify each such vertex by the edge in I above it, it is

clear that there are at most |I| − |Ipend| such leaves. Hence the number of leaves

in Si is at most |Ipend| + 2|J | + (|I| − |Ipend|) = |I| + 2|J |.

Let m2 and m3 denote the number of vertices of S′
i of degree 2 and 3, respectively.

Then, as |Ipend| is the number of vertices of degree 1, it follows by the Handshaking

Lemma that 2|E(S′
i)| = |Ipend| + 2m2 + 3m3. Therefore, as |E(S′

i)| = |V (S′
i)| − 1,

2(|Ipend| + m2 + m3 − 1) = |Ipend| + 2m2 + 3m3.
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This last equality implies that m3 = |Ipend| − 2. Furthermore

|J | + |I| = (|Ipend| + m2 + m3) − 1

and, by construction, any degree-2 vertex in S′
i must be adjacent to at least one

edge in I, so m2 ≤ 2|I| − |Ipend|. Therefore the number of leaves in Si is at most

|I| + 2|J | = |I| + 2(|Ipend| + m2 + m3 − 1 − |I|)

≤ |I| + 2(|Ipend| + (2|I| − |Ipend|) + (|Ipend| − 2) − 1 − |I|)

= 2|Ipend| + 3|I| − 6

≤ 5|I| − 6

≤ 5(ni + n′
i) − 6.

This proves Claim 2.

Now, by Claim 1, we have
∑

i(ni + n′
i) ≤ 4k, and so

∑

i

|Li| ≤ 5
∑

i

(ni + n′
i) − 6(k + 1) ≤ 14k − 6.

By the definition of f and Proposition 3.2, k ≤ f(S,S′) = f(T , T ′). Since P is

initially empty we also have f(T , T ′) = h(T , T ′), and the result follows. �

We are now in a position to show that the decision problem Hybridization

Number is fixed-parameter tractable.

Proof of Theorem 1.1. Let T and T ′ be two rooted binary phylogenetic X-trees,

and let P be an empty collection of 2-element subsets of X . Let k be an integer.

Let S and S′ be the weighted phylogenetic X ′-trees obtained from T and T ′ by

repeatedly applying Rules 1 and 2 until no further reduction is possible. Then, as
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P is empty, h(T , T ′) = f(T , T ′) and, by Proposition 3.2, f(T , T ′) = f(S,S′), thus

h(T , T ′) = f(S,S′). As in [1] and [5], S and S′ can be found in time polynomial

in |X | (p(|X |) say). By Lemma 3.3, |X ′| ≤ 14h(T , T ′). Thus, if |X ′| > 14k, we

declare that h(T , T ′) > k.

Now suppose that |X ′| ≤ 14k. We next consider the time taken to check whether

there is a legitimate-agreement forest for S and S′ of weight at most k by deleting

up to k edges of S and then seeing if the resulting forest is such a legitimate-

agreement forest. Note that checking for legitimacy takes polynomial time. For

a given rooted binary phylogenetic X ′-tree, there are 2|X ′| − 1 possible edges to

delete, including the edge incident with ρ. Thus there are at most
∑k

i=0

(

2|X′|−1
i

)

≤

∑k
i=0(2|X

′| − 1)i ≤ 2(2|X ′| − 1)k forests to examine, which can be done in time

O((2|X ′|)k) = O((28k)k). If one of these forests is a legitimate-agreement forest

for S and S′ with weight at most k, then we declare h(T , T ′) ≤ k. Otherwise we

declare h(T , T ′) > k. Hence we can answer the Hybridization Number decision

problem for T and T ′ in time O(f(k) + p(|X |)), where f(k) is the computable

function (28k)k and p(|X |) is the polynomial bound for reducing the trees using

Rules 1 and 2. This satisfies the conditions for Hybridization Number to be

fixed-parameter tractable. 2

Remark. By making an organized comparison of the set of clusters of T and the

set of clusters of T ′, a naive approach for fully reducing T and T ′ using Rules 1

and 2 results in an O(n3) algorithm, where n = |X |. While a further such approach

for deciding if a particular set of k edge cuts produces a legitimate-agreement forest

for T and T ′ gives an O(k2+|P |) algorithm. We omit the details of these algorithms

as they are not necessarily the best theoretically and we expect in practice much
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quicker methods. An implementation of the associated fixed-parameter algorithm

and an analysis of its running time is the subject of ongoing research.

4. Some Remarks on rSPR Distance and Hybridization Number

In this section, we compare the approach used to prove Theorem 1.1 with that

used in [5] for showing that rSPR Distance is fixed-parameter tractable. We begin

by formally defining the subtree prune and regraft operation.

Let T be a rooted binary phylogenetic X-tree and, as in the definition of an

agreement forest, view the root of T as a vertex ρ adjoined to the original root by

a new pendant edge. Let e = {u, v} be an edge of T that is not incident with ρ,

where u is in the path from ρ to v. Let T ′ be the rooted binary phylogenetic X-tree

obtained from T by deleting e and then adjoining a new edge f between v and the

component Cu that contains u as follows. Create a new vertex u′ which subdivides

an edge in Cu, adjoin f between u′ and v, and then suppress the degree-two vertex

u. The tree T ′ has been obtained from T by a single rooted subtree prune and

regraft (rSPR) operation. The rSPR distance (drSPR) between two arbitrary rooted

binary phylogenetic X-trees T and T ′ is the minimum number of rSPR operations

required to transform T into T ′.

Historically, drSPR(T , T ′) has been used as a replacement for h(T , T ′). The

reason for this is that individual hybridization events correspond to individual rSPR

operations, and indeed a collection of hybridization events can be modelled by

a sequence of rSPR operations. However, the converse does not hold, since an

arbitrary sequence of rSPR operations may include circular inheritance. It is shown
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in [2] that the difference between rSPR Distance and Hybridization Number

can be arbitrarily large. Nevertheless, the two values are closely related. Recall

Theorem 2.1 which says that for two rooted binary phylogenetic X-trees T and

T ′, the value h(T , T ′) is one less than the number of components in a maximum-

acyclic-agreement forest, ma(T , T ′). In comparison, we have the following result

from [5].

Theorem 4.1. Let T and T ′ be two rooted binary phylogenetic X-trees. Then

drSPR(T , T ′) = m(T , T ′), where m(T , T ′) denotes the size of a maximum-agreement

forest for T and T ′ minus one.

The overall approach we have used to prove Theorem 1.1 is similar to that used

in [5] to show that rSPR Distance is fixed-parameter tractable (parameterized by

drSPR(T , T ′)), but there are some crucial differences. In both papers, the problems

are kernalized using two reduction rules which bound the size of the leaf sets of the

resulting pairs of trees in terms of the parameter. The first rule in [5] is essentially

identical to Rule 1 here, but the second rule differs from Rule 2 here. The lack

of the acyclicity constraint means that there is a maximum-agreement forest in

which every common n-chain (n ≥ 3) is a connected subtree of a component [5,

Lemma 3.1], and so each such chain can be replaced by an unweighted 3-chain.

The implication of this is that there is no need for weighted forests, so if S and S′

are the rooted binary phylogenetic X ′-trees resulting from applying the appropriate

two rules, then the size of a maximum-agreement forest for T and T ′ is bounded

above by |X ′|, the number of leaves in S (or S′). The consequence is that the
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fixed-parameter algorithm for rSPR Distance in [5] also provides a polynomial-

time approximation algorithm for this problem. The analogue of Lemma 3.3 in [5]

(with the upper bound on drSPR(T , T ′) included) is that

drSPR(T , T ′) ≤ |X ′| ≤ 28drSPR(T , T ′).

Therefore the size of the label sets of the reduced trees S and S′ gives a 28-

approximation for drSPR(T , T ′). With some modifications along the lines of legitimate-

agreement forests, this approach can be made to yield a 9-approximation. However,

no such approximation algorithm for Hybridization Number follows in the anal-

ogous way from the results in this paper since |X ′| does not bound the hybridization

number due to the presence of weights. Indeed, there is currently no polynomial-

time approximation algorithm for Hybridization Number.

Using a different approach, based upon ideas in [13, 16], the current best polynomial-

time approximation algorithm for rSPR Distance is a 5-approximation algorithm

by Bonet et al. [4]. Intuitively, this algorithm builds an agreement forest by looking

only at local structures. One might hope that this algorithm extends to Hybridiza-

tion Number (using Theorem 2.1), but, due to the additional global condition on

an acyclic-agreement forest, it seems unlikely that such an approach will work.

References

[1] Allen, B. L. and Steel, M. (2001). Subtree transfer operations and their induced metrics on

evolutionary trees. Annals of Combinatorics, 5, 1-13.
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